Search results for: physics-informed neural networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3734

Search results for: physics-informed neural networks

314 A Lightweight Blockchain: Enhancing Internet of Things Driven Smart Buildings Scalability and Access Control Using Intelligent Direct Acyclic Graph Architecture and Smart Contracts

Authors: Syed Irfan Raza Naqvi, Zheng Jiangbin, Ahmad Moshin, Pervez Akhter

Abstract:

Currently, the IoT system depends on a centralized client-servant architecture that causes various scalability and privacy vulnerabilities. Distributed ledger technology (DLT) introduces a set of opportunities for the IoT, which leads to practical ideas for existing components at all levels of existing architectures. Blockchain Technology (BCT) appears to be one approach to solving several IoT problems, like Bitcoin (BTC) and Ethereum, which offer multiple possibilities. Besides, IoTs are resource-constrained devices with insufficient capacity and computational overhead to process blockchain consensus mechanisms; the traditional BCT existing challenge for IoTs is poor scalability, energy efficiency, and transaction fees. IOTA is a distributed ledger based on Direct Acyclic Graph (DAG) that ensures M2M micro-transactions are free of charge. IOTA has the potential to address existing IoT-related difficulties such as infrastructure scalability, privacy and access control mechanisms. We proposed an architecture, SLDBI: A Scalable, lightweight DAG-based Blockchain Design for Intelligent IoT Systems, which adapts the DAG base Tangle and implements a lightweight message data model to address the IoT limitations. It enables the smooth integration of new IoT devices into a variety of apps. SLDBI enables comprehensive access control, energy efficiency, and scalability in IoT ecosystems by utilizing the Masked Authentication Message (MAM) protocol and the IOTA Smart Contract Protocol (ISCP). Furthermore, we suggest proof-of-work (PoW) computation on the full node in an energy-efficient way. Experiments have been carried out to show the capability of a tangle to achieve better scalability while maintaining energy efficiency. The findings show user access control management at granularity levels and ensure scale up to massive networks with thousands of IoT nodes, such as Smart Connected Buildings (SCBDs).

Keywords: blockchain, IOT, direct acyclic graphy, scalability, access control, architecture, smart contract, smart connected buildings

Procedia PDF Downloads 122
313 The Intersection of Autistic and Trans* Identity: Qualitative Engaged Study in Eastern Europian Activist Groups

Authors: Hana Drštičková

Abstract:

The paper describes the findings of a qualitative, engaged research focused on the intersection between transgender and autistic identity in a politically engaged setting of activist (trans, queer, crip, disability justice or any combination thereof) groups. It explores the relationship that autistic and trans people have towards activism and how do they feel their identity(ies) impact the kind of political action they take. Geographically, the research terrain is located mainly in Czechia; however, there are important overlaps with other Eastern European countries. The basis of the research’s approach is built on the interconnected principles of the feminist theory of intersectionality, queer/trans studies, disability studies and the concept of the Neurodiversity Paradigm. This paper argues that the social phenomenon of autism and transness is formed differently in Czechia/Eastern Europe and, therefore, deserves additional attention. Nevertheless, it points out that, even though the socio-political context is different, the fact that these identities have a radical political potential to disrupt normative structures in society remains the same. The measure of oppression these structures generate, and the near absence of any public discourse beyond the pathological paradigm in the chosen terrain contributes to the emergence of mainly queer and trans-activist, and to a lesser extent crip, disability justice or mad activist groups, that attract trans and autistic membership. The subsections of the research focus on the topics of the mutual influence of both identities in flux within individual participants, the perceived (dis)connection of networks of oppression or, conversely, support and identification with the community or communities, and the question of how the trans* and autistic members feel their presence affects the activity, internal dynamics, thematic scope and general values of the activist groups they participate in. The research methodology includes participant observation and active participation in groups where the researcher acts as a partial insider, semi-structured in-depth interviews and a critical participatory methodology. Also included is the reflection of not only the combination of researcher and insider roles but also the combination of research and activist intent.

Keywords: activism, autism, queer, neurodiversity, neuroqueer, transgender

Procedia PDF Downloads 76
312 A Generalized Framework for Adaptive Machine Learning Deployments in Algorithmic Trading

Authors: Robert Caulk

Abstract:

A generalized framework for adaptive machine learning deployments in algorithmic trading is introduced, tested, and released as open-source code. The presented software aims to test the hypothesis that recent data contains enough information to form a probabilistically favorable short-term price prediction. Further, the framework contains various adaptive machine learning techniques that are geared toward generating profit during strong trends and minimizing losses during trend changes. Results demonstrate that this adaptive machine learning approach is capable of capturing trends and generating profit. The presentation also discusses the importance of defining the parameter space associated with the dynamic training data-set and using the parameter space to identify and remove outliers from prediction data points. Meanwhile, the generalized architecture enables common users to exploit the powerful machinery while focusing on high-level feature engineering and model testing. The presentation also highlights common strengths and weaknesses associated with the presented technique and presents a broad range of well-tested starting points for feature set construction, target setting, and statistical methods for enforcing risk management and maintaining probabilistically favorable entry and exit points. The presentation also describes the end-to-end data processing tools associated with FreqAI, including automatic data fetching, data aggregation, feature engineering, safe and robust data pre-processing, outlier detection, custom machine learning and statistical tools, data post-processing, and adaptive training backtest emulation, and deployment of adaptive training in live environments. Finally, the generalized user interface is also discussed in the presentation. Feature engineering is simplified so that users can seed their feature sets with common indicator libraries (e.g. TA-lib, pandas-ta). The user also feeds data expansion parameters to fill out a large feature set for the model, which can contain as many as 10,000+ features. The presentation describes the various object-oriented programming techniques employed to make FreqAI agnostic to third-party libraries and external data sources. In other words, the back-end is constructed in such a way that users can leverage a broad range of common regression libraries (Catboost, LightGBM, Sklearn, etc) as well as common Neural Network libraries (TensorFlow, PyTorch) without worrying about the logistical complexities associated with data handling and API interactions. The presentation finishes by drawing conclusions about the most important parameters associated with a live deployment of the adaptive learning framework and provides the road map for future development in FreqAI.

Keywords: machine learning, market trend detection, open-source, adaptive learning, parameter space exploration

Procedia PDF Downloads 89
311 Mitigation of Cascading Power Outage Caused Power Swing Disturbance Using Real-time DLR Applications

Authors: Dejenie Birile Gemeda, Wilhelm Stork

Abstract:

The power system is one of the most important systems in modern society. The existing power system is approaching the critical operating limits as views of several power system operators. With the increase of load demand, high capacity and long transmission networks are widely used to meet the requirement. With the integration of renewable energies such as wind and solar, the uncertainty, intermittence bring bigger challenges to the operation of power systems. These dynamic uncertainties in the power system lead to power disturbances. The disturbances in a heavily stressed power system cause distance relays to mal-operation or false alarms during post fault power oscillations. This unintended operation of these relays may propagate and trigger cascaded trappings leading to total power system blackout. This is due to relays inability to take an appropriate tripping decision based on ensuing power swing. According to the N-1 criterion, electric power systems are generally designed to withstand a single failure without causing the violation of any operating limit. As a result, some overloaded components such as overhead transmission lines can still work for several hours under overload conditions. However, when a large power swing happens in the power system, the settings of the distance relay of zone 3 may trip the transmission line with a short time delay, and they will be acting so quickly that the system operator has no time to respond and stop the cascading. Misfiring of relays in absence of fault due to power swing may have a significant loss in economic performance, thus a loss in revenue for power companies. This research paper proposes a method to distinguish stable power swing from unstable using dynamic line rating (DLR) in response to power swing or disturbances. As opposed to static line rating (SLR), dynamic line rating support effective mitigation actions against propagating cascading outages in a power grid. Effective utilization of existing transmission lines capacity using machine learning DLR predictions will improve the operating point of distance relay protection, thus reducing unintended power outages due to power swing.

