Search results for: damaged detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3865

Search results for: damaged detection

475 Telemedicine and Telemonitoring for Interstitial Lung Disease Patients with Nintedanib

Authors: M. Brockes, S. Beck, A. Sigaroudi, C. Brockes

Abstract:

Over the last years, telemedicine and telemonitoring have become a popular way of treatment, especially in other chronic diseases. Therefore this type of treatment methodology was also implemented in interstitial lung disease (ILD) patients. In January 2024, a new service for patients with interstitial lung disease (ILD) treated with Nintedanib was established, which contains daily telemonitoring (home spirometry, pulse oximetry, and daily level of activity), daily evaluation of parameters as well as a telemedical availability answered by doctors and telemedical specialists throughout 365 days per year. The main motivational points of this service are the early detection of first signs of exacerbations and/or other symptoms/complications as well as easier access to healthcare professionals. The evaluation of the patient’s quality of life and the subjective feeling of safetyness was measured through patient reported experience measurements (PREMs) and patient reported outcome measurements (PROMs). Patients were introduced to the telemedical and telemonitoring service six-months ago. Within this period, every sixty days, the questionnaires were conducted by the scientific employees. Due to the unlimited time frame of the long-term service the evaluation is not completed. The first analysis of patient reported experience measurements (PREMs) and patient reported outcome measurements (PROMs) have shown an increased positive effect on the patients' quality of life as well as an increased positive effect on the subjective feeling of safety at home, plus a reduction and avoidance of secondary damages (e.g., exacerbations, deterioration of typical interstitial lung disease ILD symptoms and pharmaceutical side effects). The first results have shown a tendency that the telemedical treatment combined with telemonitoring at home and the encouragement of patients to actively participate in their healthcare has a positive effect on the patient’s overall well-being and could be implemented as a complementation of the traditional standard of care.

Keywords: avoidance of secondary damages, interstitial lung disease, telemedicine and telemonitoring, subjective feeling of safety

Procedia PDF Downloads 19
474 Clustering and Modelling Electricity Conductors from 3D Point Clouds in Complex Real-World Environments

Authors: Rahul Paul, Peter Mctaggart, Luke Skinner

Abstract:

Maintaining public safety and network reliability are the core objectives of all electricity distributors globally. For many electricity distributors, managing vegetation clearances from their above ground assets (poles and conductors) is the most important and costly risk mitigation control employed to meet these objectives. Light Detection And Ranging (LiDAR) is widely used by utilities as a cost-effective method to inspect their spatially-distributed assets at scale, often captured using high powered LiDAR scanners attached to fixed wing or rotary aircraft. The resulting 3D point cloud model is used by these utilities to perform engineering grade measurements that guide the prioritisation of vegetation cutting programs. Advances in computer vision and machine-learning approaches are increasingly applied to increase automation and reduce inspection costs and time; however, real-world LiDAR capture variables (e.g., aircraft speed and height) create complexity, noise, and missing data, reducing the effectiveness of these approaches. This paper proposes a method for identifying each conductor from LiDAR data via clustering methods that can precisely reconstruct conductors in complex real-world configurations in the presence of high levels of noise. It proposes 3D catenary models for individual clusters fitted to the captured LiDAR data points using a least square method. An iterative learning process is used to identify potential conductor models between pole pairs. The proposed method identifies the optimum parameters of the catenary function and then fits the LiDAR points to reconstruct the conductors.

Keywords: point cloud, LİDAR data, machine learning, computer vision, catenary curve, vegetation management, utility industry

Procedia PDF Downloads 99
473 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models

Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu

Abstract:

Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.

Keywords: DTM, Unmanned Aerial Vehicle (UAV), uniform, random, kriging

Procedia PDF Downloads 155
472 Prevalence of Disability among Children Two to Fourteen Years at Selected Districts in Greater Accra Region of Ghana

Authors: Yvonne Nanaama Brew, Bismark Jampim Abrokwah

Abstract:

Children with disabilities in Ghana are not routinely registered, and this can imply that they may be neglected in national policy planning since global estimates may not be near the exact numbers. Although there are some studies with reports on the prevalence of disability among children in Ghana, reliable information on the prevalence, types of disability in children, and children who die with disabilities in the Greater Accra region are lacking. The current study seeks to investigate the incidence of disability among children two to fourteen years at selected districts in the Greater Accra region of Ghana. A cross-sectional design is adapted with a quantitative method for this study. Parents with disabled children who access child welfare clinics at the Greater Accra regional hospital, Maamobi hospital, Ga west, and Ga south district hospitals will be selected through purposive sampling for the study. An adapted UNICEF structured Ten Questions will be used to collect relevant data about participants. The responses to the questions will be either 'Yes' or 'No'. Parents with children who answer 'Yes' to a disability and purposively sampled parents with children who answer 'No' to disability will be invited to Child Health Clinic at the Greater Accra regional hospital for a free clinical assessment. Data will be entered into Microsoft Office Excel 2013 and imported into STATA version 15 for analysis. The study is expected to provide reliable disaggregated data on less than fourteen years of children with disabilities in the Greater Accra region. The findings and recommendations of the study will demonstrate the importance of early detection of disability and facilitate more quality and holistic planning of appropriate programmes that best safeguard the rights of children with disabilities in Ghana. It will help in policy and decision-making on children less than fourteen years with disabilities in Ghana. Also, findings will be useful for health facilities in Ghana to plan services for disabled children. Finally, the study is expected to add to the guides for the National Council of Persons with Disabilities to fulfill its legal mandate for disabled persons in Ghana.

Keywords: prevalence, disability, children, Ghana

Procedia PDF Downloads 132
471 Neural Network and Support Vector Machine for Prediction of Foot Disorders Based on Foot Analysis

Authors: Monireh Ahmadi Bani, Adel Khorramrouz, Lalenoor Morvarid, Bagheri Mahtab

Abstract:

Background:- Foot disorders are common in musculoskeletal problems. Plantar pressure distribution measurement is one the most important part of foot disorders diagnosis for quantitative analysis. However, the association of plantar pressure and foot disorders is not clear. With the growth of dataset and machine learning methods, the relationship between foot disorders and plantar pressures can be detected. Significance of the study:- The purpose of this study was to predict the probability of common foot disorders based on peak plantar pressure distribution and center of pressure during walking. Methodologies:- 2323 participants were assessed in a foot therapy clinic between 2015 and 2021. Foot disorders were diagnosed by an experienced physician and then they were asked to walk on a force plate scanner. After the data preprocessing, due to the difference in walking time and foot size, we normalized the samples based on time and foot size. Some of force plate variables were selected as input to a deep neural network (DNN), and the probability of any each foot disorder was measured. In next step, we used support vector machine (SVM) and run dataset for each foot disorder (classification of yes or no). We compared DNN and SVM for foot disorders prediction based on plantar pressure distributions and center of pressure. Findings:- The results demonstrated that the accuracy of deep learning architecture is sufficient for most clinical and research applications in the study population. In addition, the SVM approach has more accuracy for predictions, enabling applications for foot disorders diagnosis. The detection accuracy was 71% by the deep learning algorithm and 78% by the SVM algorithm. Moreover, when we worked with peak plantar pressure distribution, it was more accurate than center of pressure dataset. Conclusion:- Both algorithms- deep learning and SVM will help therapist and patients to improve the data pool and enhance foot disorders prediction with less expense and error after removing some restrictions properly.

