Search results for: chemical looping partial oxidation of methane
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6369

Search results for: chemical looping partial oxidation of methane

2919 The Composition of Biooil during Biomass Pyrolysis at Various Temperatures

Authors: Zoltan Sebestyen, Eszter Barta-Rajnai, Emma Jakab, Zsuzsanna Czegeny

Abstract:

Extraction of the energy content of lignocellulosic biomass is one of the possible pathways to reduce the greenhouse gas emission derived from the burning of the fossil fuels. The application of the bioenergy can mitigate the energy dependency of a country from the foreign natural gas and the petroleum. The diversity of the plant materials makes difficult the utilization of the raw biomass in power plants. This problem can be overcome by the application of thermochemical techniques. Pyrolysis is the thermal decomposition of the raw materials under inert atmosphere at high temperatures, which produces pyrolysis gas, biooil and charcoal. The energy content of these products can be exploited by further utilization. The differences in the chemical and physical properties of the raw biomass materials can be reduced by the use of torrefaction. Torrefaction is a promising mild thermal pretreatment method performed at temperatures between 200 and 300 °C in an inert atmosphere. The goal of the pretreatment from a chemical point of view is the removal of water and the acidic groups of hemicelluloses or the whole hemicellulose fraction with minor degradation of cellulose and lignin in the biomass. Thus, the stability of biomass against biodegradation increases, while its energy density increases. The volume of the raw materials decreases so the expenses of the transportation and the storage are reduced as well. Biooil is the major product during pyrolysis and an important by-product during torrefaction of biomass. The composition of biooil mostly depends on the quality of the raw materials and the applied temperature. In this work, thermoanalytical techniques have been used to study the qualitative and quantitative composition of the pyrolysis and torrefaction oils of a woody (black locust) and two herbaceous samples (rape straw and wheat straw). The biooil contains C5 and C6 anhydrosugar molecules, as well as aromatic compounds originating from hemicellulose, cellulose, and lignin, respectively. In this study, special emphasis was placed on the formation of the lignin monomeric products. The structure of the lignin fraction is different in the wood and in the herbaceous plants. According to the thermoanalytical studies the decomposition of lignin starts above 200 °C and ends at about 500 °C. The lignin monomers are present among the components of the torrefaction oil even at relatively low temperatures. We established that the concentration and the composition of the lignin products vary significantly with the applied temperature indicating that different decomposition mechanisms dominate at low and high temperatures. The evolutions of decomposition products as well as the thermal stability of the samples were measured by thermogravimetry/mass spectrometry (TG/MS). The differences in the structure of the lignin products of woody and herbaceous samples were characterized by the method of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). As a statistical method, principal component analysis (PCA) has been used to find correlation between the composition of lignin products of the biooil and the applied temperatures.

Keywords: pyrolysis, torrefaction, biooil, lignin

Procedia PDF Downloads 304
2918 Numerical Analysis of the Computational Fluid Dynamics of Co-Digestion in a Large-Scale Continuous Stirred Tank Reactor

Authors: Sylvana A. Vega, Cesar E. Huilinir, Carlos J. Gonzalez

Abstract:

Co-digestion in anaerobic biodigesters is a technology improving hydrolysis by increasing methane generation. In the present study, the dimensional computational fluid dynamics (CFD) is numerically analyzed using Ansys Fluent software for agitation in a full-scale Continuous Stirred Tank Reactor (CSTR) biodigester during the co-digestion process. For this, a rheological study of the substrate is carried out, establishing rotation speeds of the stirrers depending on the microbial activity and energy ranges. The substrate is organic waste from industrial sources of sanitary water, butcher, fishmonger, and dairy. Once the rheological behavior curves have been obtained, it is obtained that it is a non-Newtonian fluid of the pseudoplastic type, with a solids rate of 12%. In the simulation, the rheological results of the fluid are considered, and the full-scale CSTR biodigester is modeled. It was coupling the second-order continuity differential equations, the three-dimensional Navier Stokes, the power-law model for non-Newtonian fluids, and three turbulence models: k-ε RNG, k-ε Realizable, and RMS (Reynolds Stress Model), for a 45° tilt vane impeller. It is simulated for three minutes since it is desired to study an intermittent mixture with a saving benefit of energy consumed. The results show that the absolute errors of the power number associated with the k-ε RNG, k-ε Realizable, and RMS models were 7.62%, 1.85%, and 5.05%, respectively, the numbers of power obtained from the analytical-experimental equation of Nagata. The results of the generalized Reynolds number show that the fluid dynamics have a transition-turbulent flow regime. Concerning the Froude number, the result indicates there is no need to implement baffles in the biodigester design, and the power number provides a steady trend close to 1.5. It is observed that the levels of design speeds within the biodigester are approximately 0.1 m/s, which are speeds suitable for the microbial community, where they can coexist and feed on the substrate in co-digestion. It is concluded that the model that more accurately predicts the behavior of fluid dynamics within the reactor is the k-ε Realizable model. The flow paths obtained are consistent with what is stated in the referenced literature, where the 45° inclination PBT impeller is the right type of agitator to keep particles in suspension and, in turn, increase the dispersion of gas in the liquid phase. If a 24/7 complete mix is considered under stirred agitation, with a plant factor of 80%, 51,840 kWh/year are estimated. On the contrary, if intermittent agitations of 3 min every 15 min are used under the same design conditions, reduce almost 80% of energy costs. It is a feasible solution to predict the energy expenditure of an anaerobic biodigester CSTR. It is recommended to use high mixing intensities, at the beginning and end of the joint phase acetogenesis/methanogenesis. This high intensity of mixing, in the beginning, produces the activation of the bacteria, and once reaching the end of the Hydraulic Retention Time period, it produces another increase in the mixing agitations, favoring the final dispersion of the biogas that may be trapped in the biodigester bottom.

Keywords: anaerobic co-digestion, computational fluid dynamics, CFD, net power, organic waste

Procedia PDF Downloads 100
2917 Automatic Algorithm for Processing and Analysis of Images from the Comet Assay

Authors: Yeimy L. Quintana, Juan G. Zuluaga, Sandra S. Arango

Abstract:

The comet assay is a method based on electrophoresis that is used to measure DNA damage in cells and has shown important results in the identification of substances with a potential risk to the human population as innumerable physical, chemical and biological agents. With this technique is possible to obtain images like a comet, in which the tail of these refers to damaged fragments of the DNA. One of the main problems is that the image has unequal luminosity caused by the fluorescence microscope and requires different processing to condition it as well as to know how many optimal comets there are per sample and finally to perform the measurements and determine the percentage of DNA damage. In this paper, we propose the design and implementation of software using Image Processing Toolbox-MATLAB that allows the automation of image processing. The software chooses the optimum comets and measuring the necessary parameters to detect the damage.

