Search results for: virtual case-based learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8156

Search results for: virtual case-based learning

4706 The Life Skills Project: Client-Centered Approaches to Life Skills Acquisition for Homeless and At-Risk Populations

Authors: Leah Burton, Sara Cumming, Julianne DiSanto

Abstract:

Homelessness is a widespread and complex problem in Canada and around the globe. Many Canadians will face homelessness at least once in their lifetime, with several experiencing subsequent bouts or cyclical patterns of housing precarity. While a Housing First approach to homelessness is a long-standing and widely accepted best practice, it is also recognized that the acquisition of life skills is an effective way to reduce cycles of homelessness. Indeed, when individuals are provided with a range of life skills—such as (but not limited to) financial literacy, household management, interpersonal skills, critical thinking, and resource management—they are given the tools required to maintain long-term Housing for a lifetime; thus reducing a repetitive need for services. However, there is limited research regarding the best ways to teach life skills, a problem that has been further complicated in a post-pandemic world, where services are being delivered online or in a hybrid model of care. More than this, it is difficult to provide life skills on a large scale without losing a client-centered approach to services. This lack of client-centeredness is also seen in the lack of attention to culturally sensitive life skills, which consider the diverse needs of individuals and imbed equity, diversity, and inclusion (EDI) within the skills being taught. This study aims to fill these identified gaps in the literature by employing a community-engaged (CER) approach. Academic, government, funders, front-line staff, and clients at 15 not-for-profits from across the Greater Toronto Area in Ontario, Canada, collaborated to co-create a virtual, client-centric, EDI-informed life skill learning management system. A triangulation methodology was utilized for this research. An environmental scan was conducted for current best practices, and over 100 front-line staff (including workers, managers, and executive directors who work with homeless populations) participated in two separate Creative Problem Solving Sessions. Over 200 individuals with experience in homelessness completed quantitative and open-ended surveys. All sections of this research aimed to discover the areas of skills that individuals need to maintain Housing and to ascertain what a more client-driven EDI approach to life skills training should include. This presentation will showcase the findings on which life skills are deemed essential for homeless and precariously housed individuals.

Keywords: homelessness, housing first, life skills, community engaged research, client- centered

Procedia PDF Downloads 103
4705 Maker Education as Means for Early Entrepreneurial Education: Evaluation Results from a European Pilot Action

Authors: Elisabeth Unterfrauner, Christian Voigt

Abstract:

Since the foundation of the first Fab Lab by the Massachusetts Institute of Technology about 17 years ago, the Maker movement has spread globally with the foundation of maker spaces and Fab Labs worldwide. In these workshops, citizens have access to digital fabrication technologies such as 3D printers and laser cutters to develop and test their own ideas and prototypes, which makes it an attractive place for start-up companies. Know-How is shared not only in the physical space but also online in diverse communities. According to the Horizon report, the Maker movement, however, will also have an impact on educational settings in the following years. The European project ‘DOIT - Entrepreneurial skills for young social innovators in an open digital world’ has incorporated key elements of making to develop an early entrepreneurial education program for children between the age of six and 16. The Maker pedagogy builds on constructive learning approaches, learning by doing principles, learning in collaborative and interdisciplinary teams and learning through trial and error where mistakes are acknowledged as learning opportunities. The DOIT program consists of seven consecutive elements. It starts with a motivation phase where students get motivated by envisioning the scope of their possibilities. The second step is about Co-design: Students are asked to collect and select potential ideas for innovations. In the Co-creation phase students gather in teams and develop first prototypes of their ideas. In the iteration phase, the prototype is continuously improved and in the next step, in the reflection phase, feedback on the prototypes is exchanged between the teams. In the last two steps, scaling and reaching out, the robustness of the prototype is tested with a bigger group of users outside of the educational setting and finally students will share their projects with a wider public. The DOIT program involves 1,000 children in two pilot phases at 11 pilot sites in ten different European countries. The comprehensive evaluation design is based on a mixed method approach with a theoretical backbone on Lackeus’ model of entrepreneurship education, which distinguishes between entrepreneurial attitudes, entrepreneurial skills and entrepreneurial knowledge. A pre-post-test with quantitative measures as well as qualitative data from interviews with facilitators, students and workshop protocols will reveal the effectiveness of the program. The evaluation results will be presented at the conference.

Keywords: early entrepreneurial education, Fab Lab, maker education, Maker movement

Procedia PDF Downloads 135
4704 ePAM: Advancing Sustainable Mobility through Digital Parking, AI-Driven Vehicle Recognition, and CO₂ Reporting

Authors: Robert Monsberger

Abstract:

The increasing scarcity of resources and the pressing challenge of climate change demand transformative technological, economic, and societal approaches. In alignment with the European Green Deal's goal to achieve net-zero greenhouse gas emissions by 2050, this paper presents the development and implementation of an electronic parking and mobility system (ePAM). This system offers a distinct, integrated solution aimed at promoting climate-positive mobility, reducing individual vehicle use, and advancing the digital transformation of off-street parking. The core objectives include the accurate recognition of electric vehicles and occupant counts using advanced camera-based systems, achieving a very high accuracy. This capability enables the dynamic categorization and classification of vehicles to provide fair and automated tariff adjustments. The study also seeks to replace physical barriers with virtual ‘digital gates’ using augmented reality, significantly improving user acceptance as shown in studies conducted. The system is designed to operate as an end-to-end software solution, enabling a fully digital and paperless parking management system by leveraging license plate recognition (LPR) and metadata processing. By eliminating physical infrastructure like gates and terminals, the system significantly reduces resource consumption, maintenance complexity, and operational costs while enhancing energy efficiency. The platform also integrates CO₂ reporting tools to support compliance with upcoming EU emission trading schemes and to incentivize eco-friendly transportation behaviors. By fostering the adoption of electric vehicles and ride-sharing models, the system contributes to the optimization of traffic flows and the minimization of search traffic in urban centers. The platform's open data interfaces enable seamless integration into multimodal transport systems, facilitating a transition from individual to public transportation modes. This study emphasizes sustainability, data privacy, and compliance with the AI Act, aiming to achieve a market share of at least 4.5% in the DACH region by 2030. ePAM sets a benchmark for innovative mobility solutions, driving significant progress toward climate-neutral urban mobility.

