Search results for: coupled differential equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4715

Search results for: coupled differential equation

1235 Nuclear Fuel Safety Threshold Determined by Logistic Regression Plus Uncertainty

Authors: D. S. Gomes, A. T. Silva

Abstract:

Analysis of the uncertainty quantification related to nuclear safety margins applied to the nuclear reactor is an important concept to prevent future radioactive accidents. The nuclear fuel performance code may involve the tolerance level determined by traditional deterministic models producing acceptable results at burn cycles under 62 GWd/MTU. The behavior of nuclear fuel can simulate applying a series of material properties under irradiation and physics models to calculate the safety limits. In this study, theoretical predictions of nuclear fuel failure under transient conditions investigate extended radiation cycles at 75 GWd/MTU, considering the behavior of fuel rods in light-water reactors under reactivity accident conditions. The fuel pellet can melt due to the quick increase of reactivity during a transient. Large power excursions in the reactor are the subject of interest bringing to a treatment that is known as the Fuchs-Hansen model. The point kinetic neutron equations show similar characteristics of non-linear differential equations. In this investigation, the multivariate logistic regression is employed to a probabilistic forecast of fuel failure. A comparison of computational simulation and experimental results was acceptable. The experiments carried out use the pre-irradiated fuels rods subjected to a rapid energy pulse which exhibits the same behavior during a nuclear accident. The propagation of uncertainty utilizes the Wilk's formulation. The variables chosen as essential to failure prediction were the fuel burnup, the applied peak power, the pulse width, the oxidation layer thickness, and the cladding type.

Keywords: logistic regression, reactivity-initiated accident, safety margins, uncertainty propagation

Procedia PDF Downloads 292
1234 Transcriptome Analysis of Dry and Soaked Tomato (Solanum lycopersicum) Seeds in Response to Fast Neutron Irradiation

Authors: Yujie Zhou, Hee-Seong Byun, Sang-In Bak, Eui-Joon Kil, Kyung Joo Min, Vivek Chavan, Won Kyong Cho, Sukchan Lee, Seung-Woo Hong, Tae-Sun Park

Abstract:

Fast neutron irradiation (FNI) can cause mutations on plant genome but, in the most of cases, these irradiated plants have not shown significant characteristics phenotypically. In this study, we utilized RNA-Seq to generate a high-resolution transcriptome map of the tomato (Solanum lycopersicum) genome effected by FNI. To quantify the different transcription levels in tomato irradiated by FNI, tomato seeds were irradiated by using MC-50 cyclotron (KIRAMS, Korea) for 0, 30 and 90 minutes, respectively. To investigate the effects on the pre-soaking condition, experimental groups were divided into dry and soaked seeds, which were soaked for 8 hours before irradiation. There was no noticeable difference in the percentage germination (PG) among dry seeds, while irradiated soaked seeds have about 10 % lower PG compared to the unirradiated control group. Using whole transcriptome sequencing by HiSeq 2000, we analyzed the differential gene expression in response to different time of FNI in dry and soaked seeds. More than 1.4 million base pair reads were mapped onto the tomato reference genome and the expression pattern differences between irradiated and unirradiated seeds were assessed. In 0, 30 and 90 minutes irradiation, 12,135, 28,495 and 28,675 transcripts were generated, respectively. Gene ontology analysis suggested the different enrichment of transcripts involved in response to different FNI. The present study showed that FNI effects on plant gene expression, which can become a new parameters for evaluating the responses against FNI on plants. In addition, the comparative analysis of differentially expressed genes in D and S seeds by FNI will also give us a chance to deep explore novel candidate genes for FNI, which could be a good model system to understand the mechanisms behind the adaption of plant to space biology research.

Keywords: tomato (solanum lycopersicum), fast neutron irradiation, RNA-sequence, transcriptome expression

Procedia PDF Downloads 319
1233 Enhancing Cybersecurity Protective Behaviour: Role of Information Security Competencies and Procedural Information Security Countermeasure Awareness

Authors: Norshima Humaidi, Saif Hussein Abdallah Alghazo

Abstract:

Cybersecurity threat have become a serious issue recently, and one of the cause is because human error, which is usually constituted by carelessness, ignorance, and failure to practice cybersecurity behaviour adequately. Using a data from a quantitative survey, Partial Least Squares-Structural Equation Modelling (PLS-SEM) analysis was used to determine the factors that affect cybersecurity protective behaviour (CPB). This study adapts cybersecurity protective behaviour model by focusing on two constructs that can enhance CPB: manager’s information security competencies (MISI) and procedural information security countermeasure (PCM) awareness. Theory of leadership competencies were adapted to measure user’s perception towards competencies among security managers/leader in the organization. Confirmatory factor analysis (CFA) testing shows that all the measurement items of each constructs were adequate in their validity individually based on their factor loading value. Moreover, each constructs are valid based on their parameter estimates and statistical significance. The quantitative research findings show that PCM awareness strongly influences CPB compared to MISI. Meanwhile, MISI was significantlyPCM awarenss. This study believes that the research findings can contribute to human behaviour in IS studies and are particularly beneficial to policy makers in improving organizations’ strategic plans in information security, especially in this new era. Most organizations spend time and resources to provide and establish strategic plans of information security; however, if employees are not willing to comply and practice information security behaviour appropriately, then these efforts are in vain.

Keywords: cybersecurity, protection behaviour, information security, information security competencies, countermeasure awareness

Procedia PDF Downloads 95
1232 Sustainable Practices through Organizational Internal Factors among South African Construction Firms

Authors: Oluremi I. Bamgbade, Oluwayomi Babatunde

Abstract:

Governments and nonprofits have been in the support of sustainability as the goal of businesses especially in the construction industry because of its considerable impacts on the environment, economy, and society. However, to measure the degree to which an organisation is being sustainable or pursuing sustainable growth can be difficult as a result of the clear sustainability strategy required to assume their commitment to the goal and competitive advantage. This research investigated the influence of organisational culture and organisational structure in achieving sustainable construction among South African construction firms. A total of 132 consultants from the nine provinces in South Africa participated in the survey. The data collected were initially screened using SPSS (version 21) while Partial Least Squares Structural Equation Modeling (PLS-SEM) algorithm and bootstrap techniques were employed to test the hypothesised paths. The empirical evidence also supported the hypothesised direct effects of organisational culture and organisational structure on sustainable construction. Similarly, the result regarding the relationship between organisational culture and organisational structure was supported. Therefore, construction industry can record a considerable level of construction sustainability and establish suitable cultures and structures within the construction organisations. Drawing upon organisational control theory, these findings supported the view that these organisational internal factors have a strong contingent effect on sustainability adoption in construction project execution. The paper makes theoretical, practical and methodological contributions within the domain of sustainable construction especially in the context of South Africa. Some limitations of the study are indicated, suggesting opportunities for future research.