Keywords: artificial vision, comet assay, DNA damage, image processing

Procedia PDF Downloads 290
2916 Green Synthesis of Nanosilver-Loaded Hydrogel Nanocomposites for Antibacterial Application

Authors: D. Berdous, H. Ferfera-Harrar

Abstract:

Superabsorbent polymers (SAPs) or hydrogels with three-dimensional hydrophilic network structure are high-performance water absorbent and retention materials. The in situ synthesis of metal nanoparticles within polymeric network as antibacterial agents for bio-applications is an approach that takes advantage of the existing free-space into networks, which not only acts as a template for nucleation of nanoparticles, but also provides long term stability and reduces their toxicity by delaying their oxidation and release. In this work, SAP/nanosilver nanocomposites were successfully developed by a unique green process at room temperature, which involves in situ formation of silver nanoparticles (AgNPs) within hydrogels as a template. The aim of this study is to investigate whether these AgNPs-loaded hydrogels are potential candidates for antimicrobial applications. Firstly, the superabsorbents were prepared through radical copolymerization via grafting and crosslinking of acrylamide (AAm) onto chitosan backbone (Cs) using potassium persulfate as initiator and N,N’-methylenebisacrylamide as the crosslinker. Then, they were hydrolyzed to achieve superabsorbents with ampholytic properties and uppermost swelling capacity. Lastly, the AgNPs were biosynthesized and entrapped into hydrogels through a simple, eco-friendly and cost-effective method using aqueous silver nitrate as a silver precursor and curcuma longa tuber-powder extracts as both reducing and stabilizing agent. The formed superabsorbents nanocomposites (Cs-g-PAAm)/AgNPs were characterized by X-ray Diffraction (XRD), UV-visible Spectroscopy, Attenuated Total reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Inductively Coupled Plasma (ICP), and Thermogravimetric Analysis (TGA). Microscopic surface structure analyzed by Transmission Electron Microscopy (TEM) has showed spherical shapes of AgNPs with size in the range of 3-15 nm. The extent of nanosilver loading was decreased by increasing Cs content into network. The silver-loaded hydrogel was thermally more stable than the unloaded dry hydrogel counterpart. The swelling equilibrium degree (Q) and centrifuge retention capacity (CRC) in deionized water were affected by both contents of Cs and the entrapped AgNPs. The nanosilver-embedded hydrogels exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria. These comprehensive results suggest that the elaborated AgNPs-loaded nanomaterials could be used to produce valuable wound dressing.

Keywords: antibacterial activity, nanocomposites, silver nanoparticles, superabsorbent Hydrogel

Procedia PDF Downloads 225
2915 Fabrication of Highly Roughened Zirconia Surface by a Room Temperature Spray Coating

Authors: Hyeong-Jin Kim, Jong Kook Lee

Abstract:

Zirconia has biological, mechanical and optical properties, so, it used as a dental implant material in human body. But, it is difficult to form directly bonding with living tissues after the procedure and induces the falling away from implanted parts of the body. To improve this phenomenon, it is essential to increase the surface roughness of zirconia implants and induce a forming-ability of strong bonds. In this study, we performed a room temperature spray coating on zirconia specimen to obtain a highly roughened zirconia surface. To get optimal surface roughness, we controlled the distance between the nozzle and the substrate, coating times and powder condition. Bonding microstructure, surface roughness, and chemical composition of the coating layer were observed by SEM, XRD and roughness tester.

Keywords: implant, aerosoldeposition, zirconia, dental

Procedia PDF Downloads 198
2914 Establishment of High-Temperature Simultaneous Saccharification and Fermentation Process by Co-Culturing of Thermally Adapted Thermosensitive Saccharomyces Cerevisiae and Bacillus amyloliquefaciens

Authors: Ali Azam Talukder, Jamsheda Ferdous Tuli, Tanzina Islam Reba, Shuvra Kanti Dey, Mamoru Yamada

Abstract:

Recent global warming created by various pollutants prompted us to find new energy sources instead of fossil fuels. Fossil fuels are one of the key factors to emit various toxic gases in this planet. To solve this problem, along with the scarcity of the worldwide energy crisis, scientists are looking for various alternative options to mitigate the necessity of required future fuels. In this context, bioethanol can be one of the most suitable alternative energy sources. Bioethanol is a renewable, environment-friendly and carbon-neutral sustainable energy. In our previous study, we identified several bioethanol-producing microbes from the natural fermented sources of Bangladesh. Among them, the strain 4C encoded Saccharomyces cerevisiae produced maximum bioethanol when the fermentation temperature was 25˚C. In this study, we have established high-temperature simultaneous saccharification and fermentation process (HTSSF) by co-culturing of thermally adapted thermosensitive 4C as a fermenting agent and Bacillus amyloliquefaciens (C7), as a saccharifying agent under various physiological conditions or treatments. Conventional methods were applied for cell culture, media preparation and other experimental purposes. High-temperature adaptation of strain 4C was made from 30-42ᵒC, using either YPD or YPS media. In brief, for thermal adaptation, the temperature was periodically increased by 2ᵒC, 1ᵒC and 0.5ᵒC when medium growth temperatures were 30-36ᵒC, 36-40ᵒC, and 40-42ᵒC, respectively, where applicable. Amylase activity and bioethanol content were measured by DNS (3, 5-dinitrosalicylic acid) and solvent extraction and dichromate oxidation method, respectively. Among the various growth parameters like temperatures (30˚C, 37˚C and 42˚C), pHs (5.0, 6.0 and 7.0), carbon sources (5.0-10.0%) and ethanol stress tolerance (0.0-12.0%) etc. were tested, maximum Amylase activity (4.0 IU/ml/min) was recorded for Bacillus amyloliquefaciens (C7) at 42˚C, pH 6.0 and 10% starch. On the other hand, 4.10% bioethanol content was recorded when the thermally adapted strain 4C was co-cultured with C7 at 37ᵒC, pH 6.0 and 10.0% starch for 72 hours at HTSSF process. On the other hand, thermally non-adapted strains gave only 0.5-2.0% bioethanol content under the same physiological conditions. The thermally adapted strain 4C and strain C7, both can tolerate ethanol stress up to 12%. Altogether, a comparative study revealed that our established HTSSF process may be suitable for pilot scale and subsequently at industrial level bioethanol production.

