Search results for: soil classification
1647 Psoriasis Diagnostic Test Development: Exploratory Study
Authors: Salam N. Abdo, Orien L. Tulp, George P. Einstein
Abstract:
The purpose of this exploratory study was to gather the insights into psoriasis etiology, treatment, and patient experience, for developing psoriasis and psoriatic arthritis diagnostic test. Data collection methods consisted of a comprehensive meta-analysis of relevant studies and psoriasis patient survey. Established meta-analysis guidelines were used for the selection and qualitative comparative analysis of psoriasis and psoriatic arthritis research studies. Only studies that clearly discussed psoriasis etiology, treatment, and patient experience were reviewed and analyzed, to establish a qualitative data base for the study. Using the insights gained from meta-analysis, an existing psoriasis patient survey was modified and administered to collect additional data as well as triangulate the results. The hypothesis is that specific types of psoriatic disease have specific etiology and pathophysiologic pattern. The following etiology categories were identified: bacterial, environmental/microbial, genetic, immune, infectious, trauma/stress, and viral. Additional results, obtained from meta-analysis and confirmed by patient survey, were the common age of onset (early to mid-20s) and type of psoriasis (plaque; mild; symmetrical; scalp, chest, and extremities, specifically elbows and knees). Almost 70% of patients reported no prescription drug use due to severe side effects and prohibitive cost. These results will guide the development of psoriasis and psoriatic arthritis diagnostic test. The significant number of medical publications classified psoriatic arthritis disease as inflammatory of an unknown etiology. Thus numerous meta-analyses struggle to report any meaningful conclusions since no definitive results have been reported to date. Therefore, return to the basics is an essential step to any future meaningful results. To date, medical literature supports the fact that psoriatic disease in its current classification could be misidentifying subcategories, which in turn hinders the success of studies conducted to date. Moreover, there has been an enormous commercial support to pursue various immune-modulation therapies, thus following a narrow hypothesis/mechanism of action that is yet to yield resolution of disease state. Recurrence and complications may be considered unacceptable in a significant number of these studies. The aim of the ongoing study is to focus on a narrow subgroup of patient population, as identified by this exploratory study via meta-analysis and patient survey, and conduct an exhaustive work up, aiming at mechanism of action and causality before proposing a cure or therapeutic modality. Remission in psoriasis has been achieved and documented in medical literature, such as immune-modulation, phototherapy, various over-the-counter agents, including salts and tar. However, there is no psoriasis and psoriatic arthritis diagnostic test to date, to guide the diagnosis and treatment of this debilitating and, thus far, incurable disease. Because psoriasis affects approximately 2% of population, the results of this study may affect the treatment and improve the quality of life of a significant number of psoriasis patients, potentially millions of patients in the United States alone and many more millions worldwide.Keywords: biologics, early diagnosis, etiology, immune disease, immune modulation therapy, inflammation skin disorder, phototherapy, plaque psoriasis, psoriasis, psoriasis classification, psoriasis disease marker, psoriasis diagnostic test, psoriasis marker, psoriasis mechanism of action, psoriasis treatment, psoriatic arthritis, psoriatic disease, psoriatic disease marker, psoriatic patient experience, psoriatic patient quality of life, remission, salt therapy, targeted immune therapy
Procedia PDF Downloads 1181646 Image Recognition and Anomaly Detection Powered by GANs: A Systematic Review
Authors: Agastya Pratap Singh
Abstract:
Generative Adversarial Networks (GANs) have emerged as powerful tools in the fields of image recognition and anomaly detection due to their ability to model complex data distributions and generate realistic images. This systematic review explores recent advancements and applications of GANs in both image recognition and anomaly detection tasks. We discuss various GAN architectures, such as DCGAN, CycleGAN, and StyleGAN, which have been tailored to improve accuracy, robustness, and efficiency in visual data analysis. In image recognition, GANs have been used to enhance data augmentation, improve classification models, and generate high-quality synthetic images. In anomaly detection, GANs have proven effective in identifying rare and subtle abnormalities across various domains, including medical imaging, cybersecurity, and industrial inspection. The review also highlights the challenges and limitations associated with GAN-based methods, such as instability during training and mode collapse, and suggests future research directions to overcome these issues. Through this review, we aim to provide researchers with a comprehensive understanding of the capabilities and potential of GANs in transforming image recognition and anomaly detection practices.Keywords: generative adversarial networks, image recognition, anomaly detection, DCGAN, CycleGAN, StyleGAN, data augmentation
Procedia PDF Downloads 201645 Modeling of Digital and Settlement Consolidation of Soil under Oedomete
Authors: Yu-Lin Shen, Ming-Kuen Chang
Abstract:
In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electromagnetic Acoustic Transducer Testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length.. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size.Keywords: EMAT, artificial defect, NDT, ultrasonic testing