Keywords: blackout, cascading outages, dynamic line rating, power swing, overhead transmission lines

Procedia PDF Downloads 143
310 Ant-Tracking Attribute: A Model for Understanding Production Response

Authors: Prince Suka Neekia Momta, Rita Iheoma Achonyeulo

Abstract:

Ant Tracking seismic attribute applied over 4-seconds seismic volume revealed structural features triggered by clay diapirism, growth fault development, rapid deltaic sedimentation and intense drilling. The attribute was extracted on vertical seismic sections and time slices. Mega tectonic structures such as growth faults and clay diapirs are visible on vertical sections with obscured minor lineaments or fractures. Fractures are distinctively visible on time slices yielding recognizable patterns corroborating established geologic models. This model seismic attribute enabled the understanding of fluid flow characteristics and production responses. Three structural patterns recognized in the field include: major growth faults, minor faults or lineaments and network of fractures. Three growth faults mapped on seismic section form major deformation bands delimiting the area into three blocks or depocenters. The growth faults trend E-W, dip down-to-south in the basin direction, and cut across the study area. The faults initiating from about 2000ms extended up to 500ms, and tend to progress parallel and opposite to the growth direction of an upsurging diapiric structure. The diapiric structures form the major deformational bands originating from great depths (below 2000ms) and rising to about 1200ms where series of sedimentary layers onlapped and pinchout stratigraphically against the diapir. Several other secondary faults or lineaments that form parallel streaks to one another also accompanied the growth faults. The fracture networks have no particular trend but form a network surrounding the well area. Faults identified in the study area have potentials for structural hydrocarbon traps whereas the presence of fractures created a fractured-reservoir condition that enhanced rapid fluid flow especially water. High aquifer flow potential aided by possible fracture permeability resulted in rapid decline in oil rate. Through the application of Ant Tracking attribute, it is possible to obtain detailed interpretation of structures that can have direct influence on oil and gas production.

Keywords: seismic, attributes, production, structural

Procedia PDF Downloads 70
309 Qualitative Modeling of Transforming Growth Factor Beta-Associated Biological Regulatory Network: Insight into Renal Fibrosis

Authors: Ayesha Waqar Khan, Mariam Altaf, Jamil Ahmad, Shaheen Shahzad

Abstract:

Kidney fibrosis is an anticipated outcome of possibly all types of progressive chronic kidney disease (CKD). Epithelial-mesenchymal transition (EMT) signaling pathway is responsible for production of matrix-producing fibroblasts and myofibroblasts in diseased kidney. In this study, a discrete model of TGF-beta (transforming growth factor) and CTGF (connective tissue growth factor) was constructed using Rene Thomas formalism to investigate renal fibrosis turn over. The kinetic logic proposed by Rene Thomas is a renowned approach for modeling of Biological Regulatory Networks (BRNs). This modeling approach uses a set of constraints which represents the dynamics of the BRN thus analyzing the pathway and predicting critical trajectories that lead to a normal or diseased state. The molecular connection between TGF-beta, Smad 2/3 (transcription factor) phosphorylation and CTGF is modeled using GenoTech. The order of BRN is CTGF, TGF-B, and SMAD3 respectively. The predicted cycle depicts activation of TGF-B (TGF-β) via cleavage of its own pro-domain (0,1,0) and presentation to TGFR-II receptor phosphorylating SMAD3 (Smad2/3) in the state (0,1,1). Later TGF-B is turned off (0,0,1) thereby activating SMAD3 that further stimulates the expression of CTGF in the state (1,0,1) and itself turns off in (1,0,0). Elevated CTGF expression reactivates TGF-B (1,1,0) and the cycle continues. The predicted model has generated one cycle and two steady states. Cyclic behavior in this study represents the diseased state in which all three proteins contribute to renal fibrosis. The proposed model is in accordance with the experimental findings of the existing diseased state. Extended cycle results in enhanced CTGF expression through Smad2/3 and Smad4 translocation in the nucleus. The results suggest that the system converges towards organ fibrogenesis if CTGF remains constructively active along with Smad2/3 and Smad 4 that plays an important role in kidney fibrosis. Therefore, modeling regulatory pathways of kidney fibrosis will escort to the progress of therapeutic tools and real-world useful applications such as predictive and preventive medicine.

Keywords: CTGF, renal fibrosis signaling pathway, system biology, qualitative modeling

Procedia PDF Downloads 179
308 Implementation of Chlorine Monitoring and Supply System for Drinking Water Tanks

Authors: Ugur Fidan, Naim Karasekreter

Abstract:

Healthy and clean water should not contain disease-causing micro-organisms and toxic chemicals and must contain the necessary minerals in a balanced manner. Today, water resources have a limited and strategic importance, necessitating the management of water reserves. Water tanks meet the water needs of people and should be regularly chlorinated to prevent waterborne diseases. For this purpose, automatic chlorination systems placed in water tanks for killing bacteria. However, the regular operation of automatic chlorination systems depends on refilling the chlorine tank when it is empty. For this reason, there is a need for a stock control system, in which chlorine levels are regularly monitored and supplied. It has become imperative to take urgent measures against epidemics caused by the fact that most of our country is not aware of the end of chlorine. The aim of this work is to rehabilitate existing water tanks and to provide a method for a modern water storage system in which chlorination is digitally monitored by turning the newly established water tanks into a closed system. A sensor network structure using GSM/GPRS communication infrastructure has been developed in the study. The system consists of two basic units: hardware and software. The hardware includes a chlorine level sensor, an RFID interlock system for authorized personnel entry into water tank, a motion sensor for animals and other elements, and a camera system to ensure process safety. It transmits the data from the hardware sensors to the host server software via the TCP/IP protocol. The main server software processes the incoming data through the security algorithm and informs the relevant unit responsible (Security forces, Chlorine supply unit, Public health, Local Administrator) by e-mail and SMS. Since the software is developed base on the web, authorized personnel are also able to monitor drinking water tank and report data on the internet. When the findings and user feedback obtained as a result of the study are evaluated, it is shown that closed drinking water tanks are built with GRP type material, and continuous monitoring in digital environment is vital for sustainable health water supply for people.

