Search results for: capacitive pressure sensor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5384

Search results for: capacitive pressure sensor

1994 A Semi-Automatic Mechanism Used in the Peritoneal Dialysis Connection

Authors: I-En Lin, Feng-Jung Yang

Abstract:

In addition to kidney transplant, renal replacement therapy involves hemodialysis and peritoneal dialysis (PD). PD possesses advantages such as maintaining stable physiological blood status and blood pressure, alleviating anemia, and improving mobility, which make it an ideal method for at-home dialysis treatment. However, potential danger still exists despite the numerous advantages of PD, particularly when patients require dialysis exchange four to five times a day, during which improper operation can easily lead to peritonitis. The process of draining and filling is called an exchange and takes about 30 to 40 minutes. Connecting the transfer set requires sterile technique. Transfer set may require a new cap each time that it disconnects from the bag after an exchange. There are many chances to get infection due to unsafe behavior (ex: hand tremor, poor eyesight and weakness, cap fall-down). The proposed semi-automatic connection mechanism used in the PD can greatly reduce infection chances. This light-weight connection device is portable. The device also does not require using throughout the entire process. It is capable of significantly improving quality of life. Therefore, it is very promising to adopt in home care application.

Keywords: automatic connection, catheter, glomerulonephritis, peritoneal dialysis

Procedia PDF Downloads 236
1993 Analysis of the Spatial Distribution of Public Girls’ and Boys’ Secondary Schools in Riyadh

Authors: Nasser Marshad Alzeer

Abstract:

This study examines the spatial distribution of secondary schools in Riyadh. It considers both public girls and boys sector provision and assesses the efficiency of the spatial distribution of secondary schools. Since the establishment of the Ministry of Education (MOE) in 1953 and General Presidency for Female Education, (GPFE) in 1960, there has been a great expansion of education services in Saudi Arabia, particularly during the 1980s. However, recent years have seen much slower rates of increase in the public education sector but the population continues to grow rapidly. This study investigates the spatial distribution of schools through the use of questionnaire surveys and applied GIS. Overall, the results indicate a shortage of public secondary schools, especially in the north of the city. It is clear that there is overcrowding in the majority of secondary schools. The establishment of new schools has been suggested to solve the problem of overcrowding. A number of socio-economic and demographic factors are associated with differences in the utilization of the public secondary schools. A GIS was applied in this study in order to assess the spatial distribution of secondary schools including the modification of existing catchment area boundaries and locating new schools. This modification could also reduce the pupil pressure on certain schools and further benefits could probably be gained.

Keywords: analysis, distribution, Saudi, GIS, schools

Procedia PDF Downloads 554
1992 A Numerical Investigation of Flow Maldistribution in Inlet Header Configuration of Plate Fin Heat Exchanger

Authors: Appasaheb Raul

Abstract:

Numerical analysis of a plate fin heat exchanger accounting for the effect of fluid flow maldistribution on the inlet header configuration of the heat exchanger is investigated. It is found that the flow maldistribution is very significant in normal to the flow direction. Various inlet configuration has been studied for various Reynolds Number. By the study, a modified header configuration is proposed and simulated. The two-dimensional parameters are used to evaluate the flow non-uniformity in the header, global flow maldistribution parameter (Sg), and Velocity Ratio (θ). A series of velocity vectors and streamline graphs at different cross-section are achieved and studied qualitatively with experimental results in the literature. The numerical result indicates that the flow maldistribution is serious in the conventional header while in the improved configuration less maldistribution occurs. The flow maldistribution parameter (Sg) and velocity ratio (θ) is reduced in improved configuration. The vortex decreases compared to that of the conventional configuration so the energy and pressure loss is reduced. The improved header can effectively enhance the efficiency of plate fin heat exchanger and uniformity of flow distribution.

