Search results for: network diagnostic tool
6801 Service Business Model Canvas: A Boundary Object Operating as a Business Development Tool
Authors: Taru Hakanen, Mervi Murtonen
Abstract:
This study aims to increase understanding of the transition of business models in servitization. The significance of service in all business has increased dramatically during the past decades. Service-dominant logic (SDL) describes this change in the economy and questions the goods-dominant logic on which business has primarily been based in the past. A business model canvas is one of the most cited and used tools in defining end developing business models. The starting point of this paper lies in the notion that the traditional business model canvas is inherently goods-oriented and best suits for product-based business. However, the basic differences between goods and services necessitate changes in business model representations when proceeding in servitization. Therefore, new knowledge is needed on how the conception of business model and the business model canvas as its representation should be altered in servitized firms in order to better serve business developers and inter-firm co-creation. That is to say, compared to products, services are intangible and they are co-produced between the supplier and the customer. Value is always co-created in interaction between a supplier and a customer, and customer experience primarily depends on how well the interaction succeeds between the actors. The role of service experience is even stronger in service business compared to product business, as services are co-produced with the customer. This paper provides business model developers with a service business model canvas, which takes into account the intangible, interactive, and relational nature of service. The study employs a design science approach that contributes to theory development via design artifacts. This study utilizes qualitative data gathered in workshops with ten companies from various industries. In particular, key differences between Goods-dominant logic (GDL) and SDL-based business models are identified when an industrial firm proceeds in servitization. As the result of the study, an updated version of the business model canvas is provided based on service-dominant logic. The service business model canvas ensures a stronger customer focus and includes aspects salient for services, such as interaction between companies, service co-production, and customer experience. It can be used for the analysis and development of a current service business model of a company or for designing a new business model. It facilitates customer-focused new service design and service development. It aids in the identification of development needs, and facilitates the creation of a common view of the business model. Therefore, the service business model canvas can be regarded as a boundary object, which facilitates the creation of a common understanding of the business model between several actors involved. The study contributes to the business model and service business development disciplines by providing a managerial tool for practitioners in service development. It also provides research insight into how servitization challenges companies’ business models.Keywords: boundary object, business model canvas, managerial tool, service-dominant logic
Procedia PDF Downloads 3676800 Reliability of Diffusion Tensor Imaging in Differentiation of Salivary Gland Tumors
Authors: Sally Salah El Menshawy, Ghada M. Ahmed GabAllah, Doaa Khedr M. Khedr
Abstract:
Background: Our study aims to detect the diagnostic role of DTI in the differentiation of salivary glands benign and malignant lesions. Results: Our study included 50 patients (25males and 25 females) divided into 4 groups (benign lesions n=20, malignant tumors n=13, post-operative changes n=10 and normal n=7). 28 patients were with parotid gland lesions, 4 patients were with submandibular gland lesions and only 1 case with sublingual gland affection. The mean fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of malignant salivary gland tumors (n = 13) (0.380±0.082 and 0.877±0.234× 10⁻³ mm² s⁻¹) were significantly different (P<0.001) than that of benign tumors (n = 20) (0.147±0.03 and 1.47±0.605 × 10⁻³ mm² s⁻¹), respectively. The mean FA and ADC of post-operative changes (n = 10) were (0.211±0.069 and 1.63±0.20× 10⁻³ mm² s⁻¹) while that of normal glands (n =7) was (0.251±0.034and 1.54±0.29× 10⁻³ mm² s⁻¹), respectively. Using ADC to differentiate malignant lesions from benign lesions has an (AUC) of 0.810, with an accuracy of 69.7%. ADC used to differentiate malignant lesions from post-operative changes has (AUC) of 1.0, and an accuracy of 95.7%. FA used to discriminate malignant from benign lesions has (AUC) of 1.0, and an accuracy of 93.9%. FA used to differentiate malignant from post-operative changes has (AUC) of 0.923, and an accuracy of 95.7%. Combined FA and ADC used to differentiate malignant from benign lesions has (AUC) of 1.0, and an accuracy of 100%. Combined FA and ADC used to differentiate malignant from post-operative changes has (AUC) of 1.0, and an accuracy of 100%. Conclusion: Combined FA and ADC can differentiate malignant tumors from benign salivary gland lesions.Keywords: diffusion tensor imaging, MRI, salivary gland, tumors
Procedia PDF Downloads 1116799 TA6V Selective Laser Melting as an Innovative Method Produce Complex Shapes
Authors: Rafał Kamiński, Joel Rech, Philippe Bertrand, Christophe Desrayaud
Abstract:
Additive manufacturing is a hot topic for industry. Among the additive techniques, Selective Laser Melting (SLM) becomes even more popular, especially for making parts for aerospace applications, thanks to its design freedom (customized and light structures) and its reduced time to market. However, some functional surfaces have to be machined to achieve small tolerances and low surface roughness to fulfill industry specifications. The complex shapes designed for SLM (ex: titanium turbine blades) necessitate the use of ball end milling operations like in the conventional process after forging. However, the metallurgical state of TA6V is very different from the one obtained usually from forging, because of the laser sintering layer by layer. So this paper aims to investigate the influence of new TA6V metallurgies produced by SLM on the machinability in ball end milling. Machinability is considered as the property of a material to obtain easily and by a cheap way a functional surface. This means, for instance, the property to limit cutting tool wear rate and to get smooth surfaces. So as to reach this objective, SLM parts have been produced and heat treated with various conditions leading to various metallurgies that are compared with a standard equiaxed α+β wrought microstructure. The machinability is analyzed by measuring surface roughness, tool wear and cutting forces for a range of cutting conditions (depth of cut 'ap', feed per tooth 'fz', spindle speed 'N') in accordance with industrial practices. This work has revealed that TA6V produced by SLM can lead to a better machinability that standard wrought alloys.Keywords: ball milling, selective laser melting, surface roughness, titanium, wear
Procedia PDF Downloads 2816798 Engineering Topology of Ecological Model for Orientation Impact of Sustainability Urban Environments: The Spatial-Economic Modeling
Authors: Moustafa Osman Mohammed
Abstract:
The modeling of a spatial-economic database is crucial in recitation economic network structure to social development. Sustainability within the spatial-economic model gives attention to green businesses to comply with Earth’s Systems. The natural exchange patterns of ecosystems have consistent and periodic cycles to preserve energy and materials flow in systems ecology. When network topology influences formal and informal communication to function in systems ecology, ecosystems are postulated to valence the basic level of spatial sustainable outcome (i.e., project compatibility success). These referred instrumentalities impact various aspects of the second level of spatial sustainable outcomes (i.e., participant social security satisfaction). The sustainability outcomes are modeling composite structure based on a network analysis model to calculate the prosperity of panel databases for efficiency value, from 2005 to 2025. The database is modeling spatial structure to represent state-of-the-art value-orientation impact and corresponding complexity of sustainability issues (e.g., build a consistent database necessary to approach spatial structure; construct the spatial-economic-ecological model; develop a set of sustainability indicators associated with the model; allow quantification of social, economic and environmental impact; use the value-orientation as a set of important sustainability policy measures), and demonstrate spatial structure reliability. The structure of spatial-ecological model is established for management schemes from the perspective pollutants of multiple sources through the input–output criteria. These criteria evaluate the spillover effect to conduct Monte Carlo simulations and sensitivity analysis in a unique spatial structure. The balance within “equilibrium patterns,” such as collective biosphere features, has a composite index of many distributed feedback flows. The following have a dynamic structure related to physical and chemical properties for gradual prolong to incremental patterns. While these spatial structures argue from ecological modeling of resource savings, static loads are not decisive from an artistic/architectural perspective. The model attempts to unify analytic and analogical spatial structure for the development of urban environments in a relational database setting, using optimization software to integrate spatial structure where the process is based on the engineering topology of systems ecology.Keywords: ecological modeling, spatial structure, orientation impact, composite index, industrial ecology
Procedia PDF Downloads 686797 Hansen Solubility Parameter from Surface Measurements
Authors: Neveen AlQasas, Daniel Johnson
Abstract:
Membranes for water treatment are an established technology that attracts great attention due to its simplicity and cost effectiveness. However, membranes in operation suffer from the adverse effect of membrane fouling. Bio-fouling is a phenomenon that occurs at the water-membrane interface, and is a dynamic process that is initiated by the adsorption of dissolved organic material, including biomacromolecules, on the membrane surface. After initiation, attachment of microorganisms occurs, followed by biofilm growth. The biofilm blocks the pores of the membrane and consequently results in reducing the water flux. Moreover, the presence of a fouling layer can have a substantial impact on the membrane separation properties. Understanding the mechanism of the initiation phase of biofouling is a key point in eliminating the biofouling on membrane surfaces. The adhesion and attachment of different fouling materials is affected by the surface properties of the membrane materials. Therefore, surface properties of different polymeric materials had been studied in terms of their surface energies and Hansen solubility parameters (HSP). The difference between the combined HSP parameters (HSP distance) allows prediction of the affinity of two materials to each other. The possibilities of measuring the HSP of different polymer films via surface measurements, such as contact angle has been thoroughly investigated. Knowing the HSP of a membrane material and the HSP of a specific foulant, facilitate the estimation of the HSP distance between the two, and therefore the strength of attachment to the surface. Contact angle measurements using fourteen different solvents on five different polymeric films were carried out using the sessile drop method. Solvents were ranked as good or bad solvents using different ranking method and ranking was used to calculate the HSP of each polymeric film. Results clearly indicate the absence of a direct relation between contact angle values of each film and the HSP distance between each polymer film and the solvents used. Therefore, estimating HSP via contact angle alone is not sufficient. However, it was found if the surface tensions and viscosities of the used solvents are taken in to the account in the analysis of the contact angle values, a prediction of the HSP from contact angle measurements is possible. This was carried out via training of a neural network model. The trained neural network model has three inputs, contact angle value, surface tension and viscosity of solvent used. The model is able to predict the HSP distance between the used solvent and the tested polymer (material). The HSP distance prediction is further used to estimate the total and individual HSP parameters of each tested material. The results showed an accuracy of about 90% for all the five studied filmsKeywords: surface characterization, hansen solubility parameter estimation, contact angle measurements, artificial neural network model, surface measurements
Procedia PDF Downloads 946796 Application of the Building Information Modeling Planning Approach to the Factory Planning
Authors: Peggy Näser
Abstract:
Factory planning is a systematic, objective-oriented process for planning a factory, structured into a sequence of phases, each of which is dependent on the preceding phase and makes use of particular methods and tools, and extending from the setting of objectives to the start of production. The digital factory, on the other hand, is the generic term for a comprehensive network of digital models, methods, and tools – including simulation and 3D visualisation – integrated by a continuous data management system. Its aim is the holistic planning, evaluation and ongoing improvement of all the main structures, processes and resources of the real factory in conjunction with the product. Digital factory planning has already become established in factory planning. The application of Building Information Modeling has not yet been established in factory planning but has been used predominantly in the planning of public buildings. Furthermore, this concept is limited to the planning of the buildings and does not include the planning of equipment of the factory (machines, technical equipment) and their interfaces to the building. BIM is a cooperative method of working, in which the information and data relevant to its lifecycle are consistently recorded, managed and exchanged in a transparent communication between the involved parties on the basis of digital models of a building. Both approaches, the planning approach of Building Information Modeling and the methodical approach of the Digital Factory, are based on the use of a comprehensive data model. Therefore it is necessary to examine how the approach of Building Information Modeling can be extended in the context of factory planning in such a way that an integration of the equipment planning, as well as the building planning, can take place in a common digital model. For this, a number of different perspectives have to be investigated: the equipment perspective including the tools used to implement a comprehensive digital planning process, the communication perspective between the planners of different fields, the legal perspective, that the legal certainty in each country and the quality perspective, on which the quality criteria are defined and the planning will be evaluated. The individual perspectives are examined and illustrated in the article. An approach model for the integration of factory planning into the BIM approach, in particular for the integrated planning of equipment and buildings and the continuous digital planning is developed. For this purpose, the individual factory planning phases are detailed in the sense of the integration of the BIM approach. A comprehensive software concept is shown on the tool. In addition, the prerequisites required for this integrated planning are presented. With the help of the newly developed approach, a better coordination between equipment and buildings is to be achieved, the continuity of the digital factory planning is improved, the data quality is improved and expensive implementation errors are avoided in the implementation.Keywords: building information modeling, digital factory, digital planning, factory planning