Keywords: sustainable mobility, digital parking, AI-driven vehicle recognition, license plate recognition, virtual gates, multimodal transport integration

Procedia PDF Downloads 8
4703 Analysis of the Significance of Multimedia Channels Using Sparse PCA and Regularized SVD

Authors: Kourosh Modarresi

Abstract:

The abundance of media channels and devices has given users a variety of options to extract, discover, and explore information in the digital world. Since, often, there is a long and complicated path that a typical user may venture before taking any (significant) action (such as purchasing goods and services), it is critical to know how each node (media channel) in the path of user has contributed to the final action. In this work, the significance of each media channel is computed using statistical analysis and machine learning techniques. More specifically, “Regularized Singular Value Decomposition”, and “Sparse Principal Component” has been used to compute the significance of each channel toward the final action. The results of this work are a considerable improvement compared to the present approaches.

Keywords: multimedia attribution, sparse principal component, regularization, singular value decomposition, feature significance, machine learning, linear systems, variable shrinkage

Procedia PDF Downloads 312
4702 Training as Barrier for Implementing Inclusion for Students with Learning Difficulties in Mainstream Primary Schools in Saudi Arabia

Authors: Mohammed Alhammad

Abstract:

The movement towards the inclusion of students with special educational needs (SEN) in mainstream schools has become widely accepted practice in many countries. However in Saudi Arabia, this is not happening. Instead the practice for students with learning difficulties (LD) is to study in special classrooms in mainstream schools and they are not included with their peers, except at break times and morning assembly, and on school trips. There are a number of barriers that face implementing inclusion for students with LD in mainstream classrooms: one such barrier is the training of teachers. The training, either pre- or in-service, that teachers receive is seen as playing an important role in leading to the successful implementation of inclusion. The aim of this presentation is to explore how pre-service training and in-service training are acting as barriers for implementing inclusion of students with LD in mainstream primary schools in Saudi Arabia from the perspective of teachers. The qualitative research approach was used to explore this barrier. Twenty-four teachers (general education teachers, special education teachers) were interviewed using semi-structured interview and a number of documents were used as method of data collection. The result showed teachers felt that not much attention was paid to inclusion in pre-services training for general education teachers and special education teachers in Saudi Arabia. In addition, pre-service training for general education teachers does not normally including modules on special education. Regarding the in-service training, no courses at all about inclusion are provided for teachers. Furthermore, training courses in special education are few. As result, the knowledge and skills required to implemented inclusion successfully.

Keywords: inclusion, learning difficulties, Saudi Arabia, training

Procedia PDF Downloads 377
4701 Neural Network and Support Vector Machine for Prediction of Foot Disorders Based on Foot Analysis

Authors: Monireh Ahmadi Bani, Adel Khorramrouz, Lalenoor Morvarid, Bagheri Mahtab

Abstract:

Background:- Foot disorders are common in musculoskeletal problems. Plantar pressure distribution measurement is one the most important part of foot disorders diagnosis for quantitative analysis. However, the association of plantar pressure and foot disorders is not clear. With the growth of dataset and machine learning methods, the relationship between foot disorders and plantar pressures can be detected. Significance of the study:- The purpose of this study was to predict the probability of common foot disorders based on peak plantar pressure distribution and center of pressure during walking. Methodologies:- 2323 participants were assessed in a foot therapy clinic between 2015 and 2021. Foot disorders were diagnosed by an experienced physician and then they were asked to walk on a force plate scanner. After the data preprocessing, due to the difference in walking time and foot size, we normalized the samples based on time and foot size. Some of force plate variables were selected as input to a deep neural network (DNN), and the probability of any each foot disorder was measured. In next step, we used support vector machine (SVM) and run dataset for each foot disorder (classification of yes or no). We compared DNN and SVM for foot disorders prediction based on plantar pressure distributions and center of pressure. Findings:- The results demonstrated that the accuracy of deep learning architecture is sufficient for most clinical and research applications in the study population. In addition, the SVM approach has more accuracy for predictions, enabling applications for foot disorders diagnosis. The detection accuracy was 71% by the deep learning algorithm and 78% by the SVM algorithm. Moreover, when we worked with peak plantar pressure distribution, it was more accurate than center of pressure dataset. Conclusion:- Both algorithms- deep learning and SVM will help therapist and patients to improve the data pool and enhance foot disorders prediction with less expense and error after removing some restrictions properly.

Keywords: deep neural network, foot disorder, plantar pressure, support vector machine

Procedia PDF Downloads 360
4700 EEG-Based Screening Tool for School Student’s Brain Disorders Using Machine Learning Algorithms

Authors: Abdelrahman A. Ramzy, Bassel S. Abdallah, Mohamed E. Bahgat, Sarah M. Abdelkader, Sherif H. ElGohary

Abstract:

Attention-Deficit/Hyperactivity Disorder (ADHD), epilepsy, and autism affect millions of children worldwide, many of which are undiagnosed despite the fact that all of these disorders are detectable in early childhood. Late diagnosis can cause severe problems due to the late treatment and to the misconceptions and lack of awareness as a whole towards these disorders. Moreover, electroencephalography (EEG) has played a vital role in the assessment of neural function in children. Therefore, quantitative EEG measurement will be utilized as a tool for use in the evaluation of patients who may have ADHD, epilepsy, and autism. We propose a screening tool that uses EEG signals and machine learning algorithms to detect these disorders at an early age in an automated manner. The proposed classifiers used with epilepsy as a step taken for the work done so far, provided an accuracy of approximately 97% using SVM, Naïve Bayes and Decision tree, while 98% using KNN, which gives hope for the work yet to be conducted.