Keywords: deep neural network, foot disorder, plantar pressure, support vector machine

Procedia PDF Downloads 357
470 Associations between Sleep Problems and Disordered Eating in Japanese Adolescents: A Cross-Sectional Study

Authors: Takaharu Hirai, Yuta Mitobe, Hiromi Hirai

Abstract:

Introduction: Eating disorders (ED) are serious psychiatric disorders that affect individuals, especially adolescents. It has been suggested that nonclinical ED-like characteristics are related to sleep problems. However, studies exploring the association between potential ED and sleep disorders have primarily been conducted in Europe and the United States. We conducted a survey of Japanese adolescents to investigate this claim. Method: In this cross-sectional study, 398 school-aged adolescents, aged 12–18 years old, matched for gender ratio, responded to a self-administered questionnaire survey. We used the Eating Attitudes Test-26 (EAT-26) and the Athens Insomnia Scale (AIS) to measure potential ED and sleep problems, respectively. In this study, participants with an EAT-26 total score of 0–19 points were classified as non-ED, while those with scores of 20 points or higher were classified as potential ED. Result: Of the 398 participants, 17 (4.3%) had an EAT-26 total score of 20 or higher. Among boys, the rate was 6 of 199 participants (3%), and among girls, the rate was 11 of 182 participants (6%). There were 89 participants (22.4%) with an AIS score of 6 points or higher, of which 36 (17.6%) were boys, and 53 (27.5%) were girls. Adolescents with potential ED had significantly higher rates of daytime sleep problems than those without ED. Further, while examining the types of sleep problems, adolescents with potential ED had greater problems with a sense of well-being and physical and mental functioning during the day. In contrast, no significant associations were found between potential ED and sleep initiation, awakenings during the night, early morning awakening, total sleep duration, or overall quality of sleep. Finally, nocturnal and daytime sleep scores were significantly associated with dieting, bulimia, and oral control EAT-26 sub-scores. Discussion: While Japanese adolescents with possible ED do not experience nighttime sleep problems, they do experience problems related to well-being and mental and physical functioning, which are indicators of daytime sleep problems. This may assist with early detection of disordered eating in adolescents. The study suggested that professionals working towards adolescent mental health issues need an approach that comprehensively integrates both sleep problems and potential ED.

Keywords: adolescents, potential eating disorders, sleep problems, eating attitudes test-26

Procedia PDF Downloads 174
469 [Keynote Speech]: Curiosity, Innovation and Technological Advancements Shaping the Future of Science, Technology, Engineering and Mathematics Education

Authors: Ana Hol

Abstract:

We live in a constantly changing environment where technology has become an integral component of our day to day life. We rely heavily on mobile devices, we search for data via web, we utilise smart home sensors to create the most suited ambiences and we utilise applications to shop, research, communicate and share data. Heavy reliance on technology therefore is creating new connections between STEM (Science, Technology, Engineering and Mathematics) fields which in turn rises a question of what the STEM education of the future should be like? This study was based on the reviews of the six Australian Information Systems students who undertook an international study tour to India where they were given an opportunity to network, communicate and meet local students, staff and business representatives and from them learn about the local business implementations, local customs and regulations. Research identifies that if we are to continue to implement and utilise electronic devices on the global scale, such as for example implement smart cars that can smoothly cross borders, we will need the workforce that will have the knowledge about the cars themselves, their parts, roads and transport networks, road rules, road sensors, road monitoring technologies, graphical user interfaces, movement detection systems as well as day to day operations, legal rules and regulations of each region and country, insurance policies, policing and processes so that the wide array of sensors can be controlled across country’s borders. In conclusion, it can be noted that allowing students to learn about the local conditions, roads, operations, business processes, customs and values in different countries is giving students a cutting edge advantage as such knowledge cannot be transferred via electronic sources alone. However once understanding of each problem or project is established, multidisciplinary innovative STEM projects can be smoothly conducted.

Keywords: STEM, curiosity, innovation, advancements

Procedia PDF Downloads 199
468 Difficulties and Mistakes in Diagnosis During Brucellosis in Children

Authors: Taghi-Zada T. G., Hajiyeva U. K.

Abstract:

Recent years, due to the development of tourism, migration and globalization, brucellosis has spread to non-endemic regions of the country in Azerbaijan and this disease has become one of the main priority areas of medicine. In our daily practice, we face patients with specific symptoms of brucellosis and also infected with this disease but misdiagnosed. It should also be noted that the symptoms and signs of brucellosis are very diverse, and since none of these signs are specific enough to confirm the diagnosis, it creates difficulties in its timely detection and diagnosis. The main purpose of the work. Therefore, the main goal of the work is to investigate the cases of delay in making the correct diagnosis in children with brucellosis and the mistakes in this matter. Material and method. 50 children with brucellosis between the ages of 6 months and 17 years were examined. The medical history and anamnesis of these children were collected, clinical-instrumental examination, and serological tests for brucellosis were performed. Patients were divided into 2 groups, taking into account the specificity of symptoms and the timely diagnosis Results. Group I included 15 (40%) children aged 3-17 years. The main specific symptoms of brucellosis in these patients; persistent or long-term fever, night sweats, arthralgia were observed. In addition to specific symptoms, anamnesis and a specific serological test confirmed the diagnosis of brucellosis. 30 (60%) patients included in group II were misdiagnosed. 3 patients (up to 1 year) were diagnosed with sepsis, 6 with acute rheumatic fever, 10 with systemic diseases, 2 with tuberculosis, 5 with Covid 19, and 4 with unspecified fever. However, we included serological tests. detailed examination revealed the presence of brucellosis in them. As can be seen, compared to group I (40%) children included in group II (60%) In modern times, brucellosis manifests itself with its own characteristics, that is, imitating a number of other diseases, which has led to wrong diagnosis. Conclusion. Thus, the lack of specificity of clinical symptoms during brucellosis in children makes diagnosis difficult, causes mistakes and non-recognition of the disease. With this in mind, physicians in predominantly endemic and even sub-endemic areas should remain vigilant about this disease and consider brucellosis in the differential diagnosis of almost every unexplained medical problem until proven otherwise.

Keywords: brucellosis, pediatrics, diagnostics, serological tests

Procedia PDF Downloads 12
467 Off-Body Sub-GHz Wireless Channel Characterization for Dairy Cows in Barns

Authors: Said Benaissa, David Plets, Emmeric Tanghe, Jens Trogh, Luc Martens, Leen Vandaele, Annelies Van Nuffel, Frank A. M. Tuyttens, Bart Sonck, Wout Joseph

Abstract:

The herd monitoring and managing - in particular the detection of ‘attention animals’ that require care, treatment or assistance is crucial for effective reproduction status, health, and overall well-being of dairy cows. In large sized farms, traditional methods based on direct observation or analysis of video recordings become labour-intensive and time-consuming. Thus, automatic monitoring systems using sensors have become increasingly important to continuously and accurately track the health status of dairy cows. Wireless sensor networks (WSNs) and internet-of-things (IoT) can be effectively used in health tracking of dairy cows to facilitate herd management and enhance the cow welfare. Since on-cow measuring devices are energy-constrained, a proper characterization of the off-body wireless channel between the on-cow sensor nodes and the back-end base station is required for a power-optimized deployment of these networks in barns. The aim of this study was to characterize the off-body wireless channel in indoor (barns) environment at 868 MHz using LoRa nodes. LoRa is an emerging wireless technology mainly targeted at WSNs and IoT networks. Both large scale fading (i.e., path loss) and temporal fading were investigated. The obtained path loss values as a function of the transmitter-receiver separation were well fitted by a lognormal path loss model. The path loss showed an additional increase of 4 dB when the wireless node was actually worn by the cow. The temporal fading due to movement of other cows was well described by Rician distributions with a K-factor of 8.5 dB. Based on this characterization, network planning and energy consumption optimization of the on-body wireless nodes could be performed, which enables the deployment of reliable dairy cow monitoring systems.