Procedia PDF Downloads 2676795 Relay-Augmented Bottleneck Throughput Maximization for Correlated Data Routing: A Game Theoretic Perspective
Authors: Isra Elfatih Salih Edrees, Mehmet Serdar Ufuk Türeli
Abstract:
In this paper, an energy-aware method is presented, integrating energy-efficient relay-augmented techniques for correlated data routing with the goal of optimizing bottleneck throughput in wireless sensor networks. The system tackles the dual challenge of throughput optimization while considering sensor network energy consumption. A unique routing metric has been developed to enable throughput maximization while minimizing energy consumption by utilizing data correlation patterns. The paper introduces a game theoretic framework to address the NP-complete optimization problem inherent in throughput-maximizing correlation-aware routing with energy limitations. By creating an algorithm that blends energy-aware route selection strategies with the best reaction dynamics, this framework provides a local solution. The suggested technique considerably raises the bottleneck throughput for each source in the network while reducing energy consumption by choosing the best routes that strike a compromise between throughput enhancement and energy efficiency. Extensive numerical analyses verify the efficiency of the method. The outcomes demonstrate the significant decrease in energy consumption attained by the energy-efficient relay-augmented bottleneck throughput maximization technique, in addition to confirming the anticipated throughput benefits.Keywords: correlated data aggregation, energy efficiency, game theory, relay-augmented routing, throughput maximization, wireless sensor networks
Procedia PDF Downloads 826794 Image Enhancement of Histological Slides by Using Nonlinear Transfer Function
Authors: D. Suman, B. Nikitha, J. Sarvani, V. Archana
Abstract:
Histological slides provide clinical diagnostic information about the subjects from the ancient times. Even with the advent of high resolution imaging cameras the image tend to have some background noise which makes the analysis complex. A study of the histological slides is done by using a nonlinear transfer function based image enhancement method. The method processes the raw, color images acquired from the biological microscope, which, in general, is associated with background noise. The images usually appearing blurred does not convey the intended information. In this regard, an enhancement method is proposed and implemented on 50 histological slides of human tissue by using nonlinear transfer function method. The histological image is converted into HSV color image. The luminance value of the image is enhanced (V component) because change in the H and S components could change the color balance between HSV components. The HSV image is divided into smaller blocks for carrying out the dynamic range compression by using a linear transformation function. Each pixel in the block is enhanced based on the contrast of the center pixel and its neighborhood. After the processing the V component, the HSV image is transformed into a colour image. The study has shown improvement of the characteristics of the image so that the significant details of the histological images were improved.Keywords: HSV space, histology, enhancement, image
Procedia PDF Downloads 3296793 Using LTE-Sim in New Hanover Decision Algorithm for 2-Tier Macrocell-Femtocell LTE Network
Authors: Umar D. M., Aminu A. M., Izaddeen K. Y.
Abstract:
Deployments of mini macrocell base stations also referred to as femtocells, improve the quality of service of indoor and outdoor users. Nevertheless, mobility management remains a key issue with regards to their deployment. This paper is leaned towards this issue, with an in-depth focus on the most important aspect of mobility management -handover. In handover management, making a handover decision in the LTE two-tier macrocell femtocell network is a crucial research area. Decision algorithms in this research are classified and comparatively analyzed according to received signal strength, user equipment speed, cost function, and interference. However, it was observed that most of the discussed decision algorithms fail to consider cell selection with hybrid access policy in a single macrocell multiple femtocell scenario, another observation was a majority of these algorithms lack the incorporation of user equipment residence parameter. Not including this parameter boosts the number of unnecessary handover occurrence. To deal with these issues, a sophisticated handover decision algorithm is proposed. The proposed algorithm considers the user’s velocity, received signal strength, residence time, as well as the femtocell base station’s access policy. Simulation results have shown that the proposed algorithm reduces the number of unnecessary handovers when compared to conventional received signal strength-based handover decision algorithm.Keywords: user-equipment, radio signal service, long term evolution, mobility management, handoff
Procedia PDF Downloads 1256792 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals
Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty
Abstract:
A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction
Procedia PDF Downloads 1146791 Sensor Network Structural Integration for Shape Reconstruction of Morphing Trailing Edge
Authors: M. Ciminello, I. Dimino, S. Ameduri, A. Concilio
Abstract:
Improving aircraft's efficiency is one of the key elements of Aeronautics. Modern aircraft possess many advanced functions, such as good transportation capability, high Mach number, high flight altitude, and increasing rate of climb. However, no aircraft has a possibility to reach all of this optimized performance in a single airframe configuration. The aircraft aerodynamic efficiency varies considerably depending on the specific mission and on environmental conditions within which the aircraft must operate. Structures that morph their shape in response to their surroundings may at first seem like the stuff of science fiction, but take a look at nature and lots of examples of plants and animals that adapt to their environment would arise. In order to ensure both the controllable and the static robustness of such complex structural systems, a monitoring network is aimed at verifying the effectiveness of the given control commands together with the elastic response. In order to achieve this kind of information, the use of FBG sensors network is, in this project, proposed. The sensor network is able to measure morphing structures shape which may show large, global displacements due to non-standard architectures and materials adopted. Chord -wise variations may allow setting and chasing the best layout as a function of the particular and transforming reference state, always targeting best aerodynamic performance. The reason why an optical sensor solution has been selected is that while keeping a few of the contraindication of the classical systems (like cabling, continuous deployment, and so on), fibre optic sensors may lead to a dramatic reduction of the wires mass and weight thanks to an extreme multiplexing capability. Furthermore, the use of the ‘light’ as ‘information carrier’, permits dealing with nimbler, non-shielded wires, and avoids any kind of interference with the on-board instrumentation. The FBG-based transducers, herein presented, aim at monitoring the actual shape of adaptive trailing edge. Compared to conventional systems, these transducers allow more fail-safe measurements, by taking advantage of a supporting structure, hosting FBG, whose properties may be tailored depending on the architectural requirements and structural constraints, acting as strain modulator. The direct strain may, in fact, be difficult because of the large deformations occurring in morphing elements. A modulation transducer is then necessary to keep the measured strain inside the allowed range. In this application, chord-wise transducer device is a cantilevered beam sliding trough the spars and copying the camber line of the ATE ribs. FBG sensors array position are dimensioned and integrated along the path. A theoretical model describing the system behavior is implemented. To validate the design, experiments are then carried out with the purpose of estimating the functions between rib rotation and measured strain.Keywords: fiber optic sensor, morphing structures, strain sensor, shape reconstruction