Keywords: bioethanol, co-culture, fermentation, saccharification

Procedia PDF Downloads 67
2913 The Effect of Metal-Organic Framework Pore Size to Hydrogen Generation of Ammonia Borane via Nanoconfinement

Authors: Jing-Yang Chung, Chi-Wei Liao, Jing Li, Bor Kae Chang, Cheng-Yu Wang

Abstract:

Chemical hydride ammonia borane (AB, NH3BH3) draws attentions to hydrogen energy researches for its high theoretical gravimetrical capacity (19.6 wt%). Nevertheless, the elevated AB decomposition temperatures (Td) and unwanted byproducts are main hurdles in practical application. It was reported that the byproducts and Td can be reduced with nanoconfinement technique, in which AB molecules are confined in porous materials, such as porous carbon, zeolite, metal-organic frameworks (MOFs), etc. Although nanoconfinement empirically shows effectiveness on hydrogen generation temperature reduction in AB, the theoretical mechanism is debatable. Low Td was reported in AB@IRMOF-1 (Zn4O(BDC)3, BDC = benzenedicarboxylate), where Zn atoms form closed metal clusters secondary building unit (SBU) with no exposed active sites. Other than nanosized hydride, it was also observed that catalyst addition facilitates AB decomposition in the composite of Li-catalyzed carbon CMK-3, MOF JUC-32-Y with exposed Y3+, etc. It is believed that nanosized AB is critical for lowering Td, while active sites eliminate byproducts. Nonetheless, some researchers claimed that it is the catalytic sites that are the critical factor to reduce Td, instead of the hydride size. The group physically ground AB with ZIF-8 (zeolitic imidazolate frameworks, (Zn(2-methylimidazolate)2)), and found similar reduced Td phenomenon, even though AB molecules were not ‘confined’ or forming nanoparticles by physical hand grinding. It shows the catalytic reaction, not nanoconfinement, leads to AB dehydrogenation promotion. In this research, we explored the possible criteria of hydrogen production temperature from nanoconfined AB in MOFs with different pore sizes and active sites. MOFs with metal SBU such as Zn (IRMOF), Zr (UiO), and Al (MIL-53), accompanying with various organic ligands (BDC and BPDC; BPDC = biphenyldicarboxylate) were modified with AB. Excess MOFs were used for AB size constrained in micropores estimated by revisiting Horvath-Kawazoe model. AB dissolved in methanol was added to MOFs crystalline with MOF pore volume to AB ratio 4:1, and the slurry was dried under vacuum to collect AB@MOF powders. With TPD-MS (temperature programmed desorption with mass spectroscopy), we observed Td was reduced with smaller MOF pores. For example, it was reduced from 100°C to 64°C when MOF micropore ~1 nm, while ~90°C with pore size up to 5 nm. The behavior of Td as a function of AB crystalline radius obeys thermodynamics when the Gibbs free energy of AB decomposition is zero, and no obvious correlation with metal type was observed. In conclusion, we discovered Td of AB is proportional to the reciprocal of MOF pore size, possibly stronger than the effect of active sites.

Keywords: ammonia borane, chemical hydride, metal-organic framework, nanoconfinement

Procedia PDF Downloads 171
2912 Assessment of Treatment Methods to Remove Hazardous Dyes from Synthetic Wastewater

Authors: Abhiram Siva Prasad Pamula

Abstract:

Access to clean drinking water becomes scarce due to the increase in extreme weather events because of the rise in the average global temperatures and climate change. By 2030, approximately 47% of the world’s population will face water shortages due to uncertainty in seasonal rainfall. Over 10000 varieties of synthetic dyes are commercially available in the market and used by textile and paper industries, negatively impacting human health when ingested. Besides humans, textile dyes have a negative impact on aquatic ecosystems by increasing biological oxygen demand and chemical oxygen demand. This study assesses different treatment methods that remove dyes from textile wastewater while focusing on energy, economic, and engineering aspects of the treatment processes.

Keywords: textile wastewater, dye removal, treatment methods, hazardous pollutants

Procedia PDF Downloads 78
2911 Evaluation of the Nutritional Potential of a Developed Spice Formulation for nah poh (An Emulsion-Based Gravy): Physicochemical and Techno-Functional Characterisations

Authors: Djiazet Stève, Mezajoug Kenfack Laurette Blandine, Ravi Pullakhandam, Bethala L. A. Prabhavathi Devi, Tchiegang Clergé, Prathapkumar Halady Shetty

Abstract:

The nutritional potential of a developed spice formulation for nah poh was evaluated. It was found that when spices were used for the formulation for nah poh, the concentration of some nutrients is diluted while that of some of them increases. The proportion of unsaturated fats was estimated to be 76.2% of the total fat content while the chemical score varied between 31 to 39%. The contents of some essential minerals of nutritional interest in mg are as follows for 100g of spice: 2372.474 ± 0.007 for potassium, 16.447 ± 0.010 for iron, 4.772 ± 0.005 for zinc, 0.537 ± 0.001 for cupper, 0.138 ± 0.005 for selenium, and 112.954 ± 0.003 for manganese. This study shows that the consumption of these spices in the form of formulation significantly contributes to meet the mineral requirements of the populations whose food habits regularly require these spices.

Keywords: spice formulation, characterisation, nutritional potential, nah poh, techno functional properties

Procedia PDF Downloads 207
2910 Calibration of Mini TEPC and Measurement of Lineal Energy in a Mixed Radiation Field Produced by Neutrons

Authors: I. C. Cho, W. H. Wen, H. Y. Tsai, T. C. Chao, C. J. Tung

Abstract:

Tissue-equivalent proportional counter (TEPC) is a useful instrument used to measure radiation single-event energy depositions in a subcellular target volume. The quantity of measurements is the microdosimetric lineal energy, which determines the relative biological effectiveness, RBE, for radiation therapy or the radiation-weighting factor, WR, for radiation protection. TEPC is generally used in a mixed radiation field, where each component radiation has its own RBE or WR value. To reduce the pile-up effect during radiotherapy measurements, a miniature TEPC (mini TEPC) with cavity size in the order of 1 mm may be required. In the present work, a homemade mini TEPC with a cylindrical cavity of 1 mm in both the diameter and the height was constructed to measure the lineal energy spectrum of a mixed radiation field with high- and low-LET radiations. Instead of using external radiation beams to penetrate the detector wall, mixed radiation fields were produced by the interactions of neutrons with TEPC walls that contained small plugs of different materials, i.e. Li, B, A150, Cd and N. In all measurements, mini TEPC was placed at the beam port of the Tsing Hua Open-pool Reactor (THOR). Measurements were performed using the propane-based tissue-equivalent gas mixture, i.e. 55% C3H8, 39.6% CO2 and 5.4% N2 by partial pressures. The gas pressure of 422 torr was applied for the simulation of a 1 m diameter biological site. The calibration of mini TEPC was performed using two marking points in the lineal energy spectrum, i.e. proton edge and electron edge. Measured spectra revealed high lineal energy (> 100 keV/m) peaks due to neutron-capture products, medium lineal energy (10 – 100 keV/m) peaks from hydrogen-recoil protons, and low lineal energy (< 10 keV/m) peaks of reactor photons. For cases of Li and B plugs, the high lineal energy peaks were quite prominent. The medium lineal energy peaks were in the decreasing order of Li, Cd, N, A150, and B. The low lineal energy peaks were smaller compared to other peaks. This study demonstrated that internally produced mixed radiations from the interactions of neutrons with different plugs in the TEPC wall provided a useful approach for TEPC measurements of lineal energies.