Keywords: channel, channel modelling, cow monitoring, dairy cows, health monitoring, IoT, LoRa, off-body propagation, PLF, propagation

Procedia PDF Downloads 318
466 Diagnosis of Choledocholithiasis with Endosonography

Authors: A. Kachmazova, A. Shadiev, Y. Teterin, P. Yartcev

Abstract:

Introduction: Biliary calculi disease (LCS) still occupies the leading position among urgent diseases of the abdominal cavity, manifesting itself from asymptomatic course to life-threatening states. Nowadays arsenal of diagnostic methods for choledocholithiasis is quite wide: ultrasound, hepatobiliscintigraphy (HBSG), magnetic resonance imaging (MRI), endoscopic retrograde cholangiography (ERCP). Among them, transabdominal ultrasound (TA ultrasound) is the most accessible and routine diagnostic method. Nowadays ERCG is the "gold" standard in diagnosis and one-stage treatment of biliary tract obstruction. However, transpapillary techniques are accompanied by serious postoperative complications (postmanipulative pancreatitis (3-5%), endoscopic papillosphincterotomy bleeding (2%), cholangitis (1%)), the lethality being 0.4%. GBSG and MRI are also quite informative methods in the diagnosis of choledocholithiasis. Small size of concrements, their localization in intrapancreatic and retroduodenal part of common bile duct significantly reduces informativity of all diagnostic methods described above, that demands additional studying of this problem. Materials and Methods: 890 patients with the diagnosis of cholelithiasis (calculous cholecystitis) were admitted to the Sklifosovsky Scientific Research Institute of Hospital Medicine in the period from August, 2020 to June, 2021. Of them 115 people with mechanical jaundice caused by concrements in bile ducts. Results: Final EUS diagnosis was made in all patients (100,0%). In all patients in whom choledocholithiasis diagnosis was revealed or confirmed after EUS, ERCP was performed urgently (within two days from the moment of its detection) as the X-ray operation room was provided; it confirmed the presence of concrements. All stones were removed by lithoextraction using Dormia basket. The postoperative period in these patients had no complications. Conclusions: EUS is the most informative and safe diagnostic method, which allows to detect choledocholithiasis in patients with discrepancies between clinical-laboratory and instrumental methods of diagnosis in shortest time, that in its turn will help to decide promptly on the further tactics of patient treatment. We consider it reasonable to include EUS in the diagnostic algorithm for choledocholithiasis. Disclosure: Nothing to disclose.

Keywords: endoscopic ultrasonography, choledocholithiasis, common bile duct, concrement, ERCP

Procedia PDF Downloads 85
465 Peptide-Gold Nanocluster as an Optical Biosensor for Glycoconjugate Secreted from Leishmania

Authors: Y. A. Prada, Fanny Guzman, Rafael Cabanzo, John J. Castillo, Enrique Mejia-Ospino

Abstract:

In this work, we show the important results about of synthesis of photoluminiscents gold nanoclusters using a small peptide as template for biosensing applications. Interestingly, we design one peptide (NBC2854) homologue to conservative domain from 215 250 residue of a galactolectin protein which can recognize the proteophosphoglycans (PPG) from Leishmania. Peptide was synthetized by multiple solid phase synthesis using FMoc group methodology in acid medium. Finally, the peptide was purified by High-Performance Liquid Chromatography using a Vydac C-18 preparative column and the detection was at 215 nm using a Photo Diode Array detector. Molecular mass of this peptide was confirmed by MALDI-TOF and to verify the α-helix structure we use Circular Dichroism. By means of the methodology used we obtained a novel fluorescents gold nanoclusters (AuNC) using NBC2854 as a template. In this work, we described an easy and fast microsonic method for the synthesis of AuNC with ≈ 3.0 nm of hydrodynamic size and photoemission at 630 nm. The presence of cysteine residue in the C-terminal of the peptide allows the formation of Au-S bond which confers stability to Peptide-based gold nanoclusters. Interactions between the peptide and gold nanoclusters were confirmed by X-ray Photoemission and Raman Spectroscopy. Notably, from the ultrafine spectra shown in the MALDI-TOF analysis which containing only 3-7 KDa species was assigned to Au₈-₁₈[NBC2854]₂ clusters. Finally, we evaluated the Peptide-gold nanocluster as an optical biosensor based on fluorescence spectroscopy and the fluorescence signal of PPG (0.1 µg-mL⁻¹ to 1000 µg-mL⁻¹) was amplified at the same wavelength emission (≈ 630 nm). This can suggest that there is a strong interaction between PPG and Pep@AuNC, therefore, the increase of the fluorescence intensity can be related to the association mechanism that take place when the target molecule is sensing by the Pep@AuNC conjugate. Further spectroscopic studies are necessary to evaluate the fluorescence mechanism involve in the sensing of the PPG by the Pep@AuNC. To our best knowledge the fabrication of an optical biosensor based on Pep@AuNC for sensing biomolecules such as Proteophosphoglycans which are secreted in abundance by parasites Leishmania.

Keywords: biosensing, fluorescence, Leishmania, peptide-gold nanoclusters, proteophosphoglycans

Procedia PDF Downloads 169
464 Investigation of Contact Pressure Distribution at Expanded Polystyrene Geofoam Interfaces Using Tactile Sensors

Authors: Chen Liu, Dawit Negussey

Abstract:

EPS (Expanded Polystyrene) geofoam as light-weight material in geotechnical applications are made of pre-expanded resin beads that form fused cellular micro-structures. The strength and deformation properties of geofoam blocks are determined by unconfined compression of small test samples between rigid loading plates. Applied loads are presumed to be supported uniformly over the entire mating end areas. Predictions of field performance on the basis of such laboratory tests widely over-estimate actual post-construction settlements and exaggerate predictions of long-term creep deformations. This investigation examined the development of contact pressures at a large number of discrete points at low and large strain levels for different densities of geofoam. Development of pressure patterns for fine and coarse interface material textures as well as for molding skin and hot wire cut geofoam surfaces were examined. The lab testing showed that I-Scan tactile sensors are useful for detailed observation of contact pressures at a large number of discrete points simultaneously. At low strain level (1%), the lower density EPS block presents low variations in localized stress distribution compared to higher density EPS. At high strain level (10%), the dense geofoam reached the sensor cut-off limit. The imprint and pressure patterns for different interface textures can be distinguished with tactile sensing. The pressure sensing system can be used in many fields with real-time pressure detection. The research findings provide a better understanding of EPS geofoam behavior for improvement of design methods and performance prediction of critical infrastructures, which will be anticipated to guide future improvements in design and rapid construction of critical transportation infrastructures with geofoam in geotechnical applications.