Procedia PDF Downloads 3296790 Dem Based Surface Deformation in Jhelum Valley: Insights from River Profile Analysis
Authors: Syed Amer Mahmood, Rao Mansor Ali Khan
Abstract:
This study deals with the remote sensing analysis of tectonic deformation and its implications to understand the regional uplift conditions in the lower Jhelum and eastern Potwar. Identification and mapping of active structures is an important issue in order to assess seismic hazards and to understand the Quaternary deformation of the region. Digital elevation models (DEMs) provide an opportunity to quantify land surface geometry in terms of elevation and its derivatives. Tectonic movement along the faults is often reflected by characteristic geomorphological features such as elevation, stream offsets, slope breaks and the contributing drainage area. The river profile analysis in this region using SRTM digital elevation model gives information about the tectonic influence on the local drainage network. The steepness and concavity indices have been calculated by power law of scaling relations under steady state conditions. An uplift rate map is prepared after carefully analysing the local drainage network showing uplift rates in mm/year. The active faults in the region control local drainages and the deflection of stream channels is a further evidence of the recent fault activity. The results show variable relative uplift conditions along MBT and Riasi and represent a wonderful example of the recency of uplift, as well as the influence of active tectonics on the evolution of young orogens.Keywords: quaternary deformation, SRTM DEM, geomorphometric indices, active tectonics and MBT
Procedia PDF Downloads 3486789 Correlation Results Based on Magnetic Susceptibility Measurements by in-situ and Ex-Situ Measurements as Indicators of Environmental Changes Due to the Fertilizer Industry
Authors: Nurin Amalina Widityani, Adinda Syifa Azhari, Twin Aji Kusumagiani, Eleonora Agustine
Abstract:
Fertilizer industry activities contribute to environmental changes. Changes to the environment became one of a few problems in this era of globalization. Parameters that can be seen as criteria to identify changes in the environment can be seen from the aspects of physics, chemistry, and biology. One aspect that can be assessed quickly and efficiently to describe environmental change is the aspect of physics, one of which is the value of magnetic susceptibility (χ). The rock magnetism method can be used as a proxy indicator of environmental changes, seen from the value of magnetic susceptibility. The rock magnetism method is based on magnetic susceptibility studies to measure and classify the degree of pollutant elements that cause changes in the environment. This research was conducted in the area around the fertilizer plant, with five coring points on each track, each coring point a depth of 15 cm. Magnetic susceptibility measurements were performed by in-situ and ex-situ. In-situ measurements were carried out directly by using the SM30 tool by putting the tools on the soil surface at each measurement point and by that obtaining the value of the magnetic susceptibility. Meanwhile, ex-situ measurements are performed in the laboratory by using the Bartington MS2B tool’s susceptibility, which is done on a coring sample which is taken every 5 cm. In-situ measurement shows results that the value of magnetic susceptibility at the surface varies, with the lowest score on the second and fifth points with the -0.81 value and the highest value at the third point, with the score of 0,345. Ex-situ measurements can find out the variations of magnetic susceptibility values at each depth point of coring. At a depth of 0-5 cm, the value of the highest XLF = 494.8 (x10-8m³/kg) is at the third point, while the value of the lowest XLF = 187.1 (x10-8m³/kg) at first. At a depth of 6-10 cm, the highest value of the XLF was at the second point, which was 832.7 (x10-8m³/kg) while the lowest XLF is at the first point, at 211 (x10-8m³/kg). At a depth of 11-15 cm, the XLF’s highest value = 857.7 (x10-8m³/kg) is at the second point, whereas the value of the lowest XLF = 83.3 (x10-8m³/kg) is at the fifth point. Based on the in situ and exsit measurements, it can be seen that the highest magnetic susceptibility values from the surface samples are at the third point.Keywords: magnetic susceptibility, fertilizer plant, Bartington MS2B, SM30
Procedia PDF Downloads 3426788 Variance-Aware Routing and Authentication Scheme for Harvesting Data in Cloud-Centric Wireless Sensor Networks
Authors: Olakanmi Oladayo Olufemi, Bamifewe Olusegun James, Badmus Yaya Opeyemi, Adegoke Kayode
Abstract:
The wireless sensor network (WSN) has made a significant contribution to the emergence of various intelligent services or cloud-based applications. Most of the time, these data are stored on a cloud platform for efficient management and sharing among different services or users. However, the sensitivity of the data makes them prone to various confidentiality and performance-related attacks during and after harvesting. Various security schemes have been developed to ensure the integrity and confidentiality of the WSNs' data. However, their specificity towards particular attacks and the resource constraint and heterogeneity of WSNs make most of these schemes imperfect. In this paper, we propose a secure variance-aware routing and authentication scheme with two-tier verification to collect, share, and manage WSN data. The scheme is capable of classifying WSN into different subnets, detecting any attempt of wormhole and black hole attack during harvesting, and enforcing access control on the harvested data stored in the cloud. The results of the analysis showed that the proposed scheme has more security functionalities than other related schemes, solves most of the WSNs and cloud security issues, prevents wormhole and black hole attacks, identifies the attackers during data harvesting, and enforces access control on the harvested data stored in the cloud at low computational, storage, and communication overheads.Keywords: data block, heterogeneous IoT network, data harvesting, wormhole attack, blackhole attack access control
Procedia PDF Downloads 846787 Accessibility to Urban Parks for Low-income Residents in Chongqing, China: Perspective from Relative Deprivation
Authors: Junhang Luo
Abstract:
With the transformation of spatial structure and the deepening of urban development, the demand for a better life and the concerns for social resources equities of residents are increasing. As an important social resource, park plays an essential role in building environmentally sustainable cities. Thus, it is important to examine park accessibility for low-income and how it works in relative deprivation, so as to provide all residents with equitable services. Using the network and buffer methods of GIS, this paper analyzes urban park accessibility for low-income residents in Chongqing, China. And then conduct a satisfaction evaluation of park resource accessibility with low-incomes through questionnaire surveys from deprivation dimensions. Results show that the level of park accessibility in Chongqing varies significantly and the degree of relative deprivation is relatively high. Public transportation convenience improves and the number of community park increases contribute positively to improving park accessibility and alleviating the relative deprivation of public resources. Combined with the innovation pattern of social governance in China, it suggests that urban park accessibility needs to be jointly governed and optimized by multiple social resources from the government to the public, and the service efficiency needs the index system and planning standards according to local conditions to improve quality and promote equity. At the same time, building a perfect park system and complete legislation assurance system will also play a positive role in ensuring that all residents can enjoy the urban public space more fairly, especially low-income groups.Keywords: urban park, accessibility, relative deprivation, GIS network analysis, chongqing
Procedia PDF Downloads 1596786 Enhancing Inservice Education Training Effectiveness Using a Mobile Based E-Learning Model
Authors: Richard Patrick Kabuye
Abstract:
This study focuses on the addressing the enhancement of in-service training programs as a tool of transforming the existing traditional approaches of formal lectures/contact hours. This will be supported with a more versatile, robust, and remotely accessible means of mobile based e-learning, as a support tool for the traditional means. A combination of various factors in education and incorporation of the eLearning strategy proves to be a key factor in effective in-service education. Key factor needs to be factored in so as to maintain a credible co-existence of the programs, with the prevailing social, economic and political environments. Effective in-service education focuses on having immediate transformation of knowledge into practice for a good time period, active participation of attendees, enable before training planning, in training assessment and post training feedback training analysis which will yield knowledge to the trainers of the applicability of knowledge given out. All the above require a more robust approach to attain success in implementation. Incorporating mobile technology in eLearning will enable the above to be factored together in a more coherent manner, as it is evident that participants have to take time off their duties and attend to these training programs. Making it mobile, will save a lot of time since participants would be in position to follow certain modules while away from lecture rooms, get continuous program updates after completing the program, send feedback to instructors on knowledge gaps, and a wholly conclusive evaluation of the entire program on a learn as you work platform. This study will follow both qualitative and quantitative approaches in data collection, and this will be compounded incorporating a mobile eLearning application using Android.Keywords: in service, training, mobile, e- learning, model
Procedia PDF Downloads 2196785 Robustness Analysis of the Carbon and Nitrogen Co-Metabolism Model of Mucor mucedo
Authors: Nahid Banihashemi
Abstract:
An emerging important area of the life sciences is systems biology, which involves understanding the integrated behavior of large numbers of components interacting via non-linear reaction terms. A centrally important problem in this area is an understanding of the co-metabolism of protein and carbohydrate, as it has been clearly demonstrated that the ratio of these metabolites in diet is a major determinant of obesity and related chronic disease. In this regard, we have considered a systems biology model for the co-metabolism of carbon and nitrogen in colonies of the fungus Mucor mucedo. Oscillations are an important diagnostic of underlying dynamical processes of this model. The maintenance of specific patterns of oscillation and its relation to the robustness of this system are the important issues which have been targeted in this paper. In this regard, parametric sensitivity approach as a theoretical approach has been considered for the analysis of the robustness of this model. As a result, the parameters of the model which produce the largest sensitivities have been identified. Furthermore, the largest changes that can be made in each parameter of the model without losing the oscillations in biomass production have been computed. The results are obtained from the implementation of parametric sensitivity analysis in Matlab.Keywords: system biology, parametric sensitivity analysis, robustness, carbon and nitrogen co-metabolism, Mucor mucedo
Procedia PDF Downloads 3286784 Research on Spatial Distribution of Service Facilities Based on Innovation Function: A Case Study of Zhejiang University Zijin Co-Maker Town
Authors: Zhang Yuqi
Abstract:
Service facilities are the boosters for the cultivation and development of innovative functions in innovative cluster areas. At the same time, reasonable service facilities planning can better link the internal functional blocks. This paper takes Zhejiang University Zijin Co-Maker Town as the research object, based on the combination of network data mining and field research and verification, combined with the needs of its internal innovative groups. It studies the distribution characteristics and existing problems of service facilities and then proposes a targeted planning suggestion. The main conclusions are as follows: (1) From the perspective of view, the town is rich in general life-supporting services, but lacking of provision targeted and distinctive service facilities for innovative groups; (2) From the perspective of scale structure, small-scale street shops are the main business form, lack of large-scale service center; (3) From the perspective of spatial structure, service facilities layout of each functional block is too fragile to fit the characteristics of 2aggregation- distribution' of innovation and entrepreneurial activities; (4) The goal of optimizing service facilities planning should be guided for fostering function of innovation and entrepreneurship and meet the actual needs of the innovation and entrepreneurial groups.Keywords: the cultivation of innovative function, Zhejiang University Zijin Co-Maker Town, service facilities, network data mining, space optimization advice
Procedia PDF Downloads 1176783 Evaluation of Redundancy Architectures Based on System on Chip Internal Interfaces for Future Unmanned Aerial Vehicles Flight Control Computer
Authors: Sebastian Hiergeist
Abstract:
It is a common view that Unmanned Aerial Vehicles (UAV) tend to migrate into the civil airspace. This trend is challenging UAV manufacturer in plenty ways, as there come up a lot of new requirements and functional aspects. On the higher application levels, this might be collision detection and avoidance and similar features, whereas all these functions only act as input for the flight control components of the aircraft. The flight control computer (FCC) is the central component when it comes up to ensure a continuous safe flight and landing. As these systems are flight critical, they have to be built up redundantly to be able to provide a Fail-Operational behavior. Recent architectural approaches of FCCs used in UAV systems are often based on very simple microprocessors in combination with proprietary Application-Specific Integrated Circuit (ASIC) or Field Programmable Gate Array (FPGA) extensions implementing the whole redundancy functionality. In the future, such simple microprocessors may not be available anymore as they are more and more replaced by higher sophisticated System on Chip (SoC). As the avionic industry cannot provide enough market power to significantly influence the development of new semiconductor products, the use of solutions from foreign markets is almost inevitable. Products stemming from the industrial market developed according to IEC 61508, or automotive SoCs, according to ISO 26262, can be seen as candidates as they have been developed for similar environments. Current available SoC from the industrial or automotive sector provides quite a broad selection of interfaces like, i.e., Ethernet, SPI or FlexRay, that might come into account for the implementation of a redundancy network. In this context, possible network architectures shall be investigated which could be established by using the interfaces stated above. Of importance here is the avoidance of any single point of failures, as well as a proper segregation in distinct fault containment regions. The performed analysis is supported by the use of guidelines, published by the aviation authorities (FAA and EASA), on the reliability of data networks. The main focus clearly lies on the reachable level of safety, but also other aspects like performance and determinism play an important role and are considered in the research. Due to the further increase in design complexity of recent and future SoCs, also the risk of design errors, which might lead to common mode faults, increases. Thus in the context of this work also the aspect of dissimilarity will be considered to limit the effect of design errors. To achieve this, the work is limited to broadly available interfaces available in products from the most common silicon manufacturer. The resulting work shall support the design of future UAV FCCs by giving a guideline on building up a redundancy network between SoCs, solely using on board interfaces. Therefore the author will provide a detailed usability analysis on available interfaces provided by recent SoC solutions, suggestions on possible redundancy architectures based on these interfaces and an assessment of the most relevant characteristics of the suggested network architectures, like e.g. safety or performance.Keywords: redundancy, System-on-Chip, UAV, flight control computer (FCC)
Procedia PDF Downloads 2196782 Internal Combustion Engine Fuel Composition Detection by Analysing Vibration Signals Using ANFIS Network
Authors: M. N. Khajavi, S. Nasiri, E. Farokhi, M. R. Bavir
Abstract:
Alcohol fuels are renewable, have low pollution and have high octane number; therefore, they are important as fuel in internal combustion engines. Percentage detection of these alcoholic fuels with gasoline is a complicated, time consuming, and expensive process. Nowadays, these processes are done in equipped laboratories, based on international standards. The aim of this research is to determine percentage detection of different fuels based on vibration analysis of engine block signals. By doing, so considerable saving in time and cost can be achieved. Five different fuels consisted of pure gasoline (G) as base fuel and combination of this fuel with different percent of ethanol and methanol are prepared. For example, volumetric combination of pure gasoline with 10 percent ethanol is called E10. By this convention, we made M10 (10% methanol plus 90% pure gasoline), E30 (30% ethanol plus 70% pure gasoline), and M30 (30% Methanol plus 70% pure gasoline) were prepared. To simulate real working condition for this experiment, the vehicle was mounted on a chassis dynamometer and run under 1900 rpm and 30 KW load. To measure the engine block vibration, a three axis accelerometer was mounted between cylinder 2 and 3. After acquisition of vibration signal, eight time feature of these signals were used as inputs to an Adaptive Neuro Fuzzy Inference System (ANFIS). The designed ANFIS was trained for classifying these five different fuels. The results show suitable classification ability of the designed ANFIS network with 96.3 percent of correct classification.Keywords: internal combustion engine, vibration signal, fuel composition, classification, ANFIS
Procedia PDF Downloads 4016781 The Accuracy of Measures for Screening Adults for Spiritual Suffering in Health Care Settings: A Systematic Review
Authors: Sayna Bahraini, Wendy Gifford, Ian Graham, Liquaa Wazni, Suzettee Bremault-Phillips, Rebekah Hackbusch, Catrine Demers, Mary Egan
Abstract:
Objective: Guidelines for palliative and spiritual care emphasize the importance of screening patients for spiritual suffering. The aim of this review was to synthesize the research evidence on the accuracy of measures used to screen adults for spiritual suffering. Methods: A systematic review has been conducted. We searched five scientific databases to identify relevant articles. Two independent reviewers screened extracted data and assessed study methodological quality. Results: We identified five articles that yielded information on 24 spiritual screening measures. Among all identified measures, the 2-item Meaning/Joy & Self-Described Struggle has the highest sensitivity (82-87%), and the revised Rush protocol has the highest specificity (81-90%). The methodological quality of all included studies was low. Significance of Results: While most of the identified spiritual screening measures are brief (comprise 1 to 12 number of items), few have sufficient accuracy to effectively screen patients for spiritual suffering. We advise clinicians to use their critical appraisal skills and clinical judgment when selecting and using any of the identified measures to screen for spiritual suffering.Keywords: screening, suffering, spirituality, diagnostic test accuracy, systematic review
Procedia PDF Downloads 1426780 Experimental Study of Impregnated Diamond Bit Wear During Sharpening
Authors: Rui Huang, Thomas Richard, Masood Mostofi
Abstract:
The lifetime of impregnated diamond bits and their drilling efficiency are in part governed by the bit wear conditions, not only the extent of the diamonds’ wear but also their exposure or protrusion out of the matrix bonding. As much as individual diamonds wear, the bonding matrix does also wear through two-body abrasion (direct matrix-rock contact) and three-body erosion (cuttings trapped in the space between rock and matrix). Although there is some work dedicated to the study of diamond bit wear, there is still a lack of understanding on how matrix erosion and diamond exposure relate to the bit drilling response and drilling efficiency, as well as no literature on the process that governs bit sharpening a procedure commonly implemented by drillers when the extent of diamond polishing yield extremely low rate of penetration. The aim of this research is (i) to derive a correlation between the wear state of the bit and the drilling performance but also (ii) to gain a better understanding of the process associated with tool sharpening. The research effort combines specific drilling experiments and precise mapping of the tool-cutting face (impregnated diamond bits and segments). Bit wear is produced by drilling through a rock sample at a fixed rate of penetration for a given period of time. Before and after each wear test, the bit drilling response and thus efficiency is mapped out using a tailored design experimental protocol. After each drilling test, the bit or segment cutting face is scanned with an optical microscope. The test results show that, under the fixed rate of penetration, diamond exposure increases with drilling distance but at a decreasing rate, up to a threshold exposure that corresponds to the optimum drilling condition for this feed rate. The data further shows that the threshold exposure scale with the rate of penetration up to a point where exposure reaches a maximum beyond which no more matrix can be eroded under normal drilling conditions. The second phase of this research focuses on the wear process referred as bit sharpening. Drillers rely on different approaches (increase feed rate or decrease flow rate) with the aim of tearing worn diamonds away from the bit matrix, wearing out some of the matrix, and thus exposing fresh sharp diamonds and recovering a higher rate of penetration. Although a common procedure, there is no rigorous methodology to sharpen the bit and avoid excessive wear or bit damage. This paper aims to gain some insight into the mechanisms that accompany bit sharpening by carefully tracking diamond fracturing, matrix wear, and erosion and how they relate to drilling parameters recorded while sharpening the tool. The results show that there exist optimal conditions (operating parameters and duration of the procedure) for sharpening that minimize overall bit wear and that the extent of bit sharpening can be monitored in real-time.Keywords: bit sharpening, diamond exposure, drilling response, impregnated diamond bit, matrix erosion, wear rate