Keywords: TEPC, lineal energy, microdosimetry, radiation quality

Procedia PDF Downloads 455
2909 Synthesis of Crosslinked Konjac Glucomannan and Kappa Carrageenan Film with Glutaraldehyde

Authors: Sperisa Distantina, Fadilah, Mujtahid Kaavessina

Abstract:

Crosslinked konjac glucomannan and kappa carrageenan film were prepared by chemical crosslinking using glutaraldehyde (GA) as the crosslinking agent. The effect crosslinking on the swelling degree was investigated. Konjac glucomanan and its mixture with kappa carragenan film was immersed in GA solution and then thermally cured. The obtained crosslinked film was washed and soaked in the ethanol to remove the unreacted GA. The obtained film was air dried at room temperature to a constant weight. The infrared spectra and the value of swelling degree of obtained crosslinked film showed that glucomannan and kappa carrageenan was able to be crosslinked using glutaraldehyde by film immersion and curing method without catalyst. The crosslinked films were found to be pH sensitive, indicating a potential to be used in drug delivery polymer system.

Keywords: crosslinking, glucomannan, carrageenan, swelling

Procedia PDF Downloads 264
2908 Recovery of Draw Solution in Forward Osmosis by Direct Contact Membrane Distillation

Authors: Su-Thing Ho, Shiao-Shing Chen, Hung-Te Hsu, Saikat Sinha Ray

Abstract:

Forward osmosis (FO) is an emerging technology for direct and indirect potable water reuse application. However, successful implementation of FO is still hindered by the lack of draw solution recovery with high efficiency. Membrane distillation (MD) is a thermal separation process by using hydrophobic microporous membrane that is kept in sandwich mode between warm feed stream and cold permeate stream. Typically, temperature difference is the driving force of MD which attributed by the partial vapor pressure difference across the membrane. In this study, the direct contact membrane distillation (DCMD) system was used to recover diluted draw solution of FO. Na3PO4 at pH 9 and EDTA-2Na at pH 8 were used as the feed solution for MD since it produces high water flux and minimized salt leakage in FO process. At high pH, trivalent and tetravalent ions are much easier to remain at draw solution side in FO process. The result demonstrated that PTFE with pore size of 1 μm could achieve the highest water flux (12.02 L/m2h), followed by PTFE 0.45 μm (10.05 L/m2h), PTFE 0.1 μm (7.38 L/m2h) and then PP (7.17 L/m2h) while using 0.1 M Na3PO4 draw solute. The concentration of phosphate and conductivity in the PTFE (0.45 μm) permeate were low as 1.05 mg/L and 2.89 μm/cm respectively. Although PTFE with the pore size of 1 μm could obtain the highest water flux, but the concentration of phosphate in permeate was higher than other kinds of MD membranes. This study indicated that four kinds of MD membranes performed well and PTFE with the pore size of 0.45 μm was the best among tested membranes to achieve high water flux and high rejection of phosphate (99.99%) in recovery of diluted draw solution. Besides that, the results demonstrate that it can obtain high water flux and high rejection of phosphate when operated with cross flow velocity of 0.103 m/s with Tfeed of 60 ℃ and Tdistillate of 20 ℃. In addition to that, the result shows that Na3PO4 is more suitable for recovery than EDTA-2Na. Besides that, while recovering the diluted Na3PO4, it can obtain the high purity of permeate water. The overall performance indicates that, the utilization of DCMD is a promising technology to recover the diluted draw solution for FO process.

Keywords: membrane distillation, forward osmosis, draw solution, recovery

Procedia PDF Downloads 173
2907 Effect of Synthesis Method on Structural, Morphological Properties of Zr0.8Y0.2-xLax Oxides (x=0, 0.1, 0.2)

Authors: Abdelaziz Ghrib, Samir Hattali, Mouloud Ghrib, Mohamed Lamine Aouissia, David Ruch

Abstract:

In the present study, the solid solutions with a chemical composition of Zr0.8Y0.2-xLaxO2 (x=0, 0.1, 0.2) were synthesized via two routes, by hydrothermal method using NaOH as precipitating agent at 230°C for 15h and by the sol–gel process using citric acid as complexing agent. Compounds have been characterized by powder X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Thermo gravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) techniques for appropriate characterization of the distinct thermal events occurring during synthesis. All the compounds crystallize in cubic fluorite structure, as indicated by X-ray diffraction studie. The microstructure of oxides synthesized by sol-gel showed porosity that increased with the lanthanum La3+ contents compared to hydrothermal method which gives a single crystal oxide.

Keywords: oxide, hydrothermal, rare earth, solubility, sol-gel, ternary mixture

Procedia PDF Downloads 616
2906 Physicochemical Properties of Moringa oleifera Seeds

Authors: Oyewusi Peter Ayodele, Onipede Ayodeji

Abstract:

Our research focuses on some physicochemical parameters of Moringa Oleifera seed meal and its seed oil to determine its nutritional quality. Proximate, mineral, and vitamin analyses were performed on the defatted seed meal, while fatty acid determination was carried out on the seed oil. The results of the proximate composition show moisture content (3.52 ± 0.01), ash (2.80 ± 0.33), crude fibre (3.92 ± 0.01), protein (42.96 ± 0.05), crude fat (7.04 ± 0.01) and carbohydrate (36.79 ± 0.04). The mineral composition shows that the seed is rich in Ca, K, and Na with 220ppm, 205ppm, and 118ppm, respectively. The seed has vitamins A and C with 2.17 ± 0.01mg/100g and 6.95 ± 0.00 mg/100g respectively. The seed also contains 56.62 %, 38.50 %, and 5.24 % saturated, monounsaturated, and polyunsaturated fatty acids, respectively. It could be illustrated that Moringa seeds and their oil can be considered potential sources for both dietary and industrial purposes.

