Search results for: online learning activities
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14345

Search results for: online learning activities

10895 SNR Classification Using Multiple CNNs

Authors: Thinh Ngo, Paul Rad, Brian Kelley

Abstract:

Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.

Keywords: classification, CNN, deep learning, prediction, SNR

Procedia PDF Downloads 136
10894 Role of Education on Shaping the Personality of the Students in Rural Areas: A Case Study of Daund Taluka in Pune District of Maharashtra, India

Authors: L. K. Shitole

Abstract:

Usually on the face of it, personality is regarded as the external appearance of an individual. In psychology, the personality is not viewed merely as self or external appears, but it adds much more. Human resources development encompasses the personality development of the students. The student’s development starts right from the childhood and gradually continues right up to the completion of education in professional courses. This paper attempts to find out the role of the educational institutions in shaping the personality of the students from the rural area. Schools and colleges have infrastructural limitations, obtaining good quality and devoted teaching staff poses problems and even outside the school environment there are no private classes which may take care of this deficiency. The researcher has used the standardized test namely “Vyaktitva Shodhika” developed by Gyan Prabodhini, Pune for the students in Daund Taluka. There are 68 objective types of questions in the said questionnaire. Totally a sample size of 4191 students was selected. The sample was quite representative. It is observed that by and large the response indicates that the educational institutions are taking sincere efforts in shaping the personality of the students. In the semi-urban area i.e. at educational institutions of all levels, the performance on this front is excellent and at rest of Daund Taluka there is scope for improvement. Educational institutions of all levels are showing excellent performance in ensuring availability of the requisite infrastructure conducive for the development of the personality of the students. In rest of Daund Taluka there is ample scope for improving the situation. As far as data relating to role of co-curricular activities and sports programs in mental and physical development at various educational institutions is concerned Daund educational institutions have repeated their performance in securing “A” category, while in the rural area of Daund Taluka, there is need to step up the efforts in this regard. In today’s world of knowledge industry, one cannot ignore the importance of education and thereby the personality growth of the students. Accordingly, the educational institutions should undertake consistent research and extension activities in the area of personality development.

Keywords: personality, attitude, infrastructure, quality of education, learning environment, teacher’s contribution, family and society’s role

Procedia PDF Downloads 467
10893 Real Activities Manipulation vs. Accrual Earnings Management: The Effect of Political Risk

Authors: Heba Abdelmotaal, Magdy Abdel-Kader

Abstract:

Purpose: This study explores whether a firm’s effective political risk management is preventing real and accrual earnings management . Design/methodology/approach: Based on a sample of 130 firms operating in Egypt during the period 2008-2013, two hypotheses are tested using the panel data regression models. Findings: The empirical findings indicate a significant relation between real and accrual earnings management and political risk. Originality/value: This paper provides a statistically evidence on the effects of the political risk management failure on the mangers’ engagement in the real and accrual earnings management practices, and its impact on the firm’s performance.

Keywords: political risk, risk management failure, real activities manipulation, accrual earnings management

Procedia PDF Downloads 441
10892 Applications of Big Data in Education

Authors: Faisal Kalota

Abstract:

Big Data and analytics have gained a huge momentum in recent years. Big Data feeds into the field of Learning Analytics (LA) that may allow academic institutions to better understand the learners’ needs and proactively address them. Hence, it is important to have an understanding of Big Data and its applications. The purpose of this descriptive paper is to provide an overview of Big Data, the technologies used in Big Data, and some of the applications of Big Data in education. Additionally, it discusses some of the concerns related to Big Data and current research trends. While Big Data can provide big benefits, it is important that institutions understand their own needs, infrastructure, resources, and limitation before jumping on the Big Data bandwagon.