Procedia PDF Downloads 3331644 Prediction of Survival Rate after Gastrointestinal Surgery Based on The New Japanese Association for Acute Medicine (JAAM Score) With Neural Network Classification Method
Authors: Ayu Nabila Kusuma Pradana, Aprinaldi Jasa Mantau, Tomohiko Akahoshi
Abstract:
The incidence of Disseminated intravascular coagulation (DIC) following gastrointestinal surgery has a poor prognosis. Therefore, it is important to determine the factors that can predict the prognosis of DIC. This study will investigate the factors that may influence the outcome of DIC in patients after gastrointestinal surgery. Eighty-one patients were admitted to the intensive care unit after gastrointestinal surgery in Kyushu University Hospital from 2003 to 2021. Acute DIC scores were estimated using the new Japanese Association for Acute Medicine (JAAM) score from before and after surgery from day 1, day 3, and day 7. Acute DIC scores will be compared with The Sequential Organ Failure Assessment (SOFA) score, platelet count, lactate level, and a variety of biochemical parameters. This study applied machine learning algorithms to predict the prognosis of DIC after gastrointestinal surgery. The results of this study are expected to be used as an indicator for evaluating patient prognosis so that it can increase life expectancy and reduce mortality from cases of DIC patients after gastrointestinal surgery.Keywords: the survival rate, gastrointestinal surgery, JAAM score, neural network, machine learning, disseminated intravascular coagulation (DIC)
Procedia PDF Downloads 2601643 A Seismic Study on The Settlement of Superstructures Due to the Tunnel Construction
Authors: Seyed Abolhasan Naeini, Saeideh Mohammadi
Abstract:
Rapid urban development leads to the construction of urban tunnels for transport. Passage of tunnels under the surface structures and utilities prompted the changes in the site conditions and hence alteration of the dynamic response of surface structures. Therefore, in this study, the effect of the interaction of tunnel-superstructure on the site response is investigated numerically. For this purpose, Fast Lagrangian Analysis of Continua (FLAC 2D) is used, and stratification and properties of soil layers are selected based on the line No 7 of Tehran subway. The superstructure is modeled both as an equivalent surcharge and the actual structure, and the results are compared. A comparison of the results shows that consideration of structure geometry is necessary for dynamic analysis and it leads to the changes in displacements and accelerations. Consequently, the geometry of the superstructure should be modeled completely instead of the application of an equivalent load. The effect of tunnel diameter and depth on the settlement of superstructures is also studied. Results show that when the tunnel depth and diameter grow, the settlements increase considerably.Keywords: tunnel, FLAC2D, settlement, dynamic analysis
Procedia PDF Downloads 1271642 Removal of Per- and Polyfluoroalkyl Substances (PFASs) Contaminants from the Aqueous Phase Using Chitosan Beads
Authors: Rahim Shahrokhi, Junboum Park
Abstract:
Per- and Polyfluoroalkyl Substances (PFASs) are environmentally persistent halogenated hydrocarbons that have been widely used in many industrial and commercial applications. Recently, contaminating the soil and groundwater due to the ubiquity of PFAS in environments has raised great concern. Adsorption technology is one of the most promising methods for PFAS removal. Chitosan is a biopolymer substance with abundant amine and hydroxyl functional groups, which render it a good adsorbent. This study has tried to enhance the adsorption capacity of chitosan by grafting more amine functional groups on its surface for the removal of two long (PFOA and PFOS) and two short-chain (PFBA, PFBS) PFAS substances from the aqueous phase. A series of batch adsorption tests have been performed to evaluate the adsorption capacity of the used sorbent. Also, the sorbent was analyzed by SEM, FT-IR, zeta potential, and XRD tests. The results demonstrated that both chitosan beads have good potential for adsorbing short and long-chain PFAS from the aqueous phase.Keywords: PFAS, chitosan beads, adsorption, grafted chitosan
Procedia PDF Downloads 641641 A Study of Transferable Strategies in Multilanguage Learning
Authors: Zixi You
Abstract:
With the demand of multilingual speakers increasing in the job market, multi-language learning programs have become more and more popular among undergraduate students. A study on multi-language learning strategies is therefore highly demanded on both practical and theoretical levels. Based on previous classification of learning strategies in SLA, and an investigation of BA Modern Language program students (with post-A level L2 and ab initio L3 learning experience from year one), this study explores and compares different types of learning strategies used by multi-language speakers and learners, transferable learning strategies between L2 and L3, and factors affecting the transfer. The results indicate that all the 23 types of learning strategies of L2 are employed when learning L3 from ab initio level, yet with different tendencies. Learning strategy transfer from L2 to L3 (i.e., the learners attribute the applying of these L3 learning strategies to be a direct result of their L2 learning experience) are observed in all 23 types of learning strategies. Comparatively, six types of “cognitive strategies” have higher transfer tendency than others. With regard to the failure of the transfer of some particular L2 strategies and the development of independent L3 strategies of individual learners, factors such as language proficiency, language typology and learning environment have played important roles among others. The presentation of this study will provide audiences with detailed data, insightful analysis and discussion on both theoretical and practical aspects of multi-language learning that will benefit both students and educators.Keywords: learning strategy, multi-language acquisition, second language acquisition, strategy transfer