Keywords: global flow maldistribution parameter, Sg, velocity ratio, plate fin heat exchanger, fluent 14.5

Procedia PDF Downloads 526
1991 A Study on Cleaning Mirror Technology with Reduced Water Consumption in a Solar Thermal Power Plant

Authors: Bayarjargal Enkhtaivan, Gao Wei, Zhang Yanping, He Guo Qiang

Abstract:

In our study, traditional cleaning mirror technology with reduced consumption of water in solar thermal power plants is investigated. In developed countries, a significant increase of growth and innovation in solar thermal power sector is evident since over the last decade. These power plants required higher water consumption, however, there are some complications to construct and operate such power plants under severe drought-inflicted areas like deserts where high water-deficit can be seen but sufficient solar energy is available. Designing new experimental equipments is the most important advantage of this study. These equipments can estimate various types of measurements at the mean time. In this study, Glasses were placed for 10 and 20 days at certain positions to deposit dusts on glass surface by using a common method. Dust deposited on glass surface was washed by experimental equipment and measured dust deposition on each glass. After that, experimental results were analyzed and concluded.

Keywords: concentrated solar power (CSP) plant, high-pressure water, test equipment of clean mirror, cleaning technology of glass and mirror

Procedia PDF Downloads 173
1990 Autonomous Exploration, Navigation and Mapping Payload Integrated on a Quadruped Robot

Authors: Julian Y. Raheema, Michael R. Hess, Raymond C. Provost, Mark Bilinski

Abstract:

The world is rapidly moving towards advancing and utilizing artificial intelligence and autonomous robotics. The ground-breaking Boston Dynamics quadruped robot, SPOT, was designed for industrial and commercial tasks requiring limited autonomous navigation. Out of the box, SPOT has route memorization and playback – it can repeat a path that it has been manually piloted through, but it cannot autonomously navigate an area that has not been previously explored. The presented SPOT payload package is built on ROS framework to support autonomous navigation and mapping of an unexplored environment. The package is fully integrated with SPOT to take advantage of motor controls and collision avoidance that comes natively with the robot. The payload runs all computations onboard, takes advantage of visual odometry SLAM and uses an Intel RealSense depth camera and Velodyne LiDAR sensor to generate 2D and 3D maps while in autonomous navigation mode. These maps are fused into the navigation stack to generate a costmap to enable the robot to safely navigate the environment without causing damage to the surroundings or the robot. The operator defines the operational zone and start location and then sends the explore command to have SPOT explore, generate 2D and 3D maps of the environment and return to the start location to await the operator's next command. The benefit of the presented package is that it is much lighter weight and less expensive than previous approaches and, importantly, operates in GPS-denied scenarios, which is ideal for indoor mapping. There are numerous applications that are hazardous to humans for SPOT enhanced with the autonomy payload, including disaster response, nuclear inspection, mine inspection, and so on. Other less extreme uses cases include autonomous 3D and 2D scanning of facilities for inspection, engineering and construction purposes.

Keywords: autonomous, SLAM, quadruped, mapping, exploring, ROS, robotics, navigation

Procedia PDF Downloads 90
1989 Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network

Authors: Abdolreza Memari

Abstract:

In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation.

Keywords: viscosity, Iranian crude oil, radial based, neural network, roller ball method, KHAN model

Procedia PDF Downloads 501
1988 Phenolic Compounds, Antiradical Activity, and Antioxidant Efficacy of Satureja hortensisl - Extracts in Vegetable Oil Protection

Authors: Abolfazl Kamkar

Abstract:

Vegetable oils and fats are recognized as important components of our diet. They provide essential fatty acids, which are precursors of important hormones and control many physiological factors such as blood pressure, cholesterol level, and the reproductive system.Vegetable oils with higher contents of unsaturated fatty acids, especially polyunsaturated fatty acids (PUFAs) are more susceptible to oxidation.Protective effects of Sature jahortensis(SE) extracts in stabilizing soybean oil at different concentrations (200 and 400 ppm) were tested. Results showed that plant extracts could significantly (P< 0.05) lower the peroxide value and thiobarbituric acid value of oil during storage at 60 oC. The IC50 values for methanol and ethanol extracts were 31.5 ± 0.7 and 37.00 ± 0 µg/ml, respectively. In the β- carotene/linoleic acid system, methanol and ethanol extracts exhibited 87.5 ± 1.41% and 74.0 ±2.25 % inhibition against linoleic acid oxidation. The total phenolic and flavonoid contents of methanol and ethanol extracts were (101.58 ± 0. 26m g/ g) and (96.00 ± 0.027 mg/ g), (44.91 ± 0.14 m g/ g) and (14.30 ± 0.12 mg/ g) expressed in Gallic acid and Quercetin equivalents, respectively.These findings suggest that Satureja extracts may have potential application as natural antioxidants in the edible oil and food industry.