Keywords: big data, learning analytics, analytics, big data in education, Hadoop

Procedia PDF Downloads 427
10891 Curriculum Based Measurement and Precision Teaching in Writing Empowerment Enhancement: Results from an Italian Learning Center

Authors: I. Pelizzoni, C. Cavallini, I. Salvaderi, F. Cavallini

Abstract:

We present the improvement in writing skills obtained by 94 participants (aged between six and 10 years) with special educational needs through a writing enhancement program based on fluency principles. The study was planned and conducted with a single-subject experimental plan for each of the participants, in order to confirm the results in the literature. These results were obtained using precision teaching (PT) methodology to increase the number of written graphemes per minute in the pre- and post-test, by curriculum based measurement (CBM). Results indicated an increase in the number of written graphemes for all participants. The average overall duration of the intervention is 144 minutes in five months of treatment. These considerations have been analyzed taking account of the complexity of the implementation of measurement systems in real operational contexts (an Italian learning center) and important aspects of replicability and cost-effectiveness of such interventions.

Keywords: curriculum based measurement, precision teaching, writing skill, Italian learning center

Procedia PDF Downloads 131
10890 L1 Poetry and Moral Tales as a Factor Affecting L2 Acquisition in EFL Settings

Authors: Arif Ahmed Mohammed Al-Ahdal

Abstract:

Poetry, tales, and fables have always been a part of the L1 repertoire and one that takes the learners to another amazing and fascinating world of imagination. The storytelling class and the genre of poems are activities greatly enjoyed by all age groups. The very significant idea behind their inclusion in the language curriculum is to sensitize young minds to a wide range of human emotions that are believed to greatly contribute to building their social resilience, emotional stability, empathy towards fellow creatures, and literacy. Quite certainly, the learning objective at this stage is not language acquisition (though it happens as an automatic process) but getting the young learners to be acquainted with an entire spectrum of what may be called the ‘noble’ abilities of the human race. They enrich their very existence, inspiring them to unearth ‘selves’ that help them as adults and enable them to co-exist fruitfully and symbiotically with their fellow human beings. By extension, ‘higher’ training in these literature genres shows the universality of human emotions, sufferings, aspirations, and hopes. The current study is anchored on the Reader-Response-Theory in literature learning, which suggests that the reader reconstructs work and re-enacts the author's creative role. Reiteratingly, literary works provide clues or verbal symbols in a linguistic system, widely accepted by everyone who shares the language, but everyone reads their own life experiences and situations into them. The significance of words depends on the reader, even if they have a typical relationship. In every reading, there is an interaction between the reader and the text. The process of reading is an experience in which the reader tries to comprehend the literary work, which surpasses its full potential since it provides emotional and intellectual reactions that are not anticipated from the document but cannot be affirmed just by the reader as a part of the text. The idea is that the text forms the basis of a unifying experience. A reinterpretation of the literary text may transform it into a guiding principle to respond to actual experiences and personal memories. The impulses delivered to the reader vary according to poetry or texts; nevertheless, the readers differ considerably even with the same material. Previous studies confirm that poetry is a useful tool for learning a language. This present paper works on these hypotheses and proposes to study the impetus given to L2 learning as a factor of exposure to poetry and meaningful stories in L1. The driving force behind the choice of this topic is the first-hand experience that the researcher had while teaching a literary text to a group of BA students who, as a reaction to the text, initially burst into tears and ultimately turned the class into an interactive session. The study also intends to compare the performance of male and female students post intervention using pre and post-tests, apart from undertaking a detailed inquiry via interviews with college learners of English to understand how L1 literature plays a great role in the acquisition of L2.

Keywords: SLA, literary text, poetry, tales, affective factors

Procedia PDF Downloads 78
10889 AI-Driven Forecasting Models for Anticipating Oil Market Trends and Demand

Authors: Gaurav Kumar Sinha

Abstract:

The volatility of the oil market, influenced by geopolitical, economic, and environmental factors, presents significant challenges for stakeholders in predicting trends and demand. This article explores the application of artificial intelligence (AI) in developing robust forecasting models to anticipate changes in the oil market more accurately. We delve into various AI techniques, including machine learning, deep learning, and time series analysis, that have been adapted to analyze historical data and current market conditions to forecast future trends. The study evaluates the effectiveness of these models in capturing complex patterns and dependencies in market data, which traditional forecasting methods often miss. Additionally, the paper discusses the integration of external variables such as political events, economic policies, and technological advancements that influence oil prices and demand. By leveraging AI, stakeholders can achieve a more nuanced understanding of market dynamics, enabling better strategic planning and risk management. The article concludes with a discussion on the potential of AI-driven models in enhancing the predictive accuracy of oil market forecasts and their implications for global economic planning and strategic resource allocation.