Keywords: ADHD, autism, epilepsy, EEG, SVM

Procedia PDF Downloads 194
4699 Machine Learning Strategies for Data Extraction from Unstructured Documents in Financial Services

Authors: Delphine Vendryes, Dushyanth Sekhar, Baojia Tong, Matthew Theisen, Chester Curme

Abstract:

Much of the data that inform the decisions of governments, corporations and individuals are harvested from unstructured documents. Data extraction is defined here as a process that turns non-machine-readable information into a machine-readable format that can be stored, for instance, in a database. In financial services, introducing more automation in data extraction pipelines is a major challenge. Information sought by financial data consumers is often buried within vast bodies of unstructured documents, which have historically required thorough manual extraction. Automated solutions provide faster access to non-machine-readable datasets, in a context where untimely information quickly becomes irrelevant. Data quality standards cannot be compromised, so automation requires high data integrity. This multifaceted task is broken down into smaller steps: ingestion, table parsing (detection and structure recognition), text analysis (entity detection and disambiguation), schema-based record extraction, user feedback incorporation. Selected intermediary steps are phrased as machine learning problems. Solutions leveraging cutting-edge approaches from the fields of computer vision (e.g. table detection) and natural language processing (e.g. entity detection and disambiguation) are proposed.

Keywords: computer vision, entity recognition, finance, information retrieval, machine learning, natural language processing

Procedia PDF Downloads 115
4698 Questionnaire for the Evaluation of Entrepreneurship Project Psychopedagogical Practices: Construction Proceedings and Validation

Authors: Cristina Costa-Lobo, Sandra Fernandes, Miguel Magalhães, José Dinis-Carvalho, Alfredo Regueiro, Ana Carvalho

Abstract:

This paper is a report on the findings of the construction and the validation of a questionnaire monetized in a portuguese higher education context with undergraduate students. The Questionnaire for the Evaluation of Entrepreneurship Project Psychopedagogical Practices consists of six scales: Critical appraisal of the project, Developed Learning and Skills, Teamwork, Teacher and Tutor Roles, Evaluation of Student Performance, and Project Effectiveness as a Teaching-Learning Methodology. The proceedings of its construction are analyzed, and the validity and internal consistency analysis are described. Findings indicate good indicators of validity, good fidelity and an interpretable factorial structure.

Keywords: entrepreneurship project, higher education, psychopedagogical practices, teacher and tutor roles

Procedia PDF Downloads 383
4697 The Effectiveness of Concept Mapping as a Tool for Developing Critical Thinking in Undergraduate Medical Education: A BEME Systematic Review: BEME Guide No. 81

Authors: Marta Fonseca, Pedro Marvão, Beatriz Oliveira, Bruno Heleno, Pedro Carreiro-Martins, Nuno Neuparth, António Rendas

Abstract:

Background: Concept maps (CMs) visually represent hierarchical connections among related ideas. They foster logical organization and clarify idea relationships, potentially aiding medical students in critical thinking (to think clearly and rationally about what to do or what to believe). However, there are inconsistent claims about the use of CMs in undergraduate medical education. Our three research questions are: 1) What studies have been published on concept mapping in undergraduate medical education? 2) What was the impact of CMs on students’ critical thinking? 3) How and why have these interventions had an educational impact? Methods: Eight databases were systematically searched (plus a manual and an additional search were conducted). After eliminating duplicate entries, titles, and abstracts, and full-texts were independently screened by two authors. Data extraction and quality assessment of the studies were independently performed by two authors. Qualitative and quantitative data were integrated using mixed-methods. The results were reported using the structured approach to the reporting in healthcare education of evidence synthesis statement and BEME guidance. Results: Thirty-nine studies were included from 26 journals (19 quantitative, 8 qualitative and 12 mixed-methods studies). CMs were considered as a tool to promote critical thinking, both in the perception of students and tutors, as well as in assessing students’ knowledge and/or skills. In addition to their role as facilitators of knowledge integration and critical thinking, CMs were considered both teaching and learning methods. Conclusions: CMs are teaching and learning tools which seem to help medical students develop critical thinking. This is due to the flexibility of the tool as a facilitator of knowledge integration, as a learning and teaching method. The wide range of contexts, purposes, and variations in how CMs and instruments to assess critical thinking are used increase our confidence that the positive effects are consistent.

Keywords: concept map, medical education, undergraduate, critical thinking, meaningful learning

Procedia PDF Downloads 128
4696 A Study of the Trap of Multi-Homing in Customers: A Comparative Case Study of Digital Payments

Authors: Shari S. C. Shang, Lynn S. L. Chiu

Abstract:

In the digital payment market, some consumers use only one payment wallet while many others play multi-homing with a variety of payment services. With the diffusion of new payment systems, we examined the determinants of the adoption of multi-homing behavior. This study aims to understand how a digital payment provider dynamically expands business touch points with cross-business strategies to enrich the digital ecosystem and avoid the trap of multi-homing in customers. By synthesizing platform ecosystem literature, we constructed a two-dimensional research framework with one determinant of user digital behavior from offline to online intentions and the other determinant of digital payment touch points from convenient accessibility to cross-business platforms. To explore on a broader scale, we selected 12 digital payments from 5 countries of UK, US, Japan, Korea, and Taiwan. With the interplays of user digital behaviors and payment touch points, we group the study cases into four types: (1) Channel Initiated: users originated from retailers with high access to in-store shopping with face-to-face guidance for payment adoption. Providers offer rewards for customer loyalty and secure the retailer’s efficient cash flow management. (2) Social Media Dependent: users usually are digital natives with high access to social media or the internet who shop and pay digitally. Providers might not own physical or online shops but are licensed to aggregate money flows through virtual ecosystems. (3) Early Life Engagement: digital banks race to capture the next generation from popularity to profitability. This type of payment aimed to give children a taste of financial freedom while letting parents track their spending. Providers are to capitalize on the digital payment and e-commerce boom and hold on to new customers into adulthood. (4) Traditional Banking: plastic credit cards are purposely designed as a control group to track the evolvement of business strategies in digital payments. Traditional credit card users may follow the bank’s digital strategy to land on different types of digital wallets or mostly keep using plastic credit cards. This research analyzed business growth models and inter-firms’ coopetition strategies of the selected cases. Results of the multiple case analysis reveal that channel initiated payments bundled rewards with retailer’s business discount for recurring purchases. They also extended other financial services, such as insurance, to fulfill customers’ new demands. Contrastively, social media dependent payments developed new usages and new value creation, such as P2P money transfer through network effects among the virtual social ties, while early life engagements offer virtual banking products to children who are digital natives but overlooked by incumbents. It has disrupted the banking business domains in preparation for the metaverse economy. Lastly, the control group of traditional plastic credit cards has gradually converted to a BaaS (banking as a service) model depending on customers’ preferences. The multi-homing behavior is not avoidable in digital payment competitions. Payment providers may encounter multiple waves of a multi-homing threat after a short period of success. A dynamic cross-business collaboration strategy should be explored to continuously evolve the digital ecosystems and allow users for a broader shopping experience and continual usage.

Keywords: digital payment, digital ecosystems, multihoming users, cross business strategy, user digital behavior intentions

Procedia PDF Downloads 165
4695 Linking Pre-Class Engagement with Academic Achievement: The Role of Quests in a Flipped Chemistry Course

Authors: Anthony J. Rojas

Abstract:

In flipped classroom environments, students are tasked with engaging in pre-class learning to maximize the effectiveness of in-class time. This study investigates the use of ‘Quests’, brief formative assessments administered at the start of class, to evaluate student understanding of assigned pre-class materials in an undergraduate chemistry course. Students completed Quests via Microsoft Forms, based on content from instructional videos and worksheets, and these assessments were mandatory, with no opportunity for make-up. This paper examines the correlation between Quest performance and overall course success, finding that students who performed well on the Quests consistently achieved higher final grades in the course. The findings suggest that Quests are effective in both reinforcing student engagement with pre-class content and predicting their broader academic performance. The implications of these results for flipped classroom strategies and student learning outcomes will be discussed.

Keywords: chemistry, flipped classroom, attendance, assessments

Procedia PDF Downloads 29
4694 Attention and Memory in the Music Learning Process in Individuals with Visual Impairments

Authors: Lana Burmistrova

Abstract:

Introduction: The influence of visual impairments on several cognitive processes used in the music learning process is an increasingly important area in special education and cognitive musicology. Many children have several visual impairments due to the refractive errors and irreversible inhibitors. However, based on the compensatory neuroplasticity and functional reorganization, congenitally blind (CB) and early blind (EB) individuals use several areas of the occipital lobe to perceive and process auditory and tactile information. CB individuals have greater memory capacity, memory reliability, and less false memory mechanisms are used while executing several tasks, they have better working memory (WM) and short-term memory (STM). Blind individuals use several strategies while executing tactile and working memory n-back tasks: verbalization strategy (mental recall), tactile strategy (tactile recall) and combined strategies. Methods and design: The aim of the pilot study was to substantiate similar tendencies while executing attention, memory and combined auditory tasks in blind and sighted individuals constructed for this study, and to investigate attention, memory and combined mechanisms used in the music learning process. For this study eight (n=8) blind and eight (n=8) sighted individuals aged 13-20 were chosen. All respondents had more than five years music performance and music learning experience. In the attention task, all respondents had to identify pitch changes in tonal and randomized melodic pairs. The memory task was based on the mismatch negativity (MMN) proportion theory: 80 percent standard (not changed) and 20 percent deviant (changed) stimuli (sequences). Every sequence was named (na-na, ra-ra, za-za) and several items (pencil, spoon, tealight) were assigned for each sequence. Respondents had to recall the sequences, to associate them with the item and to detect possible changes. While executing the combined task, all respondents had to focus attention on the pitch changes and had to detect and describe these during the recall. Results and conclusion: The results support specific features in CB and EB, and similarities between late blind (LB) and sighted individuals. While executing attention and memory tasks, it was possible to observe the tendency in CB and EB by using more precise execution tactics and usage of more advanced periodic memory, while focusing on auditory and tactile stimuli. While executing memory and combined tasks, CB and EB individuals used passive working memory to recall standard sequences, active working memory to recall deviant sequences and combined strategies. Based on the observation results, assessment of blind respondents and recording specifics, following attention and memory correlations were identified: reflective attention and STM, reflective attention and periodic memory, auditory attention and WM, tactile attention and WM, auditory tactile attention and STM. The results and the summary of findings highlight the attention and memory features used in the music learning process in the context of blindness, and the tendency of the several attention and memory types correlated based on the task, strategy and individual features.