Keywords: geofoam, pressure distribution, tactile pressure sensors, interface

Procedia PDF Downloads 173
463 Assessing the Survival Time of Hospitalized Patients in Eastern Ethiopia During 2019–2020 Using the Bayesian Approach: A Retrospective Cohort Study

Authors: Chalachew Gashu, Yoseph Kassa, Habtamu Geremew, Mengestie Mulugeta

Abstract:

Background and Aims: Severe acute malnutrition remains a significant health challenge, particularly in low‐ and middle‐income countries. The aim of this study was to determine the survival time of under‐five children with severe acute malnutrition. Methods: A retrospective cohort study was conducted at a hospital, focusing on under‐five children with severe acute malnutrition. The study included 322 inpatients admitted to the Chiro hospital in Chiro, Ethiopia, between September 2019 and August 2020, whose data was obtained from medical records. Survival functions were analyzed using Kaplan‒Meier plots and log‐rank tests. The survival time of severe acute malnutrition was further analyzed using the Cox proportional hazards model and Bayesian parametric survival models, employing integrated nested Laplace approximation methods. Results: Among the 322 patients, 118 (36.6%) died as a result of severe acute malnutrition. The estimated median survival time for inpatients was found to be 2 weeks. Model selection criteria favored the Bayesian Weibull accelerated failure time model, which demonstrated that age, body temperature, pulse rate, nasogastric (NG) tube usage, hypoglycemia, anemia, diarrhea, dehydration, malaria, and pneumonia significantly influenced the survival time of severe acute malnutrition. Conclusions: This study revealed that children below 24 months, those with altered body temperature and pulse rate, NG tube usage, hypoglycemia, and comorbidities such as anemia, diarrhea, dehydration, malaria, and pneumonia had a shorter survival time when affected by severe acute malnutrition under the age of five. To reduce the death rate of children under 5 years of age, it is necessary to design community management for acute malnutrition to ensure early detection and improve access to and coverage for children who are malnourished.

Keywords: Bayesian analysis, severe acute malnutrition, survival data analysis, survival time

Procedia PDF Downloads 47
462 Dengue Virus Infection Rate in Mosquitoes Collected in Thailand Related to Environmental Factors

Authors: Chanya Jetsukontorn

Abstract:

Dengue hemorrhagic fever is the most important Mosquito-borne disease and the major public health problem in Thailand. The most important vector is Aedes aegypti. Environmental factors such as temperature, relative humidity, and biting rate affect dengue virus infection. The most effective measure for prevention is controlling of vector mosquitoes. In addition, surveillance of field-caught mosquitoes is imperative for determining the natural vector and can provide an early warning sign at risk of transmission in an area. In this study, Aedes aegypti mosquitoes were collected in Amphur Muang, Phetchabun Province, Thailand. The mosquitoes were collected in the rainy season and the dry season both indoor and outdoor. During mosquito’s collection, the data of environmental factors such as temperature, humidity and breeding sites were observed and recorded. After identified to species, mosquitoes were pooled according to genus/species, and sampling location. Pools consisted of a maximum of 10 Aedes mosquitoes. 70 pools of 675 Aedes aegypti were screened with RT-PCR for flaviviruses. To confirm individual infection for determining True infection rate, individual mosquitoes which gave positive results of flavivirus detection were tested for dengue virus by RT-PCR. The infection rate was 5.93% (4 positive individuals from 675 mosquitoes). The probability to detect dengue virus in mosquitoes at the neighbour’s houses was 1.25 times, especially where distances between neighboring houses and patient’s houses were less than 50 meters. The relative humidity in dengue-infected villages with dengue-infected mosquitoes was significantly higher than villages that free from dengue-infected mosquitoes. Indoor biting rate of Aedes aegypti was 14.87 times higher than outdoor, and biting times of 09.00-10.00, 10.00-11.00, 11.00-12.00 yielded 1.77, 1.46, 0.68mosquitoes/man-hour, respectively. These findings confirm environmental factors were related to Dengue infection in Thailand. Data obtained from this study will be useful for the prevention and control of the diseases.

Keywords: Aedes aegypti, Dengue virus, environmental factors, one health, PCR

Procedia PDF Downloads 145
461 Application of Human Biomonitoring and Physiologically-Based Pharmacokinetic Modelling to Quantify Exposure to Selected Toxic Elements in Soil

Authors: Eric Dede, Marcus Tindall, John W. Cherrie, Steve Hankin, Christopher Collins

Abstract:

Current exposure models used in contaminated land risk assessment are highly conservative. Use of these models may lead to over-estimation of actual exposures, possibly resulting in negative financial implications due to un-necessary remediation. Thus, we are carrying out a study seeking to improve our understanding of human exposure to selected toxic elements in soil: arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), and lead (Pb) resulting from allotment land-use. The study employs biomonitoring and physiologically-based pharmacokinetic (PBPK) modelling to quantify human exposure to these elements. We recruited 37 allotment users (adults > 18 years old) in Scotland, UK, to participate in the study. Concentrations of the elements (and their bioaccessibility) were measured in allotment samples (soil and allotment produce). Amount of produce consumed by the participants and participants’ biological samples (urine and blood) were collected for up to 12 consecutive months. Ethical approval was granted by the University of Reading Research Ethics Committee. PBPK models (coded in MATLAB) were used to estimate the distribution and accumulation of the elements in key body compartments, thus indicating the internal body burden. Simulating low element intake (based on estimated ‘doses’ from produce consumption records), predictive models suggested that detection of these elements in urine and blood was possible within a given period of time following exposure. This information was used in planning biomonitoring, and is currently being used in the interpretation of test results from biological samples. Evaluation of the models is being carried out using biomonitoring data, by comparing model predicted concentrations and measured biomarker concentrations. The PBPK models will be used to generate bioavailability values, which could be incorporated in contaminated land exposure models. Thus, the findings from this study will promote a more sustainable approach to contaminated land management.

Keywords: biomonitoring, exposure, PBPK modelling, toxic elements

Procedia PDF Downloads 319
460 Image-Based UAV Vertical Distance and Velocity Estimation Algorithm during the Vertical Landing Phase Using Low-Resolution Images

Authors: Seyed-Yaser Nabavi-Chashmi, Davood Asadi, Karim Ahmadi, Eren Demir

Abstract:

The landing phase of a UAV is very critical as there are many uncertainties in this phase, which can easily entail a hard landing or even a crash. In this paper, the estimation of relative distance and velocity to the ground, as one of the most important processes during the landing phase, is studied. Using accurate measurement sensors as an alternative approach can be very expensive for sensors like LIDAR, or with a limited operational range, for sensors like ultrasonic sensors. Additionally, absolute positioning systems like GPS or IMU cannot provide distance to the ground independently. The focus of this paper is to determine whether we can measure the relative distance and velocity of UAV and ground in the landing phase using just low-resolution images taken by a monocular camera. The Lucas-Konda feature detection technique is employed to extract the most suitable feature in a series of images taken during the UAV landing. Two different approaches based on Extended Kalman Filters (EKF) have been proposed, and their performance in estimation of the relative distance and velocity are compared. The first approach uses the kinematics of the UAV as the process and the calculated optical flow as the measurement; On the other hand, the second approach uses the feature’s projection on the camera plane (pixel position) as the measurement while employing both the kinematics of the UAV and the dynamics of variation of projected point as the process to estimate both relative distance and relative velocity. To verify the results, a sequence of low-quality images taken by a camera that is moving on a specifically developed testbed has been used to compare the performance of the proposed algorithm. The case studies show that the quality of images results in considerable noise, which reduces the performance of the first approach. On the other hand, using the projected feature position is much less sensitive to the noise and estimates the distance and velocity with relatively high accuracy. This approach also can be used to predict the future projected feature position, which can drastically decrease the computational workload, as an important criterion for real-time applications.