Keywords: AI forecasting, oil market trends, machine learning, deep learning, time series analysis, predictive analytics, economic factors, geopolitical influence, technological advancements, strategic planning

Procedia PDF Downloads 38
10888 Judicial Personality: Observing the Acceptable Limits

Authors: Sonia Anand Knowlton

Abstract:

In many ways, judges can express their personality within and beyond their role as a judge. Judges can use their unique backgrounds and life experiences to inform their legal reasons and can also participate in certain extrajudicial activities outside of their role on the bench. For many judges, the line between the expression of this judicial personality, on the one hand, and the consequence of jeopardizing the public’s perception of their impartiality, on the other, is ambiguous if not wholly unclear. In the famous Canadian decision R v RDS, for instance, a Black judge who was hearing a case about police violence against a Black person was accused of being biased after she acknowledged that her community’s racial dynamics may have impacted the police’s conduct. Many within the legal community might find comfort in the belief that judges do not need to bring their ‘personality’ to the bench in order to uncover the law’s truths and impartially apply it. Indeed, and for a good reason, judges are often discouraged from allowing their personality to shine through in their role as a judge – because the expression of judicial personality can compromise the public perception of the impartiality of the administration of justice. This paper evaluates the theoretical constraints on the expression of judicial personality as a tool for legal decision-making and argues that judges from minority groups are held to a higher level of impartiality. Specifically, minority judges are disproportionately constrained from 1) using life experience to apply the law and 2) engaging in certain extrajudicial activities.

Keywords: judging, legal decision making, judicial personality, extrajudicial activities

Procedia PDF Downloads 74
10887 Realization Mode and Theory for Extensible Music Cognition Education: Taking Children's Music Education as an Example

Authors: Yumeng He

Abstract:

The purpose of this paper is to establish the “extenics” of children music education, the “extenics” thought and methods are introduced into the children music education field. Discussions are made from the perspective of children music education on how to generate new music cognitive from music cognitive, how to generate new music education from music education and how to generate music learning from music learning. The research methods including the extensibility of music art, extensibility of music education, extensibility of music capability and extensibility of music learning. Results of this study indicate that the thought and research methods of children’s extended music education not only have developed the “extenics” concept and ideological methods, meanwhile, the brand-new thought and innovative research perspective have been employed in discussing the children music education. As indicated in research, the children’s extended music education has extended the horizon of children music education, and has endowed the children music education field with a new thought and research method.

Keywords: comprehensive evaluations, extension thought, extension cognition music education, extensibility

Procedia PDF Downloads 229
10886 Machine Learning in Patent Law: How Genetic Breeding Algorithms Challenge Modern Patent Law Regimes

Authors: Stefan Papastefanou

Abstract:

Artificial intelligence (AI) is an interdisciplinary field of computer science with the aim of creating intelligent machine behavior. Early approaches to AI have been configured to operate in very constrained environments where the behavior of the AI system was previously determined by formal rules. Knowledge was presented as a set of rules that allowed the AI system to determine the results for specific problems; as a structure of if-else rules that could be traversed to find a solution to a particular problem or question. However, such rule-based systems typically have not been able to generalize beyond the knowledge provided. All over the world and especially in IT-heavy industries such as the United States, the European Union, Singapore, and China, machine learning has developed to be an immense asset, and its applications are becoming more and more significant. It has to be examined how such products of machine learning models can and should be protected by IP law and for the purpose of this paper patent law specifically, since it is the IP law regime closest to technical inventions and computing methods in technical applications. Genetic breeding models are currently less popular than recursive neural network method and deep learning, but this approach can be more easily described by referring to the evolution of natural organisms, and with increasing computational power; the genetic breeding method as a subset of the evolutionary algorithms models is expected to be regaining popularity. The research method focuses on patentability (according to the world’s most significant patent law regimes such as China, Singapore, the European Union, and the United States) of AI inventions and machine learning. Questions of the technical nature of the problem to be solved, the inventive step as such, and the question of the state of the art and the associated obviousness of the solution arise in the current patenting processes. Most importantly, and the key focus of this paper is the problem of patenting inventions that themselves are developed through machine learning. The inventor of a patent application must be a natural person or a group of persons according to the current legal situation in most patent law regimes. In order to be considered an 'inventor', a person must actually have developed part of the inventive concept. The mere application of machine learning or an AI algorithm to a particular problem should not be construed as the algorithm that contributes to a part of the inventive concept. However, when machine learning or the AI algorithm has contributed to a part of the inventive concept, there is currently a lack of clarity regarding the ownership of artificially created inventions. Since not only all European patent law regimes but also the Chinese and Singaporean patent law approaches include identical terms, this paper ultimately offers a comparative analysis of the most relevant patent law regimes.