Keywords: wireless sensor networks (WSN), monitoring, chlorine, water tank, security

Procedia PDF Downloads 160
307 Efficient Residual Road Condition Segmentation Network Based on Reconstructed Images

Authors: Xiang Shijie, Zhou Dong, Tian Dan

Abstract:

This paper focuses on the application of real-time semantic segmentation technology in complex road condition recognition, aiming to address the critical issue of how to improve segmentation accuracy while ensuring real-time performance. Semantic segmentation technology has broad application prospects in fields such as autonomous vehicle navigation and remote sensing image recognition. However, current real-time semantic segmentation networks face significant technical challenges and optimization gaps in balancing speed and accuracy. To tackle this problem, this paper conducts an in-depth study and proposes an innovative Guided Image Reconstruction Module. By resampling high-resolution images into a set of low-resolution images, this module effectively reduces computational complexity, allowing the network to more efficiently extract features within limited resources, thereby improving the performance of real-time segmentation tasks. In addition, a dual-branch network structure is designed in this paper to fully leverage the advantages of different feature layers. A novel Hybrid Attention Mechanism is also introduced, which can dynamically capture multi-scale contextual information and effectively enhance the focus on important features, thus improving the segmentation accuracy of the network in complex road condition. Compared with traditional methods, the proposed model achieves a better balance between accuracy and real-time performance and demonstrates competitive results in road condition segmentation tasks, showcasing its superiority. Experimental results show that this method not only significantly improves segmentation accuracy while maintaining real-time performance, but also remains stable across diverse and complex road conditions, making it highly applicable in practical scenarios. By incorporating the Guided Image Reconstruction Module, dual-branch structure, and Hybrid Attention Mechanism, this paper presents a novel approach to real-time semantic segmentation tasks, which is expected to further advance the development of this field.

Keywords: hybrid attention mechanism, image reconstruction, real-time, road status recognition

Procedia PDF Downloads 23
306 Spanish Language Violence Corpus: An Analysis of Offensive Language in Twitter

Authors: Beatriz Botella-Gil, Patricio Martínez-Barco, Lea Canales

Abstract:

The Internet and ICT are an integral element of and omnipresent in our daily lives. Technologies have changed the way we see the world and relate to it. The number of companies in the ICT sector is increasing every year, and there has also been an increase in the work that occurs online, from sending e-mails to the way companies promote themselves. In social life, ICT’s have gained momentum. Social networks are useful for keeping in contact with family or friends that live far away. This change in how we manage our relationships using electronic devices and social media has been experienced differently depending on the age of the person. According to currently available data, people are increasingly connected to social media and other forms of online communication. Therefore, it is no surprise that violent content has also made its way to digital media. One of the important reasons for this is the anonymity provided by social media, which causes a sense of impunity in the victim. Moreover, it is not uncommon to find derogatory comments, attacking a person’s physical appearance, hobbies, or beliefs. This is why it is necessary to develop artificial intelligence tools that allow us to keep track of violent comments that relate to violent events so that this type of violent online behavior can be deterred. The objective of our research is to create a guide for detecting and recording violent messages. Our annotation guide begins with a study on the problem of violent messages. First, we consider the characteristics that a message should contain for it to be categorized as violent. Second, the possibility of establishing different levels of aggressiveness. To download the corpus, we chose the social network Twitter for its ease of obtaining free messages. We chose two recent, highly visible violent cases that occurred in Spain. Both of them experienced a high degree of social media coverage and user comments. Our corpus has a total of 633 messages, manually tagged, according to the characteristics we considered important, such as, for example, the verbs used, the presence of exclamations or insults, and the presence of negations. We consider it necessary to create wordlists that are present in violent messages as indicators of violence, such as lists of negative verbs, insults, negative phrases. As a final step, we will use automatic learning systems to check the data obtained and the effectiveness of our guide.

Keywords: human language technologies, language modelling, offensive language detection, violent online content

Procedia PDF Downloads 131
305 Application of Artificial Intelligence in Market and Sales Network Management: Opportunities, Benefits, and Challenges

Authors: Mohamad Mahdi Namdari

Abstract:

In today's rapidly changing and evolving business competition, companies and organizations require advanced and efficient tools to manage their markets and sales networks. Big data analysis, quick response in competitive markets, process and operations optimization, and forecasting customer behavior are among the concerns of executive managers. Artificial intelligence, as one of the emerging technologies, has provided extensive capabilities in this regard. The use of artificial intelligence in market and sales network management can lead to improved efficiency, increased decision-making accuracy, and enhanced customer satisfaction. Specifically, AI algorithms can analyze vast amounts of data, identify complex patterns, and offer strategic suggestions to improve sales performance. However, many companies are still distant from effectively leveraging this technology, and those that do face challenges in fully exploiting AI's potential in market and sales network management. It appears that the general public's and even the managerial and academic communities' lack of knowledge of this technology has caused the managerial structure to lag behind the progress and development of artificial intelligence. Additionally, high costs, fear of change and employee resistance, lack of quality data production processes, the need for updating structures and processes, implementation issues, the need for specialized skills and technical equipment, and ethical and privacy concerns are among the factors preventing widespread use of this technology in organizations. Clarifying and explaining this technology, especially to the academic, managerial, and elite communities, can pave the way for a transformative beginning. The aim of this research is to elucidate the capacities of artificial intelligence in market and sales network management, identify its opportunities and benefits, and examine the existing challenges and obstacles. This research aims to leverage AI capabilities to provide a framework for enhancing market and sales network performance for managers. The results of this research can help managers and decision-makers adopt more effective strategies for business growth and development by better understanding the capabilities and limitations of artificial intelligence.

Keywords: artificial intelligence, market management, sales network, big data analysis, decision-making, digital marketing

Procedia PDF Downloads 42
304 Strengthening Functional Community-Provider Linkages: Lessons from the Challenge Initiative for Healthy Cities Program in Indore, India

Authors: Sabyasachi Behera, Shiv Kumar, Pramod Gautam, Anisur Rahman, Pawan Pathak, Rahul Bhadouria

Abstract:

Background: The increasing proportion of population especially urban poor and vulnerable groups or groups with specific needs, with health indicators worse than their rural counterparts in India face various issues related with availability and quality of health care. The reasons are myriad, starting from information and awareness of the community, especially, in a scenario wherein the needs and challenges of floating and migrant urban populations remain poorly understood. Weak linkages between health care facilities and slum dwellers and vulnerable populations hinder the improvement of health services for urban poor. Method: To address this issue, TCIHC program is helping health department of Indore city of Madhya Pradesh to establish a referral mechanism with a dual approach: at both community and facility level. The former is based on the premise of ‘building social capital’, i.e. norms and networks within a community facilitating collective action, helps improve the demand and supply of health services at appropriate levels of care (Minus 2: Accredited Social Health Activist and Community Health Groups; Minus 1: Urban Health Nutrition Days; Zero: Urban Primary Health Center; Plus 1: secondary facility with BEmONC services; Plus 2: secondary facilities with CEmONC services; Plus 3: tertiary level facility) for the urban poor. The latter focuses on encouraging the provision of all services at various levels of service delivery points and stakeholders to function in a coordinated manner to ensure better health service availability and coverage in underserved slum areas. Results: This initiative has enhanced the utilization of community based, primary and secondary level services through defined referral pathways that are clearly known to a community dweller. Conclusion: An ideal referral mechanism should begin with referral at the community level wherein services of a frontline health care provider are accessed by them at their door-step, causing no delay in both understanding and decision on the health issues faced by them.

Keywords: levels of care, linkages, referral mechanism, service delivery

Procedia PDF Downloads 143
303 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining

Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj

Abstract:

Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.