Keywords: organisational culture, organisational structure, South African construction firms, sustainable construction

Procedia PDF Downloads 288
1231 Synthesis of Pd@ Cu Core−Shell Nanowires by Galvanic Displacement of Cu by Pd²⁺ Ions as a Modified Glassy Carbon Electrode for the Simultaneous Determination of Dihydroxybenzene Isomers Speciation

Authors: Majid Farsadrouh Rashti, Parisa Jahani, Amir Shafiee, Mehrdad Mofidi

Abstract:

The dihydroxybenzene isomers, hydroquinone (HQ), catechol (CC) and resorcinol (RS) have been widely recognized as important environmental pollutants due to their toxicity and low degradability in the ecological environment. Speciation of HQ, CC and RS is very important for environmental analysis because they co-exist of these isomers in environmental samples and are too difficult to degrade as an environmental contaminant with high toxicity. There are many analytical methods have been reported for detecting these isomers, such as spectrophotometry, fluorescence, High-performance liquid chromatography (HPLC) and electrochemical methods. These methods have attractive advantages such as simple and fast response, low maintenance costs, wide linear analysis range, high efficiency, excellent selectivity and high sensitivity. A novel modified glassy carbon electrode (GCE) with Pd@ Cu/CNTs core−shell nanowires for the simultaneous determination of hydroquinone (HQ), catechol (CC) and resorcinol (RS) is described. A detailed investigation by field emission scanning electron microscopy and electrochemistry was performed in order to elucidate the preparation process and properties of the GCE/ Pd/CuNWs-CNTs. The electrochemical response characteristic of the modified GPE/LFOR toward HQ, CC and RS were investigated by cyclic voltammetry, differential pulse voltammetry (DPV) and Chronoamperometry. Under optimum conditions, the calibrations curves were linear up to 228 µM for each with detection limits of 0.4, 0.6 and 0.8 µM for HQ, CC and RS, respectively. The diffusion coefficient for the oxidation of HQ, CC and RS at the modified electrode was calculated as 6.5×10⁻⁵, 1.6 ×10⁻⁵ and 8.5 ×10⁻⁵ cm² s⁻¹, respectively. DPV was used for the simultaneous determination of HQ, CC and RS at the modified electrode and the relative standard deviations were 2.1%, 1.9% and 1.7% for HQ, CC and RS, respectively. Moreover, GCE/Pd/CuNWs-CNTs was successfully used for determination of HQ, CC and RS in real samples.

Keywords: dihydroxybenzene isomers, galvanized copper nanowires, electrochemical sensor, Palladium, speciation

Procedia PDF Downloads 128
1230 A Three-Dimensional (3D) Numerical Study of Roofs Shape Impact on Air Quality in Urban Street Canyons with Tree Planting

Authors: Bouabdellah Abed, Mohamed Bouzit, Lakhdar Bouarbi

Abstract:

The objective of this study is to investigate numerically the effect of roof shaped on wind flow and pollutant dispersion in a street canyon with one row of trees of pore volume, Pvol = 96%. A three-dimensional computational fluid dynamics (CFD) model for evaluating air flow and pollutant dispersion within an urban street canyon using Reynolds-averaged Navier–Stokes (RANS) equations and the k-Epsilon EARSM turbulence model as close of the equation system. The numerical model is performed with ANSYS-CFX code. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated against the wind tunnel experiment. Having established this, the wind flow and pollutant dispersion in urban street canyons of six roof shapes are simulated. The numerical simulation agrees reasonably with the wind tunnel data. The results obtained in this work, indicate that the flow in 3D domain is more complicated, this complexity is increased with presence of tree and variability of the roof shapes. The results also indicated that the largest pollutant concentration level for two walls (leeward and windward wall) is observed with the upwind wedge-shaped roof. But the smallest pollutant concentration level is observed with the dome roof-shaped. The results also indicated that the corners eddies provide additional ventilation and lead to lower traffic pollutant concentrations at the street canyon ends.

Keywords: street canyon, pollutant dispersion, trees, building configuration, numerical simulation, k-Epsilon EARSM

Procedia PDF Downloads 366
1229 Characterization of Hyaluronic Acid-Based Injections Used on Rejuvenation Skin Treatments

Authors: Lucas Kurth de Azambuja, Loise Silveira da Silva, Gean Vitor Salmoria, Darlan Dallacosta, Carlos Rodrigo de Mello Roesler

Abstract:

This work provides a physicochemical and thermal characterization assessment of three different hyaluronic acid (HA)-based injections used for rejuvenation skin treatments. The three products analyzed are manufactured by the same manufacturer and commercialized for application on different skin levels. According to the manufacturer, all three HA-based injections are crosslinked and have a concentration of 23 mg/mL of HA, and 0.3% of lidocaine. Samples were characterized by Fourier-transformed infrared (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscope (SEM) techniques. FTIR analysis resulted in a similar spectrum when comparing the different products. DSC analysis demonstrated that the fusion points differ in each product, with a higher fusion temperature observed in specimen A, which is used for subcutaneous applications, when compared with B and C, which are used for the middle dermis and deep dermis, respectively. TGA data demonstrated a considerable mass loss at 100°C, which means that the product has more than 50% of water in its composition. TGA analysis also showed that Specimen A had a lower mass loss at 100°C when compared to Specimen C. A mass loss of around 220°C was observed on all samples, characterizing the presence of hyaluronic acid. SEM images displayed a similar structure on all samples analyzed, with a thicker layer for Specimen A when compared with B and C. This series of analyses demonstrated that, as expected, the physicochemical and thermal properties of the products differ according to their application. Furthermore, to better characterize the crosslinking degree of each product and their mechanical properties, a set of different techniques should be applied in parallel to correlate the results and, thereby, relate injection application with material properties.

Keywords: hyaluronic acid, characterization, soft-tissue fillers, injectable gels

Procedia PDF Downloads 89
1228 Combinational Therapeutic Targeting of BRD4 and CDK7 Synergistically Induces Anticancer Effects in Hepatocellular Carcinoma

Authors: Xinxiu Li, Chuqian Zheng, Yanyan Qian, Hong Fan

Abstract:

Objectives: In hepatocellular carcinoma (HCC), oncogenes are continuously and robustly transcribed due to aberrant expression of essential components of the trans-acting super-enhancers (SE) complex. Preclinical and clinical trials are now being conducted on small-molecule inhibitors that target core-transcriptional components, including as transcriptional bromodomain protein 4 (BRD4) and cyclin-dependent kinase 7 (CDK7), in a number of malignant tumors. This study aims to explore whether co-overexpression of BRD4 and CDK7 is a potential marker of worse prognosis and a combined therapeutic target in HCC. Methods: The expression pattern of BRD4 and CDK7 and their correlation with prognosis in HCC were analyzed by RNA sequencing data and survival data of HCC patients from TCGA and GEO datasets. The protein levels of BRD4 and CDK7 were determined by immunohistochemistry (IHC), and survival data of patients were analyzed using the Kaplan-Meier method. The mRNA expression levels of genes in HCC cell lines were evaluated by quantitative PCR (q-PCR). CCK-8 and colony formation assays were conducted to assess cell proliferation of HCC upon treatment with BRD4 inhibitor JQ1 or/and CDK7 inhibitor THZ1. Results: It was shown that BRD4 and CDK7 were often overexpressed in HCCs and were associated with poor prognosis of HCC by analyzing the TCGA and GEO datasets. BRD4 or CDK7 overexpression was related to a lower survival rate. It's interesting to note that co-overexpression of CDK7 and BRD4 was a worse prognostic factor in HCC. Treatment with JQ1 or THZ1 alone had an inhibitory effect on cell proliferation; however, when JQ1 and THZ1 were combined, there was a more notable suppression of cell growth. At the same time, the combined use of JQ1 and THZ1 synergistically suppresses the expression of HCC driver genes. Conclusion: Our research revealed that BRD4 and CDK7 coupled can be a useful biomarker in HCC prognosis and the combination of JQ1 and THZ1 can be a promising therapeutic therapy against HCC.

