Search results for: semisolid metals processing
1329 Weighted-Distance Sliding Windows and Cooccurrence Graphs for Supporting Entity-Relationship Discovery in Unstructured Text
Authors: Paolo Fantozzi, Luigi Laura, Umberto Nanni
Abstract:
The problem of Entity relation discovery in structured data, a well covered topic in literature, consists in searching within unstructured sources (typically, text) in order to find connections among entities. These can be a whole dictionary, or a specific collection of named items. In many cases machine learning and/or text mining techniques are used for this goal. These approaches might be unfeasible in computationally challenging problems, such as processing massive data streams. A faster approach consists in collecting the cooccurrences of any two words (entities) in order to create a graph of relations - a cooccurrence graph. Indeed each cooccurrence highlights some grade of semantic correlation between the words because it is more common to have related words close each other than having them in the opposite sides of the text. Some authors have used sliding windows for such problem: they count all the occurrences within a sliding windows running over the whole text. In this paper we generalise such technique, coming up to a Weighted-Distance Sliding Window, where each occurrence of two named items within the window is accounted with a weight depending on the distance between items: a closer distance implies a stronger evidence of a relationship. We develop an experiment in order to support this intuition, by applying this technique to a data set consisting in the text of the Bible, split into verses.Keywords: cooccurrence graph, entity relation graph, unstructured text, weighted distance
Procedia PDF Downloads 1491328 Biomimetic Dinitrosyl Iron Complexes: A Synthetic, Structural, and Spectroscopic Study
Authors: Lijuan Li
Abstract:
Nitric oxide (NO) has become a fascinating entity in biological chemistry over the past few years. It is a gaseous lipophilic radical molecule that plays important roles in several physiological and pathophysiological processes in mammals, including activating the immune response, serving as a neurotransmitter, regulating the cardiovascular system, and acting as an endothelium-derived relaxing factor. NO functions in eukaryotes both as a signal molecule at nanomolar concentrations and as a cytotoxic agent at micromolar concentrations. The latter arises from the ability of NO to react readily with a variety of cellular targets leading to thiol S-nitrosation, amino acid N-nitrosation, and nitrosative DNA damage. Nitric oxide can readily bind to metals to give metal-nitrosyl (M-NO) complexes. Some of these species are known to play roles in biological NO storage and transport. These complexes have different biological, photochemical, or spectroscopic properties due to distinctive structural features. These recent discoveries have spawned a great interest in the development of transition metal complexes containing NO, particularly its iron complexes that are central to the role of nitric oxide in the body. Spectroscopic evidence would appear to implicate species of “Fe(NO)2+” type in a variety of processes ranging from polymerization, carcinogenesis, to nitric oxide stores. Our research focuses on isolation and structural studies of non-heme iron nitrosyls that mimic biologically active compounds and can potentially be used for anticancer drug therapy. We have shown that reactions between Fe(NO)2(CO)2 and a series of imidazoles generated new non-heme iron nitrosyls of the form Fe(NO)2(L)2 [L = imidazole, 1-methylimidazole, 4-methylimidazole, benzimidazole, 5,6-dimethylbenzimidazole, and L-histidine] and a tetrameric cluster of [Fe(NO)2(L)]4 (L=Im, 4-MeIm, BzIm, and Me2BzIm), resulted from the interactions of Fe(NO)2 with a series of substituted imidazoles was prepared. Recently, a series of sulfur bridged iron di nitrosyl complexes with the general formula of [Fe(µ-RS)(NO)2]2 (R = n-Pr, t-Bu, 6-methyl-2-pyridyl, and 4,6-dimethyl-2-pyrimidyl), were synthesized by the reaction of Fe(NO)2(CO)2 with thiols or thiolates. Their structures and properties were studied by IR, UV-vis, 1H-NMR, EPR, electrochemistry, X-ray diffraction analysis and DFT calculations. IR spectra of these complexes display one weak and two strong NO stretching frequencies (νNO) in solution, but only two strong νNO in solid. DFT calculations suggest that two spatial isomers of these complexes bear 3 Kcal energy difference in solution. The paramagnetic complexes [Fe2(µ-RS)2(NO)4]-, have also been investigated by EPR spectroscopy. Interestingly, the EPR spectra of complexes exhibit an isotropic signal of g = 1.998 - 2.004 without hyperfine splitting. The observations are consistent with the results of calculations, which reveal that the unpaired electron dominantly delocalize over the two sulfur and two iron atoms. The difference of the g values between the reduced form of iron-sulfur clusters and the typical monomeric di nitrosyl iron complexes is explained, for the first time, by of the difference in unpaired electron distributions between the two types of complexes, which provides the theoretical basis for the use of g value as a spectroscopic tool to differentiate these biologically active complexes.Keywords: di nitrosyl iron complex, metal nitrosyl, non-heme iron, nitric oxide
Procedia PDF Downloads 3031327 From Sound to Music: The Trajectory of Musical Semiotics in a Selected Soundscape Environment in South-Western Nigeria
Authors: Olatunbosun Samuel Adekogbe
Abstract:
This paper addresses the question of musical signification, revolving around nature and its natural divides; the paper tends to examine the roles of the dispositional apparatus of listeners to react to sounding environments through music as coordinated sound that focuses on the powerful strain between vibrational occurrences of sound and potentials of being structured. This paper sets out to examine music as a simple conventional design that does not allude to something beyond music and sound as a vehicle to communicate through production, perception, translation, and reaction with regard to melodic and semiotic functions of sounds. This paper adopts the application of questionnaire and evolutionary approach methods to probe musical adaptation, reproduction, and natural selection as the basis for explaining specific human behavioural responses to musical sense-making beyond the above-sketched dichotomies, with a major focus on the transition from acoustic-emotional sensibilities to musical meaning in the selected soundscapes. It was observed that music has emancipated itself from the level of mere acoustic processing of sounds to a functional description in terms of allowing music users to share experiences and interact with the soundscaping environment. The paper, therefore, concludes that the audience as music participants and listeners in the selected soundscapes have been conceived as adaptive devices in the paradigm shift, which can build up new semiotic linkages with the sounding environments in southwestern Nigeria.Keywords: semiotics, sound, music, soundscape, environment
Procedia PDF Downloads 641326 Enhanced Retrieval-Augmented Generation (RAG) Method with Knowledge Graph and Graph Neural Network (GNN) for Automated QA Systems
Authors: Zhihao Zheng, Zhilin Wang, Linxin Liu
Abstract:
In the research of automated knowledge question-answering systems, accuracy and efficiency are critical challenges. This paper proposes a knowledge graph-enhanced Retrieval-Augmented Generation (RAG) method, combined with a Graph Neural Network (GNN) structure, to automatically determine the correctness of knowledge competition questions. First, a domain-specific knowledge graph was constructed from a large corpus of academic journal literature, with key entities and relationships extracted using Natural Language Processing (NLP) techniques. Then, the RAG method's retrieval module was expanded to simultaneously query both text databases and the knowledge graph, leveraging the GNN to further extract structured information from the knowledge graph. During answer generation, contextual information provided by the knowledge graph and GNN is incorporated to improve the accuracy and consistency of the answers. Experimental results demonstrate that the knowledge graph and GNN-enhanced RAG method perform excellently in determining the correctness of questions, achieving an accuracy rate of 95%. Particularly in cases involving ambiguity or requiring contextual information, the structured knowledge provided by the knowledge graph and GNN significantly enhances the RAG method's performance. This approach not only demonstrates significant advantages in improving the accuracy and efficiency of automated knowledge question-answering systems but also offers new directions and ideas for future research and practical applications.Keywords: knowledge graph, graph neural network, retrieval-augmented generation, NLP
Procedia PDF Downloads 371325 Screening Deformed Red Blood Cells Irradiated by Ionizing Radiations Using Windowed Fourier Transform
Authors: Dahi Ghareab Abdelsalam Ibrahim, R. H. Bakr
Abstract:
Ionizing radiation, such as gamma radiation and X-rays, has many applications in medical diagnoses and cancer treatment. In this paper, we used the windowed Fourier transform to extract the complex image of the deformed red blood cells. The real values of the complex image are used to extract the best fitting of the deformed cell boundary. Male albino rats are irradiated by γ-rays from ⁶⁰Co. The male albino rats are anesthetized with ether, and then blood samples are collected from the eye vein by heparinized capillary tubes for studying the radiation-damaging effect in-vivo by the proposed windowed Fourier transform. The peripheral blood films are prepared according to the Brown method. The peripheral blood film is photographed by using an Automatic Image Contour Analysis system (SAMICA) from ELBEK-Bildanalyse GmbH, Siegen, Germany. The SAMICA system is provided with an electronic camera connected to a computer through a built-in interface card, and the image can be magnified up to 1200 times and displayed by the computer. The images of the peripheral blood films are then analyzed by the windowed Fourier transform method to extract the precise deformation from the best fitting. Based on accurate deformation evaluation of the red blood cells, diseases can be diagnosed in their primary stages.Keywords: windowed Fourier transform, red blood cells, phase wrapping, Image processing
Procedia PDF Downloads 841324 Biotechonomy System Dynamics Modelling: Sustainability of Pellet Production
Authors: Andra Blumberga, Armands Gravelsins, Haralds Vigants, Dagnija Blumberga
Abstract:
The paper discovers biotechonomy development analysis by use of system dynamics modelling. The research is connected with investigations of biomass application for production of bioproducts with higher added value. The most popular bioresource is wood, and therefore, the main question today is about future development and eco-design of products. The paper emphasizes and evaluates energy sector which is open for use of wood logs, wood chips, wood pellets and so on. The main aim for this research study was to build a framework to analyse development perspectives for wood pellet production. To reach the goal, a system dynamics model of energy wood supplies, processing, and consumption is built. Production capacity, energy consumption, changes in energy and technology efficiency, required labour source, prices of wood, energy and labour are taken into account. Validation and verification tests with available data and information have been carried out and indicate that the model constitutes the dynamic hypothesis. It is found that the more is invested into pellets production, the higher the specific profit per production unit compared to wood logs and wood chips. As a result, wood chips production is decreasing dramatically and is replaced by wood pellets. The limiting factor for pellet industry growth is availability of wood sources. This is governed by felling limit set by the government based on sustainable forestry principles.Keywords: bioenergy, biotechonomy, system dynamics modelling, wood pellets
Procedia PDF Downloads 4061323 Use of Polymeric Materials in the Architectural Preservation
Authors: F. Z. Benabid, F. Zouai, A. Douibi, D. Benachour
Abstract:
These Fluorinated polymers and polyacrylics have known a wide use in the field of historical monuments. PVDF provides a great easiness to processing, a good UV resistance and good chemical inertia. Although the quality of physical characteristics of the PMMA and its low price with a respect to PVDF, its deterioration against UV radiations limits its use as protector agent for the stones. On the other hand, PVDF/PMMA blend is a compromise of a great development in the field of architectural restoration, since it is the best method in term of quality and price to make new polymeric materials having enhanced properties. Films of different compositions based on the two polymers within an adequate solvent (DMF) were obtained to perform an exposition to artificial ageing and to the salted fog, a spectroscopic analysis (FTIR and UV) and optical analysis (refractive index). Based on its great interest in the field of building, a variety of standard tests has been elaborated for the first time at the central laboratory of ENAP (Souk-Ahras) in order to evaluate our blend performance. The obtained results have allowed observing the behavior of the different compositions of the blend under various tests. The addition of PVDF to PMMA enhances the properties of this last to know the exhibition to the natural and artificial ageing and to the saline fog. On the other hand, PMMA enhances the optical properties of the blend. Finally, 70/30 composition of the blend is in concordance with results of previous works and it is the adequate proportion for an eventual application.Keywords: blend, PVDF, PMMA, preservation, historic monuments
Procedia PDF Downloads 3081322 Microstructure and Tribological Properties of AlSi5Cu2/SiC Composite
Authors: Magdalena Suśniak, Joanna Karwan-Baczewska
Abstract:
Microstructure and tribological properties of AlSi5Cu2 matrix composite reinforced with SiC have been studied by microscopic examination and basic tribological properties. Composite material was produced by the mechanical alloying and spark plasma sintering (SPS) technique. The mixture of AlSi5Cu2 chips with 0, 10, 15 wt. % of SiC powder were placed in 250 ml mixing jar and milled 40 hours. To prevent the extreme cold welding the 1 wt. % of stearic acid was added to the powder mixture as a process control agent. Mechanical alloying provide to obtain composites powder with uniform distribution of SiC in matrix. Composite powders were poured into a graphite and a pulsed electric current was passed through powder under vacuum to consolidate material. Processing conditions were: sintering temperature 450°C, uniaxial pressure 32MPa, time of sintering 5 minutes. After SPS process composite samples indicate higher hardness values, lower weight loss, and lower coefficient of friction as compared with the unreinforced alloy. Light microscope micrograph of the worn surfaces and wear debris revealed that in the unreinforced alloy the prominent wear mechanism was the adhesive wear. In the AlSi5Cu2/SiC composites, by increasing of SiC the wear mechanism changed from adhesive and micro-cutting to abrasive and delamination for composite with 20 SiC wt. %. In all the AlSi5Cu2/SiC composites, abrasive wear was the main wear mechanism.Keywords: aluminum matrix composite, mechanical alloying, spark plasma sintering, AlSi5Cu2/SiC composite