Keywords: data mining, SME growth, success factors, web mining

Procedia PDF Downloads 267
302 Optimizing Electric Vehicle Charging Networks with Dynamic Pricing and Demand Elasticity

Authors: Chiao-Yi Chen, Dung-Ying Lin

Abstract:

With the growing awareness of environmental protection and the implementation of government carbon reduction policies, the number of electric vehicles (EVs) has rapidly increased, leading to a surge in charging demand and imposing significant challenges on the existing power grid’s capacity. Traditional urban power grid planning has not adequately accounted for the additional load generated by EV charging, which often strains the infrastructure. This study aims to optimize grid operation and load management by dynamically adjusting EV charging prices based on real-time electricity supply and demand, leveraging consumer demand elasticity to enhance system efficiency. This study uniquely addresses the intricate interplay between urban traffic patterns and power grid dynamics in the context of electric vehicle (EV) adoption. By integrating Hsinchu City's road network with the IEEE 33-bus system, the research creates a comprehensive model that captures both the spatial and temporal aspects of EV charging demand. This approach allows for a nuanced analysis of how traffic flow directly influences the load distribution across the power grid. The strategic placement of charging stations at key nodes within the IEEE 33-bus system, informed by actual road traffic data, enables a realistic simulation of the dynamic relationship between vehicle movement and energy consumption. This integration of transportation and energy systems provides a holistic view of the challenges and opportunities in urban EV infrastructure planning, highlighting the critical need for solutions that can adapt to the ever-changing interplay between traffic patterns and grid capacity. The proposed dynamic pricing strategy effectively reduces peak charging loads, enhances the operational efficiency of charging stations, and maximizes operator profits, all while ensuring grid stability. These findings provide practical insights and a valuable framework for optimizing EV charging infrastructure and policies in future smart cities, contributing to more resilient and sustainable urban energy systems.

Keywords: dynamic pricing, demand elasticity, EV charging, grid load balancing, optimization

Procedia PDF Downloads 19
301 A Method for Evaluating Gender Equity of Cycling from Rawls Justice Perspective

Authors: Zahra Hamidi

Abstract:

Promoting cycling, as an affordable environmentally friendly mode of transport to replace private car use has been central to sustainable transport policies. Cycling is faster than walking and combined with public transport has the potential to extend the opportunities that people can access. In other words, cycling, besides direct positive health impacts, can improve people mobility and ultimately their quality of life. Transport literature well supports the close relationship between mobility, quality of life, and, well being. At the same time inequity in the distribution of access and mobility has been associated with the key aspects of injustice and social exclusion. The pattern of social exclusion and inequality in access are also often related to population characteristics such as age, gender, income, health, and ethnic background. Therefore, while investing in transport infrastructure it is important to consider the equity of provided access for different population groups. This paper proposes a method to evaluate the equity of cycling in a city from Rawls egalitarian perspective. Since this perspective is concerned with the difference between individuals and social groups, this method combines accessibility measures and Theil index of inequality that allows capturing the inequalities ‘within’ and ‘between’ groups. The paper specifically focuses on two population characteristics as gender and ethnic background. Following Rawls equity principles, this paper measures accessibility by bikes to a selection of urban activities that can be linked to the concept of the social primary goods. Moreover, as growing number of cities around the world have launched bike-sharing systems (BSS) this paper incorporates both private and public bikes networks in the estimation of accessibility levels. Additionally, the typology of bike lanes (separated from or shared with roads), the presence of a bike sharing system in the network, as well as bike facilities (e.g. parking racks) have been included in the developed accessibility measures. Application of this proposed method to a real case study, the city of Malmö, Sweden, shows its effectiveness and efficiency. Although the accessibility levels were estimated only based on gender and ethnic background characteristics of the population, the author suggests that the analysis can be applied to other contexts and further developed using other properties, such as age, income, or health.

Keywords: accessibility, cycling, equity, gender

Procedia PDF Downloads 403
300 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology

Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik

Abstract:

Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.

Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms

Procedia PDF Downloads 79
299 Predicting Daily Patient Hospital Visits Using Machine Learning

Authors: Shreya Goyal

Abstract:

The study aims to build user-friendly software to understand patient arrival patterns and compute the number of potential patients who will visit a particular health facility for a given period by using a machine learning algorithm. The underlying machine learning algorithm used in this study is the Support Vector Machine (SVM). Accurate prediction of patient arrival allows hospitals to operate more effectively, providing timely and efficient care while optimizing resources and improving patient experience. It allows for better allocation of staff, equipment, and other resources. If there's a projected surge in patients, additional staff or resources can be allocated to handle the influx, preventing bottlenecks or delays in care. Understanding patient arrival patterns can also help streamline processes to minimize waiting times for patients and ensure timely access to care for patients in need. Another big advantage of using this software is adhering to strict data protection regulations such as the Health Insurance Portability and Accountability Act (HIPAA) in the United States as the hospital will not have to share the data with any third party or upload it to the cloud because the software can read data locally from the machine. The data needs to be arranged in. a particular format and the software will be able to read the data and provide meaningful output. Using software that operates locally can facilitate compliance with these regulations by minimizing data exposure. Keeping patient data within the hospital's local systems reduces the risk of unauthorized access or breaches associated with transmitting data over networks or storing it in external servers. This can help maintain the confidentiality and integrity of sensitive patient information. Historical patient data is used in this study. The input variables used to train the model include patient age, time of day, day of the week, seasonal variations, and local events. The algorithm uses a Supervised learning method to optimize the objective function and find the global minima. The algorithm stores the values of the local minima after each iteration and at the end compares all the local minima to find the global minima. The strength of this study is the transfer function used to calculate the number of patients. The model has an output accuracy of >95%. The method proposed in this study could be used for better management planning of personnel and medical resources.

Keywords: machine learning, SVM, HIPAA, data

Procedia PDF Downloads 65
298 An Extended Domain-Specific Modeling Language for Marine Observatory Relying on Enterprise Architecture

Authors: Charbel Aoun, Loic Lagadec

Abstract:

A Sensor Network (SN) is considered as an operation of two phases: (1) the observation/measuring, which means the accumulation of the gathered data at each sensor node; (2) transferring the collected data to some processing center (e.g., Fusion Servers) within the SN. Therefore, an underwater sensor network can be defined as a sensor network deployed underwater that monitors underwater activity. The deployed sensors, such as Hydrophones, are responsible for registering underwater activity and transferring it to more advanced components. The process of data exchange between the aforementioned components perfectly defines the Marine Observatory (MO) concept which provides information on ocean state, phenomena and processes. The first step towards the implementation of this concept is defining the environmental constraints and the required tools and components (Marine Cables, Smart Sensors, Data Fusion Server, etc). The logical and physical components that are used in these observatories perform some critical functions such as the localization of underwater moving objects. These functions can be orchestrated with other services (e.g. military or civilian reaction). In this paper, we present an extension to our MO meta-model that is used to generate a design tool (ArchiMO). We propose new constraints to be taken into consideration at design time. We illustrate our proposal with an example from the MO domain. Additionally, we generate the corresponding simulation code using our self-developed domain-specific model compiler. On the one hand, this illustrates our approach in relying on Enterprise Architecture (EA) framework that respects: multiple views, perspectives of stakeholders, and domain specificity. On the other hand, it helps reducing both complexity and time spent in design activity, while preventing from design modeling errors during porting this activity in the MO domain. As conclusion, this work aims to demonstrate that we can improve the design activity of complex system based on the use of MDE technologies and a domain-specific modeling language with the associated tooling. The major improvement is to provide an early validation step via models and simulation approach to consolidate the system design.

