Search results for: nested polymerase chain reaction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4152

Search results for: nested polymerase chain reaction

732 Photodegradation of Profoxydim Herbicide in Amended Paddy Soil-Water System

Authors: A. Cervantes-Diaz, B. Sevilla-Moran, Manuel Alcami, Al Mokhtar Lamsabhi, J. L. Alonso-Prados, P. Sandin-España

Abstract:

Profoxydim is a post-emergence herbicide belonging to the cyclohexanedione oxime family, used to control weeds in rice crops. The use of soil organic amendments has increased significantly in the last decades, and their effects on the behavior of many herbicides are still unknown. Additionally, it is known that photolysis is an important degradation process to be considered when evaluating the persistence of this family of herbicides in the environment. In this work, the photodegradation of profoxydim in an amended paddy soil-water system with alperujo compost was studied. Photodegradation experiments were carried out under laboratory conditions using simulated solar light (Suntest equipment) in order to evaluate the reaction kinetics of the active substance. The photochemical behavior of profoxydim was investigated in soil with and without alperujo amendment. Furthermore, due to the rice crop characteristics, profoxydim photodegradation in water in contact with these types of soils was also studied. Determination of profoxydim degradation kinetics was performed by High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD). Furthermore, we followed the evolution of resulting transformation by-products, and their tentative identification was achieved by mass spectrometry. All the experiments allowed us to fit the data of profoxydim photodegradation to a first-order kinetic. Photodegradation of profoxydim was very rapid in all cases. The half-lives in aqueous matrices were in the range of 86±0.3 to 103±0.5 min. The addition of alperujo amendment to the soil produced an increase in the half-life from 62±0.2 min (soil) to 75±0.3 min (amended soil). In addition, a comparison to other organic amendments was also performed. Results showed that the presence of the organic amendment retarded the photodegradation in paddy soil and water. Regarding degradation products, the main process involved was the cleavage of the oxime moiety giving rise to the formation of the corresponding imine compound.

Keywords: by-products, herbicide, organic amendment, photodegradation, profoxydim

Procedia PDF Downloads 79
731 Equilibrium, Kinetics, and Thermodynamic Studies on Heavy Metal Biosorption by Trichoderma Species

Authors: Sobia Mushtaq, Firdaus E. Bareen, Asma Tayyeb

Abstract:

This study conducted to investigate the metal biosorption potential of indigenous Trichoderma species (T. harzianum KS05T01, T. longibrachiatum KS09T03, Trichoderma sp KS17T09., T. viridi KS17T011, T. atrobruneo KS21T014, and T. citrinoviride) that have been isolated from contaminated soil of Kasur Tannery Waste Management Agency. The effect of different biosorption parameters as initial metal ion concentration, pH, contact time , and temperature of incubation was investigated on the biosorption potential of these species. The metal removal efficiency and (E%) and metal uptake capacity (mg/g) increased along with the increase of initial metal concentration in media. The Trichoderma species can tolerate and survive under heavy metal stress up to 800mg/L. Among the two isotherm models were applied on the biosorption data, Langmuir isotherm model and Freundlich isotherm model, maximum correlation coefficients values (R 2 ) of 1was found for Langmuir model, which showed the better fitted model for the Trichoderma biosorption. The metal biosorption was increased with the increase of temperature and pH of the media. The maximum biosorption was observed between 25-30 o C and at pH 6.-7.5, while the biosorption rate was increased from 3-6 days of incubation, and then the rate of biosorption was slowed down. The biosorption data was better fitted for Pseudo kinetic first order during the initial days of biosorption. Thermodynamic parameters as standard Gibbs free energy (G), standard enthalpy change (H), and standard entropy (S) were calculated. The results confirmed the heavy metal biosorption by Trichoderma species was endothermic and spontaneous reaction in nature. The FTIR spectral analysis and SEM-EDX analysis of the treated and controlled mycelium revealed the changes in the active functional sites and morphological variations of the outer surface. The data analysis envisaged that high metal tolerance exhibited by Trichoderma species indicates its potential as efficacious and successful mediator for bioremediation of the heavy metal polluted environments.

Keywords: heavy metal, fungal biomass, biosorption, kinetics

Procedia PDF Downloads 122
730 Food Waste and Sustainable Management

Authors: Farhana Nosheen, Moeez Ahmad

Abstract:

Throughout the food chain, the food waste from initial agricultural production to final household consumption has become a serious concern for global sustainability because of its adverse impacts on food security, natural resources, the environment, and human health. About a third of tomatoes (Lycopersicon esculentum L.) delivered to processing plants end as processing waste. The amount of such waste material is estimated to have increased with the emergence of mechanical harvesting. Experiments were made to determine the nutritional profile and antioxidant activity of tomato processing waste and to explore the bioactive compound in tomato waste, i.e., Lycopene. Tomato Variety of ‘SAHARA F1’ was used to make tomato waste. The tomatoes were properly cleaned, and then unwanted impurities were removed properly. The tomatoes were blanched at 90 ℃ for 5 minutes. After which, the skin of the tomatoes was removed, and the remaining part passed through the electric pulper. The pulp and seeds were collected separately. The seeds and skin of tomatoes were mixed and saved in a sterilized jar. The samples of tomato waste were found to contain 89.11±0.006 g/100g moisture, 10.13±0.115 g/100g protein, 2.066±0.57 g/100g fat, 4.81±0.10 g/100g crude fiber, and 4.06±0.057 g/100g ash and NFE 78.92±0.066 g/100g. The results confirmed that tomato waste contains a considerable amount of Lycopene 51.0667±0.00577 mg/100g and exhibited good antioxidant properties. Total phenolics showed average contents of 122.9600±0.01000 mg GAE/100g, of which flavonoids accounted for 41.5367±0.00577 mg QE/100g. Antioxidant activity of tomato processing waste was found 0.6833±0.00577 mmol Trolox/100g. Unsaturated fatty acids represent the major portion of total fatty acids, Linoleic acid being the major one. The mineral content of tomato waste showed a good amount of potassium 3030.1767 mg/100g and calcium 131.80 mg/100g, respectively were present in it. These findings suggest that tomato processing waste is rich in nutrients, antioxidants, fatty acids, and minerals. I recommend that this waste should be sun-dried to be used in the combination of feed of the animals. It can also be used in making some other products like lycopene tea or several other health-beneficial products.