Keywords: BRD4, CDK7, cell proliferation, combined inhibition

Procedia PDF Downloads 54
1227 Synthesis of 5'-Azidonucleosides as Building Blocks for the Preparation of Biologically Active Bioconjugates

Authors: Brigitta Bodnár, Lajos Kovács, Zoltán Kupihár

Abstract:

The cancer cells require higher amount of nucleoside building blocks for their proliferation, therefore they have significantly higher uptake of nucleosides by the different nucleoside transporters. Therefore, the conjugation with nucleosides may significantly increase the efficiency and selectivity of potential active pharmaceutical ingredients. On the other hand, the advantage of using a nucleoside could be either the higher activity on targeted enzymes overrepresented in cancer cells or an enhanced cellular uptake of the bioconjugates in these cells compared to the healthy ones. This fact can be used to make the nucleosides, as targeting moieties covalently bound to anti-cancer drug molecules which can selectively accumulate in cancer cells. However, in order to form the nucleoside-drug conjugates, such nucleoside building blocks are needed, which can selectively be coupled to the drug molecules containing even a high number of diverse functional groups. One of the most selective conjugation techniques is the copper-catalyzed azide-alkyne click reaction that requires the presence of an alkyl group on one of the conjugated molecules and an azide group on the other. In case of nucleosides, the development of azide group is simpler for which the replacement of the 5'-hydroxy group is the most suitable. This transformation generally involves many side reactions and result in very low yields. In addition, during our experiments, the transformation of the 2'-deoxyguanosine to the corresponding 5'-deoxy-5’-azido-2’-deoxyguanosine could not be performed with any of the methods described in the literature. Therefore, we have tried to overcome these difficulties with not only using the traditional process based on the 2 step exchange of tosyl to azide, but also using the Mitsunobu reaction which requires only one step. However, this path proved to be unsuccessful in spite of the optimizing the reaction conditions. Finally, a method has been developed whereby the azide groups were incorporated into the 5’-position resulting in significantly better yields compared to all other previous methods, and we were able to produce all the four nucleoside derivatives.

Keywords: 5'-azidonucleosides, bioconjugate, click reaction, proliferation

Procedia PDF Downloads 246
1226 Comparative Electrochemical Studies of Enzyme-Based and Enzyme-less Graphene Oxide-Based Nanocomposite as Glucose Biosensor

Authors: Chetna Tyagi. G. B. V. S. Lakshmi, Ambuj Tripathi, D. K. Avasthi

Abstract:

Graphene oxide provides a good host matrix for preparing nanocomposites due to the different functional groups attached to its edges and planes. Being biocompatible, it is used in therapeutic applications. As enzyme-based biosensor requires complicated enzyme purification procedure, high fabrication cost and special storage conditions, we need enzyme-less biosensors for use even in a harsh environment like high temperature, varying pH, etc. In this work, we have prepared both enzyme-based and enzyme-less graphene oxide-based biosensors for glucose detection using glucose-oxidase as enzyme and gold nanoparticles, respectively. These samples were characterized using X-ray diffraction, UV-visible spectroscopy, scanning electron microscopy, and transmission electron microscopy to confirm the successful synthesis of the working electrodes. Electrochemical measurements were performed for both the working electrodes using a 3-electrode electrochemical cell. Cyclic voltammetry curves showed the homogeneous transfer of electron on the electrodes in the scan range between -0.2V to 0.6V. The sensing measurements were performed using differential pulse voltammetry for the glucose concentration varying from 0.01 mM to 20 mM, and sensing was improved towards glucose in the presence of gold nanoparticles. Gold nanoparticles in graphene oxide nanocomposite played an important role in sensing glucose in the absence of enzyme, glucose oxidase, as evident from these measurements. The selectivity was tested by measuring the current response of the working electrode towards glucose in the presence of the other common interfering agents like cholesterol, ascorbic acid, citric acid, and urea. The enzyme-less working electrode also showed storage stability for up to 15 weeks, making it a suitable glucose biosensor.

Keywords: electrochemical, enzyme-less, glucose, gold nanoparticles, graphene oxide, nanocomposite

Procedia PDF Downloads 142
1225 Mapping of Forest Cover Change in the Democratic Republic of the Congo

Authors: Armand Okende, Benjamin Beaumont

Abstract:

Introduction: Deforestation is a change in the structure and composition of flora and fauna, which leads to a loss of biodiversity, production of goods and services and an increase in fires. It concerns vast territories in tropical zones particularly; this is the case of the territory of Bolobo in the current province of Maï- Ndombe in the Democratic Republic of Congo. Indeed, through this study between 2001 and 2018, we believe that it was important to show and analyze quantitatively the important forests changes and analyze quantitatively. It’s the overall objective of this study because, in this area, we are witnessing significant deforestation. Methodology: Mapping and quantification are the methodological approaches that we have put forward to assess the deforestation or forest changes through satellite images or raster layers. These satellites data from Global Forest Watch are integrated into the GIS software (GRASS GIS and Quantum GIS) to represent the loss of forest cover that has occurred and the various changes recorded (e.g., forest gain) in the territory of Bolobo. Results: The results obtained show, in terms of quantifying deforestation for the periods 2001-2006, 2007-2012 and 2013-2018, the loss of forest area in hectares each year. The different change maps produced during different study periods mentioned above show that the loss of forest areas is gradually increasing. Conclusion: With this study, knowledge of forest management and protection is a challenge to ensure good management of forest resources. To do this, it is wise to carry out more studies that would optimize the monitoring of forests to guarantee the ecological and economic functions they provide in the Congo Basin, particularly in the Democratic Republic of Congo. In addition, the cartographic approach, coupled with the geographic information system and remote sensing proposed by Global Forest Watch using raster layers, provides interesting information to explain the loss of forest areas.