Procedia PDF Downloads 3851321 From Linear to Circular Model: An Artificial Intelligence-Powered Approach in Fosso Imperatore
Authors: Carlotta D’Alessandro, Giuseppe Ioppolo, Katarzyna Szopik-Depczyńska
Abstract:
— The growing scarcity of resources and the mounting pressures of climate change, water pollution, and chemical contamination have prompted societies, governments, and businesses to seek ways to minimize their environmental impact. To combat climate change, and foster sustainability, Industrial Symbiosis (IS) offers a powerful approach, facilitating the shift toward a circular economic model. IS has gained prominence in the European Union's policy framework as crucial enabler of resource efficiency and circular economy practices. The essence of IS lies in the collaborative sharing of resources such as energy, material by-products, waste, and water, thanks to geographic proximity. It can be exemplified by eco-industrial parks (EIPs), which are natural environments for boosting cooperation and resource sharing between businesses. EIPs are characterized by group of businesses situated in proximity, connected by a network of both cooperative and competitive interactions. They represent a sustainable industrial model aimed at reducing resource use, waste, and environmental impact while fostering economic and social wellbeing. IS, combined with Artificial Intelligence (AI)-driven technologies, can further optimize resource sharing and efficiency within EIPs. This research, supported by the “CE_IPs” project, aims to analyze the potential for IS and AI, in advancing circularity and sustainability at Fosso Imperatore. The Fosso Imperatore Industrial Park in Nocera Inferiore, Italy, specializes in agriculture and the industrial transformation of agricultural products, particularly tomatoes, tobacco, and textile fibers. This unique industrial cluster, centered around tomato cultivation and processing, also includes mechanical engineering enterprises and agricultural packaging firms. To stimulate the shift from a traditional to a circular economic model, an AI-powered Local Development Plan (LDP) is developed for Fosso Imperatore. It can leverage data analytics, predictive modeling, and stakeholder engagement to optimize resource utilization, reduce waste, and promote sustainable industrial practices. A comprehensive SWOT analysis of the AI-powered LDP revealed several key factors influencing its potential success and challenges. Among the notable strengths and opportunities arising from AI implementation are reduced processing times, fewer human errors, and increased revenue generation. Furthermore, predictive analytics minimize downtime, bolster productivity, and elevate quality while mitigating workplace hazards. However, the integration of AI also presents potential weaknesses and threats, including significant financial investment, since implementing and maintaining AI systems can be costly. The widespread adoption of AI could lead to job losses in certain sectors. Lastly, AI systems are susceptible to cyberattacks, posing risks to data security and operational continuity. Moreover, an Analytic Hierarchy Process (AHP) analysis was employed to yield a prioritized ranking of the outlined AI-driven LDP practices based on the stakeholder input, ensuring a more comprehensive and representative understanding of their relative significance for achieving sustainability in Fosso Imperatore Industrial Park. While this study provides valuable insights into the potential of AIpowered LDP at the Fosso Imperatore, it is important to note that the findings may not be directly applicable to all industrial parks, particularly those with different sizes, geographic locations, or industry compositions. Additional study is necessary to scrutinize the generalizability of these results and to identify best practices for implementing AI-driven LDP in diverse contexts.Keywords: artificial intelligence, climate change, Fosso Imperatore, industrial park, industrial symbiosis
Procedia PDF Downloads 231320 Early Biological Effects in Schoolchildren Living in an Area of Salento (Italy) with High Incidence of Chronic Respiratory Diseases: The IMP.AIR. Study
Authors: Alessandra Panico, Francesco Bagordo, Tiziana Grassi, Adele Idolo, Marcello Guido, Francesca Serio, Mattia De Giorgi, Antonella De Donno
Abstract:
In the Province of Lecce (Southeastern Italy) an area with unusual high incidence of chronic respiratory diseases, including lung cancer, was recently identified. The causes of this health emergency are still not entirely clear. In order to determine the risk profile of children living in five municipalities included in this area an epidemiological-molecular study was performed in the years 2014-2016: the IMP.AIR. (Impact of air quality on health of residents in the Municipalities of Sternatia, Galatina, Cutrofiano, Sogliano Cavour and Soleto) study. 122 children aged 6-8 years attending primary school in the study area were enrolled to evaluate the frequency of micronuclei (MNs) in their buccal exfoliated cells. The samples were collected in May 2015 by rubbing the oral mucosa with a soft bristle disposable toothbrush. At the same time, a validated questionnaire was administered to parents to obtain information about health, lifestyle and eating habits of the children. In addition, information on airborne pollutants, routinely detected by the Regional Environmental Agency (ARPA Puglia) in the study area, was acquired. A multivariate analysis was performed to detect any significant association between frequency of MNs (dependent variable) and behavioral factors (independent variables). The presence of MNs was highlighted in the buccal exfoliated cells of about 42% of recruited children with a mean frequency of 0.49 MN/1000 cells, greater than in other areas of Salento. The survey on individual characteristics and lifestyles showed that one in three children was overweight and that most of them had unhealthy eating habits with frequent consumption of foods considered ‘risky’. Moreover many parents (40% of fathers and 12% of mothers) were smokers and about 20% of them admitted to smoking in the house where the children lived. Information regarding atmospheric contaminants was poor. Of the few substances routinely detected by the only one monitoring station located in the study area (PM2.5, SO2, NO2, CO, O3) only ozone showed high concentrations exceeding the limits set by the legislation for 67 times in the year 2015. The study showed that the level of early biological effect markers in children was not negligible. This critical condition could be related to some individual factors and lifestyles such as overweight, unhealthy eating habits and exposure to passive smoking. At present, no relationship with airborne pollutants can be established due to the lack of information on many substances. Therefore, it would be advisable to modify incorrect behaviors and to intensify the monitoring of airborne pollutants (e.g. including detection of PM10, heavy metals, aromatic polycyclic hydrocarbons, benzene) given the epidemiology of chronic respiratory diseases registered in this area.Keywords: chronic respiratory diseases, environmental pollution, lifestyle, micronuclei