Keywords: food waste, tomato, bioactive compound, sustainable management

Procedia PDF Downloads 109
729 A Study on the Prevalence and Microbiological Profile of Nosocomial Infections in the ICU of a Tertiary Care Hospital in Eastern India

Authors: Pampita Chakraborty, Sukumar Mukherjee

Abstract:

This study was done to determine the prevalence of nosocomial infections in the ICU and to identify the common microorganisms causing these infections and their antimicrobial sensitivity pattern. Nosocomial infection or hospital-acquired infection is a localized or a systemic condition resulting from an adverse reaction to the presence of infectious agents. Nosocomial infections are not present or incubating when the patient is admitted to hospital or other health care facility. They are caused by pathogens that easily spread through the body. Many hospitalized patients have compromised immune systems, so they are less able to fight off infections. These infections occur worldwide, both in the developed and developing the world. They are a significant burden to patients and public health. They are a major cause of death and increased morbidity in hospitalized patients, which is a matter of serious concern today. This study was done during the period of one year (2012-2013) in the ICU of the tertiary care hospital in eastern India. Prevalence of nosocomial infection was determined; site of infection and the pattern of microorganisms were identified along with the assessment of antibiotic susceptibility profile. Patients who developed an infection after 48 hours of admission to the ICU were included in the study. A total of 324 ICU patients were analyzed, of these 79 patients were found to have developed a nosocomial infection (24.3% prevalence). Urinary tract infection was found to be more predominant followed by respiratory tract infection and soft tissue infection. The most frequently isolated microorganism was E. coli, Pseudomonas aeruginosa, Klebsiella pneumoniae followed by other organisms respectively. Antibiotic susceptibility test of these isolates was done against commonly used antibiotics. Patients admitted to the ICU are especially susceptible to nosocomial infections. Despite adequate antimicrobial treatment, nosocomial ICU infections can significantly affect ICU stay and can cause an increase in patient’s morbidity and mortality. Adherence to infection protocol, proper monitoring and the judicious use of antibiotics are important in preventing such infections on a regular basis.

Keywords: antibiotic susceptibility, intensive care unit, nosocomial infection, nosocomial pathogen

Procedia PDF Downloads 323
728 Open Innovation for Crowdsourced Product Development: The Case Study of Quirky.com

Authors: Ana Bilandzic, Marcus Foth, Greg Hearn

Abstract:

In a narrow sense, innovation is the invention and commercialisation of a new product or service in the marketplace. The literature suggests places that support knowledge exchange and social interaction, e.g. coffee shops, to nurture innovative ideas. With the widespread success of Internet, interpersonal communication and interaction changed. Online platforms complement physical places for idea exchange and innovation – the rise of hybrid, ‘net localities.’ Further, since its introduction in 2003 by Chesbrough, the concept of open innovation received increased attention as a topic in academic research as well as an innovation strategy applied by companies. Open innovation allows companies to seek and release intellectual property and new ideas from outside of their own company. As a consequence, the innovation process is no longer only managed within the company, but it is pursued in a co-creation process with customers, suppliers, and other stakeholders. Quirky.com (Quirky), a company founded by Ben Kaufman in 2009, recognised the opportunity given by the Internet for knowledge exchange and open innovation. Quirky developed an online platform that makes innovation available to everyone. This paper reports on a study that analysed Quirky’s business process in an extended event-driven process chain (eEPC). The aim was to determine how the platform enabled crowdsourced innovation for physical products on the Internet. The analysis reveals that key elements of the business model are based on open innovation. Quirky is an example of how open innovation can support crowdsourced and crowdfunded product ideation, development and selling. The company opened up various stages in the innovation process to its members to contribute in the product development, e.g. product ideation, design, and market research. Throughout the process, members earn influence through participating in the product development. Based on the influence they receive, shares on the product’s turnover. The outcomes of the study’s analysis highlighted certain benefits of open innovation for product development. The paper concludes with recommendations for future research to look into opportunities of open innovation approaches to be adopted by tertiary institutions as a novel way to commercialise research intellectual property.

Keywords: business process, crowdsourced innovation, open innovation, Quirky

Procedia PDF Downloads 229
727 Influence of Degassing on the Curing Behaviour and Void Occurrence Properties of Epoxy / Anhydride Resin System

Authors: Latha Krishnan, Andrew Cobley

Abstract:

Epoxy resin is most widely used as matrices for composites of aerospace, automotive and electronic applications due to its outstanding mechanical properties. These properties are chiefly predetermined by the chemical structure of the prepolymer and type of hardener but can also be varied by the processing conditions such as prepolymer and hardener mixing, degassing and curing conditions. In this research, the effect of degassing on the curing behaviour and the void occurrence is experimentally evaluated for epoxy /anhydride resin system. The epoxy prepolymer was mixed with an anhydride hardener and accelerator in an appropriate quantity. In order to investigate the effect of degassing on the curing behaviour and void content of the resin, the uncured resin samples were prepared using three different methods: 1) no degassing 2) degassing on prepolymer and 3) degassing on mixed solution of prepolymer and hardener with an accelerator. The uncured resins were tested in differential scanning calorimeter (DSC) to observe the changes in curing behaviour of the above three resin samples by analysing factors such as gel temperature, peak cure temperature and heat of reaction/heat flow in curing. Additionally, the completely cured samples were tested in DSC to identify the changes in the glass transition temperature (Tg) between the three samples. In order to evaluate the effect of degassing on the void content and morphology changes in the cured epoxy resin, the fractured surfaces of cured epoxy resin were examined under the scanning electron microscope (SEM). In addition, the amount of void, void geometry and void fraction were also investigated using an optical microscope and image J software (image analysis software). It was found that degassing at different stages of resin mixing had significant effects on properties such as glass transition temperature, the void content and void size of the epoxy/anhydride resin system. For example, degassing (vacuum applied on the mixed resin) has shown higher glass transition temperature (Tg) with lower void content.

Keywords: anhydride epoxy, curing behaviour, degassing, void occurrence

Procedia PDF Downloads 216
726 The Use of a Miniature Bioreactor as Research Tool for Biotechnology Process Development

Authors: Muhammad Zainuddin Arriafdi, Hamudah Hakimah Abdullah, Mohd Helmi Sani, Wan Azlina Ahmad, Muhd Nazrul Hisham Zainal Alam

Abstract:

The biotechnology process development demands numerous experimental works. In laboratory environment, this is typically carried out using a shake flask platform. This paper presents the design and fabrication of a miniature bioreactor system as an alternative research tool for bioprocessing. The working volume of the reactor is 100 ml, and it is made of plastic. The main features of the reactor included stirring control, temperature control via the electrical heater, aeration strategy through a miniature air compressor, and online optical cell density (OD) sensing. All sensors and actuators integrated into the reactor was controlled using an Arduino microcontroller platform. In order to demonstrate the functionality of such miniature bioreactor concept, series of batch Saccharomyces cerevisiae fermentation experiments were performed under various glucose concentrations. Results attained from the fermentation experiments were utilized to solve the Monod equation constants, namely the saturation constant, Ks, and cells maximum growth rate, μmax as to further highlight the usefulness of the device. The mixing capacity of the reactor was also evaluated. It was found that the results attained from the miniature bioreactor prototype were comparable to results achieved using a shake flask. The unique features of the device as compared to shake flask platform is that the reactor mixing condition is much more comparable to a lab-scale bioreactor setup. The prototype is also integrated with an online OD sensor, and as such, no sampling was needed to monitor the progress of the reaction performed. Operating cost and medium consumption are also low and thus, making it much more economical to be utilized for biotechnology process development compared to lab-scale bioreactors.