Keywords: deforestation, loss year, forest change, remote sensing, drivers of deforestation

Procedia PDF Downloads 133
1224 Experimental Investigation of Beams Having Spring Mass Resonators

Authors: Somya R. Patro, Arnab Banerjee, G. V. Ramana

Abstract:

A flexural beam carrying elastically mounted concentrated masses, such as engines, motors, oscillators, or vibration absorbers, is often encountered in mechanical, civil, and aeronautical engineering domains. To prevent resonance conditions, the designers must predict the natural frequencies of such a constrained beam system. This paper investigates experimental and analytical studies on vibration suppression in a cantilever beam with a tip mass with the help of spring-mass to achieve local resonance conditions. The system consists of a 3D printed polylactic acid (PLA) beam screwed at the base plate of the shaker system. The top of the free end is connected by an accelerometer which also acts as a tip mass. A spring and a mass are attached at the bottom to replicate the mechanism of the spring-mass resonator. The Fast Fourier Transform (FFT) algorithm converts time acceleration plots into frequency amplitude plots from which transmittance is calculated as a function of the excitation frequency. The mathematical formulation is based on the transfer matrix method, and the governing differential equations are based on Euler Bernoulli's beam theory. The experimental results are successfully validated with the analytical results, providing us essential confidence in our proposed methodology. The beam spring-mass system is then converted to an equivalent two-degree of freedom system, from which frequency response function is obtained. The H2 optimization technique is also used to obtain the closed-form expression of optimum spring stiffness, which shows the influence of spring stiffness on the system's natural frequency and vibration response.

Keywords: euler bernoulli beam theory, fast fourier transform, natural frequencies, polylactic acid, transmittance, vibration absorbers

Procedia PDF Downloads 105
1223 Effect of cold water immersion on bone mineral metabolism in aging rats

Authors: Irena Baranowska-Bosiacka, Mateusz Bosiacki, Patrycja Kupnicka, Anna Lubkowska, Dariusz Chlubek

Abstract:

Physical activity and a balanced diet are among the key factors of "healthy ageing". Physical effort, including swimming in cold water (including bathing in natural water reservoirs), is widely recognized as a hardening factor, with a positive effect on the mental and physical health. At the same time, there is little scientific evidence to verify this hypothesis. In the literature to date, it is possible to obtain data on the impact of these factors on selected physiological and biochemical parameters of the blood, at the same time there are no results of research on the effect of immersing in cold water on mineral metabolism, especially bones, hence it seems important to perform such an analysis in relation to the key elements such as calcium (Ca), magnesium (Mg) and phosphorus (P). Taking the above into account, a hypothesis was put forward about the possibility of a positive effect of exercise in cold water on mineral metabolism and bone density in aging rats. The aim of the study was to evaluate the effect of an 8-week swimming training on mineral metabolism and bone density in aging rats in response to exercise in cold water (5oC) in comparison to swimming in thermal comfort (36oC) and sedentary (control) rats of both sexes. The examination of the concentration of the examined elements in the bones was carried out using inductively coupled plasma atomic emission spectrometry (ICP-OES). The mineral density of the femurs of the rats was measured using the Hologic Horizon DEXA System® densitometer. The results of our study showed that swimming in cold water affects bone mineral metabolism in aging rats by changing the Ca, Mg, P concentration and at the same time increasing their bone density. In males, a decrease in Mg concentration and no changes in bone density were observed. In the light of the research results, it seems that swimming in cold water may be a factor that positively modifies the bone aging process by improving the mechanisms affecting their density.

Keywords: swimming in cold water, adaptation to cold water, bone mineral metabolism, aging

Procedia PDF Downloads 60
1222 Capacity Building for Tourism Infrastructure: A Case of Tourism Influenced Regions in Uttar Pradesh, India

Authors: Sayan Munshi, Subrajit Banerjee, Indrani Chakraborty

Abstract:

Tourism is a prime sector in the economic development of many countries in particular the Indian sub-continent. Tourism is considered an integral pillar in the Make in India Program under the Government of India. The statistics of tourism in India had evolved from a past with the formation of History. The sector had shown dynamic changes in the statistics since 1980. With the evolving tourism along with destinations, this sector has been converted into the prime industry, as it not only impacts the destination but on the other hand supports the periphery of the destination. Tourism boost revenue and creates varied economic possibilities for the residents. Due to the influx of tourism in the cities, a load on the infrastructure and services can be observed, specifically in the Physical Infrastructure sectors. Due to the floating population in the designated tourism core of the Urban / Peri-Urban area, issues pertaining to Solid waste management and Transportation are highly observed. Thus, a need for capacity building arises for the infrastructure impacted by tourism, which may result in the upgradation of the lifestyle of the city and its permanent users. As tourism of a region has a dependency on the infrastructure, the paper here focuses on the relationship between tourism potential of a region and the infrastructural determinants of the city or region and hence to derive a structural equation supporting the relationship, further determine a coefficient and suggest the domain of in need of upgradation or retrofitting possibilities. The outcome of the paper is to suggest possible recommendations towards the formation of policies on an urban level to support the tourism potential of the region.

Keywords: urban planning, tourism planning, infrastructure, transportation, solid waste management

Procedia PDF Downloads 121
1221 Quantum Engine Proposal using Two-level Atom Like Manipulation and Relativistic Motoring Control

Authors: Montree Bunruangses, Sonath Bhattacharyya, Somchat Sonasang, Preecha Yupapin

Abstract:

A two-level system is manipulated by a microstrip add-drop circuit configured as an atom like system for wave-particle behavior investigation when its traveling speed along the circuit perimeter is the speed of light. The entangled pair formed by the upper and lower sideband peaks is bound by the angular displacement, which is given by 0≤θ≤π/2. The control signals associated with 3-peak signal frequencies are applied by the external inputs via the microstrip add-drop multiplexer ports, where they are time functions without the space term involved. When a system satisfies the speed of light conditions, the mass term has been changed to energy based on the relativistic limit described by the Lorentz factor and Einstein equation. The different applied frequencies can be utilized to form the 3-phase torques that can be applied for quantum engines. The experiment will use the two-level system circuit and be conducted in the laboratory. The 3-phase torques will be recorded and investigated for quantum engine driving purpose. The obtained results will be compared to the simulation. The optimum amplification of torque can be obtained by the resonant successive filtering operation. Torque will be vanished when the system is balanced at the stopped position, where |Time|=0, which is required to be a system stability condition. It will be discussed for future applications. A larger device may be tested in the future for realistic use. A synchronous and asynchronous driven motor is also discussed for the warp drive use.

Keywords: quantum engine, relativistic motor, 3-phase torque, atomic engine

Procedia PDF Downloads 63
1220 Improvement of Resistance Features of Anti- Mic Polyaspartic Coating (DTM) Using Nano Silver Particles by Preventing Biofilm Formation

Authors: Arezoo Assarian, Reza Javaherdashti

Abstract:

Microbiologically influenced corrosion (MIC) is an electrochemical process that can affect both metals and non-metals. The cost of MIC can amount to 40% of the cost of corrosion. MIC is enhanced via factors such as but not limited to the presence of certain bacteria and archaea as well as mechanisms such as external electron transfer. There are five methods by which electrochemical corrosion, including MIC, can be prevented, of which coatings are an effective method due to blinding anode, cathode and, electrolyte from each other. Conventional ordinary coatings may themselves become nutrient sources for the bacteria and therefore show low efficiency in dealing with MIC. Recently our works on polyaspartic coating (DTM) have shown promising results, therefore nominating DTM as the most appropriate coating material to manage both MIC and general electrochemical corrosion very efficiently. Nanosilver particles are known for their antimicrobial properties that make them of desirable distractive impacts on any germs. This coating will be formulated based on Nanosilver phosphate and copper II oxide in the resin network and co-reactant. The nanoparticles are light and heat-sensitive agents. The method which is used to keep nanoparticles in the film coating is the encapsulation of active ingredients. By this method, it will prevent incompatibility between different particles. For producing microcapsules, the interfacial cross-linking method will be used. This is achieved by adding an active ingredient to an aqueous solution of the cross-linkable polymer. In this paper, we will first explain the role of coating materials in controlling and preventing electrochemical corrosion. We will explain MIC and some of its fundamental principles, such as bacteria establishment (biofilm) and the role they play in enhancing corrosion via mechanisms such as the establishment of differential aeration cells. Later we will explain features of DTM coatings that highly contribute to preventing biofilm formation and thus microbial corrosion.