Procedia PDF Downloads 2001319 Altered Network Organization in Mild Alzheimer's Disease Compared to Mild Cognitive Impairment Using Resting-State EEG
Authors: Chia-Feng Lu, Yuh-Jen Wang, Shin Teng, Yu-Te Wu, Sui-Hing Yan
Abstract:
Brain functional networks based on resting-state EEG data were compared between patients with mild Alzheimer’s disease (mAD) and matched patients with amnestic subtype of mild cognitive impairment (aMCI). We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions and the network analysis based on graph theory to further investigate the alterations of functional networks in mAD compared with aMCI group. We aimed at investigating the changes of network integrity, local clustering, information processing efficiency, and fault tolerance in mAD brain networks for different frequency bands based on several topological properties, including degree, strength, clustering coefficient, shortest path length, and efficiency. Results showed that the disruptions of network integrity and reductions of network efficiency in mAD characterized by lower degree, decreased clustering coefficient, higher shortest path length, and reduced global and local efficiencies in the delta, theta, beta2, and gamma bands were evident. The significant changes in network organization can be used in assisting discrimination of mAD from aMCI in clinical.Keywords: EEG, functional connectivity, graph theory, TFCMI
Procedia PDF Downloads 4311318 Investigations of the Crude Oil Distillation Preheat Section in Unit 100 of Abadan Refinery and Its Recommendation
Authors: Mahdi GoharRokhi, Mohammad H. Ruhipour, Mohammad R. ZamaniZadeh, Mohsen Maleki, Yusef Shamsayi, Mahdi FarhaniNejad, Farzad FarrokhZadeh
Abstract:
Possessing massive resources of natural gas and petroleum, Iran has a special place among all other oil producing countries, according to international institutions of energy. In order to use these resources, development and functioning optimization of refineries and industrial units is mandatory. Heat exchanger is one of the most important and strategic equipment which its key role in the process of production is clear to everyone. For instance, if the temperature of a processing fluid is not set as needed by heat exchangers, the specifications of desired product can change profoundly. Crude oil enters a network of heat exchangers in atmospheric distillation section before getting into the distillation tower; in this case, well-functioning of heat exchangers can significantly affect the operation of distillation tower. In this paper, different scenarios for pre-heating of oil are studied using oil and gas simulation software, and the results are discussed. As we reviewed various scenarios, adding a heat exchanger to pre-heating network is proposed as the most efficient factor in improving all governing parameters of the tower i.e. temperature, pressure, and reflux rate. This exchanger is embedded in crude oil’s path. Crude oil enters the exchanger after E-101 and exchanges heat with discharging kerosene pump around from E-136. As depicted in the results, it will efficiently assist the improvement of process operation and side expenses.Keywords: atmospheric distillation unit, heat exchanger, preheat, simulation
Procedia PDF Downloads 6581317 Attention Deficit Disorders (ADD) among Stressed Pre-NCE Students in Federal College of Education, Kano-Nigeria
Authors: A. S. Haruna, M. L. Mayanchi
Abstract:
Pre Nigeria Certificate in Education otherwise called Pre-NCE is an intensive two semester course designed to assist candidates who could not meet the requirements for admission into NCE programme. The task of coping with the stressors in the course can interfere with the students’ ability to regulate attention skills and stay organized. The main objectives of the study were to find out the prevalence of stress; determine the association between stress and ADD and reveal gender difference in the prevalence of ADD among stressed pre-NCE students. Cross–Sectional Correlation Design was employed in which 333 (Male=65%; Female=35%) students were proportionately sampled and administered Stress Assessment Scale [SAS r=0.74) and those identified with stress were thereafter rated with Cognitive Processing Inventory [CPI]. Data collected was used to analyze the three null hypotheses through One-sample Kolmogorov-Smirnov (K-S) Z-score, Pearson Product Moment Correlation Coefficients (PPMCC) and t-test statistics respectively at 0.05 confidence level. Results revealed significant prevalence of stress [Z-calculated =2.24; Z-critical = ±1.96], and a positive relationship between Stress and ADD among Pre-NCE students [r-calculated =0.450; r-critical =0.138]. However, there was no gender difference in the prevalence of ADD among stressed Pre-NCE students in the college [t-calculated =1.49; t-critical =1.645]. The study concludes that while stress and ADD prevail among pre-NCE students, there was no gender difference in the prevalence of ADD. Recommendations offered suggest the use of Learners Assistance Programs (LAP) for stress management, and Teacher-Students ratio of 1:25 be adopted in order to cater for stressed pre-NCE students with ADD.Keywords: attention deficit disorder, pre-NCE students, stress, Pearson Product Moment Correlation Coefficients (PPMCC)
Procedia PDF Downloads 2411316 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring
Authors: A. Degale Desta, Cheng Jian
Abstract:
Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning
Procedia PDF Downloads 1611315 Data Driven Infrastructure Planning for Offshore Wind farms
Authors: Isha Saxena, Behzad Kazemtabrizi, Matthias C. M. Troffaes, Christopher Crabtree
Abstract:
The calculations done at the beginning of the life of a wind farm are rarely reliable, which makes it important to conduct research and study the failure and repair rates of the wind turbines under various conditions. This miscalculation happens because the current models make a simplifying assumption that the failure/repair rate remains constant over time. This means that the reliability function is exponential in nature. This research aims to create a more accurate model using sensory data and a data-driven approach. The data cleaning and data processing is done by comparing the Power Curve data of the wind turbines with SCADA data. This is then converted to times to repair and times to failure timeseries data. Several different mathematical functions are fitted to the times to failure and times to repair data of the wind turbine components using Maximum Likelihood Estimation and the Posterior expectation method for Bayesian Parameter Estimation. Initial results indicate that two parameter Weibull function and exponential function produce almost identical results. Further analysis is being done using the complex system analysis considering the failures of each electrical and mechanical component of the wind turbine. The aim of this project is to perform a more accurate reliability analysis that can be helpful for the engineers to schedule maintenance and repairs to decrease the downtime of the turbine.Keywords: reliability, bayesian parameter inference, maximum likelihood estimation, weibull function, SCADA data
Procedia PDF Downloads 851314 Defining a Reference Architecture for Predictive Maintenance Systems: A Case Study Using the Microsoft Azure IoT-Cloud Components
Authors: Walter Bernhofer, Peter Haber, Tobias Mayer, Manfred Mayr, Markus Ziegler
Abstract:
Current preventive maintenance measures are cost intensive and not efficient. With the available sensor data of state of the art internet of things devices new possibilities of automated data processing emerge. Current advances in data science and in machine learning enable new, so called predictive maintenance technologies, which empower data scientists to forecast possible system failures. The goal of this approach is to cut expenses in preventive maintenance by automating the detection of possible failures and to improve efficiency and quality of maintenance measures. Additionally, a centralization of the sensor data monitoring can be achieved by using this approach. This paper describes the approach of three students to define a reference architecture for a predictive maintenance solution in the internet of things domain with a connected smartphone app for service technicians. The reference architecture is validated by a case study. The case study is implemented with current Microsoft Azure cloud technologies. The results of the case study show that the reference architecture is valid and can be used to achieve a system for predictive maintenance execution with the cloud components of Microsoft Azure. The used concepts are technology platform agnostic and can be reused in many different cloud platforms. The reference architecture is valid and can be used in many use cases, like gas station maintenance, elevator maintenance and many more.Keywords: case study, internet of things, predictive maintenance, reference architecture
Procedia PDF Downloads 2461313 Artificial Neural Network to Predict the Optimum Performance of Air Conditioners under Environmental Conditions in Saudi Arabia
Authors: Amr Sadek, Abdelrahaman Al-Qahtany, Turkey Salem Al-Qahtany
Abstract:
In this study, a backpropagation artificial neural network (ANN) model has been used to predict the cooling and heating capacities of air conditioners (AC) under different conditions. Sufficiently large measurement results were obtained from the national energy-efficiency laboratories in Saudi Arabia and were used for the learning process of the ANN model. The parameters affecting the performance of the AC, including temperature, humidity level, specific heat enthalpy indoors and outdoors, and the air volume flow rate of indoor units, have been considered. These parameters were used as inputs for the ANN model, while the cooling and heating capacity values were set as the targets. A backpropagation ANN model with two hidden layers and one output layer could successfully correlate the input parameters with the targets. The characteristics of the ANN model including the input-processing, transfer, neurons-distance, topology, and training functions have been discussed. The performance of the ANN model was monitored over the training epochs and assessed using the mean squared error function. The model was then used to predict the performance of the AC under conditions that were not included in the measurement results. The optimum performance of the AC was also predicted under the different environmental conditions in Saudi Arabia. The uncertainty of the ANN model predictions has been evaluated taking into account the randomness of the data and lack of learning.Keywords: artificial neural network, uncertainty of model predictions, efficiency of air conditioners, cooling and heating capacities
Procedia PDF Downloads 721312 Road Condition Monitoring Using Built-in Vehicle Technology Data, Drones, and Deep Learning
Authors: Judith Mwakalonge, Geophrey Mbatta, Saidi Siuhi, Gurcan Comert, Cuthbert Ruseruka
Abstract:
Transportation agencies worldwide continuously monitor their roads' conditions to minimize road maintenance costs and maintain public safety and rideability quality. Existing methods for carrying out road condition surveys involve manual observations of roads using standard survey forms done by qualified road condition surveyors or engineers either on foot or by vehicle. Automated road condition survey vehicles exist; however, they are very expensive since they require special vehicles equipped with sensors for data collection together with data processing and computing devices. The manual methods are expensive, time-consuming, infrequent, and can hardly provide real-time information for road conditions. This study contributes to this arena by utilizing built-in vehicle technologies, drones, and deep learning to automate road condition surveys while using low-cost technology. A single model is trained to capture flexible pavement distresses (Potholes, Rutting, Cracking, and raveling), thereby providing a more cost-effective and efficient road condition monitoring approach that can also provide real-time road conditions. Additionally, data fusion is employed to enhance the road condition assessment with data from vehicles and drones.Keywords: road conditions, built-in vehicle technology, deep learning, drones
Procedia PDF Downloads 1231311 Pineapple Waste Valorization through Biogas Production: Effect of Substrate Concentration and Microwave Pretreatment
Authors: Khamdan Cahyari, Pratikno Hidayat
Abstract:
Indonesia has produced more than 1.8 million ton pineapple fruit in 2013 of which turned into waste due to industrial processing, deterioration and low qualities. It was estimated that this waste accounted for more than 40 percent of harvested fruits. In addition, pineapple leaves were one of biomass waste from pineapple farming land, which contributed even higher percentages. Most of the waste was only dumped into landfill area without proper pretreatment causing severe environmental problem. This research was meant to valorize the pineapple waste for producing renewable energy source of biogas through mesophilic (30℃) anaerobic digestion process. Especially, it was aimed to investigate effect of substrate concentration of pineapple fruit waste i.e. peel, core as well as effect of microwave pretreatment of pineapple leaves waste. The concentration of substrate was set at value 12, 24 and 36 g VS/liter culture whereas 800-Watt microwave pretreatment conducted at 2 and 5 minutes. It was noticed that optimum biogas production obtained at concentration 24 g VS/l with biogas yield 0.649 liter/g VS (45%v CH4) whereas microwave pretreatment at 2 minutes duration performed better compare to 5 minutes due to shorter exposure of microwave heat. This results suggested that valorization of pineapple waste could be carried out through biogas production at the aforementioned process condition. Application of this method is able to both reduce the environmental problem of the waste and produce renewable energy source of biogas to fulfill local energy demand of pineapple farming areas.Keywords: pineapple waste, substrate concentration, microwave pretreatment, biogas, anaerobic digestion
Procedia PDF Downloads 5801310 Reconfigurable Device for 3D Visualization of Three Dimensional Surfaces
Authors: Robson da C. Santos, Carlos Henrique de A. S. P. Coutinho, Lucas Moreira Dias, Gerson Gomes Cunha
Abstract:
The article refers to the development of an augmented reality 3D display, through the control of servo motors and projection of image with aid of video projector on the model. Augmented Reality is a branch that explores multiple approaches to increase real-world view by viewing additional information along with the real scene. The article presents the broad use of electrical, electronic, mechanical and industrial automation for geospatial visualizations, applications in mathematical models with the visualization of functions and 3D surface graphics and volumetric rendering that are currently seen in 2D layers. Application as a 3D display for representation and visualization of Digital Terrain Model (DTM) and Digital Surface Models (DSM), where it can be applied in the identification of canyons in the marine area of the Campos Basin, Rio de Janeiro, Brazil. The same can execute visualization of regions subject to landslides, as in Serra do Mar - Agra dos Reis and Serranas cities both in the State of Rio de Janeiro. From the foregoing, loss of human life and leakage of oil from pipelines buried in these regions may be anticipated in advance. The physical design consists of a table consisting of a 9 x 16 matrix of servo motors, totalizing 144 servos, a mesh is used on the servo motors for visualization of the models projected by a retro projector. Each model for by an image pre-processing, is sent to a server to be converted and viewed from a software developed in C # Programming Language.Keywords: visualization, 3D models, servo motors, C# programming language