Keywords: biotechnology, miniature bioreactor, research tools, Saccharomyces cerevisiae

Procedia PDF Downloads 117
725 Water Footprint for the Palm Oil Industry in Malaysia

Authors: Vijaya Subramaniam, Loh Soh Kheang, Astimar Abdul Aziz

Abstract:

Water footprint (WFP) has gained importance due to the increase in water scarcity in the world. This study analyses the WFP for an agriculture sector, i.e., the oil palm supply chain, which produces oil palm fresh fruit bunch (FFB), crude palm oil, palm kernel, and crude palm kernel oil. The water accounting and vulnerability evaluation (WAVE) method was used. This method analyses the water depletion index (WDI) based on the local blue water scarcity. The main contribution towards the WFP at the plantation was the production of FFB from the crop itself at 0.23m³/tonne FFB. At the mill, the burden shifts to the water added during the process, which consists of the boiler and process water, which accounted for 6.91m³/tonne crude palm oil. There was a 33% reduction in the WFP when there was no dilution or water addition after the screw press at the mill. When allocation was performed, the WFP reduced by 42% as the burden was shared with the palm kernel and palm kernel shell. At the kernel crushing plant (KCP), the main contributor towards the WFP 4.96 m³/tonne crude palm kernel oil which came from the palm kernel which carried the burden from upstream followed by electricity, 0.33 m³/tonne crude palm kernel oil used for the process and 0.08 m³/tonne crude palm kernel oil for transportation of the palm kernel. A comparison was carried out for mills with biogas capture versus no biogas capture, and the WFP had no difference for both scenarios. The comparison when the KCPs operate in the proximity of mills as compared to those operating in the proximity of ports only gave a reduction of 6% for the WFP. Both these scenarios showed no difference and insignificant difference, which differed from previous life cycle assessment studies on the carbon footprint, which showed significant differences. This shows that findings change when only certain impact categories are focused on. It can be concluded that the impact from the water used by the oil palm tree is low due to the practice of no irrigation at the plantations and the high availability of water from rainfall in Malaysia. This reiterates the importance of planting oil palm trees in regions with high rainfall all year long, like the tropics. The milling stage had the most significant impact on the WFP. Mills should avoid dilution to reduce this impact.

Keywords: life cycle assessment, water footprint, crude palm oil, crude palm kernel oil, WAVE method

Procedia PDF Downloads 175
724 Exploring the Interplay of Attention, Awareness, and Control: A Comprehensive Investigation

Authors: Venkateswar Pujari

Abstract:

This study tries to investigate the complex interplay between control, awareness, and attention in human cognitive processes. The fundamental elements of cognitive functioning that play a significant role in influencing perception, decision-making, and behavior are attention, awareness, and control. Understanding how they interact can help us better understand how our minds work and may even increase our understanding of cognitive science and its therapeutic applications. The study uses an empirical methodology to examine the relationships between attention, awareness, and control by integrating different experimental paradigms and neuropsychological tests. To ensure the generalizability of findings, a wide sample of participants is chosen, including people with various cognitive profiles and ages. The study is structured into four primary parts, each of which focuses on one component of how attention, awareness, and control interact: 1. Evaluation of Attentional Capacity and Selectivity: In this stage, participants complete established attention tests, including the Stroop task and visual search tasks. 2. Evaluation of Awareness Degrees: In the second stage, participants' degrees of conscious and unconscious awareness are assessed using perceptual awareness tasks such as masked priming and binocular rivalry tasks. 3. Investigation of Cognitive Control Mechanisms: In the third phase, reaction inhibition, cognitive flexibility, and working memory capacity are investigated using exercises like the Wisconsin Card Sorting Test and the Go/No-Go paradigm. 4. Results Integration and Analysis: Data from all phases are integrated and analyzed in the final phase. To investigate potential links and prediction correlations between attention, awareness, and control, correlational and regression analyses are carried out. The study's conclusions shed light on the intricate relationships that exist between control, awareness, and attention throughout cognitive function. The findings may have consequences for cognitive psychology, neuroscience, and clinical psychology by providing new understandings of cognitive dysfunctions linked to deficiencies in attention, awareness, and control systems.

Keywords: attention, awareness, control, cognitive functioning, neuropsychological assessment

Procedia PDF Downloads 91
723 Reduction Behavior of Medium Grade Manganese Ore from Karangnunggal during a Sintering Process in Methane Gas

Authors: H. Aripin, I. Made Joni, Edvin Priatna, Nundang Busaeri, Svilen Sabchevski

Abstract:

In this investigation, manganese has been produced from medium grade manganese ore from Karangnunggal mine (West Java, Indonesia). The ores were grinded using a jar mill to pass through a 150 mesh sieve. The effects of keeping it at a temperature of 1200 °C in methane gas on the structural properties have been studied. The material’s properties have been characterized on the basis of the experimental data obtained using X-ray fluorescence (XRF), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. It has been found that the ore contains MnO₂ as the main constituents at about 46.80 wt.%. It can be also observed that the ore particles are agglomerated forming dense grains with different texture and morphology. The irregular-shaped grains with dark contrast, the large brighter grains, and smaller grains with bright texture and smooth surfaces are associated with the presence of manganese, calcium, and quartz, respectively. From XRD patterns, MnO₂ is reduced to hausmannite (Mn₃O₄), manganosite (MnO) and manganese carbide (Mn₇C₃). At a temperature of 1200°C the keeping time does not have any effect on the formation of crystals and the crystalline phases remain almost unchanged in the time range from 15 to 90 minutes. An increase of the keeping time up to 45 minutes during the sintering process leads to an increase of the MnO concentration, while at 90 minutes, the concentration decreases. At longer keeping times the excess reaction of the methane gas and manganese oxide in the ore causes an increase of carbon deposition. As a result, it blocks the particle surface and then hinders the reduction process of manganese oxide. From FTIR spectrum allows one to explain that the appearance of C=O stretching mode arises from absorption of atmospheric methane and manganese oxide of the ore. The intensity of this band increases with increasing the keeping time, indicating an increase of carbon deposition on the surface of manganese oxide.

Keywords: manganese, medium grade manganese ore, structural properties, keeping the temperature, carbon deposition

Procedia PDF Downloads 155
722 Teaching Business Process Management using IBM’s INNOV8 BPM Simulation Game

Authors: Hossam Ali-Hassan, Michael Bliemel

Abstract:

This poster reflects upon our experiences using INNOV8, IBM’s Business Process Management (BPM) simulation game, in online MBA and undergraduate MIS classes over a period of 2 years. The game is designed to gives both business and information technology players a better understanding of how effective BPM impacts an entire business ecosystem. The game includes three different scenarios: Smarter Traffic, which is used to evaluate existing traffic patterns and re-route traffic based on incoming metrics; Smarter Customer Service where players develop more efficient ways to respond to customers in a call centre environment; and Smarter Supply Chains where players balance supply and demand and reduce environmental impact in a traditional supply chain model. We use the game as an experiential learning tool, where students have to act as managers making real time changes to business processes to meet changing business demands and environments. The students learn how information technology (IT) and information systems (IS) can be used to intelligently solve different problems and how computer simulations can be used to test different scenarios or models based on business decisions without having to actually make the potentially costly and/or disruptive changes to business processes. Moreover, when students play the three different scenarios, they quickly see how practical process improvements can help meet profitability, customer satisfaction and environmental goals while addressing real problems faced by municipalities and businesses today. After spending approximately two hours in the game, students reflect on their experience from it to apply several BPM principles that were presented in their textbook through the use of a structured set of assignment questions. For each final scenario students submit a screenshot of their solution followed by one paragraph explaining what criteria you were trying to optimize, and why they picked their input variables. In this poster we outline the course and the module’s learning objectives where we used the game to place this into context. We illustrate key features of the INNOV8 Simulation Game, and describe how we used them to reinforce theoretical concepts. The poster will also illustrate examples from the simulation, assignment, and learning outcomes.