Keywords: satureja hortensis, antioxidant activity, oxidative stability, vegetable oil, extract

Procedia PDF Downloads 373
1987 Efficient Energy Extraction Circuit for Impact Harvesting from High Impedance Sources

Authors: Sherif Keddis, Mohamed Azzam, Norbert Schwesinger

Abstract:

Harvesting mechanical energy from footsteps or other impacts is a possibility to enable wireless autonomous sensor nodes. These can be used for a highly efficient control of connected devices such as lights, security systems, air conditioning systems or other smart home applications. They can also be used for accurate location or occupancy monitoring. Converting the mechanical energy into useful electrical energy can be achieved using the piezoelectric effect offering simple harvesting setups and low deflections. The challenge facing piezoelectric transducers is the achievable amount of energy per impact in the lower mJ range and the management of such low energies. Simple setups for energy extraction such as a full wave bridge connected directly to a capacitor are problematic due to the mismatch between high impedance sources and low impedance storage elements. Efficient energy circuits for piezoelectric harvesters are commonly designed for vibration harvesters and require periodic input energies with predictable frequencies. Due to the sporadic nature of impact harvesters, such circuits are not well suited. This paper presents a self-powered circuit that avoids the impedance mismatch during energy extraction by disconnecting the load until the source reaches its charge peak. The switch is implemented with passive components and works independent from the input frequency. Therefore, this circuit is suited for impact harvesting and sporadic inputs. For the same input energy, this circuit stores 150% of the energy in comparison to a directly connected capacitor to a bridge rectifier. The total efficiency, defined as the ratio of stored energy on a capacitor to available energy measured across a matched resistive load, is 63%. Although the resulting energy is already sufficient to power certain autonomous applications, further optimization of the circuit are still under investigation in order to improve the overall efficiency.

Keywords: autonomous sensors, circuit design, energy harvesting, energy management, impact harvester, piezoelectricity

Procedia PDF Downloads 154
1986 Exergy Based Performance Analysis of Double Flow Solar Air Heater with Corrugated Absorber

Authors: S. P. Sharma, Som Nath Saha

Abstract:

This paper presents the performance, based on exergy analysis of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater based on energy balance equations has been presented and the results obtained have been compared with that of a conventional flat-plate solar air heater. The double flow corrugated absorber solar air heater performs thermally better than the flat plate double flow and conventional flat-plate solar air heater under same operating conditions. However, the corrugated absorber leads to higher pressure drop thereby increasing pumping power. The results revealed that the energy and exergy efficiencies of double flow corrugated absorber solar air heater is much higher than conventional solar air heater with the concept involving of increase in heat transfer surface area and turbulence in air flow. The results indicate that the energy efficiency increases, however, exergy efficiency decreases with increase in mass flow rate.

Keywords: corrugated absorber, double flow, exergy efficiency, solar air heater

Procedia PDF Downloads 374
1985 Effect of Multi-Stage Fractured Patterns on Production Improvement of Horizontal Wells

Authors: Armin Shirbazo, Mohammad Vahab, Hamed Lamei Ramandi, Jalal Fahimpour

Abstract:

One of the most effective ways for increasing production in wells that are faced with problems such as pressure depletion and low rate is hydraulic fracturing. Hydraulic fracturing is creating a high permeable path through the reservoir and simulated area around the wellbore. This is very important for low permeability reservoirs, which their production is uneconomical. In this study, the influence of the fracturing pattern in multi-stage fractured horizontal wells is analyzed for a tight, heavy oil reservoir to explore the impact of fracturing patterns on improving oil recovery. The horizontal well has five transverse fractures with the same fracture length, width, height, and conductivity properties. The fracture patterns are divided into four distinct shapes: uniform shape, diamond shape, U shape, and W shape. The results show that different fracturing patterns produce various cumulative production after ten years, and the best pattern can be selected based on the most cumulative production. The result also illustrates that optimum design in fracturing can boost the production up to 3% through the permeability distribution around the wellbore and reservoir.