Keywords: smart sensors, data fusion, distributed fusion architecture, sensor networks, domain specific modeling language, enterprise architecture, underwater moving object, localization, marine observatory, NS-3, IMS

Procedia PDF Downloads 177
297 Impact of Instrument Transformer Secondary Connections on Performance of Protection System: Experiences from Indian POWERGRID

Authors: Pankaj Kumar Jha, Mahendra Singh Hada, Brijendra Singh, Sandeep Yadav

Abstract:

Protective relays are commonly connected to the secondary windings of instrument transformers, i.e., current transformers (CTs) and/or capacitive voltage transformers (CVTs). The purpose of CT and CVT is to provide galvanic isolation from high voltages and reduce primary currents and voltages to a nominal quantity recognized by the protective relays. Selecting the correct instrument transformers for an application is imperative: failing to do so may compromise the relay’s performance, as the output of the instrument transformer may no longer be an accurately scaled representation of the primary quantity. Having an accurately rated instrument transformer is of no use if these devices are not properly connected. The performance of the protective relay is reliant on its programmed settings and on the current and voltage inputs from the instrument transformers secondary. This paper will help in understanding the fundamental concepts of the connections of Instrument Transformers to the protection relays and the effect of incorrect connection on the performance of protective relays. Multiple case studies of protection system mal-operations due to incorrect connections of instrument transformers will be discussed in detail in this paper. Apart from the connection issue of instrument transformers to protective relays, this paper will also discuss the effect of multiple earthing of CTs and CVTs secondary on the performance of the protection system. Case studies presented in this paper will help the readers to analyse the problem through real-world challenges in complex power system networks. This paper will also help the protection engineer in better analysis of disturbance records. CT and CVT connection errors can lead to undesired operations of protection systems. However, many of these operations can be avoided by adhering to industry standards and implementing tried-and-true field testing and commissioning practices. Understanding the effect of missing neutral of CVT, multiple earthing of CVT secondary, and multiple grounding of CT star points on the performance of the protection system through real-world case studies will help the protection engineer in better commissioning the protection system and maintenance of the protection system.

Keywords: bus reactor, current transformer, capacitive voltage transformer, distance protection, differential protection, directional earth fault, disturbance report, instrument transformer, ICT, REF protection, shunt reactor, voltage selection relay, VT fuse failure

Procedia PDF Downloads 81
296 Positive Disruption: Towards a Definition of Artist-in-Residence Impact on Organisational Creativity

Authors: Denise Bianco

Abstract:

Several studies on innovation and creativity in organisations emphasise the need to expand horizons and take on alternative and unexpected views to produce something new. This paper theorises the potential impact artists can have as creative catalysts, working embedded in non-artistic organisations. It begins from an understanding that in today's ever-changing scenario, organisations are increasingly seeking to open up new creative thinking through deviant behaviours to produce innovation and that art residencies need to be critically revised in this specific context in light of their disruptive potential. On the one hand, this paper builds upon recent contributions made on workplace creativity and related concepts of deviance and disruption. Research suggests that creativity is likely to be lower in work contexts where utter conformity is a cardinal value and higher in work contexts that show some tolerance for uncertainty and deviance. On the other hand, this paper draws attention to Artist-in-Residence as a vehicle for epistemic friction between divergent and convergent thinking, which allows the creation of unparalleled ways of knowing in the dailiness of situated and contextualised social processes. In order to do so, this contribution brings together insights from the most relevant theories on organisational creativity and unconventional agile methods such as Art Thinking and direct insights from ethnographic fieldwork in the context of embedded art residencies within work organisations to propose a redefinition of Artist-in-Residence and their potential impact on organisational creativity. The result is a re-definition of embedded Artist-in-Residence in organisational settings from a more comprehensive, multi-disciplinary, and relational perspective that builds on three focal points. First the notion that organisational creativity is a dynamic and synergistic process throughout which an idea is framed by recurrent activities subjected to multiple influences. Second, the definition of embedded Artist-in-Residence as an assemblage of dynamic, productive relations and unexpected possibilities for new networks of relationality that encourage the recombination of knowledge. Third, and most importantly, the acknowledgment that embedded residencies are, at the very essence, bi-cultural knowledge contexts where creativity flourishes as the result of open-to-change processes that are highly relational, constantly negotiated, and contextualised in time and space.

Keywords: artist-in-residence, convergent and divergent thinking, creativity, creative friction, deviance and creativity

Procedia PDF Downloads 97
295 An Empirical Study of Gender, Expectations and Actual Experiences from Industrial Work Experience of Undergraduate Accounting Students in Selected Nigerian Universities

Authors: Obiamaka Nwobu, Samuel Faboyede, O. Oluseyi

Abstract:

This study investigated the influence of gender on expectations and actual experiences from Industrial Work Experience, which is an aspect of the curriculum of undergraduate accounting students in selected Nigerian Universities. A survey research design was employed. Copies of a research questionnaire were made and administered to eighty (80) accounting students in selected Nigerian Universities who embarked on Students’ Industrial Work Experience Scheme (SIWES). Their expectations were juxtaposed with their actual experiences gleaned from the Industrial Work Experience. The data for the purpose of this study was analyzed using independent sample t-test. A total of fifteen (15) male and forty four (44) female students responded to the survey. This resulted in a response rate of 73.8 per cent. The results of this study indicated that there was no significant difference in the expectation of male and female undergraduate accounting students that the internship experience will be able to prepare them for an accounting career in the future, impart relevant knowledge, relate theories to work environment, enhance knowledge in financial accounting, cost accounting, accounting software, and general practice of accounting; prepare financial statements, interpret financial statements, develop problem solving skills, communication skills, and interpersonal skills; improve personal confidence and self-esteem, increase exposure to latest technology in the workplace, build rapport and networks, provide earnings, job experience, provide information and experience to choose career path. Furthermore, findings from the survey showed that there were differences in the expectations of students and their actual experiences with respect to their ability to relate theories to work environment, enhance knowledge in financial accounting, cost accounting, accounting software and exposure to latest technology in the workplace. The study only examined the perceptions of students from two Universities in South-West Nigeria. The research instrument used in this study can be administered to undergraduate accounting students in other universities in Nigeria. The Industrial Work Experience Scheme for undergraduate accounting students should be highly encouraged by tertiary institutions in Nigeria. This will ultimately make the students well prepared for a career in accounting.