Keywords: experiential learning, business process management, BPM, INNOV8, simulation, game

Procedia PDF Downloads 329
721 Use of Numerical Tools Dedicated to Fire Safety Engineering for the Rolling Stock

Authors: Guillaume Craveur

Abstract:

This study shows the opportunity to use numerical tools dedicated to Fire Safety Engineering for the Rolling Stock. Indeed, some lawful requirements can now be demonstrated by using numerical tools. The first part of this study presents the use of modelling evacuation tool to satisfy the criteria of evacuation time for the rolling stock. The buildingEXODUS software is used to model and simulate the evacuation of rolling stock. Firstly, in order to demonstrate the reliability of this tool to calculate the complete evacuation time, a comparative study was achieved between a real test and simulations done with buildingEXODUS. Multiple simulations are performed to capture the stochastic variations in egress times. Then, a new study is done to calculate the complete evacuation time of a train with the same geometry but with a different interior architecture. The second part of this study shows some applications of Computational Fluid Dynamics. This work presents the approach of a multi scales validation of numerical simulations of standardized tests with Fire Dynamics Simulations software developed by the National Institute of Standards and Technology (NIST). This work highlights in first the cone calorimeter test, described in the standard ISO 5660, in order to characterize the fire reaction of materials. The aim of this process is to readjust measurement results from the cone calorimeter test in order to create a data set usable at the seat scale. In the second step, the modelisation concerns the fire seat test described in the standard EN 45545-2. The data set obtained thanks to the validation of the cone calorimeter test was set up in the fire seat test. To conclude with the third step, after controlled the data obtained for the seat from the cone calorimeter test, a larger scale simulation with a real part of train is achieved.

Keywords: fire safety engineering, numerical tools, rolling stock, multi-scales validation

Procedia PDF Downloads 303
720 Preclinical Studying of Stable Fe-Citrate Effect on 68Ga-Citrate Tissue Distribution

Authors: A. S. Lunev, A. A. Larenkov, O. E. Klementyeva, G. E. Kodina

Abstract:

Background and aims: 68Ga-citrate is one of prospective radiopharmaceutical for PET-imaging of inflammation and infection. 68Ga-citrate is 67Ga-citrate analogue using since 1970s for SPECT-imaging. There's known rebinding reaction occurs past Ga-citrate injection and gallium (similar iron Fe3+) binds with blood transferrin. Then radiolabeled protein complex is delivered to pathological foci (inflammation/infection sites). But excessive gallium bindings with transferrin are cause of slow blood clearance, long accumulation time in foci (24-72 h) and exception of application possibility of the short-lived gallium-68 (T½ = 68 min). Injection of additional chemical agents (e.g. Fe3+ compounds) competing with radioactive gallium to the blood transferrin joining (blocking of its metal binding capacity) is one of the ways to solve formulated problem. This phenomenon can be used for correction of 68Ga-citrate pharmacokinetics for increasing of the blood clearance and accumulation in foci. The aim of real studying is research of effect of stable Fe-citrate on 68Ga-citrate tissue distribution. Materials and methods: 68Ga-citrate without/with extra injection of stable Fe-citrate (III) was injected nonlinear mice with inflammation models (aseptic soft tissue inflammation, lung infection, osteomyelitis). PET/X-RAY Genisys4 (Sofie Bioscience, USA) was used for non-invasive PET imaging (for 30, 60, 120 min past injection 68Ga-citrate) with subsequent reconstruction of imaging and their analysis (value of clearance, distribution volume). Scanning time is 10 min. Results and conclusions: I. v. injection of stable Fe-citrate blocks the metal-binding capability of transferrin serum and allows decreasing gallium-68 radioactivity in blood significantly and increasing accumulation in inflammation (3-5 time). It allows receiving more informative PET-images of inflammation early (for 30-60 min after injection). Pharmacokinetic parameters prove it. Noted there is no statistically significant difference between 68Ga-citrate accumulation for different inflammation model because PET imaging is indication of pathological processes and is not their identification.

Keywords: 68Ga-citrate, Fe-citrate, PET imaging, mice, inflammation, infection

Procedia PDF Downloads 488
719 Molecular Dynamic Simulation of CO2 Absorption into Mixed Aqueous Solutions MDEA/PZ

Authors: N. Harun, E. E. Masiren, W. H. W. Ibrahim, F. Adam

Abstract:

Amine absorption process is an approach for mitigation of CO2 from flue gas that produces from power plant. This process is the most common system used in chemical and oil industries for gas purification to remove acid gases. On the challenges of this process is high energy requirement for solvent regeneration to release CO2. In the past few years, mixed alkanolamines have received increasing attention. In most cases, the mixtures contain N-methyldiethanolamine (MDEA) as the base amine with the addition of one or two more reactive amines such as PZ. The reason for the application of such blend amine is to take advantage of high reaction rate of CO2 with the activator combined with the advantages of the low heat of regeneration of MDEA. Several experimental and simulation studies have been undertaken to understand this process using blend MDEA/PZ solvent. Despite those studies, the mechanism of CO2 absorption into the aqueous MDEA is not well understood and available knowledge within the open literature is limited. The aim of this study is to investigate the intermolecular interaction of the blend MDEA/PZ using Molecular Dynamics (MD) simulation. MD simulation was run under condition 313K and 1 atm using NVE ensemble at 200ps and NVT ensemble at 1ns. The results were interpreted in term of Radial Distribution Function (RDF) analysis through two system of interest i.e binary and tertiary. The binary system will explain the interaction between amine and water molecule while tertiary system used to determine the interaction between the amine and CO2 molecule. For the binary system, it was observed that the –OH group of MDEA is more attracted to water molecule compared to –NH group of MDEA. The –OH group of MDEA can form the hydrogen bond with water that will assist the solubility of MDEA in water. The intermolecular interaction probability of –OH and –NH group of MDEA with CO2 in blended MDEA/PZ is higher than using single MDEA. This findings show that PZ molecule act as an activator to promote the intermolecular interaction between MDEA and CO2.Thus, blend of MDEA with PZ is expecting to increase the absorption rate of CO2 and reduce the heat regeneration requirement.

Keywords: amine absorption process, blend MDEA/PZ, CO2 capture, molecular dynamic simulation, radial distribution function

Procedia PDF Downloads 295
718 Dimensional-Controlled Functional Gold Nanoparticles and Zinc Oxide Nanorods for Solar Water Splitting

Authors: Kok Hong Tan, Hing Wah Lee, Jhih-Wei Chen, Chang Fu Dee, Chung-Lin Wu, Siang-Piao Chai, Wei Sea Chang

Abstract:

Semiconductor photocatalyst is known as one of the key roles in developing clean and sustainable energy. However, most of the semiconductor only possesses photoactivity within the UV light region, and hence, decreases the overall photocatalyst efficiency. Generally, the overall effectiveness of the photocatalyst activity is determined by three critical steps: (i) light absorption efficiency and photoexcitation electron-hole pair generation, (ii) separation and migration of charge carriers to the surface of the photocatalyst, and (iii) surface reaction of the carriers with its environment. Much effort has been invested on optimizing hierarchical nanostructures of semiconductors for efficient photoactivity due to the fact that the visible light absorption capability and occurrence of the chemical reactions mostly depend on the dimension of photocatalysts. In this work, we incorporated zero-dimensional (0D) gold nanoparticles (AuNPs) and one dimensional (1D) Zinc Oxide (ZnO) nanorods (NRs) onto strontium titanate (STO) for efficient visible light absorption, charge transfer, and separation. We demonstrate that the electrical and optical properties of the photocatalyst can be tuned by controlling the dimensional structures of AuNPs and ZnO NRs. We found that smaller AuNPs sizes exhibited higher photoactivity because of Fermi level shifting toward the conductive band of STO, STO band gap narrowing and broadening of absorption spectrum to the visible light region. For ZnO NRs, it was found that the average ZnO NRs c-axis length must achieve of certain length to induce multiphoton absorption as a result of light reflection and trapping behavior in the free space between adjacent ZnO NRs hence broadening the absorption spectrum of ZnO from UV to visible light region. This work opens up a new way of broadening the absorption spectrum by incorporating controllable nanostructures of semiconductors, which is important in optimizing the solar water splitting process.