Keywords: biofilm, corrosion, microbiologically influenced corrosion(MIC), nanosilver particles, polyaspartic coating (DTM)

Procedia PDF Downloads 167
1219 Fitness Apparel and Body Cathexis of Women Consumers When and after Using Virtual Fitting Room

Authors: Almas Athif Fathin Wiyantoro, Fransiskus Xaverius Ivan Budiman, Fithra Faisal Hastiadi

Abstract:

The growth of clothing and technology as a marketing tool has a great influence on online business owners to know how much the characteristics and psychology of consumers in influencing purchasing decisions made by Indonesian women consumers. One of the most important issues faced by Indonesian women consumers is the suitability of clothing. The suitability of clothing can affect the body cathexis, identity, and confidence. So the thematic analysis of clothing fitness and body cathexis of women consumers when and after using virtual fitting room technology to purchase decision is important to do. This research using group method of pre-post treatment and considers how the recruitment technique of snowball sampling, which uses interpersonal relations and connections between people, both includes and excludes individuals into 39 participants' social networks to access specific populations. The results obtained from the study that the results of body scans and photos of virtual fitting room results can be made an intervention in women consumers in assessing their body cathexis objectively in the process of making purchasing decisions. The study also obtained a regression equation Y = 0.830 + 0.290X1 + 0.292X2, showing a positive relationship between suitability of clothing and body cathexis which influenced purchasing decisions on women consumers and after (personal and psychological factors) using virtual fitting room, meaning that all independent variables influence Positive towards the purchasing decision of the women consumers.

Keywords: body cathexis, clothing fitness, purchasing decision making and virtual fitting room

Procedia PDF Downloads 213
1218 Extraction, Synthesis, Characterization and Antioxidant Properties of Oxidized Starch from an Abundant Source in Nigeria

Authors: Okafor E. Ijeoma, Isimi C. Yetunde, Okoh E. Judith, Kunle O. Olobayo, Emeje O. Martins

Abstract:

Starch has gained interest as a renewable and environmentally compatible polymer due to the increase in its use. However, starch by itself could not be satisfactorily applied in industrial processes due to some inherent disadvantages such as its hydrophilic character, poor mechanical properties, its inability to withstand processing conditions such as extreme temperatures, diverse pH, high shear rate, freeze-thaw variation and dimensional stability. The range of physical properties of parent starch can be enlarged by chemical modification which invariably enhances their use in a number of applications found in industrial processes and food manufacture. In this study, Manihot esculentus starch was subjected to modification by oxidation. Fourier Transmittance Infra- Red (FTIR) and Raman spectroscopies were used to confirm the synthesis while Scanning Electron Microscopy (SEM) and X- Ray Diffraction (XRD) were used to characterize the new polymer. DPPH (2, 2-diphenyl-1-picryl-hydrazyl-hydrate) free radical assay was used to determine the antioxidant property of the oxidized starch. Our results show that the modification had no significant effect on the foaming capacity as well as on the emulsion capacity. Scanning electron microscopy revealed that oxidation did not alter the predominantly circular-shaped starch granules, while the X-ray pattern of both starch, native and modified were similar. FTIR results revealed a new band at 3007 and 3283cm-1. Differential scanning calorimetry returned two new endothermic peaks in the oxidized starch with an improved gelation capacity and increased enthalpy of gelatinization. The IC50 of oxidized starch was notably higher than that of the reference standard, ascorbic acid.

Keywords: antioxidant activity, DPPH, M. esculentus, oxidation, starch

Procedia PDF Downloads 299
1217 Impact of Tryptic Limited Hydrolysis on Bambara Protein-Gum Arabic Soluble Complexes Formation

Authors: Abiola A. Ojesanmi, Eric O. Amonsou

Abstract:

The formation of soluble complexes is usually within a narrow pH range characterized by weak interactions. Moreover, the rigid conformation of globular proteins restricts the number of charged groups capable of interacting with polysaccharides, thereby limiting food applications. Hence, this study investigated the impact of tryptic-limited hydrolysis on the formation of Bambara protein-gum arabic soluble complexes formation. The electrostatic interactions were monitored through turbidimetry analysis. The Bambara protein hydrolysates at a specified degree of hydrolysis, and DHs (2, 5, and 7.5) were characterized using size exclusion chromatography, zeta potential, surface hydrophobicity, and intrinsic fluorescence. The stability of the complexes was investigated using differential scanning calorimetry and rheometry. The limited tryptic hydrolysis significantly widened the pH range of the formation of soluble complexes, with DH 5 having a wider range (pH 7.0 - 4.3) compared to DH 2 and DH 7.5, while there was no notable difference in the optimum complexation pH of the insoluble complexes. Larger peptides (140, 118 kDa) were detected in DH 2 relative to 144, 70, and 61 kDa in DH 5, which were larger than 140, 118, 48, and 32 kDa in DH 7. 5. An increase in net negative charge (- 30 Mv for DH 7.5) and a slight shift in the net neutrality (from pH 4.9 to 4.3) of the hydrolysates were observed which consequently impacted the electrostatic interaction with gum arabic. There was exposure of the hydrophobic amino acids up to 4-fold in comparison with the isolate and a red shift in maximum fluorescence wavelength in DH dependent manner following the hydrolysis. The denaturation temperature of the soluble complex from the hydrolysates shifted to higher values, having DH 5 with the maximum temperature (94.24 °C). A highly interconnected gel-like soluble complex network was formed having DH 5 with a better structure relative to DH 2 and 7.5. The study showed the use of limited tryptic hydrolysis at DH 5 as an effective approach to modify Bambara protein and provided a more stable and wider pH range of formation for soluble complex, thereby enhancing the food application.