Keywords: attention, blindness, memory, music learning, strategy

Procedia PDF Downloads 187
4693 Exploring the Impact of Artificial Intelligence (AI) in the Context of English as a Foreign Language (EFL): A Comprehensive Bibliometric Study

Authors: Kate Benedicta Amenador, Dianjian Wang, Bright Nkrumah

Abstract:

This extensive bibliometric study explores the dynamic influence of artificial intelligence in the field of English as a Foreign Language (EFL) between 2012 and 2024. The study, which examined 4,500 articles from Google Scholar, Modern Language Association Linguistics Abstracts, Web of Science, Scopus, Researchgate, and library genesis databases, indicates that AI integration in EFL is on the rise. This notable increase is ascribed to a variety of transformative events, including increased academic funding for higher education and the COVID-19 epidemic. The results of the study identify leading contributors, prominent authors, publishers and sources, with the United States, China and the United Kingdom emerging as key contributors. The co-occurrence analysis of key terms reveals five clusters highlighting patterns in AI-enhanced language instruction and learning, including evaluation strategies, educational technology, learning motivation, EFL teaching aspects, and learner feedback. The study also discusses the impact of various AIs in enhancing EFL writing skills with software such as Grammarly, Quilbot, and Chatgpt. The current study recognizes limitations in database selection and linguistic constraints. Nevertheless, the results provide useful insights for educators, researchers and policymakers, inspiring and guiding a cross-disciplinary collaboration and creative pedagogical techniques and approaches to teaching and learning in the future.

Keywords: artificial intelligence, bibliometrics study, VOSviewer visualization, English as a foreign language

Procedia PDF Downloads 36
4692 Machine Learning Models for the Prediction of Heating and Cooling Loads of a Residential Building

Authors: Aaditya U. Jhamb

Abstract:

Due to the current energy crisis that many countries are battling, energy-efficient buildings are the subject of extensive research in the modern technological era because of growing worries about energy consumption and its effects on the environment. The paper explores 8 factors that help determine energy efficiency for a building: (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and glazing area distribution), with Tsanas and Xifara providing a dataset. The data set employed 768 different residential building models to anticipate heating and cooling loads with a low mean squared error. By optimizing these characteristics, machine learning algorithms may assess and properly forecast a building's heating and cooling loads, lowering energy usage while increasing the quality of people's lives. As a result, the paper studied the magnitude of the correlation between these input factors and the two output variables using various statistical methods of analysis after determining which input variable was most closely associated with the output loads. The most conclusive model was the Decision Tree Regressor, which had a mean squared error of 0.258, whilst the least definitive model was the Isotonic Regressor, which had a mean squared error of 21.68. This paper also investigated the KNN Regressor and the Linear Regression, which had to mean squared errors of 3.349 and 18.141, respectively. In conclusion, the model, given the 8 input variables, was able to predict the heating and cooling loads of a residential building accurately and precisely.

Keywords: energy efficient buildings, heating load, cooling load, machine learning models

Procedia PDF Downloads 99
4691 Studying the Relationship Between Washback Effects of IELTS Test on Iranian Language Teachers, Teaching Strategies and Candidates

Authors: Afsaneh Jasmine Majidi

Abstract:

Language testing is an important part of language teaching experience and language learning process as it presents assessment strategies for teachers to evaluate the efficiency of teaching and for learners to examine their outcomes. However, language testing is demanding and challenging because it should provide the opportunity for proper and objective decision. In addition to all the efforts test designers put to design valid and reliable tests, there are some other determining factors which are even more complex and complicated. These factors affect the educational system, individuals, and society, and the impact of the tests vary according to the scope of the test. Seemingly, the impact of a simple classroom assessment is not the same as that of high stake tests such as International English Language Testing System (IELTS). As the importance of the test increases, it affects wider domain. Accordingly, the impacts of high stake tests are reflected not only in teaching, learning strategies but also in society. Testing experts use the term ‘washback’ or ‘impact’ to define the different effects of a test on teaching, learning, and community. This paper first looks at the theoretical background of ‘washback’ and ‘impact’ in language testing by reviewing of relevant literature in the field and then investigates washback effects of IELTS test of on Iranian IELTS teachers and students. The study found significant relationship between the washback effect of IELTS test and teaching strategies of Iranian IELTS teachers as well as performance of Iranian IELTS candidates and their community.

Keywords: high stake tests, IELTS, Iranian Candidates, language testing, test impact, washback

Procedia PDF Downloads 331
4690 A Book Review of Inside the Battle of Algiers, by Zohra Drif: A Thematic Analysis on Women’s Agency

Authors: W. Zekri

Abstract:

This paper explores Zohra Drif’s memoir, Inside the Battle of Algiers, which narrates her desires as a student to become a revolutionary activist. She exemplified, in her narrative, the different roles, she and her fellows performed as combatants in the Casbah during the Algerian Revolution 1954-1962. This book review aims to evaluate the concept of women’s agency through education and language learning, and its impact on empowering women’s desires. Close-reading method and thematic analysis are used to explore the text. The analysis identified themes that refine the meaning of agency which are social and cultural supports, education, and language proficiency. These themes aim to contribute to the representation in Inside the Battle of Algiers of a woman guerrilla who engaged herself to perform national acts of resistance.

Keywords: agency, education, learning, women

Procedia PDF Downloads 178
4689 Predicting Data Center Resource Usage Using Quantile Regression to Conserve Energy While Fulfilling the Service Level Agreement

Authors: Ahmed I. Alutabi, Naghmeh Dezhabad, Sudhakar Ganti

Abstract:

Data centers have been growing in size and dema nd continuously in the last two decades. Planning for the deployment of resources has been shallow and always resorted to over-provisioning. Data center operators try to maximize the availability of their services by allocating multiple of the needed resources. One resource that has been wasted, with little thought, has been energy. In recent years, programmable resource allocation has paved the way to allow for more efficient and robust data centers. In this work, we examine the predictability of resource usage in a data center environment. We use a number of models that cover a wide spectrum of machine learning categories. Then we establish a framework to guarantee the client service level agreement (SLA). Our results show that using prediction can cut energy loss by up to 55%.