Procedia PDF Downloads 5751640 Revising Our Ideas on Revisions: Non-Contact Bridging Plate Fixation of Vancouver B1 and B2 Periprosthetic Femoral Fractures
Authors: S. Ayeko, J. Milton, C. Hughes, K. Anderson, R. G. Middleton
Abstract:
Background: Periprosthetic femoral fractures (PFF) in association with hip hemiarthroplasty or total hip arthroplasty is a common and serious complication. In the Vancouver Classification system algorithm, B1 fractures should be treated with Open Reduction and Internal Fixation (ORIF) and preferentially revised in combination with ORIF if B2 or B3. This study aims to assess patient outcomes after plate osteosynthesis alone for Vancouver B1 and B2 fractures. The main outcome is the 1-year re-revision rate, and secondary outcomes are 30-day and 1-year mortality. Method: This is a retrospective single-centre case-series review from January 2016 to June 2021. Vancouver B1 and B2, non-malignancy fractures in adults over 18 years of age treated with polyaxial Non-Contact Bridging plate osteosynthesis, have been included. Outcomes were gathered from electronic notes and radiographs. Results: There were 50 B1 and 64 B2 fractures. 26 B2 fractures were managed with ORIF and revision, 39 ORIF alone. Of the revision group, one died within 30 days (3.8%), one at one year (3.8%), and two were revised within one year (7.7). Of the B2 ORIF group, three died within 30-day mortality (7.96%), eight at one year (21.1%), and 0 were revised in 1 year. Conclusion: This study has demonstrated that satisfactory outcomes can be achieved with ORIF, excluding revision in the management of B2 fractures.Keywords: arthroplasty, bridging plate, periprosthetic fracture, revision surgery
Procedia PDF Downloads 1011639 Studies and Full Scale Tests for the Development of a Ravine Filling with a Depth of about 12.00m
Authors: Dana Madalina Pohrib, Elena Irina Ciobanu
Abstract:
In compaction works, the most often used codes and standards are those for road embankments and refer to a maximum filling height of 3.00m. When filling a height greater than 3.00m, such codes are no longer valid and thus their application may lead to technical difficulties in the process of compaction and to the achievement of a sufficient degree of compaction. For this reason, in the case of controlled fillings with heights greater than 3.00m it is necessary to formulate and apply a number of special techniques, which can be determined by performing a full scale test. This paper presents the results of the studies and full scale tests conducted for the stabilization of a ravine with vertical banks and a depth of about 12.00m. The fillings will support a heavy traffic road connecting the two parts of a village in Vaslui County, Romania. After analyzing two comparative intervention solutions, the variant of a controlled filling bordered by a monolith concrete retaining wall was chosen. The results obtained by the authors highlighted the need to insert a geogrid reinforcement at every 2.00m for creating a 12.00m thick compacted fill.Keywords: compaction, dynamic probing, stability, soil stratification
Procedia PDF Downloads 3141638 Response of Okra (Abelmoschus Esculentus (L). Moench) to Soil Amendments and Weeding Regime
Authors: Olusegun Raphael Adeyemi, Samuel Oluwaseun Osunleti, Abiddin Adekunle Bashiruddin
Abstract:
Field trials were conducted in 2020 and 2021 at the Teaching and Research Farm of the Federal University of Agriculture Abeokuta, Ogun State, Nigeria to evaluate the effect of biochar application under different weeding regimes on growth and yield of okra. Treatments were laid out in split- plot in a randomized complete block design with three replications. Main plot treatments were three levels of biochar namely 0t/ha, 10t/ha and 20t/ha while sub-plots treatments consisted of four weeding regimes (weeding at 3, 6 and 9 WAS, weeding at 3 and 6 WAS, weeding at 3 WAS and weedy check as control). Data collected on growth and yield of okra, and weed parameters were subjected to analysis of variance and treatment means were separated using least significant difference at p < 0.05. Results showed that biochar applied at 20 t/ha increased okra yield by 47.5% compared to the control. Weeding at 3, 6 and 9 WAS gave the highest okra yield. Uncontrolled weed infestation throughout crop growth resulted in 87.3% yield reduction in okra. It is concluded that weed suppression , growth and yield of okra can be enhanced by the application of biochar at 20t/ha and weeding at 3, 6 and 9 WAS hence recommended.Keywords: biochar, okra, weeding, weed competition
Procedia PDF Downloads 601637 Single Imputation for Audiograms
Authors: Sarah Beaver, Renee Bryce
Abstract:
Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125Hz to 8000Hz. The data contains patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R\textsuperscript{2} values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R\textsuperscript{2} values for the best models for KNN ranges from .89 to .95. The best imputation models received R\textsuperscript{2} between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our best imputation models versus constant imputations by a two percent increase.Keywords: machine learning, audiograms, data imputations, single imputations
Procedia PDF Downloads 821636 Convolutional Neural Network and LSTM Applied to Abnormal Behaviour Detection from Highway Footage
Authors: Rafael Marinho de Andrade, Elcio Hideti Shiguemori, Rafael Duarte Coelho dos Santos
Abstract:
Relying on computer vision, many clever things are possible in order to make the world safer and optimized on resource management, especially considering time and attention as manageable resources, once the modern world is very abundant in cameras from inside our pockets to above our heads while crossing the streets. Thus, automated solutions based on computer vision techniques to detect, react, or even prevent relevant events such as robbery, car crashes and traffic jams can be accomplished and implemented for the sake of both logistical and surveillance improvements. In this paper, we present an approach for vehicles’ abnormal behaviors detection from highway footages, in which the vectorial data of the vehicles’ displacement are extracted directly from surveillance cameras footage through object detection and tracking with a deep convolutional neural network and inserted into a long-short term memory neural network for behavior classification. The results show that the classifications of behaviors are consistent and the same principles may be applied to other trackable objects and scenarios as well.Keywords: artificial intelligence, behavior detection, computer vision, convolutional neural networks, LSTM, highway footage
Procedia PDF Downloads 1661635 Recovery of Metals from Electronic Waste by Physical and Chemical Recycling Processes
Authors: Muammer Kaya
Abstract:
The main purpose of this article is to provide a comprehensive review of various physical and chemical processes for electronic waste (e-waste) recycling, their advantages and shortfalls towards achieving a cleaner process of waste utilization, with especial attention towards extraction of metallic values. Current status and future perspectives of waste printed circuit boards (PCBs) recycling are described. E-waste characterization, dismantling/ disassembly methods, liberation and classification processes, composition determination techniques are covered. Manual selective dismantling and metal-nonmetal liberation at – 150 µm at two step crushing are found to be the best. After size reduction, mainly physical separation/concentration processes employing gravity, electrostatic, magnetic separators, froth floatation etc., which are commonly used in mineral processing, have been critically reviewed here for separation of metals and non-metals, along with useful utilizations of the non-metallic materials. The recovery of metals from e-waste material after physical separation through pyrometallurgical, hydrometallurgical or biohydrometallurgical routes is also discussed along with purification and refining and some suitable flowsheets are also given. It seems that hydrometallurgical route will be a key player in the base and precious metals recoveries from e-waste. E-waste recycling will be a very important sector in the near future from economic and environmental perspectives.Keywords: e-waste, WEEE, recycling, metal recovery, hydrometallurgy, pirometallurgy, biometallurgy
Procedia PDF Downloads 3561634 Combination of Artificial Neural Network Model and Geographic Information System for Prediction Water Quality
Authors: Sirilak Areerachakul
Abstract:
Water quality has initiated serious management efforts in many countries. Artificial Neural Network (ANN) models are developed as forecasting tools in predicting water quality trend based on historical data. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (T-Coliform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 94.23% in classifying the water quality of Saen Saep canal in Bangkok. Subsequently, this encouraging result could be combined with GIS data improves the classification accuracy significantly.Keywords: artificial neural network, geographic information system, water quality, computer science
Procedia PDF Downloads 3431633 A Statistical Approach to Rationalise the Number of Working Load Test for Quality Control of Pile Installation in Singapore Jurong Formation
Authors: Nuo Xu, Kok Hun Goh, Jeyatharan Kumarasamy
Abstract:
Pile load testing is significant during foundation construction due to its traditional role of design validation and routine quality control of the piling works. In order to verify whether piles can take loadings at specified settlements, piles will have to undergo working load test where the test load should normally up to 150% of the working load of a pile. Selection or sampling of piles for the working load test is done subject to the number specified in Singapore National Annex to Eurocode 7 SS EN 1997-1:2010. This paper presents an innovative way to rationalize the number of pile load test by adopting statistical analysis approach and looking at the coefficient of variance of pile elastic modulus using a case study at Singapore Tuas depot. Results are very promising and have shown that it is possible to reduce the number of working load test without influencing the reliability and confidence on the pile quality. Moving forward, it is suggested that more load test data from other geological formations to be examined to compare with the findings from this paper.Keywords: elastic modulus of pile under soil interaction, jurong formation, kentledge test, pile load test
Procedia PDF Downloads 3841632 A Review of Serious Games Characteristics: Common and Specific Aspects
Authors: B. Ben Amara, H. Mhiri Sellami
Abstract:
Serious games adoption is increasing in multiple fields, including health, education, and business. In the same way, many research studied serious games (SGs) for various purposes such as classification, positive impacts, or learning outcomes. Although most of these research examine SG characteristics (SGCs) for conducting their studies, to author’s best knowledge, there is no consensus about features neither in number not in the description. In this paper, we conduct a literature review to collect essential game attributes regardless of the application areas and the study objectives. Firstly, we aimed to define Common SGCs (CSGCs) that characterize the game aspect, by gathering features having the same meanings. Secondly, we tried to identify specific features related to the application area or to the study purpose as a serious aspect. The findings suggest that any type of SG can be defined by a number of CSGCs depicting the gaming side, such as adaptability and rules. In addition, we outlined a number of specific SGCs describing the 'serious' aspect, including specific needs of the domain and indented outcomes. In conclusion, our review showed that it is possible to bridge the research gap due to the lack of consensus by using CSGCs. Moreover, these features facilitate the design and development of successful serious games in any domain and provide a foundation for further research in this area.Keywords: serious game characteristics, serious games common aspects, serious games features, serious games outcomes
Procedia PDF Downloads 1361631 Seasonal Influence on Environmental Indicators of Beach Waste
Authors: Marcus C. Garcia, Giselle C. Guimarães, Luciana H. Yamane, Renato R. Siman
Abstract:
The environmental indicators and the classification of beach waste are essential tools to diagnose the current situation and to indicate ways to improve the quality of this environment. The purpose of this paper was to perform a quali-quantitative analysis of the beach waste on the Curva da Jurema Beach (Espírito Santo - Brazil). Three transects were used with equidistant positioning over the total length of the beach for the solid waste collection. Solid wastes were later classified according to their use and primary raw material from the low and high summer season. During the low season, average values of 7.10 items.m-1, 18.22 g.m-1 and 0.91 g.m-2 were found for the whole beach, and transect 3 contributed the most waste, with the total sum of items equal to 999 (49%), a total mass of 5.62 kg and a total volume of 21.31 L. During the high summer season, average values of 8.22 items.m-1, 54.40 g.m-1 and 2.72 g.m-2 were found, with transect 2 contributing the most to the total sum with 1,212 items (53%), a total mass of 10.76 kg and a total volume of 51.99 L. Of the total collected, plastic materials represented 51.4% of the total number of items, 35.9% of the total mass and 68% of the total volume. The implementation of reactive and proactive measures is necessary so that the management of the solid wastes on Curva da Jurema Beach is in accordance with principles of sustainability.Keywords: beach solid waste, environmental indicators, quali-quantitative analysis, waste management
Procedia PDF Downloads 3061630 Developing and Evaluating Clinical Risk Prediction Models for Coronary Artery Bypass Graft Surgery
Authors: Mohammadreza Mohebbi, Masoumeh Sanagou
Abstract:
The ability to predict clinical outcomes is of great importance to physicians and clinicians. A number of different methods have been used in an effort to accurately predict these outcomes. These methods include the development of scoring systems based on multivariate statistical modelling, and models involving the use of classification and regression trees. The process usually consists of two consecutive phases, namely model development and external validation. The model development phase consists of building a multivariate model and evaluating its predictive performance by examining calibration and discrimination, and internal validation. External validation tests the predictive performance of a model by assessing its calibration and discrimination in different but plausibly related patients. A motivate example focuses on prediction modeling using a sample of patients undergone coronary artery bypass graft (CABG) has been used for illustrative purpose and a set of primary considerations for evaluating prediction model studies using specific quality indicators as criteria to help stakeholders evaluate the quality of a prediction model study has been proposed.Keywords: clinical prediction models, clinical decision rule, prognosis, external validation, model calibration, biostatistics
Procedia PDF Downloads 2971629 Response of Okra (Abelmoschus Esculentus (L). Moench) to Soil Amendments and Weeding Regime
Authors: Olusegun Raphael Adeyemi, Samuel Oluwaseun Osunleti, Abiddin Adekunle Bashiruddin
Abstract:
Field trials were conducted in 2020 and 2021 at the Teaching and Research Farm of the Federal University of Agriculture Abeokuta, Ogun State, Nigeria, to evaluate the effect of biochar application under different weeding regimes on the growth and yield of okra. Treatments were laid out in a split- plot in a randomized complete block design with three replications. Main plot treatments were three levels of biochar, namely 0t/ha, 10t/ha and 20t/ha while sub-plot treatments consisted of four weeding regimes (weeding at 3, 6 and 9 WAS, weeding at 3 and 6 WAS, weeding at 3 WAS and weedy check as control). Data collected on growth and yield of okra and weed parameters were subjected to analysis of variance, and treatment means were separated using the least significant difference at p < 0.05. Results showed that biochar applied at 20 t/ha increased okra yield by 47.5% compared to the control. Weeding at 3, 6 and 9 WAS gave the highest okra yield. Uncontrolled weed infestation throughout crop growth resulted in an 87.3% yield reduction in okra. It is concluded that weed suppression, growth and yield of okra can be enhanced by the application of biochar at 20t/ha and weeding at 3, 6 and 9 WAS hence recommended.Keywords: biochar, okra, weeding, weed competition, yield
Procedia PDF Downloads 641628 Hierarchical Filtering Method of Threat Alerts Based on Correlation Analysis
Authors: Xudong He, Jian Wang, Jiqiang Liu, Lei Han, Yang Yu, Shaohua Lv
Abstract:
Nowadays, the threats of the internet are enormous and increasing; however, the classification of huge alert messages generated in this environment is relatively monotonous. It affects the accuracy of the network situation assessment, and also brings inconvenience to the security managers to deal with the emergency. In order to deal with potential network threats effectively and provide more effective data to improve the network situation awareness. It is essential to build a hierarchical filtering method to prevent the threats. In this paper, it establishes a model for data monitoring, which can filter systematically from the original data to get the grade of threats and be stored for using again. Firstly, it filters the vulnerable resources, open ports of host devices and services. Then use the entropy theory to calculate the performance changes of the host devices at the time of the threat occurring and filter again. At last, sort the changes of the performance value at the time of threat occurring. Use the alerts and performance data collected in the real network environment to evaluate and analyze. The comparative experimental analysis shows that the threat filtering method can effectively filter the threat alerts effectively.Keywords: correlation analysis, hierarchical filtering, multisource data, network security
Procedia PDF Downloads 2011627 Iranian Sexual Health Needs in Viewpoint of Policy Makers: A Qualitative Study
Authors: Mahnaz Motamedi, Mohammad Shahbazi, Shahrzad Rahimi-Naghani, Mehrdad Salehi
Abstract:
Introduction: Identifying sexual health needs, developing appropriate plans, and delivering services to meet those needs is an essential component of health programs for women, men, and children all over the world, especially in poor countries. Main Subject: The aim of this study was to describe the needs of sexual health from the viewpoint of health policymakers in Iran. Methods: A qualitative study using thematic content analysis was designed and conducted. Data gathering was conducted through semi-structured, in-depth interviews with 25 key informants within the healthcare system. Key informants were selected through both purposive and snowball sampling. MAXQUDA software (version 10) was used to facilitate transcription, classification of codes, and conversion of data into meaningful units, by the process of reduction and compression. Results: The analysis of narratives and information categorized sexual health needs into five categories: culturalization of sexual health discourse, sexual health care services, sexual health educational needs, sexual health research needs, and organizational needs. Conclusion: Identifying and explaining sexual health needs is an important factor in determining the priority of sexual health programs and identification of barriers to meet these needs. This can help other policymakers and health planners to develop appropriate programs to promote sexual and reproductive health.Keywords: sexual health, sexual health needs, policy makers, health system, qualitative study
Procedia PDF Downloads 2191626 A Novel Breast Cancer Detection Algorithm Using Point Region Growing Segmentation and Pseudo-Zernike Moments
Authors: Aileen F. Wang
Abstract:
Mammography has been one of the most reliable methods for early detection and diagnosis of breast cancer. However, mammography misses about 17% and up to 30% of breast cancers due to the subtle and unstable appearances of breast cancer in their early stages. Recent computer-aided diagnosis (CADx) technology using Zernike moments has improved detection accuracy. However, it has several drawbacks: it uses manual segmentation, Zernike moments are not robust, and it still has a relatively high false negative rate (FNR)–17.6%. This project will focus on the development of a novel breast cancer detection algorithm to automatically segment the breast mass and further reduce FNR. The algorithm consists of automatic segmentation of a single breast mass using Point Region Growing Segmentation, reconstruction of the segmented breast mass using Pseudo-Zernike moments, and classification of the breast mass using the root mean square (RMS). A comparative study among the various algorithms on the segmentation and reconstruction of breast masses was performed on randomly selected mammographic images. The results demonstrated that the newly developed algorithm is the best in terms of accuracy and cost effectiveness. More importantly, the new classifier RMS has the lowest FNR–6%.Keywords: computer aided diagnosis, mammography, point region growing segmentation, pseudo-zernike moments, root mean square
Procedia PDF Downloads 4531625 Digital Privacy Legislation Awareness
Authors: Henry Foulds, Magda Huisman, Gunther R. Drevin
Abstract:
Privacy is regarded as a fundamental human right and it is clear that the study of digital privacy is an important field. Digital privacy is influenced by new and constantly evolving technologies and this continuous change makes it hard to create legislation to protect people’s privacy from being exploited by misuse of these technologies.
This study aims to benefit digital privacy legislation efforts by evaluating the awareness and perceived importance of digital privacy legislation among computer science students. The chosen fixed variables for the population are study year and gamer classification.
The use of location based services in mobile applications and games are a concern for digital privacy. For this reason the study focused on computer science students as they have a high likelihood to use and develop this type of software. Surveys were used to evaluate awareness and perceived importance of digital privacy legislation.
The results of the study show that privacy legislation and awareness of privacy legislation are important to people. The perception of the importance of privacy legislation increases with academic experience. Awareness of privacy legislation increases from non-gamers to pro gamers.