Keywords: Bambara groundnut, gum arabic, interaction, soluble complex

Procedia PDF Downloads 32
1216 Evaluation of Compatibility between Produced and Injected Waters and Identification of the Causes of Well Plugging in a Southern Tunisian Oilfield

Authors: Sonia Barbouchi, Meriem Samcha

Abstract:

Scale deposition during water injection into aquifer of oil reservoirs is a serious problem experienced in the oil production industry. One of the primary causes of scale formation and injection well plugging is mixing two waters which are incompatible. Considered individually, the waters may be quite stable at system conditions and present no scale problems. However, once they are mixed, reactions between ions dissolved in the individual waters may form insoluble products. The purpose of this study is to identify the causes of well plugging in a southern Tunisian oilfield, where fresh water has been injected into the producing wells to counteract the salinity of the formation waters and inhibit the deposition of halite. X-ray diffraction (XRD) mineralogical analysis has been carried out on scale samples collected from the blocked well. Two samples collected from both formation water and injected water were analysed using inductively coupled plasma atomic emission spectroscopy, ion chromatography and other standard laboratory techniques. The results of complete waters analysis were the typical input parameters, to determine scaling tendency. Saturation indices values related to CaCO3, CaSO4, BaSO4 and SrSO4 scales were calculated for the water mixtures at different share, under various conditions of temperature, using a computerized scale prediction model. The compatibility study results showed that mixing the two waters tends to increase the probability of barite deposition. XRD analysis confirmed the compatibility study results, since it proved that the analysed deposits consisted predominantly of barite with minor galena. At the studied temperatures conditions, the tendency for barite scale is significantly increasing with the increase of fresh water share in the mixture. The future scale inhibition and removal strategies to be implemented in the concerned oilfield are being derived in a large part from the results of the present study.

Keywords: compatibility study, produced water, scaling, water injection

Procedia PDF Downloads 166
1215 Ecological Risk Assessment of Informal E-Waste Processing in Alaba International Market, Lagos, Nigeria

Authors: A. A. Adebayo, O. Osibanjo

Abstract:

Informal electronic waste (e-waste) processing is a crude method of recycling, which is on the increase in Nigeria. The release of hazardous substances such as heavy metals (HMs) into the environment during informal e-waste processing has been a major concern. However, there is insufficient information on environmental contamination from e-waste recycling, associated ecological risk in Alaba International Market, a major electronic market in Lagos, Nigeria. The aims of this study were to determine the levels of HMs in soil, resulting from the e-waste recycling; and also assess associated ecological risks in Alaba international market. Samples of soils (334) were randomly collected seasonally for three years from fourteen selected e-waste activity points and two control sites. The samples were digested using standard methods and HMs analysed by inductive coupled plasma optical emission. Ecological risk was estimated using Ecological Risk index (ER), Potential Ecological Risk index (RI), Index of geoaccumulation (Igeo), Contamination factor (Cf) and degree of contamination factor (Cdeg). The concentrations range of HMs (mg/kg) in soil were: 16.7-11200.0 (Pb); 14.3-22600.0 (Cu); 1.90-6280.0 (Ni), 39.5-4570.0 (Zn); 0.79-12300.0 (Sn); 0.02-138.0 (Cd); 12.7-1710.0 (Ba); 0.18-131.0 (Cr); 0.07-28.0 (V), while As was below detection limit. Concentrations range in control soils were 1.36-9.70 (Pb), 2.06-7.60 (Cu), 1.25-5.11 (Ni), 3.62-15.9 (Zn), BDL-0.56 (Sn), BDL-0.01 (Cd), 14.6-47.6 (Ba), 0.21–12.2 (Cr) and 0.22-22.2 (V). The trend in ecological risk index was in the order Cu > Pb > Ni > Zn > Cr > Cd > Ba > V. The potential ecological risk index with respect to informal e-waste activities were: burning > dismantling > disposal > stockpiling. The index of geo accumulation indices revealed that soils were extremely polluted with Cd, Cu, Pb, Zn and Ni. The contamination factor indicated that 93% of the studied areas have very high contamination status for Pb, Cu, Ba, Sn and Co while Cr and Cd were in the moderately contaminated status. The degree of contamination decreased in the order of Sn > Cu > Pb >> Zn > Ba > Co > Ni > V > Cr > Cd. Heavy metal contamination of Alaba international market environment resulting from informal e-waste processing was established. Proper management of e-waste and remediation of the market environment are recommended to minimize the ecological risks.

Keywords: Alaba international market, ecological risk, electronic waste, heavy metal contamination

Procedia PDF Downloads 198
1214 Talent Management, Employee Competency, and Organizational Performance

Authors: Sunyoung Park

Abstract:

Context: Talent management is a strategic approach that has received considerable attention in recent years to improve employee competency and organizational performance in many organizations. The implementation of talent management involves identifying objectives and positions within the organization, developing a pool of high-potential employees, and establishing appropriate HR functions to promote high employee and organizational performance. This study aims to investigate the relationship between talent management, HR functions, employee competency, and organizational performance in the South Korean context. Research Aim: The main objective of this study is to investigate the structural relationships among talent management, human resources (HR) functions, employee competency, and organizational performance. Methodology: To achieve the research aim, this study used a quantitative research method. Specifically, a total of 1,478 responses were analyzed using structural equation modeling based on data obtained from the Human Capital Corporate Panel (HCCP) survey in South Korea. Findings: The study revealed that talent management has a positive influence on HR functions and employee competency. Additionally, HR functions directly affect employee competency and organizational performance. Employee competency was found to be related to organizational performance. Moreover, talent management and HR functions indirectly affect organizational performance through employee competency. Theoretical Importance: This study provides empirical evidence of the relationship between talent management, HR functions, employee competency, and organizational performance in the South Korean context. The findings suggest that organizations should focus on developing appropriate talent management and HR functions to improve employee competency, which, in turn, will lead to better organizational performance. Moreover, the study contributes to the existing literature by emphasizing the importance of the relationship between talent management and HR functions in improving organizational performance.

Keywords: employee competency, HR functions, organizational performance, talent management

Procedia PDF Downloads 97
1213 Coils and Antennas Fabricated with Sewing Litz Wire for Wireless Power Transfer

Authors: Hikari Ryu, Yuki Fukuda, Kento Oishi, Chiharu Igarashi, Shogo Kiryu

Abstract:

Recently, wireless power transfer has been developed in various fields. Magnetic coupling is popular for feeding power at a relatively short distance and at a lower frequency. Electro-magnetic wave coupling at a high frequency is used for long-distance power transfer. The wireless power transfer has attracted attention in e-textile fields. Rigid batteries are required for many body-worn electric systems at the present time. The technology enables such batteries to be removed from the systems. Flexible coils have been studied for such applications. Coils with a high Q factor are required in the magnetic-coupling power transfer. Antennas with low return loss are needed for the electro-magnetic coupling. Litz wire is so flexible to fabricate coils and antennas sewn on fabric and has low resistivity. In this study, the electric characteristics of some coils and antennas fabricated with the Litz wire by using two sewing techniques are investigated. As examples, a coil and an antenna are described. Both were fabricated with 330/0.04 mm Litz wire. The coil was a planar coil with a square shape. The outer side was 150 mm, the number of turns was 15, and the pitch interval between each turn was 5 mm. The Litz wire of the coil was overstitched with a sewing machine. The coil was fabricated as a receiver coil for a magnetic coupled wireless power transfer. The Q factor was 200 at a frequency of 800 kHz. A wireless power system was constructed by using the coil. A power oscillator was used in the system. The resonant frequency of the circuit was set to 123 kHz, where the switching loss of power FETs was small. The power efficiencies were 0.44 – 0.99, depending on the distance between the transmitter and receiver coils. As an example of an antenna with a sewing technique, a fractal pattern antenna was stitched on a 500 mm x 500 mm fabric by using a needle punch method. The pattern was the 2nd-oder Vicsec fractal. The return loss of the antenna was -28 dB at a frequency of 144 MHz.