Keywords: multi-stage fracturing, horizontal well, fracture patterns, fracture length, number of stages

Procedia PDF Downloads 222
1984 Numerical Investigation of Wire Mesh Heat Pipe for Spacecraft Applications

Authors: Jayesh Mahitkar, V. K. Singh, Surendra Singh Kachhwaha

Abstract:

Wire Mesh Heat Pipe (WMHP) as an effective component of thermal control system in the payload of spacecraft, utilizing ammonia to transfer efficient amount of heat. One dimensional generic and robust mathematical model with partial-analytical hydraulic approach (PAHA) is developed to study inside behaviour of WMHP. In this model, inside performance during operation is investigated like mass flow rate, and velocity along the wire mesh as well as vapour core is modeled respectively. This numerical model investigate heat flow along length, pressure drop along wire mesh as well as vapour line in axial direction. Furthermore, WMHP is modeled into equivalent resistance network such that total thermal resistance of heat pipe, temperature drop across evaporator end and condenser end is evaluated. This numerical investigation should be carried out for single layer and double layer wire mesh each with heat input at evaporator section is 10W, 20 W and 30 W at condenser temperature maintained at 20˚C.

Keywords: ammonia, heat transfer, modeling, wire mesh

Procedia PDF Downloads 280
1983 The Damage Assessment of Industrial Buildings Located on Clayey Soils Using in-Situ Tests

Authors: Ismail Akkaya, Mucip Tapan, Ali Ozvan

Abstract:

Some of the industrially prefabricated buildings located on clayey soils were damaged due to soil conditions. The reasons of these damages are generally due to different settlement capacity, the different plasticity of soils and the level of ground water. The aim of this study is to determine the source of these building damages by conducting in situ tests. Therefore, pressuremeter test, which is one of the borehole loading test conducted to determine the properties of soils under the foundations and Standart Penetration Test (SPT). The results of these two field tests were then used to accurately obtain the consistency and firmness of soils. Pressuremeter Deformation Module (EM) and Net Limiting Pressure (PL) of soils were calculated after the pressuremeter tests. These values were then compared with the SPT (N30) and SPT (N60) results. An empirical equation was developed to obtain EM and PL values of such soils from SPT test results. These values were then used to calculate soil bearing capacity as well as the soil settlement. Finally, the relationship between the foundation settlement and the damage of these buildings were checked. It was found that calculated settlement values were almost the same as measured settlement values.

Keywords: damaged building, pressuremeter, standard penetration test, low and high plasticity clay

Procedia PDF Downloads 318
1982 Coal Fly Ash Based Ceramic Membrane for Water Purification via Ultrafiltration

Authors: Obsi Terfasa, Bhanupriya Das, Shiao-Shing Chen

Abstract:

Converting coal fly ash (CFA) waste into ceramic membranes presents a promising alternative to traditional disposal methods, offering potential economic and environmental advantages that warrant further investigation. This research focuses on the creation of ceramic membranes exclusively from CFA using a uniaxial compaction technique. The membranes' properties were examined through various analytical methods: Scanning Electron Microscopy (SEM) revealed a porous and flawless membrane surface, X-Ray Diffraction (XRD) identified mullite and quartz crystalline structures, and Fourier-Transform Infrared Spectroscopy (FTIR) characterized the membrane's functional groups. Thermogravimetric analysis (TGA) determined the ideal sintering temperature to be 800°C. To evaluate its separation capabilities, the synthesized membrane was tested on wastewater from denim jeans production at 0.2 bar pressure. The results were impressive, with 97.42% removal of Chemical Oxygen Demand (COD), 95% color elimination, and a pure water flux of 4.5 Lm⁻²h⁻¹bar⁻¹. These findings suggest that CFA, a byproduct of thermal power plants, can be effectively repurposed to produce ultrafiltration membranes suitable for various industrial purification and separations.

Keywords: wastewater treatment, separator, coal fly ash, ceramic membrane, ultrafiltration

Procedia PDF Downloads 36
1981 Intuitive Decision Making When Facing Risks

Authors: Katharina Fellnhofer

Abstract:

The more information and knowledge that technology provides, the more important are profoundly human skills like intuition, the skill of using nonconscious information. As our world becomes more complex, shaken by crises, and characterized by uncertainty, time pressure, ambiguity, and rapidly changing conditions, intuition is increasingly recognized as a key human asset. However, due to methodological limitations of sample size or time frame or a lack of real-world or cross-cultural scope, precisely how to measure intuition when facing risks on a nonconscious level remains unclear. In light of the measurement challenge related to intuition’s nonconscious nature, a technique is introduced to measure intuition via hidden images as nonconscious additional information to trigger intuition. This technique has been tested in a within-subject fully online design with 62,721 real-world investment decisions made by 657 subjects in Europe and the United States. Bayesian models highlight the technique’s potential to measure skill at using nonconscious information for conscious decision making. Over the long term, solving the mysteries of intuition and mastering its use could be of immense value in personal and organizational decision-making contexts.