Keywords: Moringa oleifera seed, chemical composition, fatty acid, proximate, minerals and vitamins compositions

Procedia PDF Downloads 264
2905 Ultraviolet Visible Spectroscopy Analysis on Transformer Oil by Correlating It with Various Oil Parameters

Authors: Rajnish Shrivastava, Y. R. Sood, Priti Pundir, Rahul Srivastava

Abstract:

Power transformer is one of the most important devices that are used in power station. Due to several fault impending upon it or due to ageing, etc its life gets lowered. So, it becomes necessary to have diagnosis of oil for fault analysis. Due to the chemical, electrical, thermal and mechanical stress the insulating material in the power transformer degraded. It is important to regularly assess the condition of oil and the remaining life of the power transformer. In this paper UV-VIS absorption graph area is correlated with moisture content, Flash point, IFT and Density of Transformer oil. Since UV-VIS absorption graph area varies accordingly with the variation in different transformer parameters. So by obtaining the correlation among different oil parameters for oil with respect to UV-VIS absorption area, decay contents of transformer oil can be predicted

Keywords: breakdown voltage (BDV), interfacial Tension (IFT), moisture content, ultra violet-visible rays spectroscopy (UV-VIS)

Procedia PDF Downloads 630
2904 Qualitative and Quantitative Screening of Biochemical Compositions for Six Selected Marine Macroalgae from Mediterranean Coast of Egypt

Authors: Madelyn N. Moawad, Hermine R. Z. Tadros, Mary G. Ghobrial, Ahmad R. Bassiouny, Kamal M. Kandeel, Athar Ata

Abstract:

Seaweeds are potential renewable resources in marine environment. They provide an excellent source of bioactive substances such as dietary fibers and various functional polysaccharides that could potentially be used as ingredients for both human and animal health applications. The observations suggested that these bioactive compounds have strong antioxidant properties, which have beneficial effects on human health. The present research aimed at finding new chemical products from local marine macroalgae for natural medicinal uses and consumption for their nutritional values. Macroalgae samples were collected manually mainly from the Mediterranean Sea at shallow subtidal zone of Abu Qir Bay, Alexandria, Egypt. The chemical compositions of lyophilized materials of six selected macroalgal species; Colpomenia sinuosa, Sargassum linifolium, Padina pavonia, Pterocladiella capillacea, Laurencia pinnatifidia, and Caulerpa racemosa, were investigated for proteins using bovine serum albumin, and carbohydrates were assayed by phenol-sulfuric acid reaction. The macroalgae lipid was extracted with chloroform, methanol and phosphate buffer. Vitamins were extracted using trichloroacetic acid. Chlorophylls and total carotenoids were determined spectrophotometrically and total phenols were extracted with methanol. In addition, lipid-soluble, and water-soluble antioxidant, and anti α-glucosidase activities were measured spectrophotometrically. The antioxidant activity of hexane extracts was investigated using phosphomolybdenum reagent. The anti-α-glucosidase effect measurement was initiated by mixing α-glucosidase solution with p-nitrophenyl α-D-glucopyranoside. The results showed that the ash contents varied from 11.2 to 35.4 % on dry weight basis for P. capillacea and Laurencia pinnatifidia, respectively. The protein contents ranged from 5.63 % in brown macroalgae C. sinuosa to 8.73 % in P. pavonia. A relative wide range in carbohydrate contents was observed (20.06–46.75 %) for the test algal species. The highest lipid percentage was found in green alga C. racemosa (5.91%) followed by brown algae P. pavonia (3.57%) and C. sinuosa (2.64%). The phenolic contents varied from 1.32 mg GAE/g for C. sinuosa to 4.00 mg GAE/g in P. pavonia. The lipid-soluble compounds exhibited higher antioxidant capacity (73.18-145.95 µM/g) than that of the water-soluble ones ranging from 24.83 µM/g in C. racemosa to 74.07 µM/g in S. linifolium. The most potent anti-α-glucosidase activity was observed for P. pavonia with IC50 of 17.12 μg/ml followed by S. linifolium (IC50 = 71.75 μg/ml), C. racemosa (IC50 = 84.73 μg/ml), P. capillacea (IC50 = 92.16 μg/ml), C. sinuosa (IC50 = 112.44 μg/ml), and L. pinnatifida (IC50 = 115.11 μg/ml).

Keywords: α-glucosidase, lyophilized, macroalgae, spectrophotometrically

Procedia PDF Downloads 282
2903 The Improvement in Clinical Outcomes with the Histological Presence of Nidus Following Radiofrequency Ablation (RFA) for Osteoid Osteoma (OO)

Authors: Amirul Adlan, Motaz AlAqeel, Scott Evans, Vaiyapuri sumathi, Mark Davies, Rajesh Botchu

Abstract:

Background & Objectives: Osteoid osteoma (OO) is a benign tumor of the bone commonly found in childhood and adolescence, causing bone pain, especially during the night. CT-guided radiofrequency ablation (RFA) is currently the mainstay treatment for OO. There is currently no literature reporting the outcomes of OO following RFA based on the histological presence of a nidus seen on a biopsy taken at the time of RFA. The primary aim of this study was to compare the clinical outcomes of OO between the group of patients with the presence of nidus on biopsy samples from RFA with those without nidus. Secondly, we aimed to examine other factors that may affect the outcomes of OO, reflecting our experience as a tertiary orthopedic oncology center. Methods: We retrospectively reviewed 88 consecutive patients diagnosed with osteoid osteoma treated with RFA between November 2005 and March 2015, consisting of 63 males (72%) and 25 females (28%). Sixty-six patients (75%) had nidus present in their biopsy samples. Patients’ mean age was 17.6 years (4-53). The median duration of follow-up was 12.5 months (6-20.8). Lesions were located in the appendicular skeleton in seventy-nine patients (90%), while nine patients (10%) had an OO in the axial skeleton. Outcomes assessed were based on patients’ pain alleviation (partial, complete, or no pain improvement) and the need for further interventions. Results: Pain improvement in the patient group with nidus in the histology sample was significantly better than in the group without nidus (OR 7.4, CI 1.35-41.4, p=0.021). The patient group with nidus on biopsy demonstrated less likelihood of having a repeat procedure compared to the group without nidus(OR 0.092, CI 0.016-0.542, p=0.008). Our study showed significantly better outcomes in pain improvement in appendicular lesions compared to the axially located lesions (p = 0.005). Patients with spinal lesions tend to have relatively poor pain relief than those with appendicular or pelvic lesions (p=0.007). Conclusions: Patients with nidus on histology had better pain alleviation compared to patients without nidus. The histological presence of nidus significantly reduces the chance of repeat interventions. The pain alleviation of osteoid osteoma following RFA is better in patients with appendicular lesions than spinal or axially located lesions.