Procedia PDF Downloads 3401309 PathoPy2.0: Application of Fractal Geometry for Early Detection and Histopathological Analysis of Lung Cancer
Authors: Rhea Kapoor
Abstract:
Fractal dimension provides a way to characterize non-geometric shapes like those found in nature. The purpose of this research is to estimate Minkowski fractal dimension of human lung images for early detection of lung cancer. Lung cancer is the leading cause of death among all types of cancer and an early histopathological analysis will help reduce deaths primarily due to late diagnosis. A Python application program, PathoPy2.0, was developed for analyzing medical images in pixelated format and estimating Minkowski fractal dimension using a new box-counting algorithm that allows windowing of images for more accurate calculation in the suspected areas of cancerous growth. Benchmark geometric fractals were used to validate the accuracy of the program and changes in fractal dimension of lung images to indicate the presence of issues in the lung. The accuracy of the program for the benchmark examples was between 93-99% of known values of the fractal dimensions. Fractal dimension values were then calculated for lung images, from National Cancer Institute, taken over time to correctly detect the presence of cancerous growth. For example, as the fractal dimension for a given lung increased from 1.19 to 1.27 due to cancerous growth, it represents a significant change in fractal dimension which lies between 1 and 2 for 2-D images. Based on the results obtained on many lung test cases, it was concluded that fractal dimension of human lungs can be used to diagnose lung cancer early. The ideas behind PathoPy2.0 can also be applied to study patterns in the electrical activity of the human brain and DNA matching.Keywords: fractals, histopathological analysis, image processing, lung cancer, Minkowski dimension
Procedia PDF Downloads 1761308 An AI-Based Dynamical Resource Allocation Calculation Algorithm for Unmanned Aerial Vehicle
Authors: Zhou Luchen, Wu Yubing, Burra Venkata Durga Kumar
Abstract:
As the scale of the network becomes larger and more complex than before, the density of user devices is also increasing. The development of Unmanned Aerial Vehicle (UAV) networks is able to collect and transform data in an efficient way by using software-defined networks (SDN) technology. This paper proposed a three-layer distributed and dynamic cluster architecture to manage UAVs by using an AI-based resource allocation calculation algorithm to address the overloading network problem. Through separating services of each UAV, the UAV hierarchical cluster system performs the main function of reducing the network load and transferring user requests, with three sub-tasks including data collection, communication channel organization, and data relaying. In this cluster, a head node and a vice head node UAV are selected considering the Central Processing Unit (CPU), operational (RAM), and permanent (ROM) memory of devices, battery charge, and capacity. The vice head node acts as a backup that stores all the data in the head node. The k-means clustering algorithm is used in order to detect high load regions and form the UAV layered clusters. The whole process of detecting high load areas, forming and selecting UAV clusters, and moving the selected UAV cluster to that area is proposed as offloading traffic algorithm.Keywords: k-means, resource allocation, SDN, UAV network, unmanned aerial vehicles
Procedia PDF Downloads 1091307 Anisotropic Total Fractional Order Variation Model in Seismic Data Denoising
Authors: Jianwei Ma, Diriba Gemechu
Abstract:
In seismic data processing, attenuation of random noise is the basic step to improve quality of data for further application of seismic data in exploration and development in different gas and oil industries. The signal-to-noise ratio of the data also highly determines quality of seismic data. This factor affects the reliability as well as the accuracy of seismic signal during interpretation for different purposes in different companies. To use seismic data for further application and interpretation, we need to improve the signal-to-noise ration while attenuating random noise effectively. To improve the signal-to-noise ration and attenuating seismic random noise by preserving important features and information about seismic signals, we introduce the concept of anisotropic total fractional order denoising algorithm. The anisotropic total fractional order variation model defined in fractional order bounded variation is proposed as a regularization in seismic denoising. The split Bregman algorithm is employed to solve the minimization problem of the anisotropic total fractional order variation model and the corresponding denoising algorithm for the proposed method is derived. We test the effectiveness of theproposed method for synthetic and real seismic data sets and the denoised result is compared with F-X deconvolution and non-local means denoising algorithm.Keywords: anisotropic total fractional order variation, fractional order bounded variation, seismic random noise attenuation, split Bregman algorithm
Procedia PDF Downloads 2061306 Anti-Nutritional Factors, In-Vitro Trypsin, Chymotrypsin and Peptidase Multi Enzyme Protein Digestibility of Some Melon (Egusi) Seeds and Their Protein Isolates
Authors: Joan O. Ogundele, Aladesanmi A. Oshodi, Adekunle I. Amoo
Abstract:
Abstract In-vitro multi-enzyme protein digestibility (IVMPD) and some anti-nutritional factors (ANF) of five melon (egusi) seed flours (MSF) and their protein isolates (PI) were carried out. Their PI have potentials comparable to that of soya beans. It is important to know the IVMPD and ANF of these protein sources as to ensure their safety when adapted for use as alternate protein sources to substitute for cow milk, which is relatively expensive in Nigeria. Standard methods were used to produce PI of Citrullus colocynthis, Citrullus vulgaris, African Wine Kettle gourd (Lageneria siceraria I), Basket Ball gourd (Lagenaria siceraria II) and Bushel Giant Gourd (Lageneria siceraria III) seeds and to determine the ANF and IVMPD of the MSF and PI unheated and at 37oC. Multi-enzymes used were trypsin, chymotrypsin and peptidase. IVMPD of MSF ranged from (70.67±0.70) % (C. vulgaris) to (72.07± 1.79) % (L.siceraria I) while for their PI ranged from 74.33% (C.vulgaris) to 77.55% (L.siceraria III). IVMPD of the PI were higher than those of MSF. Heating increased IVMPD of MSF with average value of 79.40% and those of PI with average of 84.14%. ANF average in MSF are tannin (0.11mg/g), phytate (0.23%). Differences in IVMPD of MSF and their PI at different temperatures may arise from processing conditions that alter the release of amino acids from proteins by enzymatic processes. ANF in MSF were relatively low, but were found to be lower in the PI, therefor making the PI safer for human consumption as an alternate source of protein.Keywords: Anti-nutrients, Enzymatic protein digestibility, Melon (egusi)., Protein Isolates.