Keywords: gender, expectations, actual experiences, industrial work experience

Procedia PDF Downloads 259
294 Motherhood Constrained: The Minotaur Legend Reimagined Through the Perspective of Marginalized Mothers

Authors: Gevorgianiene Violeta, Sumskiene Egle

Abstract:

Background. Child removal is a profound and life-altering measure that significantly impacts both children and their mothers. Unfortunately, mothers with intellectual disabilities are disproportionately affected by the removal of their children. This action is often taken due to concerns about the mother's perceived inability to care for the child, instances of abuse and neglect, or struggles with addiction. In many cases, the failure to meet society's standards of a "good mother" is seen as a deviation from conventional norms of femininity and motherhood. From an institutional perspective, separating a child from their mother is sometimes viewed as a step toward restoring justice or doing what is considered "right." In another light, this act of child removal can be seen as the removal of a mother from her child, an attempt to shield society from the complexities and fears associated with motherhood for women with disabilities. This separation can be likened to the Greek legend of the Minotaur, a fearsome beast confined within an impenetrable labyrinth. By reimagining this legend, we can see the social fears surrounding 'mothering with intellectual disability' as deeply sealed within an unreachable place. The Aim of this Presentation. Our goal with this presentation is to draw from our research and the metaphors found in the Greek legend to delve into the profound challenges faced by mothers with intellectual disabilities in raising their children. These challenges often become entangled within an insurmountable labyrinth, including navigating complex institutional bureaucracies, enduring persistent doubts cast upon their maternal competencies, battling unfavorable societal narratives, and struggling to retain custody of their children. Coupled with limited social support networks, these challenges frequently lead to situations resulting in maternal failure and, ultimately, child removal. On a broader scale, this separation of a child from their mother symbolizes society’s collective avoidance of confronting the issue of 'mothering with disability,' which can only be effectively addressed through united efforts. Conclusion. Just as in the labyrinth of the Minotaur legend, the struggles faced by mothers with disabilities in their pursuit of retaining their children reveal the need for a metaphorical 'string of Ariadne.' This string symbolizes the support offered by social service providers, communities, and the loved ones these women often dream of but rarely encounter in their lives.

Keywords: motherhood, disability, child removal, support.

Procedia PDF Downloads 58
293 Exploring the Use of Universal Design for Learning to Support The Deaf Learners in Lesotho Secondary Schools: English Teachers Voice

Authors: Ntloyalefu Justinah, Fumane Khanare

Abstract:

English learning has been found as one of the prevalent areas of difficulty for Deaf learners. However, studies conducted indicated that this challenge experienced by Deaf learners is an upsetting concern globally as is blamed and hampered by various reasons such as the way English is taught at schools, lack of teachers ' skills and knowledge, therefore, impact negatively on their academic performance. Despite any difficulty in English learning, this language is considered nowadays as the key tool to an educational and occupational career especially in Lesotho. This paper, therefore, intends to contribute to the existing literature by providing the views of Lesotho English teachers, which focuses on how effectively Universal design for learning can be implemented to enhance the academic performance of Deaf learners in context of the English language classroom. The purpose of this study sought to explore the use of universal design for learning (UDL) to support Deaf learners in Lesotho Secondary schools. The present study is informed by interpretative paradigm and situated within a qualitative research approach. Ten participating English teachers from two inclusive schools were purposefully selected and telephonically interviewed to generate data for this study. The data were thematically analysed. The findings indicated that even though UDL is identified as highly proficient and promotes flexibility in teaching methods teachers reflect limited knowledge of the UDL approach. The findings further showed that UDL ensures education for all learners, including marginalised groups, such as learners with disabilities through different teaching strategies. This means that the findings signify the effective use of UDL for the better performance of the English language by Deaf learners (DLs). This aligns with literature that shows mobilizing English teachers as assets help DLs to be engaged and have control in their communities by defining and solving problems using their resources and connections to other networks for asset and exchange. The study, therefore, concludes that teachers acknowledge that even though they assume to be knowledgeable about the definition of UDL, they have a limited practice of the approach, thus they need to be equipped with some techniques and skills to apply for supporting the performance of DLs by using UDL approach in their English teaching. The researchers recommend the awareness of UDL principles by the ministry of Education and Training and teachers training Universities, as well as teachers training colleges, for them to include it in their curricula so that teachers could be properly trained on how to apply it in their teaching effectively

Keywords: deaf learners, Lesotho, support learning, universal design for learning

Procedia PDF Downloads 113
292 The Women-In-Mining Discourse: A Study Combining Corpus Linguistics and Discourse Analysis

Authors: Ylva Fältholm, Cathrine Norberg

Abstract:

One of the major threats identified to successful future mining is that women do not find the industry attractive. Many attempts have been made, for example in Sweden and Australia, to create organizational structures and mining communities attractive to both genders. Despite such initiatives, many mining areas are developing into gender-segregated fly-in/fly out communities dominated by men with both social and economic consequences. One of the challenges facing many mining companies is thus to break traditional gender patterns and structures. To do this increased knowledge about gender in the context of mining is needed. Since language both constitutes and reproduces knowledge, increased knowledge can be gained through an exploration and description of the mining discourse from a gender perspective. The aim of this study is to explore what conceptual ideas are activated in connection to the physical/geographical mining area and to work within the mining industry. We use a combination of critical discourse analysis implying close reading of selected texts, such as policy documents, interview materials, applications and research and innovation agendas, and analyses of linguistic patterns found in large language corpora covering millions of words of contemporary language production. The quantitative corpus data serves as a point of departure for the qualitative analysis of the texts, that is, suggests what patterns to explore further. The study shows that despite technological and organizational development, one of the most persistent discourses about mining is the conception of dangerous and unfriendly areas infused with traditional notions of masculinity ideals and manual hard work. Although some of the texts analyzed highlight gender issues, and describe gender-equalizing initiatives, such as wage-mapping systems, female networks and recruitment efforts for women executives, and thereby render the discourse less straightforward, it is shown that these texts are not unambiguous examples of a counter-discourse. They rather illustrate that discourses are not stable but include opposing discourses, in dialogue with each other. For example, many texts highlight why and how women are important to mining, at the same time as they suggest that gender and diversity are all about women: why mining is a problem for them, how they should be, and what they should do to fit in. Drawing on a constitutive view of discourse, knowledge about such conflicting perceptions of women is a prerequisite for succeeding in attracting women to the mining industry and thereby contributing to the development of future mining.

Keywords: discourse, corpus linguistics, gender, mining

Procedia PDF Downloads 264
291 Tip60’s Novel RNA-Binding Function Modulates Alternative Splicing of Pre-mRNA Targets Implicated in Alzheimer’s Disease

Authors: Felice Elefant, Akanksha Bhatnaghar, Keegan Krick, Elizabeth Heller

Abstract:

Context: The severity of Alzheimer’s Disease (AD) progression involves an interplay of genetics, age, and environmental factors orchestrated by histone acetyltransferase (HAT) mediated neuroepigenetic mechanisms. While disruption of Tip60 HAT action in neural gene control is implicated in AD, alternative mechanisms underlying Tip60 function remain unexplored. Altered RNA splicing has recently been highlighted as a widespread hallmark in the AD transcriptome that is implicated in the disease. Research Aim: The aim of this study was to identify a novel RNA binding/splicing function for Tip60 in human hippocampus and impaired in brains from AD fly models and AD patients. Methodology/Analysis: The authors used RNA immunoprecipitation using RNA isolated from 200 pooled wild type Drosophila brains for each of the 3 biological replicates. To identify Tip60’s RNA targets, they performed genome sequencing (DNB-SequencingTM technology, BGI genomics) on 3 replicates for Input RNA and RNA IPs by Tip60. Findings: The authors' transcriptomic analysis of RNA bound to Tip60 by Tip60-RNA immunoprecipitation (RIP) revealed Tip60 RNA targets enriched for critical neuronal processes implicated in AD. Remarkably, 79% of Tip60’s RNA targets overlap with its chromatin gene targets, supporting a model by which Tip60 orchestrates bi-level transcriptional regulation at both the chromatin and RNA level, a function unprecedented for any HAT to date. Since RNA splicing occurs co-transcriptionally and splicing defects are implicated in AD, the authors investigated whether Tip60-RNA targeting modulates splicing decisions and if this function is altered in AD. Replicate multivariate analysis of transcript splicing (rMATS) analysis of RNA-Seq data sets from wild-type and AD fly brains revealed a multitude of mammalian-like AS defects. Strikingly, over half of these altered RNAs were bonafide Tip60-RNA targets enriched for in the AD-gene curated database, with some AS alterations prevented against by increasing Tip60 in fly brain. Importantly, human orthologs of several Tip60-modulated spliced genes in Drosophila are well characterized aberrantly spliced genes in human AD brains, implicating disruption of Tip60’s splicing function in AD pathogenesis. Theoretical Importance: The authors' findings support a novel RNA interaction and splicing regulatory function for Tip60 that may underlie AS impairments that hallmark AD etiology. Data Collection: The authors collected data from RNA immunoprecipitation experiments using RNA isolated from 200 pooled wild type Drosophila brains for each of the 3 biological replicates. They also performed genome sequencing (DNBSequencingTM technology, BGI genomics) on 3 replicates for Input RNA and RNA IPs by Tip60. Questions: The question addressed by this study was whether Tip60 has a novel RNA binding/splicing function in human hippocampus and whether this function is impaired in brains from AD fly models and AD patients. Conclusions: The authors' findings support a novel RNA interaction and splicing regulatory function for Tip60 that may underlie AS impairments that hallmark AD etiology.