Keywords: algorithms, inventor, genetic breeding models, machine learning, patentability

Procedia PDF Downloads 110
10885 Deep Learning Strategies for Mapping Complex Vegetation Patterns in Mediterranean Environments Undergoing Climate Change

Authors: Matan Cohen, Maxim Shoshany

Abstract:

Climatic, topographic and geological diversity, together with frequent disturbance and recovery cycles, produce highly complex spatial patterns of trees, shrubs, dwarf shrubs and bare ground patches. Assessment of spatial and temporal variations of these life-forms patterns under climate change is of high ecological priority. Here we report on one of the first attempts to discriminate between images of three Mediterranean life-forms patterns at three densities. The development of an extensive database of orthophoto images representing these 9 pattern categories was instrumental for training and testing pre-trained and newly-trained DL models utilizing DenseNet architecture. Both models demonstrated the advantages of using Deep Learning approaches over existing spectral and spatial (pattern or texture) algorithmic methods in differentiation 9 life-form spatial mixtures categories.

Keywords: texture classification, deep learning, desert fringe ecosystems, climate change

Procedia PDF Downloads 90
10884 Deep Reinforcement Learning Approach for Optimal Control of Industrial Smart Grids

Authors: Niklas Panten, Eberhard Abele

Abstract:

This paper presents a novel approach for real-time and near-optimal control of industrial smart grids by deep reinforcement learning (DRL). To achieve highly energy-efficient factory systems, the energetic linkage of machines, technical building equipment and the building itself is desirable. However, the increased complexity of the interacting sub-systems, multiple time-variant target values and stochastic influences by the production environment, weather and energy markets make it difficult to efficiently control the energy production, storage and consumption in the hybrid industrial smart grids. The studied deep reinforcement learning approach allows to explore the solution space for proper control policies which minimize a cost function. The deep neural network of the DRL agent is based on a multilayer perceptron (MLP), Long Short-Term Memory (LSTM) and convolutional layers. The agent is trained within multiple Modelica-based factory simulation environments by the Advantage Actor Critic algorithm (A2C). The DRL controller is evaluated by means of the simulation and then compared to a conventional, rule-based approach. Finally, the results indicate that the DRL approach is able to improve the control performance and significantly reduce energy respectively operating costs of industrial smart grids.

Keywords: industrial smart grids, energy efficiency, deep reinforcement learning, optimal control

Procedia PDF Downloads 198
10883 Identifying Game Variables from Students’ Surveys for Prototyping Games for Learning

Authors: N. Ismail, O. Thammajinda, U. Thongpanya

Abstract:

Games-based learning (GBL) has become increasingly important in teaching and learning. This paper explains the first two phases (analysis and design) of a GBL development project, ending up with a prototype design based on students’ and teachers’ perceptions. The two phases are part of a full cycle GBL project aiming to help secondary school students in Thailand in their study of Comprehensive Sex Education (CSE). In the course of the study, we invited 1,152 students to complete questionnaires and interviewed 12 secondary school teachers in focus groups. This paper found that GBL can serve students in their learning about CSE, enabling them to gain understanding of their sexuality, develop skills, including critical thinking skills and interact with others (peers, teachers, etc.) in a safe environment. The objectives of this paper are to outline the development of GBL variables from the research question(s) into the developers’ flow chart, to be responsive to the GBL beneficiaries’ preferences and expectations, and to help in answering the research questions. This paper details the steps applied to generate GBL variables that can feed into a game flow chart to develop a GBL prototype. In our approach, we detailed two models: (1) Game Elements Model (GEM) and (2) Game Object Model (GOM). There are three outcomes of this research – first, to achieve the objectives and benefits of GBL in learning, game design has to start with the research question(s) and the challenges to be resolved as research outcomes. Second, aligning the educational aims with engaging GBL end users (students) within the data collection phase to inform the game prototype with the game variables is essential to address the answer/solution to the research question(s). Third, for efficient GBL to bridge the gap between pedagogy and technology and in order to answer the research questions via technology (i.e. GBL) and to minimise the isolation between the pedagogists “P” and technologist “T”, several meetings and discussions need to take place within the team.