Keywords: machine learning, artificial intelligence, prediction, data center, resource allocation, green computing

Procedia PDF Downloads 110
4688 Developing an Out-of-Distribution Generalization Model Selection Framework through Impurity and Randomness Measurements and a Bias Index

Authors: Todd Zhou, Mikhail Yurochkin

Abstract:

Out-of-distribution (OOD) detection is receiving increasing amounts of attention in the machine learning research community, boosted by recent technologies, such as autonomous driving and image processing. This newly-burgeoning field has called for the need for more effective and efficient methods for out-of-distribution generalization methods. Without accessing the label information, deploying machine learning models to out-of-distribution domains becomes extremely challenging since it is impossible to evaluate model performance on unseen domains. To tackle this out-of-distribution detection difficulty, we designed a model selection pipeline algorithm and developed a model selection framework with different impurity and randomness measurements to evaluate and choose the best-performing models for out-of-distribution data. By exploring different randomness scores based on predicted probabilities, we adopted the out-of-distribution entropy and developed a custom-designed score, ”CombinedScore,” as the evaluation criterion. This proposed score was created by adding labeled source information into the judging space of the uncertainty entropy score using harmonic mean. Furthermore, the prediction bias was explored through the equality of opportunity violation measurement. We also improved machine learning model performance through model calibration. The effectiveness of the framework with the proposed evaluation criteria was validated on the Folktables American Community Survey (ACS) datasets.

Keywords: model selection, domain generalization, model fairness, randomness measurements, bias index

Procedia PDF Downloads 125
4687 A Digital Environment for Developing Mathematical Abilities in Children with Autism Spectrum Disorder

Authors: M. Isabel Santos, Ana Breda, Ana Margarida Almeida

Abstract:

Research on academic abilities of individuals with autism spectrum disorder (ASD) underlines the importance of mathematics interventions. Yet the proposal of digital applications for children and youth with ASD continues to attract little attention, namely, regarding the development of mathematical reasoning, being the use of the digital technologies an area of great interest for individuals with this disorder and its use is certainly a facilitative strategy in the development of their mathematical abilities. The use of digital technologies can be an effective way to create innovative learning opportunities to these students and to develop creative, personalized and constructive environments, where they can develop differentiated abilities. The children with ASD often respond well to learning activities involving information presented visually. In this context, we present the digital Learning Environment on Mathematics for Autistic children (LEMA) that was a research project conducive to a PhD in Multimedia in Education and was developed by the Thematic Line Geometrix, located in the Department of Mathematics, in a collaboration effort with DigiMedia Research Center, of the Department of Communication and Art (University of Aveiro, Portugal). LEMA is a digital mathematical learning environment which activities are dynamically adapted to the user’s profile, towards the development of mathematical abilities of children aged 6–12 years diagnosed with ASD. LEMA has already been evaluated with end-users (both students and teacher’s experts) and based on the analysis of the collected data readjustments were made, enabling the continuous improvement of the prototype, namely considering the integration of universal design for learning (UDL) approaches, which are of most importance in ASD, due to its heterogeneity. The learning strategies incorporated in LEMA are: (i) provide options to custom choice of math activities, according to user’s profile; (ii) integrates simple interfaces with few elements, presenting only the features and content needed for the ongoing task; (iii) uses a simple visual and textual language; (iv) uses of different types of feedbacks (auditory, visual, positive/negative reinforcement, hints with helpful instructions including math concept definitions, solved math activities using split and easier tasks and, finally, the use of videos/animations that show a solution to the proposed activity); (v) provides information in multiple representation, such as text, video, audio and image for better content and vocabulary understanding in order to stimulate, motivate and engage users to mathematical learning, also helping users to focus on content; (vi) avoids using elements that distract or interfere with focus and attention; (vii) provides clear instructions and orientation about tasks to ease the user understanding of the content and the content language, in order to stimulate, motivate and engage the user; and (viii) uses buttons, familiarly icons and contrast between font and background. Since these children may experience little sensory tolerance and may have an impaired motor skill, besides the user to have the possibility to interact with LEMA through the mouse (point and click with a single button), the user has the possibility to interact with LEMA through Kinect device (using simple gesture moves).

Keywords: autism spectrum disorder, digital technologies, inclusion, mathematical abilities, mathematical learning activities

Procedia PDF Downloads 117
4686 Effect of Personality Traits on Classification of Political Orientation

Authors: Vesile Evrim, Aliyu Awwal

Abstract:

Today as in the other domains, there are an enormous number of political transcripts available in the Web which is waiting to be mined and used for various purposes such as statistics and recommendations. Therefore, automatically determining the political orientation on these transcripts becomes crucial. The methodologies used by machine learning algorithms to do the automatic classification are based on different features such as Linguistic. Considering the ideology differences between Liberals and Conservatives, in this paper, the effect of Personality Traits on political orientation classification is studied. This is done by considering the correlation between LIWC features and the BIG Five Personality Traits. Several experiments are conducted on Convote U.S. Congressional-Speech dataset with seven benchmark classification algorithms. The different methodologies are applied on selecting different feature sets that constituted by 8 to 64 varying number of features. While Neuroticism is obtained to be the most differentiating personality trait on classification of political polarity, when its top 10 representative features are combined with several classification algorithms, it outperformed the results presented in previous research.

Keywords: politics, personality traits, LIWC, machine learning

Procedia PDF Downloads 496
4685 Investigation of Topic Modeling-Based Semi-Supervised Interpretable Document Classifier

Authors: Dasom Kim, William Xiu Shun Wong, Yoonjin Hyun, Donghoon Lee, Minji Paek, Sungho Byun, Namgyu Kim

Abstract:

There have been many researches on document classification for classifying voluminous documents automatically. Through document classification, we can assign a specific category to each unlabeled document on the basis of various machine learning algorithms. However, providing labeled documents manually requires considerable time and effort. To overcome the limitations, the semi-supervised learning which uses unlabeled document as well as labeled documents has been invented. However, traditional document classifiers, regardless of supervised or semi-supervised ones, cannot sufficiently explain the reason or the process of the classification. Thus, in this paper, we proposed a methodology to visualize major topics and class components of each document. We believe that our methodology for visualizing topics and classes of each document can enhance the reliability and explanatory power of document classifiers.