Keywords: cognition, intuition, investment decisions, methodology

Procedia PDF Downloads 86
1980 Blood Lipid Management: Combined Treatment with Hydrotherapy and Ozone Bubbles Bursting in Water

Authors: M. M. Wickramasinghe

Abstract:

Cholesterol and triglycerides are lipids, mainly essential to maintain the cellular structure of the human body. Cholesterol is also important for hormone production, vitamin D production, proper digestion functions, and strengthening the immune system. Excess fats in the blood circulation, known as hyperlipidemia, become harmful leading to arterial clogging and causing atherosclerosis. Aim of this research is to develop a treatment protocol to efficiently break down and maintain circulatory lipids by improving blood circulation without strenuous physical exercises while immersed in a tub of water. To achieve the target of strong exercise effect, this method involves generating powerful ozone bubbles to spin, collide, and burst in the water. Powerful emission of air into water is capable of transferring locked energy of the water molecules and releasing energy. This method involves water and air-based impact generated by pumping ozone at the speed of 46 lts/sec with a concentration of 0.03-0.05 ppt according to safety standards of The Federal Institute for Drugs and Medical Devices, BfArM, Germany. The direct impact of ozone bubbles on the muscular system and skin becomes the main target and is capable of increasing the heart rate while immersed in water. A total time duration of 20 minutes is adequate to exert a strong exercise effect, improve blood circulation, and stimulate the nervous and endocrine systems. Unstable ozone breakdown into oxygen release onto the surface of the water giving additional benefits and supplying high-quality air rich in oxygen required to maintain efficient metabolic functions. The breathing technique was introduced to improve the efficiency of lung functions and benefit the air exchange mechanism. The temperature of the water is maintained at 39c to 40c to support arterial dilation and enzyme functions and efficiently improve blood circulation to the vital organs. The buoyancy of water and natural hydrostatic pressure release the tension of the body weight and relax the mind and body. Sufficient hydration (3lts of water per day) is an essential requirement to transport nutrients and remove waste byproducts to process through the liver, kidney, and skin. Proper nutritional intake is an added advantage to optimize the efficiency of this method which aids in a fast recovery process. Within 20-30 days of daily treatment, triglycerides, low-density lipoproteins (LDL), and total cholesterol reduction were observed in patients with abnormal levels of lipid profile. Borderline patients were cleared within 10–15 days of treatment. This is a highly efficient system that provides many benefits and is able to achieve a successful reduction of triglycerides, LDL, and total cholesterol within a short period of time. Supported by proper hydration and nutritional balance, this system of natural treatment maintains healthy levels of lipids in the blood and avoids the risk of cerebral stroke, high blood pressure, and heart attacks.

Keywords: atherosclerosis, cholesterol, hydrotherapy, hyperlipidemia, lipid management, ozone therapy, triglycerides

Procedia PDF Downloads 91
1979 Investigating Concentration of Multi-Walled Carbon Nanotubes on Electrochemical Sensors

Authors: Mohsen Adabi, Mahdi Adabi, Reza Saber

Abstract:

The recent advancements in nanomaterials have provided a platform to develop efficient transduction matrices for sensors. Modified electrodes allow to electrochemists to enhance the property of electrode surface and provide desired properties such as improved sensing capabilities, higher electron transfer rate and prevention of undesirable reactions competing kinetically with desired electrode process. Nanostructured electrodes including arrays of carbon nanotubes have demonstrated great potential for the development of electrochemical sensors and biosensors. The aim of this work is to evaluate the concentration of multi-walled carbon nanotubes (MWCNTs) on the conductivity of gold electrode. For this work, raw MWCNTs was functionalized and shortened. Raw and shorten MWCNTs were characterized using transfer electron microscopy (TEM). Next, 0.5, 2 and 3.5 mg of Shortened and functionalized MWCNTs were dispersed in 2 mL Dimethyl formamide (DMF) and cysteamine modified gold electrodes were incubated in the different concentrations of MWCNTs for 8 hours. Then, the immobilization of MWCNTs on cysteamine modified gold electrode was characterized by scanning electron microscopy (SEM) and the effect of MWCNT concentrations on electron transfer of modified electrodes was investigated by cyclic voltammetry (CV). The results demonstrated that CV response of ferricyanide redox at modified gold electrodes increased as concentration of MWCNTs enhanced from 0.5 to 2 mg in 2 mL DMF. This increase can be attributed to the number of MWCNTs which enhance on the surface of cysteamine modified gold electrode as the MWCNTs concentration increased whereas CV response of ferricyanide redox at modified gold electrodes did not changed significantly as the MWCNTs concentration increased from 2 to 3.5 mg in 2 mL DMF. The reason may be that amine groups of cysteamine modified gold electrodes are limited to a given number which can interact with the given number of carboxylic groups of MWCNTs and CV response of ferricyanide redox at modified gold do not enhance after amine groups of cysteamine are saturated with carboxylic groups of MWCNTs.

Keywords: carbon nanotube, cysteamine, electrochemical sensor, gold electrode

Procedia PDF Downloads 467
1978 The Comparison of the Reliability Margin Measure for the Different Concepts in the Slope Analysis

Authors: Filip Dodigovic, Kreso Ivandic, Damir Stuhec, S. Strelec

Abstract:

The general difference analysis between the former and new design concepts in geotechnical engineering is carried out. The application of new regulations results in the need for real adaptation of the computation principles of limit states, i.e. by providing a uniform way of analyzing engineering tasks. Generally, it is not possible to unambiguously match the limit state verification procedure with those in the construction engineering. The reasons are the inability to fully consistency of the common probabilistic basis of the analysis, and the fundamental effect of material properties on the value of actions and the influence of actions on resistance. Consequently, it is not possible to apply separate factorization with partial coefficients, as in construction engineering. For the slope stability analysis design procedures problems in the light of the use of limit states in relation to the concept of allowable stresses is detailed in. The quantifications of the safety margins in the slope stability analysis for both approaches is done. When analyzing the stability of the slope, by the strict application of the adopted forms from the new regulations for significant external temporary and/or seismic actions, the equivalent margin of safety is increased. The consequence is the emergence of more conservative solutions.

Keywords: allowable pressure, Eurocode 7, limit states, slope stability

Procedia PDF Downloads 337
1977 Urea and Starch Detection on a Paper-Based Microfluidic Device Enabled on a Smartphone

Authors: Shashank Kumar, Mansi Chandra, Ujjawal Singh, Parth Gupta, Rishi Ram, Arnab Sarkar

Abstract:

Milk is one of the basic and primary sources of food and energy as we start consuming milk from birth. Hence, milk quality and purity and checking the concentration of its constituents become necessary steps. Considering the importance of the purity of milk for human health, the following study has been carried out to simultaneously detect and quantify the different adulterants like urea and starch in milk with the help of a paper-based microfluidic device integrated with a smartphone. The detection of the concentration of urea and starch is based on the principle of colorimetry. In contrast, the fluid flow in the device is based on the capillary action of porous media. The microfluidic channel proposed in the study is equipped with a specialized detection zone, and it employs a colorimetric indicator undergoing a visible color change when the milk gets in touch or reacts with a set of reagents which confirms the presence of different adulterants in the milk. In our proposed work, we have used iodine to detect the percentage of starch in the milk, whereas, in the case of urea, we have used the p-DMAB. A direct correlation has been found between the color change intensity and the concentration of adulterants. A calibration curve was constructed to find color intensity and subsequent starch and urea concentration. The device has low-cost production and easy disposability, which make it highly suitable for widespread adoption, especially in resource-constrained settings. Moreover, a smartphone application has been developed to detect, capture, and analyze the change in color intensity due to the presence of adulterants in the milk. The low-cost nature of the smartphone-integrated paper-based sensor, coupled with its integration with smartphones, makes it an attractive solution for widespread use. They are affordable, simple to use, and do not require specialized training, making them ideal tools for regulatory bodies and concerned consumers.