Keywords: digital privacy, legislation awareness, gaming, privacy legislation
Procedia PDF Downloads 3551624 Rubber Wood as a Potential Biomass Feedstock for Biochar via Slow Pyrolysis
Authors: Adilah Shariff, Radin Hakim, Nurhayati Abdullah
Abstract:
Utilisation of biomass feedstock for biochar has received increasing attention because of their potential for carbon sequestration and soil amendment. The aim of this study is to investigate the characteristics of rubber wood as a biomass feedstock for biochar via slow pyrolysis process. This was achieved by using proximate, ultimate, and thermogravimetric analysis (TGA) as well as heating value, pH and lignocellulosic determination. Rubber wood contains 4.13 mf wt.% moisture, 86.30 mf wt.% volatile matter, 0.60 mf wt.% ash content, and 13.10 mf wt.% fixed carbon. The ultimate analysis shows that rubber wood consists of 44.33 mf wt.% carbon, 6.26 mf wt.% hydrogen, 19.31 mf wt.% nitrogen, 0.31 mf wt.% sulphur, and 29.79 mf wt.% oxygen. The higher heating value of rubber wood is 22.5 MJ/kg, and its lower heating value is 21.2 MJ/kg. At 27 °C, the pH value of rubber wood is 6.83 which is acidic. The lignocellulosic analysis revealed that rubber wood composition consists of 2.63 mf wt.% lignin, 20.13 mf wt.% cellulose, and 65.04 mf wt.% hemicellulose. The volatile matter to fixed carbon ratio is 6.58. This led to a biochar yield of 25.14 wt.% at 500 °C. Rubber wood is an environmental friendly feedstock due to its low sulphur content. Rubber wood therefore is a suitable and a potential feedstock for biochar production via slow pyrolysis.Keywords: biochar, biomass, rubber wood, slow pyrolysis
Procedia PDF Downloads 3201623 Migration, Violent Extremism and Gang Violence in Trinidad and Tobago
Authors: Raghunath Mahabir
Abstract:
This paper provides an analysis of the existing evidence on the relationships between the migration of Venezuelans into Trinidad and Tobago, violent extremism and gang violence. Arguing that there is a dearth of reliable data on the subject matter, the paper fills the gap by providing relevant definitions of terms used, discusses the sources of data and identifies the causes for this migration and the subsequent ramifications for Trinidad and Tobago and for the migrants themselves. A simple but clear classification pointing to the nexus between migration gang violence and violent extremism is developed, following the logic of migration of criminals(gang members), the need to link with local gangs and the view that certain elements within the TnT society has become radicalized to the point where violent extremism is being displayed in different ways. The paper highlights implications for further policy debate:the imperatives for more effective communication between government officials responsible for migration and those personnel who are tasked with countering violent extremism and gang violence: promoting and executing better integration and social inclusion policies which are necessary to minimize social exclusion, and the threat of violent extremist agendas emanating from both Venezuelans and Trinidadians and generally to establish strong analytical framework grounded in stronger definitions, more reliable data and other evidence which can guide further research and analysis and contribute to policy formation.Keywords: migration, violent extremism, gangs, Venezuela
Procedia PDF Downloads 541622 Potential of Two Pelargonium Species for EDTA-Assisted Phytoextraction of Cadmium
Authors: Iram Gul, Maria Manzoor, Muhammad Arshad
Abstract:
The enhanced phytoextraction techniques have been proposed for the remediation of heavy metals contaminated soil. Chelating agents enhance the availability of Cd, which is the main factor in the phytoremediation. This study was conducted to assessed the potential of two Pelargonium species (Pelargonium zonale, Pelargonium hortorum) in EDTA enhanced phytoextraction of Cd using pot experiment. Different doses of EDTA (0, 1, 2, 3, 4, 5 mmol kg-1) was used, and results showed that there was significant increase (approximately 2.1 folds) in the mobility of Cd at EDTA 5 mg kg-1 as compared to control. Both plants have TF and BCF more than 1 and have potential for the phytoextraction of Cd. However, the Pelargonium hortorum showed higher biomass and Cd uptake as compared to Pleragonium zonale. The maximum Cd accumulation in shoot and root of Pelargonium zonale was 484.4 and 264.41 mg kg-1 respectively at 2 mmol kg-1. However, the Pelargonium hortorum accumulate 996.9 and 350 mg kg-1 of Cd in shoot and root respectively at 4 mmol kg-1. Pelargonium hortorum uptake approximately 10.7 folds higher Cd concentration as compared to the Pelargonium zonale. Results revealed that P. hortorum performed better than P. zonal even at higher Cd and EDTA doses however toxicity and leaching potential of increased Cd and EDTA concentrations needs to be explored before field application.Keywords: Cadmium, EDTA, Pelargonium, phytoextraction
Procedia PDF Downloads 3001621 The Advancements of Transformer Models in Part-of-Speech Tagging System for Low-Resource Tigrinya Language
Authors: Shamm Kidane, Ibrahim Abdella, Fitsum Gaim, Simon Mulugeta, Sirak Asmerom, Natnael Ambasager, Yoel Ghebrihiwot
Abstract:
The call for natural language processing (NLP) systems for low-resource languages has become more apparent than ever in the past few years, with the arduous challenges still present in preparing such systems. This paper presents an improved dataset version of the Nagaoka Tigrinya Corpus for Parts-of-Speech (POS) classification system in the Tigrinya language. The size of the initial Nagaoka dataset was incremented, totaling the new tagged corpus to 118K tokens, which comprised the 12 basic POS annotations used previously. The additional content was also annotated manually in a stringent manner, followed similar rules to the former dataset and was formatted in CONLL format. The system made use of the novel approach in NLP tasks and use of the monolingually pre-trained TiELECTRA, TiBERT and TiRoBERTa transformer models. The highest achieved score is an impressive weighted F1-score of 94.2%, which surpassed the previous systems by a significant measure. The system will prove useful in the progress of NLP-related tasks for Tigrinya and similarly related low-resource languages with room for cross-referencing higher-resource languages.Keywords: Tigrinya POS corpus, TiBERT, TiRoBERTa, conditional random fields