Keywords: data mining, document classifier, text mining, topic modeling

Procedia PDF Downloads 405
4684 Play-Based Early Education and Teachers’ Professional Development: Impact on Vulnerable Children

Authors: Chirine Dannaoui, Maya Antoun

Abstract:

This paper explores the intricate dynamics of play-based early childhood education (ECE) and the impact of professional development on teachers implementing play-based pedagogy, particularly in the context of vulnerable Syrian refugee children in Lebanon. By utilizing qualitative methodologies, including classroom observations and in-depth interviews with five early childhood educators and a field manager, this study delves into the challenges and transformations experienced by teachers in adopting play-based learning strategies. The research unveils the critical role of continuous and context-specific professional development in empowering teachers to implement play-based pedagogies effectively. When appropriately supported, it emphasizes how such educational approaches significantly enhance children's cognitive, social, and emotional development in crisis-affected environments. Key findings indicate that despite diverse educational backgrounds, teachers show considerable growth in their pedagogical skills through targeted professional development. This growth is vital for fostering a learning environment where vulnerable children can thrive, particularly in humanitarian settings. The paper also addresses educators' challenges, including adapting to play-based methodologies, resource limitations, and balancing curricular requirements with the need for holistic child development. This study contributes to the discourse on early childhood education in crisis contexts, emphasizing the need for sustainable, well-structured professional development programs. It underscores the potential of play-based learning to bridge educational gaps and contribute to the healing process of children facing calamity. The study highlights significant implications for policymakers, educators, schools, and not-for-profit organizations engaged in early childhood education in humanitarian contexts, stressing the importance of investing in teacher capacity and curriculum reform to enhance the quality of education for children in general and vulnerable ones in particular.

Keywords: play-based learning, professional development, vulnerable children, early childhood education

Procedia PDF Downloads 62
4683 Automatic Classification for the Degree of Disc Narrowing from X-Ray Images Using CNN

Authors: Kwangmin Joo

Abstract:

Automatic detection of lumbar vertebrae and classification method is proposed for evaluating the degree of disc narrowing. Prior to classification, deep learning based segmentation is applied to detect individual lumbar vertebra. M-net is applied to segment five lumbar vertebrae and fine-tuning segmentation is employed to improve the accuracy of segmentation. Using the features extracted from previous step, clustering technique, k-means clustering, is applied to estimate the degree of disc space narrowing under four grade scoring system. As preliminary study, techniques proposed in this research could help building an automatic scoring system to diagnose the severity of disc narrowing from X-ray images.

Keywords: Disc space narrowing, Degenerative disc disorders, Deep learning based segmentation, Clustering technique

Procedia PDF Downloads 127
4682 A Custom Convolutional Neural Network with Hue, Saturation, Value Color for Malaria Classification

Authors: Ghazala Hcini, Imen Jdey, Hela Ltifi

Abstract:

Malaria disease should be considered and handled as a potential restorative catastrophe. One of the most challenging tasks in the field of microscopy image processing is due to differences in test design and vulnerability of cell classifications. In this article, we focused on applying deep learning to classify patients by identifying images of infected and uninfected cells. We performed multiple forms, counting a classification approach using the Hue, Saturation, Value (HSV) color space. HSV is used since of its superior ability to speak to image brightness; at long last, for classification, a convolutional neural network (CNN) architecture is created. Clusters of focus were used to deliver the classification. The highlights got to be forbidden, and a few more clamor sorts are included in the information. The suggested method has a precision of 99.79%, a recall value of 99.55%, and provides 99.96% accuracy.

Keywords: deep learning, convolutional neural network, image classification, color transformation, HSV color, malaria diagnosis, malaria cells images

Procedia PDF Downloads 92
4681 Money Laundering and Governance in Cryptocurrencies: The Double-Edged Sword of Blockchain Technology

Authors: Jiaqi Yan, Yani Shi

Abstract:

With the growing popularity of bitcoin transactions, criminals have exploited the bitcoin like cryptocurrencies, and cybercriminals such as money laundering have thrived. Unlike traditional currencies, the Internet-based virtual currencies can be used anonymously via the blockchain technology underpinning. In this paper, we analyze the double-edged sword features of blockchain technology in the context of money laundering. In particular, the traceability feature of blockchain-based system facilitates a level of governance, while the decentralization feature of blockchain-based system may bring governing difficulties. Based on the analysis, we propose guidelines for policy makers in governing blockchain-based cryptocurrency systems.

Keywords: cryptocurrency, money laundering, blockchain, decentralization, traceability

Procedia PDF Downloads 205
4680 Identification of Breast Anomalies Based on Deep Convolutional Neural Networks and K-Nearest Neighbors

Authors: Ayyaz Hussain, Tariq Sadad

Abstract:

Breast cancer (BC) is one of the widespread ailments among females globally. The early prognosis of BC can decrease the mortality rate. Exact findings of benign tumors can avoid unnecessary biopsies and further treatments of patients under investigation. However, due to variations in images, it is a tough job to isolate cancerous cases from normal and benign ones. The machine learning technique is widely employed in the classification of BC pattern and prognosis. In this research, a deep convolution neural network (DCNN) called AlexNet architecture is employed to get more discriminative features from breast tissues. To achieve higher accuracy, K-nearest neighbor (KNN) classifiers are employed as a substitute for the softmax layer in deep learning. The proposed model is tested on a widely used breast image database called MIAS dataset for experimental purposes and achieved 99% accuracy.