Procedia PDF Downloads 996779 3D Text Toys: Creative Approach to Experiential and Immersive Learning for World Literacy
Authors: Azyz Sharafy
Abstract:
3D Text Toys is an innovative and creative approach that utilizes 3D text objects to enhance creativity, literacy, and basic learning in an enjoyable and gamified manner. By using 3D Text Toys, children can develop their creativity, visually learn words and texts, and apply their artistic talents within their creative abilities. This process incorporates haptic engagement with 2D and 3D texts, word building, and mechanical construction of everyday objects, thereby facilitating better word and text retention. The concept involves constructing visual objects made entirely out of 3D text/words, where each component of the object represents a word or text element. For instance, a bird can be recreated using words or text shaped like its wings, beak, legs, head, and body, resulting in a 3D representation of the bird purely composed of text. This can serve as an art piece or a learning tool in the form of a 3D text toy. These 3D text objects or toys can be crafted using natural materials such as leaves, twigs, strings, or ropes, or they can be made from various physical materials using traditional crafting tools. Digital versions of these objects can be created using 2D or 3D software on devices like phones, laptops, iPads, or computers. To transform digital designs into physical objects, computerized machines such as CNC routers, laser cutters, and 3D printers can be utilized. Once the parts are printed or cut out, students can assemble the 3D texts by gluing them together, resulting in natural or everyday 3D text objects. These objects can be painted to create artistic pieces or text toys, and the addition of wheels can transform them into moving toys. One of the significant advantages of this visual and creative object-based learning process is that students not only learn words but also derive enjoyment from the process of creating, painting, and playing with these objects. The ownership and creation process further enhances comprehension and word retention. Moreover, for individuals with learning disabilities such as dyslexia, ADD (Attention Deficit Disorder), or other learning difficulties, the visual and haptic approach of 3D Text Toys can serve as an additional creative and personalized learning aid. The application of 3D Text Toys extends to both the English language and any other global written language. The adaptation and creative application may vary depending on the country, space, and native written language. Furthermore, the implementation of this visual and haptic learning tool can be tailored to teach foreign languages based on age level and comprehension requirements. In summary, this creative, haptic, and visual approach has the potential to serve as a global literacy tool.Keywords: 3D text toys, creative, artistic, visual learning for world literacy
Procedia PDF Downloads 646778 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models
Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai
Abstract:
Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.Keywords: plant identification, CNN, image processing, vision transformer, classification
Procedia PDF Downloads 1046777 Digital Forensic Exploration Framework for Email and Instant Messaging Applications
Authors: T. Manesh, Abdalla A. Alameen, M. Mohemmed Sha, A. Mohamed Mustaq Ahmed
Abstract:
Email and instant messaging applications are foremost and extensively used electronic communication methods in this era of information explosion. These applications are generally used for exchange of information using several frontend applications from various service providers by its users. Almost all such communications are now secured using SSL or TLS security over HTTP communication. At the same time, it is also noted that cyber criminals and terrorists have started exchanging information using these methods. Since communication is encrypted end-to-end, tracing significant forensic details and actual content of messages are found to be unattended and severe challenges by available forensic tools. These challenges seriously affect in procuring substantial evidences against such criminals from their working environments. This paper presents a vibrant forensic exploration and architectural framework which not only decrypts any communication or network session but also reconstructs actual message contents of email as well as instant messaging applications. The framework can be effectively used in proxy servers and individual computers and it aims to perform forensic reconstruction followed by analysis of webmail and ICQ messaging applications. This forensic framework exhibits a versatile nature as it is equipped with high speed packet capturing hardware, a well-designed packet manipulating algorithm. It regenerates message contents over regular as well as SSL encrypted SMTP, POP3 and IMAP protocols and catalyzes forensic presentation procedure for prosecution of cyber criminals by producing solid evidences of their actual communication as per court of law of specific countries.Keywords: forensics, network sessions, packet reconstruction, packet reordering
Procedia PDF Downloads 3446776 Data-Driven Strategies for Enhancing Food Security in Vulnerable Regions: A Multi-Dimensional Analysis of Crop Yield Predictions, Supply Chain Optimization, and Food Distribution Networks
Authors: Sulemana Ibrahim
Abstract:
Food security remains a paramount global challenge, with vulnerable regions grappling with issues of hunger and malnutrition. This study embarks on a comprehensive exploration of data-driven strategies aimed at ameliorating food security in such regions. Our research employs a multifaceted approach, integrating data analytics to predict crop yields, optimizing supply chains, and enhancing food distribution networks. The study unfolds as a multi-dimensional analysis, commencing with the development of robust machine learning models harnessing remote sensing data, historical crop yield records, and meteorological data to foresee crop yields. These predictive models, underpinned by convolutional and recurrent neural networks, furnish critical insights into anticipated harvests, empowering proactive measures to confront food insecurity. Subsequently, the research scrutinizes supply chain optimization to address food security challenges, capitalizing on linear programming and network optimization techniques. These strategies intend to mitigate loss and wastage while streamlining the distribution of agricultural produce from field to fork. In conjunction, the study investigates food distribution networks with a particular focus on network efficiency, accessibility, and equitable food resource allocation. Network analysis tools, complemented by data-driven simulation methodologies, unveil opportunities for augmenting the efficacy of these critical lifelines. This study also considers the ethical implications and privacy concerns associated with the extensive use of data in the realm of food security. The proposed methodology outlines guidelines for responsible data acquisition, storage, and usage. The ultimate aspiration of this research is to forge a nexus between data science and food security policy, bestowing actionable insights to mitigate the ordeal of food insecurity. The holistic approach converging data-driven crop yield forecasts, optimized supply chains, and improved distribution networks aspire to revitalize food security in the most vulnerable regions, elevating the quality of life for millions worldwide.Keywords: data-driven strategies, crop yield prediction, supply chain optimization, food distribution networks