Keywords: e-textile, flexible coils and antennas, Litz wire, wireless power transfer

Procedia PDF Downloads 133
1212 The Mediating Role of Psychological Factors in the Relationships Between Youth Problematic Internet and Subjective Well-Being

Authors: Dorit Olenik-Shemesh, Tali Heiman

Abstract:

The rapid increase in the massive use of the internet in recent yearshas led to an increase in the prevalence of a phenomenon called 'Problematic Internet use' (PIU), an emerging, growing health problem, especially during adolescents, that poses a challenge for mental health research and practitioners. Problematic Internet use (PIU) is defined as an excessive overuse of the internet, including an inability to control time spent on the internet, cognitivepreoccupation with the Internet, and continued use in spite of the adverse consequences, which may lead to psychological, social, and academic difficulties in one's life and daily functioning. However, little is known about the nature of the nexusbetween PIU and subjective well-being among adolescents. The main purpose of the current study was to explore in depth the network of connections between PIU, sense of well-being, and fourpersonal-emotional factors (resilience, self-control, depressive mood, and loneliness) that may mediate these relationships. A total sample of 433 adolescents, 214 (49.4%) girls and 219 (50.6%) boys between the ages of 12–17 (mean = 14.9, SD = 2.16), completed self-reportquestionnaires relating to the study variables. In line with the hypothesis, analysis of a Structural Equation modeling (SEM) revealed the main following results: high levels of PIU predicted low levels of well-being among adolescents. In addition, low levels of resilience and high levels of depressivemood (together), as well as low levels of self control and high levels of depressivemood (together), as well as low levels of resilience and high levels of loneliness, mediated the relationships between PIU and well-being. In general, girls were found to be higher in PIU and inresilience than boys. The study results revealed specific implications for developing intervention programs for adolescents in the context of PIU; aiming at more balanced adjusted use of the Internet along withpreventingthe decrease in well being.

Keywords: probelmatic inetrent Use, well-being, adolescents, SEM model

Procedia PDF Downloads 168
1211 Geosynthetic Reinforced Unpaved Road: Literature Study and Design Example

Authors: D. Jayalakshmi, S. S. Bhosale

Abstract:

This paper, in its first part, presents the state-of-the-art literature of design approaches for geosynthetic reinforced unpaved roads. The literature starting since 1970 and the critical appraisal of flexible pavement design by Giroud and Han (2004) and Jonathan Fannin (2006) is presented. The design example is illustrated for Indian conditions. The example emphasizes the results computed by Giroud and Han's (2004) design method with the Indian road congress guidelines by IRC SP 72 -2015. The input data considered are related to the subgrade soil condition of Maharashtra State in India. The unified soil classification of the subgrade soil is inorganic clay with high plasticity (CH), which is expansive with a California bearing ratio (CBR) of 2% to 3%. The example exhibits the unreinforced case and geotextile as reinforcement by varying the rut depth from 25 mm to 100 mm. The present result reveals the base thickness for the unreinforced case from the IRC design catalogs is in good agreement with Giroud and Han (2004) approach for a range of 75 mm to 100 mm rut depth. Since Giroud and Han (2004) method is applicable for both reinforced and unreinforced cases, for the same data with appropriate Nc factor, for the same rut depth, the base thickness for the reinforced case has arrived for the Indian condition. From this trial, for the CBR of 2%, the base thickness reduction due to geotextile inclusion is 35%. For the CBR range of 2% to 5% with different stiffness in geosynthetics, the reduction in base course thickness will be evaluated, and the validation will be executed by the full-scale accelerated pavement testing set up at the College of Engineering Pune (COE), India.

Keywords: base thickness, design approach, equation, full scale accelerated pavement set up, Indian condition

Procedia PDF Downloads 193
1210 Urea and Starch Detection on a Paper-Based Microfluidic Device Enabled on a Smartphone

Authors: Shashank Kumar, Mansi Chandra, Ujjawal Singh, Parth Gupta, Rishi Ram, Arnab Sarkar

Abstract:

Milk is one of the basic and primary sources of food and energy as we start consuming milk from birth. Hence, milk quality and purity and checking the concentration of its constituents become necessary steps. Considering the importance of the purity of milk for human health, the following study has been carried out to simultaneously detect and quantify the different adulterants like urea and starch in milk with the help of a paper-based microfluidic device integrated with a smartphone. The detection of the concentration of urea and starch is based on the principle of colorimetry. In contrast, the fluid flow in the device is based on the capillary action of porous media. The microfluidic channel proposed in the study is equipped with a specialized detection zone, and it employs a colorimetric indicator undergoing a visible color change when the milk gets in touch or reacts with a set of reagents which confirms the presence of different adulterants in the milk. In our proposed work, we have used iodine to detect the percentage of starch in the milk, whereas, in the case of urea, we have used the p-DMAB. A direct correlation has been found between the color change intensity and the concentration of adulterants. A calibration curve was constructed to find color intensity and subsequent starch and urea concentration. The device has low-cost production and easy disposability, which make it highly suitable for widespread adoption, especially in resource-constrained settings. Moreover, a smartphone application has been developed to detect, capture, and analyze the change in color intensity due to the presence of adulterants in the milk. The low-cost nature of the smartphone-integrated paper-based sensor, coupled with its integration with smartphones, makes it an attractive solution for widespread use. They are affordable, simple to use, and do not require specialized training, making them ideal tools for regulatory bodies and concerned consumers.

Keywords: paper based microfluidic device, milk adulteration, urea detection, starch detection, smartphone application

Procedia PDF Downloads 66
1209 Sol-Gel Derived 58S Bioglass Substituted by Li and Mg: A Comparative Evaluation on in vitro Bioactivity, MC3T3 Proliferation and Antibacterial Efficiency

Authors: Amir Khaleghipour, Amirhossein Moghanian, Elhamalsadat Ghaffari

Abstract:

Modified bioactive glass has been considered as a promising multifunctional candidate in bone repair and regeneration due to its attractive properties. The present study mainly aims to evaluate how the individual substitution of lithium (L-BG) and magnesium (M-BG) for calcium can affect the in vitro bioactivity of sol-gel derived substituted 58S bioactive glass (BG); and to present one composition in both of the 60SiO₂–(36-x)CaO–4P₂O₅–(x)Li₂O and 60SiO₂–(36-x)CaO–4P₂O₅–(x)MgO quaternary systems (where x= 0, 5, 10 mol.%) with improved biocompatibility, enhanced alkaline phosphatase (ALP) activity, and the most efficient antibacterial activity against methicillin-resistant Staphylococcus aureus bacteria. To address these aims, and study the effect of CaO/Li₂O and CaO/MgO substitution up to 10 mol % in 58S-BGs, the samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometry and scanning electron microscopy after immersion in simulated body fluid up to 14 days. Results indicated that substitution of either CaO/ Li₂O and CaO/ MgO had a retarding effect on in vitro hydroxyapatite (HA) formation due to the lower supersaturation degree for nucleation of HA compared with 58s-BG. Meanwhile, magnesium had a more pronounced effect. The 3-(4, 5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase (ALP) assays showed that both substitutions of CaO/ Li₂O and CaO/ MgO up to 5mol % in 58s-BGs led to increased biocompatibility and stimulated proliferation of the pre-osteoblast MC3T3 cells with respect to the control. On the other hand, substitution of either Li or Mg for Ca in the 58s BG composition resulted in improved bactericidal efficiency against MRSA bacteria. Taken together, sample 58s-BG with 5 mol % CaO/Li₂O substitution (BG-5L) was considered as a multifunctional biomaterial in bone repair/regeneration with improved biocompatibility, enhanced ALP activity as well enhanced antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) bacteria among all of the synthesized L-BGs and M-BGs.

Keywords: alkaline, alkaline earth, bioactivity, biomedical applications, sol-gel processes

Procedia PDF Downloads 190
1208 Greenhouse Controlled with Graphical Plotting in Matlab

Authors: Bruno R. A. Oliveira, Italo V. V. Braga, Jonas P. Reges, Luiz P. O. Santos, Sidney C. Duarte, Emilson R. R. Melo, Auzuir R. Alexandria

Abstract:

This project aims to building a controlled greenhouse, or for better understanding, a structure where one can maintain a given range of temperature values (°C) coming from radiation emitted by an incandescent light, as previously defined, characterizing as a kind of on-off control and a differential, which is the plotting of temperature versus time graphs assisted by MATLAB software via serial communication. That way it is possible to connect the stove with a computer and monitor parameters. In the control, it was performed using a PIC 16F877A microprocessor which enabled convert analog signals to digital, perform serial communication with the IC MAX232 and enable signal transistors. The language used in the PIC's management is Basic. There are also a cooling system realized by two coolers 12V distributed in lateral structure, being used for venting and the other for exhaust air. To find out existing temperature inside is used LM35DZ sensor. Other mechanism used in the greenhouse construction was comprised of a reed switch and a magnet; their function is in recognition of the door position where a signal is sent to a buzzer when the door is open. Beyond it exist LEDs that help to identify the operation which the stove is located. To facilitate human-machine communication is employed an LCD display that tells real-time temperature and other information. The average range of design operating without any major problems, taking into account the limitations of the construction material and structure of electrical current conduction, is approximately 65 to 70 ° C. The project is efficient in these conditions, that is, when you wish to get information from a given material to be tested at temperatures not as high. With the implementation of the greenhouse automation, facilitating the temperature control and the development of a structure that encourages correct environment for the most diverse applications.

Keywords: greenhouse, microcontroller, temperature, control, MATLAB

Procedia PDF Downloads 402
1207 Kinetics Analysis of Lignocellulose Hydrolysis and Glucose Consumption Using Aspergillus niger in Solid State

Authors: Akida Mulyaningtyas, Wahyudi Budi Sediawan

Abstract:

One decisive stage in bioethanol production from plant biomass is the hydrolysis of lignocellulosic materials into simple sugars such as glucose. The produced glucose is then fermented into ethanol. This stage is popularly done in biological method by using cellulase that is produced by certain fungi. As it is known, glucose is the main source of nutrition for most microorganisms. Therefore, cutting cellulose into glucose is actually an attempt of microorganism to provide nutrition for itself. So far, this phenomenon has received less attention while it is necessary to identify the quantity of sugar consumed by the microorganism. In this study, we examined the phenomenon of sugar consumption by microorganism on lignocellulosic hydrolysis. We used oil palm empty fruit bunch (OPEFB) as the source of lignocellulose and Aspergillus niger as cellulase-producing fungus. In Indonesia, OPEFB is plantation waste that is difficult to decompose in nature and causes environmental problems. First, OPEFB was pretreated with 1% of NaOH at 170 oC to destroy lignin that hindered A.niger from accessing cellulose. The hydrolysis was performed by growing A.niger on pretreated OPEFB in solid state to minimize the possibility of contamination. The produced glucose was measured every 24 hours for 9 days. We analyzed the kinetics of both reactions, i.e., hydrolysis and glucose consumption, simultaneously. The constants for both reactions were assumed to follow the Monod equation. The results showed that the reaction constant of glucose consumption (μC) was higher than of cellulose hydrolysis (μH), i.e., 11.8 g/L and 0.62 g/L for glucose consumption and hydrolysis respectively. However, in general, the reaction rate of hydrolysis is greater than of glucose consumption since the cellulose concentration as substrate in hydrolysis is much higher than glucose as substrate in the consumption reaction.

Keywords: Aspergillus niger, bioethanol, hydrolysis, kinetics

Procedia PDF Downloads 170
1206 Understanding the Excited State Dynamics of a Phase Transformable Photo-Active Metal-Organic Framework MIP 177 through Time-Resolved Infrared Spectroscopy

Authors: Aneek Kuila, Yaron Paz

Abstract:

MIP 177 LT and HT are two-phase transformable metal organic frameworks consisting of a Ti12O15 oxocluster and a tetracarboxylate ligand that exhibits robust chemical stability and improved photoactivity. LT to HT only shows the changes in dimensionality from 0D to 1D without any change in the overall chemical structure. In terms of chemical and photoactivity MIP 177 LT is found to perform better than the MIP 177HT. Step-scan Fourier transform absorption difference time-resolved spectroscopy has been used to collect mid-IR time-resolved infrared spectra of the transient electronic excited states of a nano-porous metal–organic framework MIP 177-LT and HT with 2.5 ns time resolution. Analyzing the time-resolved vibrational data after 355nm LASER excitation reveals the presence of the temporal changes of ν (O-Ti-O) of Ti-O metal cluster and ν (-COO) of the ligand concluding the fact that these moieties are the ultimate acceptors of the excited charges which are localized over those regions on the nanosecond timescale. A direct negative correlation between the differential absorbance (Δ Absorbance) reveals the charge transfer relation among these two moieties. A longer-lived transient signal up to 180ns for MIP 177 LT compared to the 100 ns of MIP 177 HT shows the extended lifetime of the reactive charges over the surface that exerts in their effectivity. An ultrafast change of bidentate to monodentate bridging in the -COO-Ti-O ligand-metal coordination environment was observed after the photoexcitation of MIP 177 LT which remains and lives with for seconds after photoexcitation is halted. This phenomenon is very unique to MIP 177 LT but not observed with HT. This in-situ change in the coordination denticity during the photoexcitation was not observed previously which can rationalize the reason behind the ability of MIP 177 LT to accumulate electrons during continuous photoexcitation leading to a superior photocatalytic activity.

Keywords: time resolved FTIR, metal organic framework, denticity, photoacatalysis

Procedia PDF Downloads 59