Keywords: games-based learning, engagement, pedagogy, preferences, prototype

Procedia PDF Downloads 171
10882 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children

Authors: Norah Mohammed Alshahrani, Abdulaziz Almaleh

Abstract:

Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD and they are Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then Feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by the Support Vector Machine (SVM), achieving 0.98% in the toddler dataset and 0.99% in the children dataset.

Keywords: autism spectrum disorder, machine learning, feature selection, support vector machine

Procedia PDF Downloads 154
10881 Cellular Automata Using Fractional Integral Model

Authors: Yasser F. Hassan

Abstract:

In this paper, a proposed model of cellular automata is studied by means of fractional integral function. A cellular automaton is a decentralized computing model providing an excellent platform for performing complex computation with the help of only local information. The paper discusses how using fractional integral function for representing cellular automata memory or state. The architecture of computing and learning model will be given and the results of calibrating of approach are also given.

Keywords: fractional integral, cellular automata, memory, learning

Procedia PDF Downloads 415
10880 The Development of the Website Learning the Local Wisdom in Phra Nakhon Si Ayutthaya Province

Authors: Bunthida Chunngam, Thanyanan Worasesthaphong

Abstract:

This research had objective to develop of the website learning the local wisdom in Phra Nakhon Si Ayutthaya province and studied satisfaction of system user. This research sample was multistage sample for 100 questionnaires, analyzed data to calculated reliability value with Cronbach’s alpha coefficient method α=0.82. This system had 3 functions which were system using, system feather evaluation and system accuracy evaluation which the statistics used for data analysis was descriptive statistics to explain sample feature so these statistics were frequency, percentage, mean and standard deviation. This data analysis result found that the system using performance quality had good level satisfaction (4.44 mean), system feather function analysis had good level satisfaction (4.11 mean) and system accuracy had good level satisfaction (3.74 mean).

Keywords: website, learning, local wisdom, Phra Nakhon Si Ayutthaya province

Procedia PDF Downloads 123
10879 Failure Analysis of the Gasoline Engines Injection System

Authors: Jozef Jurcik, Miroslav Gutten, Milan Sebok, Daniel Korenciak, Jerzy Roj

Abstract:

The paper presents the research results of electronic fuel injection system, which can be used for diagnostics of automotive systems. In the paper is described the construction and operation of a typical fuel injection system and analyzed its electronic part. It has also been proposed method for the detection of the injector malfunction, based on the analysis of differential current or voltage characteristics. In order to detect the fault state, it is needed to use self-learning process, by the use of an appropriate self-learning algorithm.

Keywords: electronic fuel injector, diagnostics, measurement, testing device

Procedia PDF Downloads 555
10878 Knowledge Management Efficiency of Personnel in Rajamangala University of Technology Srivijaya Songkhla, Thailand

Authors: Nongyao Intasaso, Atchara Rattanama, Navarat Pewnual

Abstract:

This research is survey research purposed to study the factor affected to knowledge management efficiency of personnel in Rajamangala University of Technology Srivijaya, and study the problem of knowledge management affected to knowledge development of personnel in the university. The tool used in this study is structures questioner standardize rating scale in 5 levels. The sample selected by purposive sampling and there are 137 participation calculated in 25% of population. The result found that factor affected to knowledge management efficiency in the university included (1) result from the organization factor found that the university provided project or activity that according to strategy and mission of knowledge management affected to knowledge management efficiency in highest level (x̅ = 4.30) (2) result from personnel factor found that the personnel are eager for knowledge and active to learning to develop themselves and work (Personal Mastery) affected to knowledge management efficiency in high level (x̅ = 3.75) (3) result from technological factor found that the organization brought multimedia learning aid to facilitate learning process affected to knowledge management efficiency in high level (x̅ = 3.70) and (4) the result from learning factor found that the personnel communicated and sharing knowledge and opinion based on acceptance to each other affected to knowledge management efficiency in high level (x̅ = 3.78). The problem of knowledge management in the university included the personnel do not change their work behavior, insufficient of collaboration, lack of acceptance in knowledge and experience to each other, and limited budget. The solutions to solve these problems are the university should be support sufficient budget, the university should follow up and evaluate organization development based on knowledge using, the university should provide the activity emphasize to personnel development and assign the committee to process and report knowledge management procedure.

Keywords: knowledge management, efficiency, personnel, learning process

Procedia PDF Downloads 302
10877 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics

Authors: Anas H. Aljemely, Jianping Xuan

Abstract:

Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.

Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features

Procedia PDF Downloads 212
10876 Neural Networks and Genetic Algorithms Approach for Word Correction and Prediction

Authors: Rodrigo S. Fonseca, Antônio C. P. Veiga

Abstract:

Aiming at helping people with some movement limitation that makes typing and communication difficult, there is a need to customize an assistive tool with a learning environment that helps the user in order to optimize text input, identifying the error and providing the correction and possibilities of choice in the Portuguese language. The work presents an Orthographic and Grammatical System that can be incorporated into writing environments, improving and facilitating the use of an alphanumeric keyboard, using a prototype built using a genetic algorithm in addition to carrying out the prediction, which can occur based on the quantity and position of the inserted letters and even placement in the sentence, ensuring the sequence of ideas using a Long Short Term Memory (LSTM) neural network. The prototype optimizes data entry, being a component of assistive technology for the textual formulation, detecting errors, seeking solutions and informing the user of accurate predictions quickly and effectively through machine learning.

Keywords: genetic algorithm, neural networks, word prediction, machine learning

Procedia PDF Downloads 195
10875 Influence of Omani Literature in Foreign Language Classrooms on Students' Motivation in Learning English

Authors: Ibtisam Mohammed Salim Al Quraini

Abstract:

This paper examines how introducing Omani literature in foreign language classrooms can influence the students' motivation in learning the language. The data was collected through the questionnaire which was administered to two samples (A and B) of the participants. Sample A was comprised of 30 female students from English department who are specialist in English literature in college of Arts and Social Science. Sample B in contrast was comprised of 10 female students who their major is English from college of Education. Results show that each genre in literature has different influence on the students' motivation in learning the language which proves that literacy texts are powerful. Generally, Omani English teachers tend to avoid teaching literature because they think that it is a difficult method to use in teaching field. However, the advantages and the influences of teaching poetries, short stories, and plays are discussed. Recommendations for current research and further research are also discussed at the end.

Keywords: education, plays, short stories, poems

Procedia PDF Downloads 379
10874 DQN for Navigation in Gazebo Simulator

Authors: Xabier Olaz Moratinos

Abstract:

Drone navigation is critical, particularly during the initial phases, such as the initial ascension, where pilots may fail due to strong external interferences that could potentially lead to a crash. In this ongoing work, a drone has been successfully trained to perform an ascent of up to 6 meters at speeds with external disturbances pushing it up to 24 mph, with the DQN algorithm managing external forces affecting the system. It has been demonstrated that the system can control its height, position, and stability in all three axes (roll, pitch, and yaw) throughout the process. The learning process is carried out in the Gazebo simulator, which emulates interferences, while ROS is used to communicate with the agent.