Procedia PDF Downloads 1191305 Treatment of Leather Industry Wastewater with Advance Treatment Methods
Authors: Seval Yilmaz, Filiz Bayrakci Karel, Ali Savas Koparal
Abstract:
Textile products produced by leather have been indispensable for human consumption. Various chemicals are used to enhance the durability of end-products in the processing of leather products. The wastewaters from the leather industry which contain these chemicals exhibit toxic effects on the receiving environment and threaten the natural ecosystem. In this study, leather industry wastewater (LIW), which has high loads of contaminants, was treated using advanced treatment techniques instead of conventional methods. During the experiments, the performance of electrochemical methods was investigated. During the electrochemical experiments, the performance of batch electrooxidation (EO) using boron-doped diamond (BDD) electrodes with monopolar configuration for removal of chemical oxygen demand (COD) from LIW were investigated. The influences of electrolysis time, current density (which varies as 5 mA/cm², 10 mA/cm², 20 mA/cm², 30 mA/cm², 50 mA/cm²) and initial pH (which varies as 3,80 (natural pH of LIW), 7, 9) on removal efficiency were investigated in a batch stirred cell to determine the best treatment conditions. The current density applied to the electrochemical reactors is directly proportional to the consumption of electric energy, so electrical energy consumption was monitored during the experiment. The best experimental conditions obtained in electrochemical studies were as follows: electrolysis time = 60 min, current density = 30.0 mA/cm², pH 7. Using these parameters, 53.59% COD removal rates for LIW was achieved and total energy consumption was obtained as 13.03 kWh/m³. It is concluded that electrooxidation process constitutes a plausible and developable method for the treatment of LIW.Keywords: BDD electrodes, COD removal, electrochemical treatment, leather industry wastewater
Procedia PDF Downloads 1581304 Electrodeposition and Selenization of Cuin Alloys for the Synthesis of Photoactive Cu2in1-X Gax Se2 (Cigs) Thin Films
Authors: Mohamed Benaicha, Mahdi Allam
Abstract:
A new two stage electrochemical process as a safe, large area and low processing cost technique for the production of semi-conducting CuInSe2 (CIS) thin films is studied. CuIn precursors were first potentiostatically electrodeposited onto molybdenum substrates from an acidic thiocyanate electrolyte. In a second stage, the prepared metallic CuIn layers were used as substrate in the selenium electrochemical deposition system and subjected to a thermal treatment in vacuum atmosphere, to eliminate binary phase formation by reaction of the Cu2-x Se and InxSey selenides, leading to the formation of CuInSe2 thin film. Electrochemical selenization from aqueous electrolyte is introduced as an alternative to toxic and hazardous H2Se or Se vapor phase selenization used in physical techniques. In this study, the influence of film deposition parameters such as bath composition, temperature and potential on film properties was studied. The electrochemical, morphological, structural and compositional properties of electrodeposited thin films were characterized using various techniques. Results of Cyclic and Stripping-Cyclic Voltammetry (CV, SCV), Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray microanalysis (EDX) investigations revealed good reproducibility and homogeneity of the film composition. Thereby optimal technological parameters for the electrochemical production of CuIn, Se as precursors for CuInSe2 thin layers are determined.Keywords: photovoltaic, CIGS, copper alloys, electrodeposition, thin films
Procedia PDF Downloads 4601303 Use of Sewage Sludge Ash as Partial Cement Replacement in the Production of Mortars
Authors: Domagoj Nakic, Drazen Vouk, Nina Stirmer, Mario Siljeg, Ana Baricevic
Abstract:
Wastewater treatment processes generate significant quantities of sewage sludge that need to be adequately treated and disposed. In many EU countries, the problem of adequate disposal of sewage sludge has not been solved, nor is determined by the unique rules, instructions or guidelines. Disposal of sewage sludge is important not only in terms of satisfying the regulations, but the aspect of choosing the optimal wastewater and sludge treatment technology. Among the solutions that seem reasonable, recycling of sewage sludge and its byproducts reaches the top recommendation. Within the framework of sustainable development, recycling of sludge almost completely closes the cycle of wastewater treatment in which only negligible amounts of waste that requires landfilling are being generated. In many EU countries, significant amounts of sewage sludge are incinerated, resulting in a new byproduct in the form of ash. Sewage sludge ash is three to five times less in volume compared to stabilized and dehydrated sludge, but it also requires further management. The combustion process also destroys hazardous organic components in the sludge and minimizes unpleasant odors. The basic objective of the presented research is to explore the possibilities of recycling of the sewage sludge ash as a supplementary cementitious material. This is because of the main oxides present in the sewage sludge ash (SiO2, Al2O3 and Cao, which is similar to cement), so it can be considered as latent hydraulic and pozzolanic material. Physical and chemical characteristics of ashes, generated by sludge collected from different wastewater treatment plants, and incinerated in laboratory conditions at different temperatures, are investigated since it is a prerequisite of its subsequent recycling and the eventual use in other industries. Research was carried out by replacing up to 20% of cement by mass in cement mortar mixes with different obtained ashes and examining characteristics of created mixes in fresh and hardened condition. The mixtures with the highest ash content (20%) showed an average drop in workability of about 15% which is attributed to the increased water requirements when ash was used. Although some mixes containing added ash showed compressive and flexural strengths equivalent to those of reference mixes, generally slight decrease in strength was observed. However, it is important to point out that the compressive strengths always remained above 85% compared to the reference mix, while