Keywords: altitude estimation, drone, image processing, trajectory planning

Procedia PDF Downloads 113
459 Clinical Applications of Amide Proton Transfer Magnetic Resonance Imaging: Detection of Brain Tumor Proliferative Activity

Authors: Fumihiro Ima, Shinichi Watanabe, Shingo Maeda, Haruna Imai, Hiroki Niimi

Abstract:

It is important to know growth rate of brain tumors before surgery because it influences treatment planning including not only surgical resection strategy but also adjuvant therapy after surgery. Amide proton transfer (APT) imaging is an emerging molecular magnetic resonance imaging (MRI) technique based on chemical exchange saturation transfer without administration of contrast medium. The underlying assumption in APT imaging of tumors is that there is a close relationship between the proliferative activity of the tumor and mobile protein synthesis. We aimed to evaluate the diagnostic performance of APT imaging of pre-and post-treatment brain tumors. Ten patients with brain tumor underwent conventional and APT-weighted sequences on a 3.0 Tesla MRI before clinical intervention. The maximum and the minimum APT-weighted signals (APTWmax and APTWmin) in each solid tumor region were obtained and compared before and after clinical intervention. All surgical specimens were examined for histopathological diagnosis. Eight of ten patients underwent adjuvant therapy after surgery. Histopathological diagnosis was glioma in 7 patients (WHO grade 2 in 2 patients, WHO grade 3 in 3 patients and WHO grade 4 in 2 patients), meningioma WHO grade1 in 2 patients and primary lymphoma of the brain in 1 patient. High-grade gliomas showed significantly higher APTW-signals than that in low-grade gliomas. APTWmax in one huge parasagittal meningioma infiltrating into the skull bone was higher than that in glioma WHO grade 4. On the other hand, APTWmax in another convexity meningioma was the same as that in glioma WHO grade 3. Diagnosis of primary lymphoma of the brain was possible with APT imaging before pathological confirmation. APTW-signals in residual tumors decreased dramatically within one year after adjuvant therapy in all patients. APT imaging demonstrated excellent diagnostic performance for the planning of surgery and adjuvant therapy of brain tumors.

Keywords: amides, magnetic resonance imaging, brain tumors, cell proliferation

Procedia PDF Downloads 139
458 Application of Data Driven Based Models as Early Warning Tools of High Stream Flow Events and Floods

Authors: Mohammed Seyam, Faridah Othman, Ahmed El-Shafie

Abstract:

The early warning of high stream flow events (HSF) and floods is an important aspect in the management of surface water and rivers systems. This process can be performed using either process-based models or data driven-based models such as artificial intelligence (AI) techniques. The main goal of this study is to develop efficient AI-based model for predicting the real-time hourly stream flow (Q) and apply it as early warning tool of HSF and floods in the downstream area of the Selangor River basin, taken here as a paradigm of humid tropical rivers in Southeast Asia. The performance of AI-based models has been improved through the integration of the lag time (Lt) estimation in the modelling process. A total of 8753 patterns of Q, water level, and rainfall hourly records representing one-year period (2011) were utilized in the modelling process. Six hydrological scenarios have been arranged through hypothetical cases of input variables to investigate how the changes in RF intensity in upstream stations can lead formation of floods. The initial SF was changed for each scenario in order to include wide range of hydrological situations in this study. The performance evaluation of the developed AI-based model shows that high correlation coefficient (R) between the observed and predicted Q is achieved. The AI-based model has been successfully employed in early warning throughout the advance detection of the hydrological conditions that could lead to formations of floods and HSF, where represented by three levels of severity (i.e., alert, warning, and danger). Based on the results of the scenarios, reaching the danger level in the downstream area required high RF intensity in at least two upstream areas. According to results of applications, it can be concluded that AI-based models are beneficial tools to the local authorities for flood control and awareness.

Keywords: floods, stream flow, hydrological modelling, hydrology, artificial intelligence

Procedia PDF Downloads 248
457 Two-Level Graph Causality to Detect and Predict Random Cyber-Attacks

Authors: Van Trieu, Shouhuai Xu, Yusheng Feng

Abstract:

Tracking attack trajectories can be difficult, with limited information about the nature of the attack. Even more difficult as attack information is collected by Intrusion Detection Systems (IDSs) due to the current IDSs having some limitations in identifying malicious and anomalous traffic. Moreover, IDSs only point out the suspicious events but do not show how the events relate to each other or which event possibly cause the other event to happen. Because of this, it is important to investigate new methods capable of performing the tracking of attack trajectories task quickly with less attack information and dependency on IDSs, in order to prioritize actions during incident responses. This paper proposes a two-level graph causality framework for tracking attack trajectories in internet networks by leveraging observable malicious behaviors to detect what is the most probable attack events that can cause another event to occur in the system. Technically, given the time series of malicious events, the framework extracts events with useful features, such as attack time and port number, to apply to the conditional independent tests to detect the relationship between attack events. Using the academic datasets collected by IDSs, experimental results show that the framework can quickly detect the causal pairs that offer meaningful insights into the nature of the internet network, given only reasonable restrictions on network size and structure. Without the framework’s guidance, these insights would not be able to discover by the existing tools, such as IDSs. It would cost expert human analysts a significant time if possible. The computational results from the proposed two-level graph network model reveal the obvious pattern and trends. In fact, more than 85% of causal pairs have the average time difference between the causal and effect events in both computed and observed data within 5 minutes. This result can be used as a preventive measure against future attacks. Although the forecast may be short, from 0.24 seconds to 5 minutes, it is long enough to be used to design a prevention protocol to block those attacks.

Keywords: causality, multilevel graph, cyber-attacks, prediction

Procedia PDF Downloads 156
456 Cross Reactivity of Risperidone in Fentanyl Point of Care Devices

Authors: Barry D. Kyle, Jessica Boyd, Robin Pickersgill, Nicole Squires, Cynthia Balion

Abstract:

Background-Aim: Fentanyl is a highly-potent synthetic μ-opioid receptor agonist used for exceptional pain management. Its main metabolite, norfentanyl, is typically present in urine at significantly high concentrations (i.e. ~20%) representing an effective targeting molecule for immunoassay detection. Here, we evaluated the NCSTM One Step Fentanyl Test Device© and the BTNX Rapid ResponseTM Single Drug Test Strip© point of care (POC) test strips targeting norfentanyl (20 ng/ml) and fentanyl (100 ng/ml) molecules for potential risperidone interference. Methods: POC tests calibrated against norfentanyl (20 ng/ml) used [immunochromatographic] lateral flow devices to provide qualitative results within five minutes of urine sample contact. Results were recorded as negative if lines appeared in the test and control regions according to manufacturer’s instructions. Positive results were recorded if no line appeared in the test region (i.e., control line only visible). Pooled patient urine (n=20), that screened negative for drugs of abuse (using NCS One Step Multi-Line Screen) and fentanyl (using BTNX Rapid Response Strip) was used for spiking studies. Urine was spiked with risperidone alone and with combinations of fentanyl, norfentanyl and/or risperidone to evaluate cross-reactivity in each test device. Results: A positive screen result was obtained when 8,000 ng/mL of risperidone was spiked into drug free urine using the NCS test device. Positive screen results were also obtained in spiked urine samples containing fentanyl and norfentanyl combinations below the cut-off concentrations when 4000 ng/mL risperidone was present using the NCS testing device. There were no screen positive test results using the BTNX test strip with up to 8,000 ng/mL alone or in combination with concentrations of fentanyl and norfentanyl below the cut-off. Both devices screened positive when either fentanyl or norfentanyl exceeded the cut-off threshold in the absence and presence of risperidone. Conclusion: We report that urine samples containing risperidone may give a false positive result using the NCS One Step Fentanyl Test Device.