Keywords: gold nanoparticles, photoelectrochemical, PEC, semiconductor photocatalyst, zinc oxide nanorods

Procedia PDF Downloads 161
717 Challenges Faced by Physician Leaders in Teaching Hospitals of Private Medical Schools in the National Capital Region, Philippines

Authors: Policarpio Jr. Joves

Abstract:

Physicians in most teaching hospitals are commonly promoted into managerial roles, yet their training is mostly in clinical and scientific skills but not in leadership competencies. When they shift into roles of physician leadership, the majority hold on to their primary identity of physicians. These conflicting roles affect their identity and eventually their work. The physician leaders also face additional challenges related to academics which include incorporation of new knowledge into the existing curriculum, use of technology in the delivery of teaching, the need to train medical students outside of hospital wards, etc. The study aims to explore how physician leaders in teaching hospitals of private medical schools enact their leadership roles and how they face the challenges as physician leaders. The study setting shall be teaching hospitals of three private medical schools situated in the National Capital Region, Philippines. A multiple case study design shall be adopted in this research. Physicians shall be eligible to participate in the study if they are practicing clinicians limited to the five major clinical specialty: Internal Medicine, Pediatrics, Family Medicine, Surgery, Obstetrics and Gynecology. They must be teaching in the College of Medicine prior to their appointments as physician leaders in both medical school and teaching hospital. Semi-structured face-to-face interviews shall be utilized as a means of data collection, with open-ended questions, enabling physician leaders to present narratives about their identity, role enactment, conflicts, reaction of colleagues, and the challenges encountered in their day-to-day work as physician leaders. Interviews shall be combined with observations and review of records to gain more insights into how the physician leaders are 'doing' management. Within-case analysis shall be done initially followed by a thematic analysis across the cases, referred to as cross–case analysis or cross-case synthesis.

Keywords: academic leaders, academic managers, physician leaders, physician managers

Procedia PDF Downloads 345
716 Optimization of Waste Plastic to Fuel Oil Plants' Deployment Using Mixed Integer Programming

Authors: David Muyise

Abstract:

Mixed Integer Programming (MIP) is an approach that involves the optimization of a range of decision variables in order to minimize or maximize a particular objective function. The main objective of this study was to apply the MIP approach to optimize the deployment of waste plastic to fuel oil processing plants in Uganda. The processing plants are meant to reduce plastic pollution by pyrolyzing the waste plastic into a cleaner fuel that can be used to power diesel/paraffin engines, so as (1) to reduce the negative environmental impacts associated with plastic pollution and also (2) to curb down the energy gap by utilizing the fuel oil. A programming model was established and tested in two case study applications that are, small-scale applications in rural towns and large-scale deployment across major cities in the country. In order to design the supply chain, optimal decisions on the types of waste plastic to be processed, size, location and number of plants, and downstream fuel applications were concurrently made based on the payback period, investor requirements for capital cost and production cost of fuel and electricity. The model comprises qualitative data gathered from waste plastic pickers at landfills and potential investors, and quantitative data obtained from primary research. It was found out from the study that a distributed system is suitable for small rural towns, whereas a decentralized system is only suitable for big cities. Small towns of Kalagi, Mukono, Ishaka, and Jinja were found to be the ideal locations for the deployment of distributed processing systems, whereas Kampala, Mbarara, and Gulu cities were found to be the ideal locations initially utilize the decentralized pyrolysis technology system. We conclude that the model findings will be most important to investors, engineers, plant developers, and municipalities interested in waste plastic to fuel processing in Uganda and elsewhere in developing economy.

Keywords: mixed integer programming, fuel oil plants, optimisation of waste plastics, plastic pollution, pyrolyzing

Procedia PDF Downloads 129
715 An International Comparison of Global Financial Centers: Major Competitive Strategies

Authors: I. Hakki Eraslan, Birol Ozturk, Istemi Comlekci

Abstract:

This paper begins by defining what is meant by “globalization” in finance and by identifying the sources of value-added in the internationally-competitive financial services sector origination, trading and distribution of debt and equity capital market instruments and their derivatives, foreign exchange trading and securities brokerage, management of market risk and credit risk, loan syndication and structured bank financings, corporate finance and advisory services, and asset management. These activities are considered in terms of a “value-chain” one that ultimately gives rise to the real economic gains attributable to financial-center operations. The research presents available evidence as to where the relevant value-added activities usually take place. It then examines the “centrifugal” and “centripetal” forces that determine the concentration or dispersal of value-added activity in financial intermediation, both interregionally and internationally. Next, the research assesses the factors, which appear to underlie the locational pattern of international financial centers that has evolved. In preparing this paper, also it is examined the current position and the main opportunities and challenges facing world major financial services sector, and attempted to lay out a potential vision and strategies. It is conducted extensive research, including many internal research materials and publications. It is also engaged closely with the academia, industry practitioners and regulators, and consulted market experts from major world financial centers. More than 60 in‐depth consultative sessions were conducted in the past two years which provided insightful suggestions and innovative ideas on how to further financial industry’s position as an international financial centre. The paper concludes with the outlook for the future pattern of financial centers in the global competitive environment. The ideas and advice gathered are condensed into this paper that recommends to the strategic decision leaders a vision and a strategy for financial services sector to move forward amid a highly competitive environment.