Keywords: osteoid osteoma, benign tumour, radiofrequency ablation, oncology

Procedia PDF Downloads 135
2902 Numerical Investigation of Plasma-Fuel System (PFS) for Coal Ignition and Combustion

Authors: Vladimir Messerle, Alexandr Ustimenko, Oleg Lavrichshev

Abstract:

To enhance the efficiency of solid fuels’ use, to decrease the fuel oil rate in the thermal power plants fuel balance and to minimize harmful emissions, a plasma technology of coal ignition, gasification and incineration is successfully applied. This technology is plasma thermochemical preparation of fuel for burning (PTCPF). In the framework of this concept, some portion of pulverized solid fuel (PF) is separated from the main PF flow and undergone the activation by arc plasma in a specific chamber with plasma torch – PFS. The air plasma flame is a source of heat and additional oxidation, it provides a high-temperature medium enriched with radicals, where the fuel mixture is heated, volatile components of coal are extracted, and carbon is partially gasified. This active blended fuel can ignite the main PF flow supplied into the furnace. This technology provides the boiler start-up and stabilization of PF flame and eliminates the necessity for addition of highly reactive fuel. In the report, a model of PTCPF, implemented as a program PlasmaKinTherm for the PFS calculation is described. The model combines thermodynamic and kinetic methods for describing the process of PTCPF in PFS. The numerical investigation of operational parameters of PFS depending on the electric power of the plasma generator and steam coal ash content revealed the temperature and velocity of gas and coal particles, and concentrations of PTCPF products dependences on the PFS length. Main mechanisms of PTCPF were disclosed. It was found that in the range of electric power of plasma generator from 40 to 100 kW high ash bituminous coal, having consumption 1667 kg/h is ignited stably. High level of temperature (1740 K) and concentration of combustible components (44%) at the PFS exit is a confirmation of it. Augmentation in power of plasma generator results displacement maxima temperatures and speeds of PTCPF products upstream (in the direction of the plasma source). The maximum temperature and velocity vary in a narrow range of values and practically do not depend on the power of the plasma torch. The numerical study of indicators of the process of PTCPF depending on the ash content in the range of its values 20-70% demonstrated that at the exit of PFS concentration of combustible components decreases with an increase in coal ash, the temperature of the gaseous products is increasing, and coal carbon conversion rate is increased to a maximum value when the ash content of 60%, dramatically decreasing with further increase in the ash content.

Keywords: coal, efficiency, ignition, numerical modeling, plasma generator, plasma-fuel system

Procedia PDF Downloads 286
2901 Monitoring CO2 and H2S Emission in Live Austrian and UK Concrete Sewer Pipes

Authors: Anna Romanova, Morteza A. Alani

Abstract:

Corrosion of concrete sewer pipes induced by sulfuric acid is an acknowledged problem and a ticking time-bomb to sewer operators. Whilst the chemical reaction of the corrosion process is well-understood, the indirect roles of other parameters in the corrosion process which are found in sewer environment are not highly reflected on. This paper reports on a field studies undertaken in Austria and United Kingdom, where the parameters of temperature, pH, H2S and CO2 were monitored over a period of time. The study establishes that (i) effluent temperature and pH have similar daily pattern and peak times, When examined in minutes scale, (ii) H2S and CO2 have an identical hourly pattern, (iii) H2S instant or shifted relation to effluent temperature is governed by the root mean square value of CO2.

Keywords: concrete corrosion, carbon dioxide, hydrogen sulphide, sewer pipe, sulfuric acid

Procedia PDF Downloads 293
2900 Effect of Integrated Nutrient Management Practice on Cultivation Scented Rice Varieties- a Better Approach for Resource Conservation

Authors: Amit Kumar Patel, M. C. Bhambri, Damini Thawait, Srishti Pandey

Abstract:

The experiment was carried out at Raipur during rainy season of 2012. The experiment revealed that the performance of Dubraj was comparatively better than that of badshah bhog, Vishnu bhog and bisni. The number of grains panicle-1, number of filled grains panicle-1 were comparable in Dubraj and badshah bhog. Among the different nutrient, application of 80:50:40 kg N:P2O5:K2O ha-1(50% Inorganic+50% Organic) gave better performance in all the above characters. It is revealed that the variety Dubraj fertilized with 80:50:40 kg N:P2O5:K2O ha-1(50% Inorganic+50% Organic) gave the good yield attributing characters along with highest yield.

Keywords: scented rice, organic manures, chemical fertilizers, yield, varieties

Procedia PDF Downloads 482
2899 Influence of Biochar Application on Growth, Dry Matter Yield and Nutrition of Corn (Zea mays L.) Grown on Sandy Loam Soils of Gujarat, India

Authors: Pravinchandra Patel

Abstract:

Sustainable agriculture in sandy loam soil generally faces large constraints due to low water holding and nutrient retention capacity, and accelerated mineralization of soil organic matter. There is need to increase soil organic carbon in the soil for higher crop productivity and soil sustainability. Recently biochar is considered as sixth element and work as a catalyst for increasing crop yield, soil fertility, soil sustainability and mitigation of climate change. Biochar was generated at the Sansoli Farm of Anand Agricultural University, Gujarat, India by pyrolysis at temperatures (250-400°C) in absence of oxygen using slow chemical process (using two kilns) from corn stover (Zea mays, L), cluster bean stover (Cyamopsis tetragonoloba) and Prosopis julifera wood. There were 16 treatments; 4 organic sources (3 biochar; corn stover biochar (MS), cluster bean stover (CB) & Prosopis julifera wood (PJ) and one farmyard manure-FYM) with two rate of application (5 & 10 metric tons/ha), so there were eight treatments of organic sources. Eight organic sources was applied with the recommended dose of fertilizers (RDF) (80-40-0 kg/ha N-P-K) while remaining eight organic sources were kept without RDF. Application of corn stover biochar @ 10 metric tons/ha along with RDF (RDF+MS) increased dry matter (DM) yield, crude protein (CP) yield, chlorophyll content and plant height (at 30 and 60 days after sowing) than CB and PJ biochar and FYM. Nutrient uptake of P, K, Ca, Mg, S and Cu were significantly increased with the application of RDF + corn stover @ 10 metric tons/ha while uptake of N and Mn were significantly increased in RDF + corn stover @ 5 metric tons/ha. It was found that soil application of corn stover biochar @ 10 metric tons/ha along with the recommended dose of chemical fertilizers (RDF+MS ) exhibited the highest impact in obtaining significantly higher dry matter and crude protein yields and larger removal of nutrients from the soil and it also beneficial for built up nutrients in soil. It also showed significantly higher organic carbon content and cation exchange capacity in sandy loam soil. The lower dose of corn stover biochar @ 5 metric tons/ha (RDF+ MS) was also remained the second highest for increasing dry matter and crude protein yields of forage corn crop which ultimately resulted in larger removals of nutrients from the soil. This study highlights the importance of mixing of biochar along with recommended dose of fertilizers on its synergistic effect on sandy loam soil nutrient retention, organic carbon content and water holding capacity hence, the amendment value of biochar in sandy loam soil.