Keywords: fentanyl, interferences, point of care test, Risperidone

Procedia PDF Downloads 274
455 The Link between Corporate Governance and EU Competition Law Enforcement: A Conditional Logistic Regression Analysis of the Role of Diversity, Independence and Corporate Social Responsibility

Authors: Jeroen De Ceuster

Abstract:

This study is the first empirical analysis of the link between corporate governance and European Union competition law. Although competition law enforcement is often studied through the lens of competition law, we offer an alternative perspective by looking at a number of corporate governance factor at the level of the board of directors. We find that undertakings where the Chief Executive Officer is also chairman of the board are twice as likely to violate European Union competition law. No significant relationship was found between European Union competition law infringements and gender diversity of the board, the size of the board, the percentage of directors appointed after the Chief Executive Officer, the percentage of independent directors, or the presence of corporate social responsibility (CSR) committee. This contribution is based on a 1-1 matched peer study. Our sample includes all ultimate parent companies with a board that have been sanctioned by the European Commission for either anticompetitive agreements or abuse of dominance for the period from 2004 to 2018. These companies were matched to a company with headquarters in the same country, belongs to the same industry group, is active in the European Economic Area, and is the nearest neighbor to the infringing company in terms of revenue. Our final sample includes 121 pairs. As is common with matched peer studies, we use CLR to analyze the differences within these pairs. The only statistically significant independent variable after controlling for size and performance is CEO/Chair duality. The results indicate that companies whose Chief Executive Officer also functions as chairman of the board are twice as likely to infringe European Union competition law. This is in line with the monitoring theory of the board of directors, which states that its primary function is to monitor top management. Since competition law infringements are mostly organized by management and hidden from board directors, the results suggest that a Chief Executive Officer who is also chairman is more likely to be either complicit in the infringement or less critical towards his day-to-day colleagues and thus impedes proper detection by the board of competition law infringements.

Keywords: corporate governance, competition law, board of directors, board independence, ender diversity, corporate social responisbility

Procedia PDF Downloads 138
454 The Role of Hypothalamus Mediators in Energy Imbalance

Authors: Maftunakhon Latipova, Feruza Khaydarova

Abstract:

Obesity is considered a chronic metabolic disease that occurs at any age. Regulation of body weight in the body is carried out through complex interaction of a complex of interrelated systems that control the body's energy system. Energy imbalance is the cause of obesity and overweight, in which the supply of energy from food exceeds the energy needs of the body. Obesity is closely related to impaired appetite regulation, and a hypothalamus is a key place for neural regulation of food consumption. The nucleus of the hypothalamus is connected and interdependent on receiving, integrating and sending hunger signals to regulate appetite. Purpose of the study: to identify markers of food behavior. Materials and methods: The screening was carried out to identify eating disorders in 200 men and women aged 18 to 35 years with overweight and obesity and to check the effects of Orexin A and Neuropeptide Y markers. A questionnaire and questionnaires were conducted with over 200 people aged 18 to 35 years. Questionnaires were for eating disorders and hidden depression (on the Zang scale). Anthropometry is measured by OT, OB, BMI, Weight, and Height. Based on the results of the collected data, 3 groups were divided: People with obesity, People with overweight, Control Group of Healthy People. Results: Of the 200 analysed persons, 86% had eating disorders. Of these, 60% of eating disorders were associated with childhood. According to the Zang test result: Normal condition was about 37%, mild depressive disorder 20%, moderate depressive disorder 25% and 18% of people suffered from severe depressive disorder without knowing it. One group of people with obesity had eating disorders and moderate and severe depressive disorder, and group 2 was overweight with mild depressive disorder. According to laboratory data, the first group had the lowest concentration of Orexin A and Neuropeptide U in blood serum. Conclusions: Being overweight and obese are the first signal of many diseases, and prevention and detection of these disorders will prevent various diseases, including type 2 diabetes. Obesity etiology is associated with eating disorders and signal transmission of the orexinorghetic system of the hypothalamus.

Keywords: obesity, endocrinology, hypothalamus, overweight

Procedia PDF Downloads 76
453 Enhancing Healthcare Delivery in Low-Income Markets: An Exploration of Wireless Sensor Network Applications

Authors: Innocent Uzougbo Onwuegbuzie

Abstract:

Healthcare delivery in low-income markets is fraught with numerous challenges, including limited access to essential medical resources, inadequate healthcare infrastructure, and a significant shortage of trained healthcare professionals. These constraints lead to suboptimal health outcomes and a higher incidence of preventable diseases. This paper explores the application of Wireless Sensor Networks (WSNs) as a transformative solution to enhance healthcare delivery in these underserved regions. WSNs, comprising spatially distributed sensor nodes that collect and transmit health-related data, present opportunities to address critical healthcare needs. Leveraging WSN technology facilitates real-time health monitoring and remote diagnostics, enabling continuous patient observation and early detection of medical issues, especially in areas with limited healthcare facilities and professionals. The implementation of WSNs can enhance the overall efficiency of healthcare systems by enabling timely interventions, reducing the strain on healthcare facilities, and optimizing resource allocation. This paper highlights the potential benefits of WSNs in low-income markets, such as cost-effectiveness, increased accessibility, and data-driven decision-making. However, deploying WSNs involves significant challenges, including technical barriers like limited internet connectivity and power supply, alongside concerns about data privacy and security. Moreover, robust infrastructure and adequate training for local healthcare providers are essential for successful implementation. It further examines future directions for WSNs, emphasizing innovation, scalable solutions, and public-private partnerships. By addressing these challenges and harnessing the potential of WSNs, it is possible to revolutionize healthcare delivery and improve health outcomes in low-income markets.