Keywords: Alzheimer's disease, cognition, aging, neuroepigenetics

Procedia PDF Downloads 76
290 Tackling Exclusion and Radicalization through Islamic Practices and Discourses: Case Study of Muslim Organizations in Switzerland

Authors: Baptiste Brodard

Abstract:

In Switzerland, as well as in other European countries, specific social issues related to Muslims have recently emerged in public debates. In addition to the question of terrorism and radicalization, Muslim migrant populations are highly affected by social problems such as crime, poverty, marginalization, and overrepresentation in prisons. This situation has drawn the state’s attention to the need for implementing new responses to the challenges of religious extremism, crime, and social exclusion particularly involving Muslims. While local authorities have begun to implement trainings and projects to tackle these new social issues, Muslim grassroots associations have developed some initiatives to address the needs of the population, mainly focusing on problems related to Islam and Muslims but also addressing the rest of the population. Finally, some local authorities have acknowledged the need for these alternative initiatives as well as their positive contributions to society. The study is based on a Ph.D. research grounded on a case study of three Islamic networks in Switzerland, including various local organizations tackling social exclusion and religious radicalization through innovative grassroots projects. Using an ethnographic approach, it highlights, on the one hand, the specificities of such organizations by exploring the role of Islamic norms within the social work practices. On the other hand, it focuses on the inclusion of such faith-based projects within the mainstream society, observing the relationships between Islamic organisations and both the state and other civil society organizations. Finally, the research study aims to identify some innovative ways and trends of social work involving the inclusion of community key actors within the process. Results showed similar trends with Islamic social work developed in other European countries such as France and the United Kingdom, but also indicate a range of specificities linked to the Swiss socio-political context, which shapes the involvement of religious actors in different ways. By exploring faith-based commitment to addressing concrete social issues, the study finally contributes to shedding light on the link between Islam, social work and activism within the European context.

Keywords: exclusion, Islam, Muslims, social work, Switzerland

Procedia PDF Downloads 128
289 GC-MS-Based Untargeted Metabolomics to Study the Metabolism of Pectobacterium Strains

Authors: Magdalena Smoktunowicz, Renata Wawrzyniak, Malgorzata Waleron, Krzysztof Waleron

Abstract:

Pectobacterium spp. were previously classified into the Erwinia genus founded in 1917 to unite at that time all Gram-negative, fermentative, nonsporulating and peritrichous flagellated plant pathogenic bacteria. After work of Waldee (1945), on Approved Lists of Bacterial Names and bacteriology manuals in 1980, they were described either under the species named Erwinia or Pectobacterium. The Pectobacterium genus was formally described in 1998 of 265 Pectobacterium strains. Currently, there are 21 species of Pectobacterium bacteria, including Pectobacterium betavasculorum since 2003, which caused soft rot on sugar beet tubers. Based on the biochemical experiments carried out for this, it is known that these bacteria are gram-negative, catalase-positive, oxidase-negative, facultatively anaerobic, using gelatin and causing symptoms of soft rot on potato and sugar beet tubers. The mere fact of growing on sugar beet may indicate a metabolism characteristic only for this species. Metabolomics, broadly defined as the biology of the metabolic systems, which allows to make comprehensive measurements of metabolites. Metabolomics, in combination with genomics, are complementary tools for the identification of metabolites and their reactions, and thus for the reconstruction of metabolic networks. The aim of this study was to apply the GC-MS-based untargeted metabolomics to study the metabolism of P. betavasculorum in different growing conditions. The metabolomic profiles of biomass and biomass media were determined. For sample preparation the following protocol was used: extraction with 900 µl of methanol: chloroform: water mixture (10: 3: 1, v: v) were added to 900 µl of biomass from the bottom of the tube and up to 900 µl of nutrient medium from the bacterial biomass. After centrifugation (13,000 x g, 15 min, 4oC), 300µL of the obtained supernatants were concentrated by rotary vacuum and evaporated to dryness. Afterwards, two-step derivatization procedure was performed before GC-MS analyses. The obtained results were subjected to statistical calculations with the use of both uni- and multivariate tests. The obtained results were evaluated using KEGG database, to asses which metabolic pathways are activated and which genes are responsible for it, during the metabolism of given substrates contained in the growing environment. The observed metabolic changes, combined with biochemical and physiological tests, may enable pathway discovery, regulatory inference and understanding of the homeostatic abilities of P. betavasculorum.

Keywords: GC-MS chromatograpfy, metabolomics, metabolism, pectobacterium strains, pectobacterium betavasculorum

Procedia PDF Downloads 78
288 Diplomacy in Times of Disaster: Management through Reputational Capital

Authors: Liza Ireni-Saban

Abstract:

The 6.6 magnitude quake event that occurred in 2003 (Bam, Iran) made it impossible for the Iranian government to handle disaster relief efforts domestically. In this extreme event, the Iranian government reached out to the international community, and this created a momentum that had to be carried out by trust-building efforts on all sides, often termed ‘Disaster Diplomacy’. Indeed, the circumstances were even more critical when one considers the increasing political and economic isolation of Iran within the international community. The potential for transformative political space to be opened by disaster has been recognized by dominant international political actors. Despite the fact that Bam 2003 post-disaster relief efforts did not catalyze any diplomatic activities on all sides, it is suggested that few international aid agencies have successfully used disaster recovery to enhance their popular legitimacy and reputation among the international community. In terms of disaster diplomacy, an actor’s reputational capital may affect his ability to build coalitions and alliances to achieve international political ends, to negotiate and build understanding and trust with foreign publics. This study suggests that the post-disaster setting may benefit from using the ecology of games framework to evaluate the role of bridging actors and mediators in facilitating collaborative governance networks. Recent developments in network theory and analysis provide means of structural embeddedness to explore how reputational capital can be built through brokerage roles of actors engaged in a disaster management network. This paper then aims to structure the relations among actors that participated in the post-disaster relief efforts in the 2003 Bam earthquake (Iran) in order to assess under which conditions actors may be strategically utilized to serve as mediating organizations for future disaster events experienced by isolated nations or nations in conflict. The results indicate the strategic use of reputational capital by the Iranian Ministry of Foreign Affairs as key broker to build a successful coordinative system for reducing disaster vulnerabilities. International aid agencies rarely played brokerage roles to coordinate peripheral actors. U.S. foreign assistance (USAID), despite coordination capacities, was prevented from serving brokerage roles in the system.