Keywords: biochar, corn yield, plant nutrient, fertility status

Procedia PDF Downloads 129
2898 Association Type 1 Diabetes and Celiac Disease in Adult Patients

Authors: Soumaya Mrabet, Taieb Ach, Imen Akkari, Amira Atig, Neirouz Ghannouchi, Koussay Ach, Elhem Ben Jazia

Abstract:

Introduction: Celiac disease (CD) and type 1 diabetes mellitus (T1D) are complex disorders with shared genetic components. The association between CD and T1D has been reported in many pediatric series. The aim of our study is to describe the epidemiological, clinical and evolutive characteristics of adult patients presenting this association. Material and Methods: This is a retrospective study including patients diagnosed with CD and T1D, explored in Internal Medicine, Gastroenterology and Endocrinology and Diabetology Departments of the Farhat Hached University Hospital, between January 2005 and June 2016. Results: Among 57 patients with CD, 15 patients had also T1D (26.3%). There are 11 women and 4 men with a median age of 27 years (16-48). All patients developed T1D prior to the diagnosis of CD with an average duration of 47 months between the two diagnosis (6 months-5 years). CD was revealed by recurrent abdominal pain in 11 cases, diarrhea in 10 cases, bloating in 8 cases, constipation in 6 cases and vomiting in 2 cases. Three patients presented cycle disorders with secondary amenorrhea in 2 patients. Anti-Endomysium, anti-transglutaminase and Anti-gliadin antibodies were positive respectively in 57, 54 and 11 cases. The biological tests revealed anemia in 10 cases, secondary to iron deficiency in 6 cases and folate and vitamin B12 deficiency in 4 cases, hypoalbuminaemia in 4 cases, hypocalcemia in 3 cases and hypocholesterolemia in 1 patient. Upper gastrointestinal endoscopy showed an effacement of the folds of the duodenal mucosa in 6 cases and a congestive duodenal mucosa in 3 cases. The macroscopic appearance was normal in the others cases. Microscopic examination showed an aspect of villous atrophy in 57 cases, which was partial in 10 cases and total in 47 cases. After an average follow-up of 3 years 2 months, the evolution was favorable in all patients under gluten-free diet with the necessity of less important doses of insulin in 10 patients. Conclusion: In our study, the prevalence of T1D in adult patients with CD was 26.3%. This association can be attributed to overlapping genetic HLA risk loci. In recent studies, the role of gluten as an important player in the pathogenesis of CD and T1D has been also suggested.

Keywords: celiac disease, gluten, prevalence, type 1 diabetes

Procedia PDF Downloads 237
2897 Joint Probability Distribution of Extreme Water Level with Rainfall and Temperature: Trend Analysis of Potential Impacts of Climate Change

Authors: Ali Razmi, Saeed Golian

Abstract:

Climate change is known to have the potential to impact adversely hydrologic patterns for variables such as rainfall, maximum and minimum temperature and sea level rise. Long-term average of these climate variables could possibly change over time due to climate change impacts. In this study, trend analysis was performed on rainfall, maximum and minimum temperature and water level data of a coastal area in Manhattan, New York City, Central Park and Battery Park stations to investigate if there is a significant change in the data mean. Partial Man-Kendall test was used for trend analysis. Frequency analysis was then performed on data using common probability distribution functions such as Generalized Extreme Value (GEV), normal, log-normal and log-Pearson. Goodness of fit tests such as Kolmogorov-Smirnov are used to determine the most appropriate distributions. In flood frequency analysis, rainfall and water level data are often separately investigated. However, in determining flood zones, simultaneous consideration of rainfall and water level in frequency analysis could have considerable effect on floodplain delineation (flood extent and depth). The present study aims to perform flood frequency analysis considering joint probability distribution for rainfall and storm surge. First, correlation between the considered variables was investigated. Joint probability distribution of extreme water level and temperature was also investigated to examine how global warming could affect sea level flooding impacts. Copula functions were fitted to data and joint probability of water level with rainfall and temperature for different recurrence intervals of 2, 5, 25, 50, 100, 200, 500, 600 and 1000 was determined and compared with the severity of individual events. Results for trend analysis showed increase in long-term average of data that could be attributed to climate change impacts. GEV distribution was found as the most appropriate function to be fitted to the extreme climate variables. The results for joint probability distribution analysis confirmed the necessity for incorporation of both rainfall and water level data in flood frequency analysis.

Keywords: climate change, climate variables, copula, joint probability

Procedia PDF Downloads 341
2896 A Review of Self-Healing Concrete and Various Methods of Its Scientific Implementation

Authors: Davoud Beheshtizadeh, Davood Jafari

Abstract:

Concrete, with its special properties and advantages, has caused it to be widely and increasingly used in construction industry, especially in infrastructures of the country. On the other hand, some defects of concrete and, most importantly, micro-cracks in the concrete after setting have caused the cost of repair and maintenance of infrastructure; therefore, self-healing concretes have been of attention in other countries in the recent years. These concretes have been repaired with general mechanisms such as physical, chemical, biological and combined mechanisms, each of which has different subsets and methods of execution and operation. Also, some of these types of mechanisms are of high importance, which has led to a special production method, and as this subject is new in Iran, this knowledge is almost unknown or at least some part of it has not been considered at all. The present article completely introduces various self-healing mechanisms as a review and tries to present the disadvantages and advantages of each method along with its scope of application.

Keywords: micro-cracks, self-healing concrete, microcapsules, concrete, cement, self-sensitive

Procedia PDF Downloads 123
2895 Characterization of New Sources of Maize (Zea mays L.) Resistance to Sitophilus zeamais (Coleoptera: Curculionidae) Infestation in Stored Maize

Authors: L. C. Nwosu, C. O. Adedire, M. O. Ashamo, E. O. Ogunwolu

Abstract:

The maize weevil, Sitophilus zeamais Motschulsky is a notorious pest of stored maize (Zea mays L.). The development of resistant maize varieties to manage weevils is a major breeding objective. The study investigated the parameters and mechanisms that confer resistance on a maize variety to S. zeamais infestation using twenty elite maize varieties. Detailed morphological, physical and chemical studies were conducted on whole-maize grain and the grain pericarp. Resistance was assessed at 33, 56, and 90 days post infestation using weevil mortality rate, weevil survival rate, percent grain damage, percent grain weight loss, weight of grain powder, oviposition rate and index of susceptibility as indices rated on a scale developed by the present study and on Dobie’s modified scale. Linear regression models that can predict maize grain damage in relation to the duration of storage were developed and applied. The resistant varieties identified particularly 2000 SYNEE-WSTR and TZBRELD3C5 with very high degree of resistance should be used singly or best in an integrated pest management system for the control of S. zeamais infestation in stored maize. Though increases in the physical properties of grain hardness, weight, length, and width increased varietal resistance, it was found that the bases of resistance were increased chemical attributes of phenolic acid, trypsin inhibitor and crude fibre while the bases of susceptibility were increased protein, starch, magnesium, calcium, sodium, phosphorus, manganese, iron, cobalt and zinc, the role of potassium requiring further investigation. Characters that conferred resistance on the test varieties were found distributed in the pericarp and the endosperm of the grains. Increases in grain phenolic acid, crude fibre, and trypsin inhibitor adversely and significantly affected the bionomics of the weevil on further assessment. The flat side of a maize grain at the point of penetration was significantly preferred by the weevil. Why the south area of the flattened side of a maize grain was significantly preferred by the weevil is clearly unknown, even though grain-face-type seemed to be a contributor in the study. The preference shown to the south area of the grain flat side has implications for seed viability. The study identified antibiosis, preference, antixenosis, and host evasion as the mechanisms of maize post harvest resistance to Sitophilus zeamais infestation.