Keywords: wireless sensor networks (WSNs), healthcare delivery, low-Income markets, remote patient monitoring, health data security

Procedia PDF Downloads 36
452 Detecting Natural Fractures and Modeling Them to Optimize Field Development Plan in Libyan Deep Sandstone Reservoir (Case Study)

Authors: Tarek Duzan

Abstract:

Fractures are a fundamental property of most reservoirs. Despite their abundance, they remain difficult to detect and quantify. The most effective characterization of fractured reservoirs is accomplished by integrating geological, geophysical, and engineering data. Detection of fractures and defines their relative contribution is crucial in the early stages of exploration and later in the production of any field. Because fractures could completely change our thoughts, efforts, and planning to produce a specific field properly. From the structural point of view, all reservoirs are fractured to some point of extent. North Gialo field is thought to be a naturally fractured reservoir to some extent. Historically, natural fractured reservoirs are more complicated in terms of their exploration and production efforts, and most geologists tend to deny the presence of fractures as an effective variable. Our aim in this paper is to determine the degree of fracturing, and consequently, our evaluation and planning can be done properly and efficiently from day one. The challenging part in this field is that there is no enough data and straightforward well testing that can let us completely comfortable with the idea of fracturing; however, we cannot ignore the fractures completely. Logging images, available well testing, and limited core studies are our tools in this stage to evaluate, model, and predict possible fracture effects in this reservoir. The aims of this study are both fundamental and practical—to improve the prediction and diagnosis of natural-fracture attributes in N. Gialo hydrocarbon reservoirs and accurately simulate their influence on production. Moreover, the production of this field comes from 2-phase plan; a self depletion of oil and then gas injection period for pressure maintenance and increasing ultimate recovery factor. Therefore, well understanding of fracturing network is essential before proceeding with the targeted plan. New analytical methods will lead to more realistic characterization of fractured and faulted reservoir rocks. These methods will produce data that can enhance well test and seismic interpretations, and that can readily be used in reservoir simulators.

Keywords: natural fracture, sandstone reservoir, geological, geophysical, and engineering data

Procedia PDF Downloads 93
451 Development of Pothole Management Method Using Automated Equipment with Multi-Beam Sensor

Authors: Sungho Kim, Jaechoul Shin, Yujin Baek, Nakseok Kim, Kyungnam Kim, Shinhaeng Jo

Abstract:

The climate change and increase in heavy traffic have been accelerating damages that cause the problems such as pothole on asphalt pavement. Pothole causes traffic accidents, vehicle damages, road casualties and traffic congestion. A quick and efficient maintenance method is needed because pothole is caused by stripping and accelerates pavement distress. In this study, we propose a rapid and systematic pothole management by developing a pothole automated repairing equipment including a volume measurement system of pothole. Three kinds of cold mix asphalt mixture were investigated to select repair materials. The materials were evaluated for satisfaction with quality standard and applicability to automated equipment. The volume measurement system of potholes was composed of multi-sensor that are combined with laser sensor and ultrasonic sensor and installed in front and side of the automated repair equipment. An algorithm was proposed to calculate the amount of repair material according to the measured pothole volume, and the system for releasing the correct amount of material was developed. Field test results showed that the loss of repair material amount could be reduced from approximately 20% to 6% per one point of pothole. Pothole rapid automated repair equipment will contribute to improvement on quality and efficient and economical maintenance by not only reducing materials and resources but also calculating appropriate materials. Through field application, it is possible to improve the accuracy of pothole volume measurement, to correct the calculation of material amount, and to manage the pothole data of roads, thereby enabling more efficient pavement maintenance management. Acknowledgment: The author would like to thank the MOLIT(Ministry of Land, Infrastructure, and Transport). This work was carried out through the project funded by the MOLIT. The project name is 'development of 20mm grade for road surface detecting roadway condition and rapid detection automation system for removal of pothole'.

Keywords: automated equipment, management, multi-beam sensor, pothole

Procedia PDF Downloads 223
450 Clinical Applications of Amide Proton Transfer Magnetic Resonance Imaging: Detection of Brain Tumor Proliferative Activity

Authors: Fumihiro Imai, Shinichi Watanabe, Shingo Maeda, Haruna Imai, Hiroki Niimi

Abstract:

It is important to know the growth rate of brain tumors before surgery because it influences treatment planning, including not only surgical resection strategy but also adjuvant therapy after surgery. Amide proton transfer (APT) imaging is an emerging molecular magnetic resonance imaging (MRI) technique based on chemical exchange saturation transfer without the administration of a contrast medium. The underlying assumption in APT imaging of tumors is that there is a close relationship between the proliferative activity of the tumor and mobile protein synthesis. We aimed to evaluate the diagnostic performance of APT imaging of pre-and post-treatment brain tumors. Ten patients with brain tumor underwent conventional and APT-weighted sequences on a 3.0 Tesla MRI before clinical intervention. The maximum and the minimum APT-weighted signals (APTWmax and APTWmin) in each solid tumor region were obtained and compared before and after a clinical intervention. All surgical specimens were examined for histopathological diagnosis. Eight of ten patients underwent adjuvant therapy after surgery. Histopathological diagnosis was glioma in 7 patients (WHO grade 2 in 2 patients, WHO grade 3 in 3 patients, and WHO grade 4 in 2 patients), meningioma WHO grade 1 in 2 patients, and primary lymphoma of the brain in 1 patient. High-grade gliomas showed significantly higher APTW signals than that low-grade gliomas. APTWmax in one huge parasagittal meningioma infiltrating into the skull bone was higher than that in glioma WHO grade 4. On the other hand, APTWmax in another convexity meningioma was the same as that in glioma WHO grade 3. Diagnosis of primary lymphoma of the brain was possible with APT imaging before pathological confirmation. APTW signals in residual tumors decreased dramatically within one year after adjuvant therapy in all patients. APT imaging demonstrated excellent diagnostic performance for the planning of surgery and adjuvant therapy of brain tumors.

Keywords: amides, magnetic resonance imaging, brain tumors, cell proliferation

Procedia PDF Downloads 86
449 Comparison of Fatty Acids Composition of Three Commercial Fish Species Farmed in the Adriatic Sea

Authors: Jelka Pleadin, Greta Krešić, Tina Lešić, Ana Vulić, Renata Barić, Tanja Bogdanović, Dražen Oraić, Ana Legac, Snježana Zrnčić

Abstract:

Fish has been acknowledged as an integral component of a well-balanced diet, providing a healthy source of energy, high-quality proteins, vitamins, essential minerals and, especially, n-3 long-chain polyunsaturated fatty acids (n-3 LC PUFA), mainly eicosapentaenoic acid (20:5 n-3 EPA), and docosahexaenoicacid, (22:6 n-3 DHA), whose pleiotropic effects in terms of health promotion and disease prevention have been increasingly recognised. In this study, the fatty acids composition of three commercially important farmed fish species: sea bream (Sparus aurata), sea bass (Dicentrarchus labrax) and dentex (Dentex dentex) was investigated. In total, 60 fish samples were retrieved during 2015 (n = 30) and 2016 (n = 30) from different locations in the Adriatic Sea. Methyl esters of fatty acids were analysed using gas chromatography (GC) with flame ionization detection (FID). The results show that the most represented fatty acid in all three analysed species is oleic acid (C18:1n-9, OA), followed by linoleic acid (C18:2n-6, LA) and palmitic acid (C16:0, PA). Dentex was shown to have two to four times higher eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid content as compared to sea bream and sea bass. The recommended n-6/n-3 ratio was determined in all fish species but obtained results pointed to statistically significant differences (p < 0.05) in fatty acid composition among the analysed fish species and their potential as a dietary source of valuable fatty acids. Sea bass and sea bream had a significantly higher proportion of n-6 fatty acids, while dentex had a significantly higher proportion of n-3 (C18:4n-3, C20:4n-3, EPA, DHA) fatty acids. A higher hypocholesterolaemic and hypercholesterolaemic fatty acids (HH) ratio was determined for sea bass and sea bream, which comes as the consequence of a lower share of SFA determined in these two species in comparison to dentex. Since the analysed fish species vary in their fatty acids composition consumption of diverse fish species would be advisable. Based on the established lipid quality indicators, dentex, a fish species underutilised by the aquaculture, seems to be a highly recommendable and important source of fatty acids recommended to be included into the human diet.