Keywords: breast cancer, DCNN, KNN, mammography

Procedia PDF Downloads 137
4679 Parallelization of Random Accessible Progressive Streaming of Compressed 3D Models over Web

Authors: Aayushi Somani, Siba P. Samal

Abstract:

Three-dimensional (3D) meshes are data structures, which store geometric information of an object or scene, generally in the form of vertices and edges. Current technology in laser scanning and other geometric data acquisition technologies acquire high resolution sampling which leads to high resolution meshes. While high resolution meshes give better quality rendering and hence is used often, the processing, as well as storage of 3D meshes, is currently resource-intensive. At the same time, web applications for data processing have become ubiquitous owing to their accessibility. For 3D meshes, the advancement of 3D web technologies, such as WebGL, WebVR, has enabled high fidelity rendering of huge meshes. However, there exists a gap in ability to stream huge meshes to a native client and browser application due to high network latency. Also, there is an inherent delay of loading WebGL pages due to large and complex models. The focus of our work is to identify the challenges faced when such meshes are streamed into and processed on hand-held devices, owing to its limited resources. One of the solutions that are conventionally used in the graphics community to alleviate resource limitations is mesh compression. Our approach deals with a two-step approach for random accessible progressive compression and its parallel implementation. The first step includes partition of the original mesh to multiple sub-meshes, and then we invoke data parallelism on these sub-meshes for its compression. Subsequent threaded decompression logic is implemented inside the Web Browser Engine with modification of WebGL implementation in Chromium open source engine. This concept can be used to completely revolutionize the way e-commerce and Virtual Reality technology works for consumer electronic devices. These objects can be compressed in the server and can be transmitted over the network. The progressive decompression can be performed on the client device and rendered. Multiple views currently used in e-commerce sites for viewing the same product from different angles can be replaced by a single progressive model for better UX and smoother user experience. Can also be used in WebVR for commonly and most widely used activities like virtual reality shopping, watching movies and playing games. Our experiments and comparison with existing techniques show encouraging results in terms of latency (compressed size is ~10-15% of the original mesh), processing time (20-22% increase over serial implementation) and quality of user experience in web browser.

Keywords: 3D compression, 3D mesh, 3D web, chromium, client-server architecture, e-commerce, level of details, parallelization, progressive compression, WebGL, WebVR

Procedia PDF Downloads 171
4678 Simulating an Interprofessional Hospital Day Shift: A Student Interprofessional (IP) Collaborative Learning Activity

Authors: Fiona Jensen, Barb Goodwin, Nancy Kleiman, Rhonda Usunier

Abstract:

Background: Clinical simulation is now a common component in many health profession curricula in preparation for clinical practice. In the Rady Faculty of Health Sciences (RFHS) college leads in simulation and interprofessional (IP) education, planned an eight hour simulated hospital day shift, where seventy students from six health professions across two campuses, learned with each other in a safe, realistic environment. Learning about interprofessional collaboration, an expected competency for many health professions upon graduation, was a primary focus of the simulation event. Method: Faculty representatives from the Colleges of Nursing, Medicine, Pharmacy and Rehabilitation Sciences (Physical Therapy, Occupation Therapy, Respiratory Therapy) and Pharmacy worked together to plan the IP event in a simulation facility in the College of Nursing. Each college provided a faculty mentor to guide the same profession students. Students were placed in interprofessional teams consisting of a nurse, physician, pharmacist, and then sharing respiratory, occupational, and physical therapists across the team depending on the needs of the patients. Eight patient scenarios were role played by health profession students, who had been provided with their patient’s story shortly before the event. Each team was guided by a facilitator. Results and Outcomes: On the morning of the event, all students gathered in a large group to meet mentors and facilitators and have a brief overview of the six competencies for effective collaboration and the session objectives. The students assuming their same profession roles were provided with their patient’s chart at the beginning of the shift, met with their team, and then completed professional specific assessments. Shortly into the shift, IP team rounds began, facilitated by the team facilitator. During the shift, each patient role-played a spontaneous health incident, which required collaboration between the IP team members for assessment and management. The afternoon concluded with team rounds, a collaborative management plan, and a facilitated de-brief. Conclusions: During the de-brief sessions, students responded to set questions related to the session learning objectives and expressed many positive learning moments. We believe that we have a sustainable simulation IP collaborative learning opportunity, which can be embedded into curricula, and has the capacity to grow to include more health profession faculties and students. Opportunities are being explored in the RFHS at the administrative level, to offer this event more frequently in the academic year to reach more students. In addition, a formally structured event evaluation tool would provide important feedback and inform the qualitative feedback to event organizers and the colleges about the significance of the simulation event to student learning.

Keywords: simulation, collaboration, teams, interprofessional

Procedia PDF Downloads 131
4677 Benefits of Gamification in Agile Software Project Courses

Authors: Nina Dzamashvili Fogelström

Abstract:

This paper examines concepts of Game-Based Learning and Gamification. Conducted literature survey found an increased interest in the academia in these concepts, limited evidence of a positive effect on student motivation and academic performance, but also certain scepticism for adding games to traditional educational activities. A small-scale empirical study presented in this paper aims to evaluate student experience and usefulness of GameBased Learning and Gamification for a better understanding of the threshold concepts in software engineering project courses. The participants of the study were 22 second year students from bachelor’s program in software engineering at Blekinge Institute of Technology. As a part of the course instruction, the students were introduced to a digital game specifically designed to simulate agile software project. The game mechanics were designed as to allow manipulation of the agile concept of team velocity. After the application of the game, the students were surveyed to measure the degree of a perceived increase in understanding of the studied threshold concept. The students were also asked whether they would like to have games included in their education. The results show that majority of the students found the game helpful in increasing their understanding of the threshold concept. Most of the students have indicated that they would like to see games included in their education. These results are encouraging. Since the study was of small scale and based on convenience sampling, more studies in the area are recommended.

Keywords: agile development, gamification, game based learning, digital games, software engineering, threshold concepts

Procedia PDF Downloads 169