flexural strengths remained above 75%. Ecological impact of innovative construction products containing sewage sludge ash was determined by analyzing leaching concentrations of heavy metals. Results demonstrate that sewage sludge ash can satisfy technical and environmental criteria for use in cementitious materials which represents a new recycling application for an increasingly important waste material that is normally landfilled. Particular emphasis is placed on linking the composition of generated ashes depending on its origin and applied treatment processes (stage of wastewater treatment, sludge treatment technology, incineration temperature) with the characteristics of the final products. Acknowledgement: This work has been fully supported by Croatian Science Foundation under the project '7927 - Reuse of sewage sludge in concrete industry – from infrastructure to innovative construction products'.Keywords: cement mortar, recycling, sewage sludge ash, sludge disposal
Procedia PDF Downloads 2461302 Using Autoencoder as Feature Extractor for Malware Detection
Authors: Umm-E-Hani, Faiza Babar, Hanif Durad
Abstract:
Malware-detecting approaches suffer many limitations, due to which all anti-malware solutions have failed to be reliable enough for detecting zero-day malware. Signature-based solutions depend upon the signatures that can be generated only when malware surfaces at least once in the cyber world. Another approach that works by detecting the anomalies caused in the environment can easily be defeated by diligently and intelligently written malware. Solutions that have been trained to observe the behavior for detecting malicious files have failed to cater to the malware capable of detecting the sandboxed or protected environment. Machine learning and deep learning-based approaches greatly suffer in training their models with either an imbalanced dataset or an inadequate number of samples. AI-based anti-malware solutions that have been trained with enough samples targeted a selected feature vector, thus ignoring the input of leftover features in the maliciousness of malware just to cope with the lack of underlying hardware processing power. Our research focuses on producing an anti-malware solution for detecting malicious PE files by circumventing the earlier-mentioned shortcomings. Our proposed framework, which is based on automated feature engineering through autoencoders, trains the model over a fairly large dataset. It focuses on the visual patterns of malware samples to automatically extract the meaningful part of the visual pattern. Our experiment has successfully produced a state-of-the-art accuracy of 99.54 % over test data.Keywords: malware, auto encoders, automated feature engineering, classification
Procedia PDF Downloads 711301 Ferulic Acid-Grafted Chitosan: Thermal Stability and Feasibility as an Antioxidant for Active Biodegradable Packaging Film
Authors: Sarekha Woranuch, Rangrong Yoksan
Abstract:
Active packaging has been developed based on the incorporation of certain additives, in particular antimicrobial and antioxidant agents, into packaging systems to maintain or extend product quality and shelf-life. Ferulic acid is one of the most effective natural phenolic antioxidants, which has been used in food, pharmaceutical and active packaging film applications. However, most phenolic compounds are sensitive to oxygen, light and heat; its activities are thus lost during product formulation and processing. Grafting ferulic acid onto polymer is an alternative to reduce its loss under thermal processes. Therefore, the objectives of the present research were to study the thermal stability of ferulic acid after grafting onto chitosan, and to investigate the possibility of using ferulic acid-grafted chitosan (FA-g-CTS) as an antioxidant for active biodegradable packaging film. FA-g-CTS was incorporated into biodegradable film via a two-step process, i.e. compounding extrusion at temperature up to 150 °C followed by blown film extrusion at temperature up to 175 °C. Although incorporating FA-g-CTS with a content of 0.02–0.16% (w/w) caused decreased water vapor barrier property and reduced extensibility, the films showed improved oxygen barrier property and antioxidant activity. Radical scavenging activity and reducing power of the film containing FA-g-CTS with a content of 0.04% (w/w) were higher than that of the naked film about 254% and 94%, respectively. Tensile strength and rigidity of the films were not significantly affected by adding FA-g-CTS with a content of 0.02–0.08% (w/w). The results indicated that FA-g-CTS could be potentially used as an antioxidant for active packaging film.Keywords: active packaging film, antioxidant activity, chitosan, ferulic acid
Procedia PDF Downloads 5011300 Wolof Voice Response Recognition System: A Deep Learning Model for Wolof Audio Classification
Authors: Krishna Mohan Bathula, Fatou Bintou Loucoubar, FNU Kaleemunnisa, Christelle Scharff, Mark Anthony De Castro
Abstract:
Voice recognition algorithms such as automatic speech recognition and text-to-speech systems with African languages can play an important role in bridging the digital divide of Artificial Intelligence in Africa, contributing to the establishment of a fully inclusive information society. This paper proposes a Deep Learning model that can classify the user responses as inputs for an interactive voice response system. A dataset with Wolof language words ‘yes’ and ‘no’ is collected as audio recordings. A two stage Data Augmentation approach is adopted for enhancing the dataset size required by the deep neural network. Data preprocessing and feature engineering with Mel-Frequency Cepstral Coefficients are implemented. Convolutional Neural Networks (CNNs) have proven to be very powerful in image classification and are promising for audio processing when sounds are transformed into spectra. For performing voice response classification, the recordings are transformed into sound frequency feature spectra and then applied image classification methodology using a deep CNN model. The inference model of this trained and reusable Wolof voice response recognition system can be integrated with many applications associated with both web and mobile platforms.Keywords: automatic speech recognition, interactive voice response, voice response recognition, wolof word classification
Procedia PDF Downloads 115