Keywords: maize weevil, resistant, parameters, mechanisms, preference

Procedia PDF Downloads 296
2894 Improvement of the Calciferous Minerals Floatability through the Application of High-Power Electromagnetic Pulses

Authors: Valentine A. Chanturiya, Igor Zh. Bunin, Maria V. Ryazantseva

Abstract:

The modification of structural and chemical properties of fluorite, scheelite and calcite under the impact of high-power electromagnetic pulses (HPEMP-treatment) were studied with the help of adsorption of acid-base indicators and atomic – force microscopy (AFM). The HPEMP-treatment during the space of 30 seconds resulted in the intensification of fluorite surface the electron-donating ability and acceptor properties of calcite and scheelite surfaces. High-power electromagnetic treatment of the single minerals resulted in the improvement of the calciferous minerals floatability. The rising of the scheelite recovery is 10 – 12%, fluorite – 5 – 6%, calcite – 7 – 8%.

Keywords: calcite, fluorite, scheelite, high power electromagnetic pulses, floatability

Procedia PDF Downloads 275
2893 Making Lightweight Concrete with Meerschaum

Authors: H. Gonen, M. Dogan

Abstract:

Meerschaum, which is found in the earth’s crust, is a white and clay like hydrous magnesium silicate. It has a wide area of use from production of carious ornaments to chemical industry. It has a white and irregular crystalline structure. It is wet and moist when extracted, which is a good form for processing. At drying phase, it gradually loses its moisture and becomes lighter and harder. In through-dry state, meerschaum is durable and floats on the water. After processing of meerschaum, A ratio between %15 to %40 of the amount becomes waste. This waste is usually kept in a dry-atmosphere which is isolated from environmental effects so that to be used right away when needed. In this study, use of meerschaum waste as aggregate in lightweight concrete is studied. Stress-strain diagrams for concrete with meerschaum aggregate are obtained. Then, stress-strain diagrams of lightweight concrete and concrete with regular aggregate are compared. It is concluded that meerschaum waste can be used in production of lightweight concrete.

Keywords: lightweight concrete, meerschaum, aggregate, sepiolite, stress-strain diagram

Procedia PDF Downloads 585
2892 Wet Polymeric Precipitation Synthesis for Monophasic Tricalcium Phosphate

Authors: I. Grigoraviciute-Puroniene, K. Tsuru, E. Garskaite, Z. Stankeviciute, A. Beganskiene, K. Ishikawa, A. Kareiva

Abstract:

Tricalcium phosphate (β-Ca3(PO4)2, β-TCP) powders were synthesized using wet polymeric precipitation method for the first time to our best knowledge. The results of X-ray diffraction analysis showed the formation of almost single a Ca-deficient hydroxyapatite (CDHA) phase of a poor crystallinity already at room temperature. With continuously increasing the calcination temperature up to 800 °C, the crystalline β-TCP was obtained as the main phase. It was demonstrated that infrared spectroscopy is very effective method to characterize the formation of β-TCP. The SEM results showed that β-TCP solids were homogeneous having a small particle size distribution. The β-TCP powders consisted of spherical particles varying in size from 100 to 300 nm. Fabricated β-TCP specimens were placed to the bones of the rats and maintained for 1-2 months.

Keywords: Tricalcium phosphate (β-Ca3(PO4)2, bone regeneration, wet chemical processing, polymeric precipitation

Procedia PDF Downloads 284
2891 Developing Sustainable Rammed Earth Material Using Pulp Mill Fly Ash as Cement Replacement

Authors: Amin Ajabi, Chinchu Cherian, Sumi Siddiqua

Abstract:

Rammed earth (RE) is a traditional soil-based building material made by compressing a mixture of natural earth and binder ingredients such as chalk or lime, in temporary formworks. However, the modern RE uses 5 to 10% cement as a binder in order to meet the strength and durability requirements as per the standard specifications and guidelines. RE construction is considered to be an energy-efficient and environmental-friendly approach when compared to conventional concrete systems, which use 20 to 30% cement. The present study aimed to develop RE mix designs by utilizing non-hazardous wood-based fly ash generated by pulp and paper mills as a partial replacement for cement. The pulp mill fly ash (PPFA)-stabilized RE is considered to be a sustainable approach keeping in view of the massive carbon footprints associated with cement production as well as the adverse environmental impacts due to disposal of PPFA in landfills. For the experimental study, as-received PPFA, as well as PPFA-based geopolymer (synthesized by alkaline activation method), were incorporated as cement substitutes in the RE mixtures. Initially, local soil was collected and characterized by index and engineering properties. The PPFA was procured from a pulp manufacturing mill, and its physicochemical, mineralogical and morphological characterization, as well as environmental impact assessment, was conducted. Further, the various mix designs of RE material incorporating local soil and different proportions of cement, PPFA, and alkaline activator (a mixture of sodium silicate and sodium hydroxide solutions) were developed. The compacted RE specimens were cured and tested for 7-day and 28-day unconfined compressive strength (UCS) variations. Based on UCS results, the optimum mix design was identified corresponding to maximum strength improvement. Further, the cured RE specimens were subjected to freeze-thaw cycle testing for evaluating its performance and durability as a sustainable construction technique under extreme climatic conditions.

Keywords: sustainability, rammed earth, stabilization, pulp mill fly ash, geopolymer, alkaline activation, strength, durability

Procedia PDF Downloads 87
2890 Producing Fertilizers of Increased Environmental and Agrochemical Efficiency via Application of Plant-available Inorganic Coatings

Authors: Andrey Norov

Abstract:

Reduction of inefficient losses of nutrients when using mineral fertilizers is a very important and urgent challenge, which is of both economic and environmental significance. The loss of nutrients to the environment leads to the release of greenhouse gases, eutrophication of water bodies, soil salinization and degradation, and other undesirable phenomena. This report focuses on slow and controlled release fertilizers produced through the application of inorganic coatings, which make the released nutrients plant-available. There are shown the advantages of these fertilizers their improved physical and chemical properties, as well as the effect of the coatings on yield growth and on the degree of nutrient efficiency. This type of fertilizers is an alternative to other polymer-coated fertilizers and is more ecofriendly. The production method is protected by the Russian patent.

Keywords: coatings, controlled release, fertilizer, nutrients, nutrient efficiency, yield increase

Procedia PDF Downloads 74