Keywords: machine learning, DQN, gazebo, navigation

Procedia PDF Downloads 114
10873 Towards an African Model: A Survey of Social Enterprises in South Africa

Authors: Kerryn Krige, Kerrin Myers

Abstract:

Social entrepreneurship offers the opportunity to simultaneously address both social and economic inequality in South Africa. Its appeal across racial groups, its attractiveness to young people, its applicability in rural and peri-urban markets, and its acceleration in middle income, large-business economies suits the South African context. However, the potential to deliver much-needed developmental benefits has not been realised because the social entrepreneurship debate lacks evidence as to who social entrepreneurs are, their goals and operations and the socio-economic results they achieve. As a result, policy development has been stunted, and legislative barriers and red tape remain. Social entrepreneurs are isolated from the mainstream economy, and struggle to access funding because of limitations in legislative and organisational structures. The objective of the study is to strengthen the ecosystem for social entrepreneurship in South Africa by producing robust, policy-rich information from and about social enterprises currently in operation across the country. The study employs a quantitative survey methodology, using online and telephonic data collection methods. A purposive sample of 1000 social enterprises was included in the first large-scale study of social entrepreneurship in South Africa. The results offer deep insight into the characteristics of social enterprises; the activities they undertake and the markets they serve; their modes of operation and funding sources as well as key challenges and support systems. The results contribute towards developing a model of social enterprise in the African context.

Keywords: social enterprise, key characteristics, challenges and enablers, towards an African model

Procedia PDF Downloads 310
10872 Development of Total Maximum Daily Load Using Water Quality Modelling as an Approach for Watershed Management in Malaysia

Authors: S. A. Che Osmi, W. M. F. Wan Ishak, H. Kim, M. A. Azman, M. A. Ramli

Abstract:

River is one of important water sources for many activities including industrial and domestic usage such as daily usage, transportation, power supply and recreational activities. However, increasing activities in a river has grown the sources of pollutant enters the water bodies, and degraded the water quality of the river. It becomes a challenge to develop an effective river management to ensure the water sources of the river are well managed and regulated. In Malaysia, several approaches for river management have been implemented such as Integrated River Basin Management (IRBM) program for coordinating the management of resources in a natural environment based on river basin to ensure their sustainability lead by Department of Drainage and Irrigation (DID), Malaysia. Nowadays, Total Maximum Daily Load (TMDL) is one of the best approaches for river management in Malaysia. TMDL implementation is regulated and implemented in the United States. A study on the development of TMDL in Malacca River has been carried out by doing water quality monitoring, the development of water quality model by using Environmental Fluid Dynamic Codes (EFDC), and TMDL implementation plan. The implementation of TMDL will help the stakeholders and regulators to control and improve the water quality of the river. It is one of the good approaches for river management in Malaysia.

Keywords: EFDC, river management, TMDL, water quality modelling

Procedia PDF Downloads 328
10871 Sustainable Livelihood Options Adopted by Rural Communities in Response to Climate Change, South Africa

Authors: Zongho Kom

Abstract:

In recent times, rural communities have been most affected by climate change as a result of their over-reliance on environmental conditions. Extreme climatic conditions have since affected the livelihoods and resilience of societies, especially in agricultural activities. The current study was conducted with the goal of conducting a strategic analysis of the resilience of sustainable rural livelihoods against climate dynamics using qualitative and quantitative approaches. Both primary and secondary data were employed. Questionnaires and semi-structured interviews were administered to the rural communities' livelihood options adopted in response to climatic shocks at the local level using purposive sampling. The results of the study revealed that livestock production was the most dominant livelihood-resilient activity, with 30%, while vendor activity is common in Thohoyandou with 29%. The findings indicated the highest establishment of water tanks was in the Madimbo area, with 51% as a form of livelihood resilience, and further, 70% of respondents demonstrated livelihood sustainability activities such as agricultural forums, conferences, and the practice of indigenous activities. The proposed strategies can be used by policymakers in the field of rural development and sustainable livelihood, as well as national planning processes, to effectively consider the most vulnerable groups and articulate unique local vulnerabilities.