Keywords: financial centers, competitiveness, financial services industry, economics

Procedia PDF Downloads 404
714 Polymer Impregnated Sulfonated Carbon Composite as a Solid Acid Catalyst for the Dehydration of Xylose to Furfural

Authors: Praveen K. Khatri, Neha Karanwal, Savita Kaul, Suman L. Jain

Abstract:

Conversion of biomass through green chemical routes is of great industrial importance as biomass is considered to be most widely available inexpensive renewable resource that can be used as a raw material for the production of bio fuel and value-added organic products. In this regard, acid catalyzed dehydration of biomass derived pentose sugar (mainly D-xylose) to furfural is a process of tremendous research interest in current scenario due to the wider industrial applications of furfural. Furfural is an excellent organic solvent for refinement of lubricants and separation of butadiene from butene mixture in synthetic rubber fabrication. In addition it also serve as a promising solvent for many organic materials, such as resins, polymers and also used as a building block for synthesis of various valuable chemicals such as furfuryl alcohol, furan, pharmaceutical, agrochemicals and THF. Here in a sulfonated polymer impregnated carbon composite solid acid catalyst (P-C-SO3H) was prepared by the pyrolysis of a polymer matrix impregnated with glucose followed by its sulfonation and used for the dehydration of xylose to furfural. The developed catalyst exhibited excellent activity and provided almost quantitative conversion of xylose with the selective synthesis of furfural. The higher catalytic activity of P-C-SO3H may be due to the more even distribution of polycyclic aromatic hydrocarbons generated from incomplete carbonization of glucose along the polymer matrix network, leading to more available sites for sulfonation which resulted in greater sulfonic acid density in P-C-SO3H as compared to sulfonated carbon catalyst (C-SO3H). In conclusion, we have demonstrated sulfonated polymer impregnated carbon composite (P-C-SO3H) as an efficient and selective solid acid catalyst for the dehydration of xylose to furfural. After completion of the reaction, the catalyst was easily recovered and reused for several runs without noticeable loss in its activity and selectivity.

Keywords: Solid acid , Biomass conversion, Xylose Dehydration, Heterogeneous catalyst

Procedia PDF Downloads 409
713 Design and Modeling of Human Middle Ear for Harmonic Response Analysis

Authors: Shende Suraj Balu, A. B. Deoghare, K. M. Pandey

Abstract:

The human middle ear (ME) is a delicate and vital organ. It has a complex structure that performs various functions such as receiving sound pressure and producing vibrations of eardrum and propagating it to inner ear. It consists of Tympanic Membrane (TM), three auditory ossicles, various ligament structures and muscles. Incidents such as traumata, infections, ossification of ossicular structures and other pathologies may damage the ME organs. The conditions can be surgically treated by employing prosthesis. However, the suitability of the prosthesis needs to be examined in advance prior to the surgery. Few decades ago, this issue was addressed and analyzed by developing an equivalent representation either in the form of spring mass system, electrical system using R-L-C circuit or developing an approximated CAD model. But, nowadays a three-dimensional ME model can be constructed using micro X-Ray Computed Tomography (μCT) scan data. Moreover, the concern about patient specific integrity pertaining to the disease can be examined well in advance. The current research work emphasizes to develop the ME model from the stacks of μCT images which are used as input file to MIMICS Research 19.0 (Materialise Interactive Medical Image Control System) software. A stack of CT images is converted into geometrical surface model to build accurate morphology of ME. The work is further extended to understand the dynamic behaviour of Harmonic response of the stapes footplate and umbo for different sound pressure levels applied at lateral side of eardrum using finite element approach. The pathological condition Cholesteatoma of ME is investigated to obtain peak to peak displacement of stapes footplate and umbo. Apart from this condition, other pathologies, mainly, changes in the stiffness of stapedial ligament, TM thickness and ossicular chain separation and fixation are also explored. The developed model of ME for pathologies is validated by comparing the results available in the literatures and also with the results of a normal ME to calculate the percentage loss in hearing capability.

Keywords: computed tomography (μCT), human middle ear (ME), harmonic response, pathologies, tympanic membrane (TM)

Procedia PDF Downloads 175
712 Analysis of Socio-Economics of Tuna Fisheries Management (Thunnus Albacares Marcellus Decapterus) in Makassar Waters Strait and Its Effect on Human Health and Policy Implications in Central Sulawesi-Indonesia

Authors: Siti Rahmawati

Abstract:

Indonesia has had long period of monetary economic crisis and it is followed by an upward trend in the price of fuel oil. This situation impacts all aspects of tuna fishermen community. For instance, the basic needs of fishing communities increase and the lower purchasing power then lead to economic and social instability as well as the health of fishermen household. To understand this AHP method is applied to acknowledge the model of tuna fisheries management priorities and cold chain marketing channel and the utilization levels that impact on human health. The study is designed as a development research with the number of 180 respondents. The data were analyzed by Analytical Hierarchy Process (AHP) method. The development of tuna fishery business can improve productivity of production with economic empowerment activities for coastal communities, improving the competitiveness of products, developing fish processing centers and provide internal capital for the development of optimal fishery business. From economic aspects, fishery business is more attracting because the benefit cost ratio of 2.86. This means that for 10 years, the economic life of this project can work well as B/C> 1 and therefore the rate of investment is economically viable. From the health aspects, tuna can reduce the risk of dying from heart disease by 50%, because tuna contain selenium in the human body. The consumption of 100 g of tuna meet 52.9% of the selenium in the body and activating the antioxidant enzyme glutathione peroxidaxe which can protect the body from free radicals and stimulate various cancers. The results of the analytic hierarchy process that the quality of tuna products is the top priority for export quality as well as quality control in order to compete in the global market. The implementation of the policy can increase the income of fishermen and reduce the poverty of fishermen households and have impact on the human health whose has high risk of disease.

Keywords: management of tuna, social, economic, health

Procedia PDF Downloads 316
711 Electroless Nickel Boron Deposition onto the SiC and B4C Ceramic Reinforced Materials

Authors: I. Kerti, G. Sezen, S. Daglilar

Abstract:

This present work is focused on studying to improve low wetting behaviour between liquid metal and ceramic particles. Ceramic particles like SiC and B4C have attracted great attention because of their usability as reinforcement for composite materials. However, poor wettability of particles is one of the major drawbacks of metal matrix composite production. Various methods have been studied to enhance the wetting properties between ceramic materials and metal substrates during ceramic reinforced metal matrix composites. Among these methods, autocatalytic nickel deposition is a unique process for the enhancement of the surface properties of ceramic particles. In fact, it is difficult to obtain continuous and uniform metallic coating on ceramic powders. In this study deposition of nickel boron layer on ceramic particles via autocatalytic plating in borohydride baths were investigated. Firstly, powders with different particle sizes were sensitized and activated respectively in order to ensure catalytic properties. Following the pre-treatment operations, particles were transferred into the coating bath containing nickel sulphate or nickel chloride as the Ni2+ source. The results show that a better bonding and uniform coating layer were obtained for Ni-B coatings with the Ni2+ source of NiCl2.6H2O as compared to NiSO4.6H2O. With the progress of the time, both particle surfaces are completely covered by a continuous and thin nickel boron layer. The surface morphology of the coatings that were analysed using scanning electron microscopy (SEM) show that SiC and B4C particles both distributed and different thickness of Ni-B nanolayers have been successfully coated onto the particles. The particles were mounted into a polimeric resin and polished in order to observe the thickness and the continuity of the coating layer. The composition of the coating layers were also evaluated by EDS analyses. The SEM morphologies and the EDS results of the coatings at different reaction times were adopted for detailed discussion of the Ni-B electroless plating mechanism.