Procedia PDF Downloads 626775 Cybersecurity Strategies for Protecting Oil and Gas Industrial Control Systems
Authors: Gaurav Kumar Sinha
Abstract:
The oil and gas industry is a critical component of the global economy, relying heavily on industrial control systems (ICS) to manage and monitor operations. However, these systems are increasingly becoming targets for cyber-attacks, posing significant risks to operational continuity, safety, and environmental integrity. This paper explores comprehensive cybersecurity strategies for protecting oil and gas industrial control systems. It delves into the unique vulnerabilities of ICS in this sector, including outdated legacy systems, integration with IT networks, and the increased connectivity brought by the Industrial Internet of Things (IIoT). We propose a multi-layered defense approach that includes the implementation of robust network security protocols, regular system updates and patch management, advanced threat detection and response mechanisms, and stringent access control measures. We illustrate the effectiveness of these strategies in mitigating cyber risks and ensuring the resilient and secure operation of oil and gas industrial control systems. The findings underscore the necessity for a proactive and adaptive cybersecurity framework to safeguard critical infrastructure in the face of evolving cyber threats.Keywords: cybersecurity, industrial control systems, oil and gas, cyber-attacks, network security, IoT, threat detection, system updates, patch management, access control, cybersecurity awareness, critical infrastructure, resilience, cyber threats, legacy systems, IT integration, multi-layered defense, operational continuity, safety, environmental integrity
Procedia PDF Downloads 446774 Resilience with Spontaneous Volunteers in Disasters-Coordination Using an It System
Authors: Leo Latasch, Mario Di Gennaro
Abstract:
Introduction: The goal of this project was to increase the resilience of the population as well as rescue organizations to make both quality and time-related improvements in handling crises. A helper network was created for this purpose. Methods: Social questions regarding the structure and purpose of helper networks were considered - specifically with regard to helper motivation, the level of commitment and collaboration between populations and agencies. The exchange of information, the coordinated use of volunteers, and the distribution of available resources will be ensured through defined communication and cooperation routines. Helper smartphones will also be used provide a picture of the situation on the ground. Results: The helper network was established and deployed based on the RESIBES information technology system. It consists of a service platform, a web portal and a smartphone app. The service platform is the central element for collaboration between the various rescue organizations, as well as for persons, associations, and companies from the population offering voluntary aid. The platform was used for: Registering helpers and resources and then requesting and assigning it in case of a disaster. These services allow the population's resources to be organized. The service platform also allows for a secure data exchange between services and external systems. Conclusions: The social and technical work priorities have allowed us to cover a full cycle of advance structural work, gaining an overview, damage management, evaluation, and feedback on experiences. This cycle allows experiences gained while handling the crisis to feed back into the cycle and improve preparations and management strategies.Keywords: coordination, disaster, resilience, volunteers
Procedia PDF Downloads 1426773 A Comparative Study on Deep Learning Models for Pneumonia Detection
Authors: Hichem Sassi
Abstract:
Pneumonia, being a respiratory infection, has garnered global attention due to its rapid transmission and relatively high mortality rates. Timely detection and treatment play a crucial role in significantly reducing mortality associated with pneumonia. Presently, X-ray diagnosis stands out as a reasonably effective method. However, the manual scrutiny of a patient's X-ray chest radiograph by a proficient practitioner usually requires 5 to 15 minutes. In situations where cases are concentrated, this places immense pressure on clinicians for timely diagnosis. Relying solely on the visual acumen of imaging doctors proves to be inefficient, particularly given the low speed of manual analysis. Therefore, the integration of artificial intelligence into the clinical image diagnosis of pneumonia becomes imperative. Additionally, AI recognition is notably rapid, with convolutional neural networks (CNNs) demonstrating superior performance compared to human counterparts in image identification tasks. To conduct our study, we utilized a dataset comprising chest X-ray images obtained from Kaggle, encompassing a total of 5216 training images and 624 test images, categorized into two classes: normal and pneumonia. Employing five mainstream network algorithms, we undertook a comprehensive analysis to classify these diseases within the dataset, subsequently comparing the results. The integration of artificial intelligence, particularly through improved network architectures, stands as a transformative step towards more efficient and accurate clinical diagnoses across various medical domains.Keywords: deep learning, computer vision, pneumonia, models, comparative study
Procedia PDF Downloads 646772 Response Surface Methodology to Optimize the Performance of a Co2 Geothermal Thermosyphon
Authors: Badache Messaoud
Abstract:
Geothermal thermosyphons (GTs) are increasingly used in many heating and cooling geothermal applications owing to their high heat transfer performance. This paper proposes a response surface methodology (RSM) to investigate and optimize the performance of a CO2 geothermal thermosyphon. The filling ratio (FR), temperature, and flow rate of the heat transfer fluid are selected as the designing parameters, and heat transfer rate and effectiveness are adopted as response parameters (objective functions). First, a dedicated experimental GT test bench filled with CO2 was built and subjected to different test conditions. An RSM was used to establish corresponding models between the input parameters and responses. Various diagnostic tests were used to assess evaluate the quality and validity of the best-fit models, which explain respectively 98.9% and 99.2% of the output result’s variability. Overall, it is concluded from the RSM analysis that the heat transfer fluid inlet temperatures and the flow rate are the factors that have the greatest impact on heat transfer (Q) rate and effectiveness (εff), while the FR has only a slight effect on Q and no effect on εff. The maximal heat transfer rate and effectiveness achieved are 1.86 kW and 47.81%, respectively. Moreover, these optimal values are associated with different flow rate levels (mc level = 1 for Q and -1 for εff), indicating distinct operating regions for maximizing Q and εff within the GT system. Therefore, a multilevel optimization approach is necessary to optimize both the heat transfer rate and effectiveness simultaneously.Keywords: geothermal thermosiphon, co2, Response surface methodology, heat transfer performance
Procedia PDF Downloads 70