Keywords: coordination, disaster diplomacy, international aid organizations, Iran

Procedia PDF Downloads 154
287 Modeling Visual Memorability Assessment with Autoencoders Reveals Characteristics of Memorable Images

Authors: Elham Bagheri, Yalda Mohsenzadeh

Abstract:

Image memorability refers to the phenomenon where certain images are more likely to be remembered by humans than others. It is a quantifiable and intrinsic attribute of an image. Understanding how visual perception and memory interact is important in both cognitive science and artificial intelligence. It reveals the complex processes that support human cognition and helps to improve machine learning algorithms by mimicking the brain's efficient data processing and storage mechanisms. To explore the computational underpinnings of image memorability, this study examines the relationship between an image's reconstruction error, distinctiveness in latent space, and its memorability score. A trained autoencoder is used to replicate human-like memorability assessment inspired by the visual memory game employed in memorability estimations. This study leverages a VGG-based autoencoder that is pre-trained on the vast ImageNet dataset, enabling it to recognize patterns and features that are common to a wide and diverse range of images. An empirical analysis is conducted using the MemCat dataset, which includes 10,000 images from five broad categories: animals, sports, food, landscapes, and vehicles, along with their corresponding memorability scores. The memorability score assigned to each image represents the probability of that image being remembered by participants after a single exposure. The autoencoder is finetuned for one epoch with a batch size of one, attempting to create a scenario similar to human memorability experiments where memorability is quantified by the likelihood of an image being remembered after being seen only once. The reconstruction error, which is quantified as the difference between the original and reconstructed images, serves as a measure of how well the autoencoder has learned to represent the data. The reconstruction error of each image, the error reduction, and its distinctiveness in latent space are calculated and correlated with the memorability score. Distinctiveness is measured as the Euclidean distance between each image's latent representation and its nearest neighbor within the autoencoder's latent space. Different structural and perceptual loss functions are considered to quantify the reconstruction error. The results indicate that there is a strong correlation between the reconstruction error and the distinctiveness of images and their memorability scores. This suggests that images with more unique distinct features that challenge the autoencoder's compressive capacities are inherently more memorable. There is also a negative correlation between the reduction in reconstruction error compared to the autoencoder pre-trained on ImageNet, which suggests that highly memorable images are harder to reconstruct, probably due to having features that are more difficult to learn by the autoencoder. These insights suggest a new pathway for evaluating image memorability, which could potentially impact industries reliant on visual content and mark a step forward in merging the fields of artificial intelligence and cognitive science. The current research opens avenues for utilizing neural representations as instruments for understanding and predicting visual memory.

Keywords: autoencoder, computational vision, image memorability, image reconstruction, memory retention, reconstruction error, visual perception

Procedia PDF Downloads 90
286 Evaluating the Ability to Cycle in Cities Using Geographic Information Systems Tools: The Case Study of Greek Modern Cities

Authors: Christos Karolemeas, Avgi Vassi, Georgia Christodoulopoulou

Abstract:

Although the past decades, planning a cycle network became an inseparable part of all transportation plans, there is still a lot of room for improvement in the way planning is made, in order to create safe and direct cycling networks that gather the parameters that positively influence one's decision to cycle. The aim of this article is to study, evaluate and visualize the bikeability of cities. This term is often used as the 'the ability of a person to bike' but this study, however, adopts the term in the sense of bikeability as 'the ability of the urban landscape to be biked'. The methodology used included assessing cities' accessibility by cycling, based on international literature and corresponding walkability methods and the creation of a 'bikeability index'. Initially, a literature review was made to identify the factors that positively affect the use of bicycle infrastructure. Those factors were used in order to create the spatial index and quantitatively compare the city network. Finally, the bikeability index was applied in two case studies: two Greek municipalities that, although, they have similarities in terms of land uses, population density and traffic congestion, they are totally different in terms of geomorphology. The factors suggested by international literature were (a) safety, (b) directness, (c) comfort and (d) the quality of the urban environment. Those factors were quantified through the following parameters: slope, junction density, traffic density, traffic speed, natural environment, built environment, activities coverage, centrality and accessibility to public transport stations. Each road section was graded for the above-mentioned parameters, and the overall grade shows the level of bicycle accessibility (low, medium, high). Each parameter, as well as the overall accessibility levels, were analyzed and visualized through Geographic Information Systems. This paper presents the bikeability index, its' results, the problems that have arisen and the conclusions from its' implementation through Strengths-Weaknesses-Opportunities-Threats analysis. The purpose of this index is to make it easy for researchers, practitioners, politicians, and stakeholders to quantify, visualize and understand which parts of the urban fabric are suitable for cycling.

Keywords: accessibility, cycling, green spaces, spatial data, urban environment

Procedia PDF Downloads 110
285 Deep Injection Wells for Flood Prevention and Groundwater Management

Authors: Mohammad R. Jafari, Francois G. Bernardeau

Abstract:

With its arid climate, Qatar experiences low annual rainfall, intense storms, and high evaporation rates. However, the fast-paced rate of infrastructure development in the capital city of Doha has led to recurring instances of surface water flooding as well as rising groundwater levels. Public Work Authority (PWA/ASHGHAL) has implemented an approach to collect and discharge the flood water into a) positive gravity systems; b) Emergency Flooding Area (EFA) – Evaporation, Infiltration or Storage off-site using tankers; and c) Discharge to deep injection wells. As part of the flood prevention scheme, 21 deep injection wells have been constructed to discharge the collected surface and groundwater table in Doha city. These injection wells function as an alternative in localities that do not possess either positive gravity systems or downstream networks that can accommodate additional loads. These injection wells are 400-m deep and are constructed in a complex karstic subsurface condition with large cavities. The injection well system will discharge collected groundwater and storm surface runoff into the permeable Umm Er Radhuma Formation, which is an aquifer present throughout the Persian Gulf Region. The Umm Er Radhuma formation contains saline water that is not being used for water supply. The injection zone is separated by an impervious gypsum formation which acts as a barrier between upper and lower aquifer. State of the art drilling, grouting, and geophysical techniques have been implemented in construction of the wells to assure that the shallow aquifer would not be contaminated and impacted by injected water. Injection and pumping tests were performed to evaluate injection well functionality (injectability). The results of these tests indicated that majority of the wells can accept injection rate of 200 to 300 m3 /h (56 to 83 l/s) under gravity with average value of 250 m3 /h (70 l/s) compared to design value of 50 l/s. This paper presents design and construction process and issues associated with these injection wells, performing injection/pumping tests to determine capacity and effectiveness of the injection wells, the detailed design of collection system and conveying system into the injection wells, and the operation and maintenance process. This system is completed now and is under operation, and therefore, construction of injection wells is an effective option for flood control.

Keywords: deep injection well, flood prevention scheme, geophysical tests, pumping and injection tests, wellhead assembly

Procedia PDF Downloads 119