Keywords: climate change, sustainable livelihood, Vhembe district, agricultural forum, adaptation strategies

Procedia PDF Downloads 10
10870 When English Learners Speak “Non-Standard” English

Authors: Gloria Chen

Abstract:

In the past, when we complimented someone who had a good command of English, we would say ‘She/He speaks/writes standard English,’ or ‘His/Her English is standard.’ However, with English has becoming a ‘global language,’ many scholars and English users even create a plural form for English as ‘world Englishes,’ which indicates that national/racial varieties of English not only exist, but also are accepted to a certain degree. Now, a question will be raised when it comes to English teaching and learning: ‘What variety/varieties of English should be taught?’ This presentation will first explore Braj Kachru’s well-known categorization of the inner circle, the outer circle, and the expanding circle of English users, as well as inner circle varieties such as ‘Ebonics’ and ‘cockney’. The presentation then will discuss the purposes and contexts of English learning, and apply different approaches to different purposes and contexts. Three major purposes of English teaching/learning will be emphasized and considered: (1) communicative competence, (2) academic competence, and (3) intercultural competence. This presentation will complete with the strategies of ‘code switch’ and ‘register switch’ in teaching English to non-standard English speakers in both speaking and writing.

Keywords: world Englishes, standard and non-standard English, inner, outer, expanded circle communicative, academic, intercultural competence

Procedia PDF Downloads 267
10869 Development and Validation for Center-Based Learning in Teaching Science

Authors: Julie Berame

Abstract:

The study probed that out of eight (8) lessons in Science Six have been validated, lessons 1-3 got the descriptive rating of very satisfactory and lessons 4-8 got the descriptive rating of outstanding based on the content analysis of the prepared CBL lesson plans. The evaluation of the lesson plans focused on the three main features such as statements of the lesson objectives, lesson content, and organization and effectiveness. The study used developmental research procedure that contained three phases, namely: Development phase consists of determining the learning unit, lesson plans, creation of the table of specifications, exercises/quizzes, and revision of the materials; Evaluation phase consists of the development of experts’ assessment checklist, presentation of checklist to the adviser, comments and suggestions, and final validation of the materials; and try-out phase consists of identification of the subject, try-out of the materials using CBL strategy, administering science attitude questionnaire, and statistical analysis to obtain the data. The findings of the study revealed that the relevance and usability of CBL lessons 1 and 2 in terms of lesson objective, lesson content, and organization and effectiveness got the rating of very satisfactory (4.4) and lessons 3-8 got the rating of outstanding (4.7). The lessons 1-8 got the grand rating of outstanding (4.6). Additionally, results showed that CBL strategy helped foster positive attitude among students and achieved effectiveness in psychomotor learning objectives.

Keywords: development, validation, center-based learning, science

Procedia PDF Downloads 240
10868 Determination of Water Pollution and Water Quality with Decision Trees

Authors: Çiğdem Bakır, Mecit Yüzkat

Abstract:

With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower, and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software we used in our study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: preprocessing of the data used, feature detection, and classification. We tried to determine the success of our study with different accuracy metrics and the results. We presented it comparatively. In addition, we achieved approximately 98% success with the decision tree.

Keywords: decision tree, water quality, water pollution, machine learning

Procedia PDF Downloads 85
10867 Conceptual Study on 4PL and Activities in Turkey

Authors: Berna Kalkan, Kenan Aydin

Abstract:

Companies give importance customer satisfaction to compete the developing and changing market. This is possible when customer reaches the right product, right quality, place, time and cost. In this regard, the extension of logistics services has played active role on formation and development of the different logistics services concept. The concept of logistics services has played important role involved in the healing of economic indicators today. Companies can use logistics providers, thus have competitive advantage and low cost, reducing time, tobe flexibility. In recent years, Fourth Party Logistics (4PL) has emerged as a new concept that includes relationship between suppliers and firms in outsourcing. 4PL provider is an integrator that offers comprehensive supply chain solutions with the technology, resources and capabilities that it possesses. Also, 4PL has attracted as a popular research topic attention in the recent past. In this paper, logistics outsourcing and 4PL concepts are analyzed and a literature review on 4PL activities is given. Also, the previous studies in literature and the approaches that are used in previous studies in literature is presented by analysing on 4PL activities. In this context, a field study will be applied to 4PL providers and service buyer in Turkey. If necessary, results related to this study will be shared in scientific areas.

Keywords: fourth party logistics, literature review, outsourcing, supply chain management

Procedia PDF Downloads 179
10866 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection

Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra

Abstract:

In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.

Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging

Procedia PDF Downloads 90