Procedia PDF Downloads 1031620 Microfungi on Sandy Beaches: Potential Threats for People Enjoying Lakeside Recreation
Authors: Tomasz Balabanski, Anna Biedunkiewicz
Abstract:
Research on basic bacteriological and physicochemical parameters conducted by state institutions (Provincial Sanitary and Epidemiological Station and District Sanitary and Epidemiological Station) are limited to bathing waters under constant sanitary and epidemiological supervision. Unfortunately, no routine or monitoring tests are carried out for the presence of microfungi. This also applies to beach sand used for recreational purposes. The purpose of the planned own research was to determine the diversity of the mycobiota present on supervised and unsupervised sandy beaches, on the shores of lakes, of municipal baths used for recreation. The research material consisted of microfungi isolated from April to October 2019 from sandy beaches of supervised and unsupervised lakes located within the administrative boundaries of the city of Olsztyn (North-Eastern Poland, Europe). Four lakes, out of the fifteen available (Tyrsko, Kortowskie, Skanda, and Ukiel), whose bathing waters are subjected to routine bacteriological tests, were selected for testing. To compare the diversity of the mycobiota composition on the surface and below the sand mixing layer, samples were taken from two depths (10 cm and 50 cm), using a soil auger. Micro-fungi from sand samples were obtained by surface inoculation on an RBC medium from the 1st dilution (1:10). After incubation at 25°C for 96-144 h, the average number of CFU/dm³ was counted. Morphologically differing yeast colonies were passaged into Sabouraud agar slants with gentamicin and incubated again. For detailed laboratory analyses, culture methods (macro- and micro-cultures) and identification methods recommended in diagnostic mycological laboratories were used. The conducted research allowed obtaining 140 yeast isolates. The total average population ranged from 1.37 × 10⁻² CFU/dm³ before the bathing season (April 2019), 1.64 × 10⁻³ CFU/dm³ in the season (May-September 2019), and 1.60 × 10⁻² CFU/dm³ after the end of the season (October 2019). More microfungi were obtained from the surface layer of sand (100 isolates) than from the deeper layer (40 isolates). Reported microfungi may circulate seasonally between individual elements of the lake ecosystem. From the sand/soil from the catchment area beaches, they can get into bathing waters, stopping periodically on the coastal phyllosphere. The sand of the beaches and the phyllosphere are a kind of filter for the water reservoir. The presence of microfungi with various pathogenicity potential in these places is of major epidemiological importance. Therefore, full monitoring of not only recreational waters but also sandy beaches should be treated as an element of constant control by appropriate supervisory institutions, allowing recreational areas for public use so that the use of these places does not involve the risk of infection. Acknowledgment: 'Development Program of the University of Warmia and Mazury in Olsztyn', POWR.03.05.00-00-Z310/17, co-financed by the European Union under the European Social Fund from the Operational Program Knowledge Education Development. Tomasz Bałabański is a recipient of a scholarship from the Programme Interdisciplinary Doctoral Studies in Biology and Biotechnology (POWR.03.05.00-00-Z310/17), which is funded by the 'European Social Fund'.Keywords: beach, microfungi, sand, yeasts
Procedia PDF Downloads 1021619 Isolation Preserving Medical Conclusion Hold Structure via C5 Algorithm
Authors: Swati Kishor Zode, Rahul Ambekar
Abstract:
Data mining is the extraction of fascinating examples on the other hand information from enormous measure of information and choice is made as indicated by the applicable information extracted. As of late, with the dangerous advancement in internet, stockpiling of information and handling procedures, privacy preservation has been one of the major (higher) concerns in data mining. Various techniques and methods have been produced for protection saving data mining. In the situation of Clinical Decision Support System, the choice is to be made on the premise of the data separated from the remote servers by means of Internet to diagnose the patient. In this paper, the fundamental thought is to build the precision of Decision Support System for multiple diseases for different maladies and in addition protect persistent information while correspondence between Clinician side (Client side) also, the Server side. A privacy preserving protocol for clinical decision support network is proposed so that patients information dependably stay scrambled amid diagnose prepare by looking after the accuracy. To enhance the precision of Decision Support System for various malady C5.0 classifiers and to save security, a Homomorphism encryption algorithm Paillier cryptosystem is being utilized.Keywords: classification, homomorphic encryption, clinical decision support, privacy
Procedia PDF Downloads 3301618 Resistivity Tomography Optimization Based on Parallel Electrode Linear Back Projection Algorithm
Authors: Yiwei Huang, Chunyu Zhao, Jingjing Ding
Abstract:
Electrical Resistivity Tomography has been widely used in the medicine and the geology, such as the imaging of the lung impedance and the analysis of the soil impedance, etc. Linear Back Projection is the core algorithm of Electrical Resistivity Tomography, but the traditional Linear Back Projection can not make full use of the information of the electric field. In this paper, an imaging method of Parallel Electrode Linear Back Projection for Electrical Resistivity Tomography is proposed, which generates the electric field distribution that is not linearly related to the traditional Linear Back Projection, captures the new information and improves the imaging accuracy without increasing the number of electrodes by changing the connection mode of the electrodes. The simulation results show that the accuracy of the image obtained by the inverse operation obtained by the Parallel Electrode Linear Back Projection can be improved by about 20%.Keywords: electrical resistivity tomography, finite element simulation, image optimization, parallel electrode linear back projection
Procedia PDF Downloads 153