Keywords: boron carbide, electroless coating, nickel boron deposition, silicon carbide

Procedia PDF Downloads 348
710 The Use of Additives to Prevent Fouling in Polyethylene and Polypropylene Gas and Slurry Phase Processes

Authors: L. Shafiq, A. Rigby

Abstract:

All polyethylene processes are highly exothermic, and the safe removal of the heat of reaction is a fundamental issue in the process design. In slurry and gas processes, the velocity of the polymer particles in the reactor and external coolers can be very high, and under certain conditions, this can lead to static charging of these particles. Such static charged polymer particles may start building up on the reactor wall, limiting heat transfer, and ultimately leading to severe reactor fouling and forced reactor shut down. Statsafe™ is an FDA approved anti-fouling additive currently used around the world for polyolefin production as an anti-fouling additive. The unique polymer chemistry aids static discharge, which prevents the build-up of charged polyolefin particles, which could lead to fouling. Statsafe™ is being used and trailed in gas, slurry, and a combination of these technologies around the world. We will share data to demonstrate how the use of Statsafe™ allows more stable operation at higher solids level by eliminating static, which would otherwise prevent closer packing of particles in the hydrocarbon slurry. Because static charge generation depends also on the concentration of polymer particles in the slurry, the maximum slurry concentration can be higher when using Statsafe™, leading to higher production rates. The elimination of fouling also leads to less downtime. Special focus will be made on the impact anti-static additives have on catalyst performance within the polymerization process and how this has been measured. Lab-scale studies have investigated the effect on the activity of Ziegler Natta catalysts when anti-static additives are used at various concentrations in gas and slurry, polyethylene and polypropylene processes. An in-depth gas phase study investigated the effect of additives on the final polyethylene properties such as particle size, morphology, fines, bulk density, melt flow index, gradient density, and melting point.

Keywords: anti-static additives, catalyst performance, FDA approved anti-fouling additive, polymerisation

Procedia PDF Downloads 203
709 Quest for an Efficient Green Multifunctional Agent for the Synthesis of Metal Nanoparticles with Highly Specified Structural Properties

Authors: Niharul Alam

Abstract:

The development of energy efficient, economic and eco-friendly synthetic protocols for metal nanoparticles (NPs) with tailor-made structural properties and biocompatibility is a highly cherished goal for researchers working in the field of nanoscience and nanotechnology. In this context, green chemistry is highly relevant and the 12 principles of Green Chemistry can be explored to develop such synthetic protocols which are practically implementable. One of the most promising green chemical synthetic methods which can serve the purpose is biogenic synthetic protocol, which utilizes non-toxic multifunctional reactants derived from natural, biological sources ranging from unicellular organisms to higher plants that are often characterized as “medicinal plants”. Over the past few years, a plethora of medicinal plants have been explored as the source of this kind of multifunctional green chemical agents. In this presentation, we focus on the syntheses of stable monometallic Au and Ag NPs and also bimetallic Au/Ag alloy NPs with highly efficient catalytic property using aqueous extract of leaves of Indian Curry leaf plat (Murraya koenigii Spreng.; Fam. Rutaceae) as green multifunctional agents which is extensively used in Indian traditional medicine and cuisine. We have also studied the interaction between the synthesized metal NPs and surface-adsorbed fluorescent moieties, quercetin and quercetin glycoside which are its chemical constituents. This helped us to understand the surface property of the metal NPs synthesized by this plant based biogenic route and to predict a plausible mechanistic pathway which may help in fine-tuning green chemical methods for the controlled synthesis of various metal NPs in future. We observed that simple experimental parameters e.g. pH and temperature of the reaction medium, concentration of multifunctional agent and precursor metal ions play important role in the biogenic synthesis of Au NPs with finely tuned structures.

Keywords: green multifunctional agent, metal nanoparticles, biogenic synthesis

Procedia PDF Downloads 431
708 Intrusion Detection in SCADA Systems

Authors: Leandros A. Maglaras, Jianmin Jiang

Abstract:

The protection of the national infrastructures from cyberattacks is one of the main issues for national and international security. The funded European Framework-7 (FP7) research project CockpitCI introduces intelligent intrusion detection, analysis and protection techniques for Critical Infrastructures (CI). The paradox is that CIs massively rely on the newest interconnected and vulnerable Information and Communication Technology (ICT), whilst the control equipment, legacy software/hardware, is typically old. Such a combination of factors may lead to very dangerous situations, exposing systems to a wide variety of attacks. To overcome such threats, the CockpitCI project combines machine learning techniques with ICT technologies to produce advanced intrusion detection, analysis and reaction tools to provide intelligence to field equipment. This will allow the field equipment to perform local decisions in order to self-identify and self-react to abnormal situations introduced by cyberattacks. In this paper, an intrusion detection module capable of detecting malicious network traffic in a Supervisory Control and Data Acquisition (SCADA) system is presented. Malicious data in a SCADA system disrupt its correct functioning and tamper with its normal operation. OCSVM is an intrusion detection mechanism that does not need any labeled data for training or any information about the kind of anomaly is expecting for the detection process. This feature makes it ideal for processing SCADA environment data and automates SCADA performance monitoring. The OCSVM module developed is trained by network traces off line and detects anomalies in the system real time. The module is part of an IDS (intrusion detection system) developed under CockpitCI project and communicates with the other parts of the system by the exchange of IDMEF messages that carry information about the source of the incident, the time and a classification of the alarm.

Keywords: cyber-security, SCADA systems, OCSVM, intrusion detection

Procedia PDF Downloads 552
707 Effect of Surfactant Level of Microemulsions and Nanoemulsions on Cell Viability

Authors: Sonal Gupta, Rakhi Bansal, Javed Ali, Reema Gabrani, Shweta Dang

Abstract:

Nanoemulsions (NEs) and microemulsions (MEs) have been an attractive tool for encapsulation of both hydrophilic and lipophillic actives. Both these systems are composed of oil phase, surfactant, co-surfactant and aqueous phase. Depending upon the application and intended use, both oil-in-water and water-in-oil emulsions can be designed. NEs are fabricated using high energy methods employing less percentage of surfactant as compared to MEs which are self assembled drug delivery systems. Owing to the nanometric size of the droplets these systems have been widely used to enhance solubility and bioavailability of natural as well as synthetic molecules. The aim of the present study is to assess the effect of % age of surfactants on cell viability of Vero cells (African Green Monkeys’ Kidney epithelial cells) via MTT assay. Green tea catechin (Polyphenon 60) loaded ME employing low energy vortexing and NE employing high energy ultrasonication were prepared using same excipients (labrasol as oil, cremophor EL as surfactant and glycerol as co-surfactant) however, the % age of oil and surfactant needed to prepare the ME was higher as compared to NE. These formulations along with their excipients (oilME=13.3%, SmixME=26.67%; oilNE=10%, SmixNE=13.52%) were added to Vero cells for 24 hrs. The tetrazolium dye, 3-(4,5-dimethylthia/ol-2-yl)-2,5-diphi-iiyltclrazolium bromide (MTT), is reduced by live cells and this reaction is used as the end point to evaluate the cytoxicity level of a test formulation. Results of MTT assay indicated that oil at different percentages exhibited almost equal cell viability (oilME ≅ oilNE) while surfactant mixture had a significant difference in the cell viability values (SmixME < SmixNE). Polyphenon 60 loaded ME and its PlaceboME showed higher toxicity as compared to Polyphenon 60 loaded NE and its PlaceboNE that can be attributed to the higher concentration of surfactants present in MEs. Another probable reason for high % cell viability of Polyphenon 60 loaded NE might be due to the effective release of Polyphenon 60 from NE formulation that helps in the sustenance of Vero cells.

Keywords: cell viability, microemulsion, MTT, nanoemulsion, surfactants, ultrasonication

Procedia PDF Downloads 436
706 Cotton Fiber Quality Improvement by Introducing Sucrose Synthase (SuS) Gene into Gossypium hirsutum L.