Keywords: dentex, fatty acids, farmed fish, sea bass, sea bream

Procedia PDF Downloads 392
448 Characterization of Defense-Related Genes and Metabolite Profiling in Oil Palm Elaeis guineensis during Interaction with Ganoderma boninense

Authors: Mohammad Nazri Abdul Bahari, Nurshafika Mohd Sakeh, Siti Nor Akmar Abdullah

Abstract:

Basal stem rot (BSR) is the most devastating disease in oil palm. Among the oil palm pathogenic fungi, the most prevalent and virulent species associated with BSR is Ganoderma boninense. Early detection of G. boninense attack in oil palm wherein physical symptoms has not yet appeared can offer opportunities to prevent the spread of the necrotrophic fungus. However, poor understanding of molecular defense responses and roles of antifungal metabolites in oil palm against G. boninense has complicated the resolving measures. Hence, characterization of defense-related molecular responses and production of antifungal compounds during early interaction with G. boninense is of utmost important. Four month-old oil palm (Elaeis guineensis) seedlings were artificially infected with G. boninense-inoculated rubber wood block via sitting technique. RNA of samples were extracted from roots and leaves tissues at 0, 3, 7 and 11 days post inoculation (d.p.i) followed with sequencing using RNA-Seq method. Differentially-expressed genes (DEGs) of oil palm-G. boninense interaction were identified, while changes in metabolite profile will be scrutinized related to the DEGs. The RNA-Seq data generated a total of 113,829,376 and 313,293,229 paired-end clean reads from untreated (0 d.p.i) and treated (3, 7, 11 d.p.i) samples respectively, each with two biological replicates. The paired-end reads were mapped to Elaeis guineensis reference genome to screen out non-oil palm genes and subsequently generated 74,794 coding sequences. DEG analysis of phytohormone biosynthetic genes in oil palm roots revealed that at p-value ≤ 0.01, ethylene and jasmonic acid may act in antagonistic manner with salicylic acid to coordinate defense response at early interaction with G. boninense. Findings on metabolite profiling of G. boninense-infected oil palm roots and leaves are hoped to explain the defense-related compounds elicited by Elaeis guineensis in response to G. boninense colonization. The study aims to shed light on molecular defense response of oil palm at early interaction with G. boninense and promote prevention measures against Ganoderma infection.

Keywords: Ganoderma boninense, metabolites, phytohormones, RNA-Seq

Procedia PDF Downloads 264
447 Assessing the Mass Concentration of Microplastics and Nanoplastics in Wastewater Treatment Plants by Pyrolysis Gas Chromatography−Mass Spectrometry

Authors: Yanghui Xu, Qin Ou, Xintu Wang, Feng Hou, Peng Li, Jan Peter van der Hoek, Gang Liu

Abstract:

The level and removal of microplastics (MPs) in wastewater treatment plants (WWTPs) has been well evaluated by the particle number, while the mass concentration of MPs and especially nanoplastics (NPs) remains unclear. In this study, microfiltration, ultrafiltration and hydrogen peroxide digestion were used to extract MPs and NPs with different size ranges (0.01−1, 1−50, and 50−1000 μm) across the whole treatment schemes in two WWTPs. By identifying specific pyrolysis products, pyrolysis gas chromatography−mass spectrometry were used to quantify their mass concentrations of selected six types of polymers (i.e., polymethyl methacrylate (PMMA), polypropylene (PP), polystyrene (PS), polyethylene (PE), polyethylene terephthalate (PET), and polyamide (PA)). The mass concentrations of total MPs and NPs decreased from 26.23 and 11.28 μg/L in the influent to 1.75 and 0.71 μg/L in the effluent, with removal rates of 93.3 and 93.7% in plants A and B, respectively. Among them, PP, PET and PE were the dominant polymer types in wastewater, while PMMA, PS and PA only accounted for a small part. The mass concentrations of NPs (0.01−1 μm) were much lower than those of MPs (>1 μm), accounting for 12.0−17.9 and 5.6− 19.5% of the total MPs and NPs, respectively. Notably, the removal efficiency differed with the polymer type and size range. The low-density MPs (e.g., PP and PE) had lower removal efficiency than high-density PET in both plants. Since particles with smaller size could pass the tertiary sand filter or membrane filter more easily, the removal efficiency of NPs was lower than that of MPs with larger particle size. Based on annual wastewater effluent discharge, it is estimated that about 0.321 and 0.052 tons of MPs and NPs were released into the river each year. Overall, this study investigated the mass concentration of MPs and NPs with a wide size range of 0.01−1000 μm in wastewater, which provided valuable information regarding the pollution level and distribution characteristics of MPs, especially NPs, in WWTPs. However, there are limitations and uncertainties in the current study, especially regarding the sample collection and MP/NP detection. The used plastic items (e.g., sampling buckets, ultrafiltration membranes, centrifugal tubes, and pipette tips) may introduce potential contamination. Additionally, the proposed method caused loss of MPs, especially NPs, which can lead to underestimation of MPs/NPs. Further studies are recommended to address these challenges about MPs/NPs in wastewater.

Keywords: microplastics, nanoplastics, mass concentration, WWTPs, Py-GC/MS

Procedia PDF Downloads 281
446 Segmenting 3D Optical Coherence Tomography Images Using a Kalman Filter

Authors: Deniz Guven, Wil Ward, Jinming Duan, Li Bai

Abstract:

Over the past two decades or so, Optical Coherence Tomography (OCT) has been used to diagnose retina and optic nerve diseases. The retinal nerve fibre layer, for example, is a powerful diagnostic marker for detecting and staging glaucoma. With the advances in optical imaging hardware, the adoption of OCT is now commonplace in clinics. More and more OCT images are being generated, and for these OCT images to have clinical applicability, accurate automated OCT image segmentation software is needed. Oct image segmentation is still an active research area, as OCT images are inherently noisy, with the multiplicative speckling noise. Simple edge detection algorithms are unsuitable for detecting retinal layer boundaries in OCT images. Intensity fluctuation, motion artefact, and the presence of blood vessels also decrease further OCT image quality. In this paper, we introduce a new method for segmenting three-dimensional (3D) OCT images. This involves the use of a Kalman filter, which is commonly used in computer vision for object tracking. The Kalman filter is applied to the 3D OCT image volume to track the retinal layer boundaries through the slices within the volume and thus segmenting the 3D image. Specifically, after some pre-processing of the OCT images, points on the retinal layer boundaries in the first image are identified, and curve fitting is applied to them such that the layer boundaries can be represented by the coefficients of the curve equations. These coefficients then form the state space for the Kalman Filter. The filter then produces an optimal estimate of the current state of the system by updating its previous state using the measurements available in the form of a feedback control loop. The results show that the algorithm can be used to segment the retinal layers in OCT images. One of the limitations of the current algorithm is that the curve representation of the retinal layer boundary does not work well when the layer boundary is split into two, e.g., at the optic nerve, the layer boundary split into two. This maybe resolved by using a different approach to representing the boundaries, such as b-splines or level sets. The use of a Kalman filter shows promise to developing accurate and effective 3D OCT segmentation methods.

Keywords: optical coherence tomography, image segmentation, Kalman filter, object tracking

Procedia PDF Downloads 482