Authors: Ahmad Ali Shahid, Mukhtar Ahmed

Abstract:

The demand for long staple fiber having better strength and length is increasing with the introduction of modern spinning and weaving industry in Pakistan. Work on gene discovery from developing cotton fibers has helped to identify dozens of genes that take part in cotton fiber development and several genes have been characterized for their role in fiber development. Sucrose synthase (SuS) is a key enzyme in the metabolism of sucrose in a plant cell, in cotton fiber it catalyzes a reversible reaction, but preferentially converts sucrose and UDP into fructose and UDP-glucose. UDP-glucose (UDPG) is a nucleotide sugar act as a donor for glucose residue in many glycosylation reactions and is essential for the cytosolic formation of sucrose and involved in the synthesis of cell wall cellulose. The study was focused on successful Agrobacterium-mediated stable transformation of SuS gene in pCAMBIA 1301 into cotton under a CaMV35S promoter. Integration and expression of the gene were confirmed by PCR, GUS assay, and real-time PCR. Young leaves of SuS overexpressing lines showed increased total soluble sugars and plant biomass as compared to non-transgenic control plants. Cellulose contents from fiber were significantly increased. SEM analysis revealed that fibers from transgenic cotton were highly spiral and fiber twist number increased per unit length when compared with control. Morphological data from field plants showed that transgenic plants performed better in field conditions. Incorporation of genes related to cotton fiber length and quality can provide new avenues for fiber improvement. The utilization of this technology would provide an efficient import substitution and sustained production of long-staple fiber in Pakistan to fulfill the industrial requirements.

Keywords: agrobacterium-mediated transformation, cotton fiber, sucrose synthase gene, staple length

Procedia PDF Downloads 233
705 Development of Green Cement, Based on Partial Replacement of Clinker with Limestone Powder

Authors: Yaniv Knop, Alva Peled

Abstract:

Over the past few years there has been a growing interest in the development of Portland Composite Cement, by partial replacement of the clinker with mineral additives. The motivations to reduce the clinker content are threefold: (1) Ecological - due to lower emission of CO2 to the atmosphere; (2) Economical - due to cost reduction; and (3) Scientific\Technology – improvement of performances. Among the mineral additives being used and investigated, limestone is one of the most attractive, as it is considered natural, available, and with low cost. The goal of the research is to develop green cement, by partial replacement of the clinker with limestone powder while improving the performances of the cement paste. This work studied blended cements with three limestone powder particle diameters: smaller than, larger than, and similarly sized to the clinker particle. Blended cement with limestone consisting of one particle size distribution and limestone consisting of a combination of several particle sizes were studied and compared in terms of hydration rate, hydration degree, and water demand to achieve normal consistency. The performances of these systems were also compared with that of the original cement (without added limestone). It was found that the ability to replace an active material with an inert additive, while achieving improved performances, can be obtained by increasing the packing density of the cement-based particles. This may be achieved by replacing the clinker with limestone powders having a combination of several different particle size distributions. Mathematical and physical models were developed to simulate the setting history from initial to final setting time and to predict the packing density of blended cement with limestone having different sizes and various contents. Besides the effect of limestone, as inert additive, on the packing density of the blended cement, the influence of the limestone particle size on three different chemical reactions were studied; hydration of the cement, carbonation of the calcium hydroxide and the reactivity of the limestone with the hydration reaction products. The main results and developments will be presented.

Keywords: packing density, hydration degree, limestone, blended cement

Procedia PDF Downloads 285
704 Experimental and Numerical Studies on Hydrogen Behavior in a Small-Scale Container with Passive Autocatalytic Recombiner

Authors: Kazuyuki Takase, Yoshihisa Hiraki, Gaku Takase, Isamu Kudo

Abstract:

One of the most important issue is to ensure the safety of long-term waste storage containers in which fuel debris and radioactive materials are accumulated. In this case, hydrogen generated by water decomposition by radiation is accumulated in the container for a long period of time, so it is necessary to reduce the concentration of hydrogen in the container. In addition, a condition that any power supplies from the outside of the container are unnecessary is requested. Then, radioactive waste storage containers with the passive autocatalytic recombiner (PAR) would be effective. The radioactive waste storage container with PAR was used for moving the fuel debris of the Three Mile Island Unit 2 to the storage location. However, the effect of PAR is not described in detail. Moreover, the reduction of hydrogen concentration during the long-term storage period was performed by the venting system, which was installed on the top of the container. Therefore, development of a long-term storage container with PAR was started with the aim of safely storing fuel debris picked up at the Fukushima Daiichi Nuclear Power Plant for a long period of time. A fundamental experiment for reducing the concentration of hydrogen which generates in a nuclear waste long-term storage container was carried out using a small-scale container with PAR. Moreover, the circulation flow behavior of hydrogen in the small-scale container resulting from the natural convection by the decay heat was clarified. In addition, preliminary numerical analyses were performed to predict the experimental results regarding the circulation flow behavior and the reduction of hydrogen concentration in the small-scale container. From the results of the present study, the validity of the container with PAR was experimentally confirmed on the reduction of hydrogen concentration. In addition, it was predicted numerically that the circulation flow behavior of hydrogen in the small-scale container is blocked by steam which generates by chemical reaction of hydrogen and oxygen.

Keywords: hydrogen behavior, reduction of concentration, long-term storage container, small-scale, PAR, experiment, analysis

Procedia PDF Downloads 164
703 Verification and Proposal of Information Processing Model Using EEG-Based Brain Activity Monitoring

Authors: Toshitaka Higashino, Naoki Wakamiya

Abstract:

Human beings perform a task by perceiving information from outside, recognizing them, and responding them. There have been various attempts to analyze and understand internal processes behind the reaction to a given stimulus by conducting psychological experiments and analysis from multiple perspectives. Among these, we focused on Model Human Processor (MHP). However, it was built based on psychological experiments and thus the relation with brain activity was unclear so far. To verify the validity of the MHP and propose our model from a viewpoint of neuroscience, EEG (Electroencephalography) measurements are performed during experiments in this study. More specifically, first, experiments were conducted where Latin alphabet characters were used as visual stimuli. In addition to response time, ERPs (event-related potentials) such as N100 and P300 were measured by using EEG. By comparing cycle time predicted by the MHP and latency of ERPs, it was found that N100, related to perception of stimuli, appeared at the end of the perceptual processor. Furthermore, by conducting an additional experiment, it was revealed that P300, related to decision making, appeared during the response decision process, not at the end. Second, by experiments using Japanese Hiragana characters, i.e. Japan's own phonetic symbols, those findings were confirmed. Finally, Japanese Kanji characters were used as more complicated visual stimuli. A Kanji character usually has several readings and several meanings. Despite the difference, a reading-related task and a meaning-related task exhibited similar results, meaning that they involved similar information processing processes of the brain. Based on those results, our model was proposed which reflects response time and ERP latency. It consists of three processors: the perception processor from an input of a stimulus to appearance of N100, the cognitive processor from N100 to P300, and the decision-action processor from P300 to response. Using our model, an application system which reflects brain activity can be established.

Keywords: brain activity, EEG, information processing model, model human processor

Procedia PDF Downloads 98