Keywords: paper based microfluidic device, milk adulteration, urea detection, starch detection, smartphone application

Procedia PDF Downloads 65
1976 Metal-Organic Frameworks for Innovative Functional Textiles

Authors: Hossam E. Emam

Abstract:

Metal–organic frameworks (MOFs) are new hybrid materials investigated from 15 years ago; they synthesized from metals as inorganic center joined with multidentate organic linkers to form a 1D, 2D or 3D network structure. MOFs have unique properties such as pore crystalline structure, large surface area, chemical tenability and luminescent characters. These significant properties enable MOFs to be applied in many fields such like gas storage, adsorption/separation, drug delivery/biomedicine, catalysis, polymerization, magnetism and luminescence applications. Recently, many of published reports interested in superiority of MOFs for functionalization of textiles to exploit the unique properties of MOFs. Incorporation of MOFs is found to acquire the textiles some additional formidable functions to be used in considerable fields such like water treatment and fuel purification. Modification of textiles with MOFs could be easily performed by two main techniques; Ex-situ (preparation of MOFs then applied onto textiles) and in-situ (ingrowth of MOFs within textiles networks). Uniqueness of MOFs could be assimilated in acquirement of decorative color, antimicrobial character, anti-mosquitos character, ultraviolet radiation protective, self-clean, photo-luminescent and sensor character. Additionally, textiles treatment with MOFs make it applicable as filter in the adsorption of toxic gases, hazardous materials (such as pesticides, dyes and aromatics molecules) and fuel purification (such as removal of oxygenated, nitrogenated and sulfur compounds). Also, the porous structure of MOFs make it mostly utilized in control release of insecticides from the surface of the textile. Moreover, MOF@textiles as recyclable materials lead it applicable as photo-catalyst composites for photo-degradation of different dyes in the day light. Therefore, MOFs is extensively considered for imparting textiles with formidable properties as ingeniousness way for textile functionalization.

Keywords: MOF, functional textiles, water treatment, fuel purification, environmental applications

Procedia PDF Downloads 145
1975 Analyzing Boson Star as a Candidate for Dark Galaxy Using ADM Formulation of General Relativity

Authors: Aria Ratmandanu

Abstract:

Boson stars can be viewed as zero temperature ground state, Bose-Einstein condensates, characterized by enormous occupation numbers. Time-dependent spherically symmetric spacetime can be a model of Boson Star. We use (3+1) split of Einstein equation (ADM formulation of general relativity) to solve Einstein field equation coupled to a complex scalar field (Einstein-Klein-Gordon Equation) on time-dependent spherically symmetric spacetime, We get the result that Boson stars are pulsating stars with the frequency of oscillation equal to its density. We search for interior solution of Boson stars and get the T.O.V. (Tollman-Oppenheimer-Volkoff) equation for Boson stars. Using T.O.V. equation, we get the equation of state and the relation between pressure and density, its total mass and along with its gravitational Mass. We found that the hypothetical particle Axion could form a Boson star with the size of a milky way galaxy and make it a candidate for a dark galaxy, (a galaxy that consists almost entirely of dark matter).

Keywords: axion, boson star, dark galaxy, time-dependent spherically symmetric spacetime

Procedia PDF Downloads 244
1974 Feasibility Study to Enhance the Heat Transfer in a Typical Pressurized Water Reactor by Ribbed Spacer Grids

Authors: A. Ghadbane, M. N. Bouaziz, S. Hanini, B. Baggoura, M. Abbaci

Abstract:

The spacer grids are used to fix the rods bundle in a nuclear reactor core also act as turbulence-enhancing devices to improve the heat transfer from the hot surfaces of the rods to the surrounding coolant stream. Therefore, the investigation of thermal-hydraulic characteristics inside the rod bundles is important for optima design and safety operation of a nuclear reactor power plant. This contribution presents a feasibility study to use the ribbed spacer grids as mixing devices. The present study evaluates the effects of different ribbed spacer grids configurations on flow pattern and heat transfer in the downstream of the mixing devices in a 2 x 2 rod bundle array. This is done by obtaining velocity and pressure fields, turbulent intensity and the heat transfer coefficient using a three-dimensional CFD analysis. Numerical calculations are performed by employing K-ε turbulent model. The computational results obtained are promising and the comparison with standard spacer grids shows a clear difference which required the experimental approach to validate.

Keywords: PWR fuel assembly, spacer grid, mixing vane, swirl flow, turbulent heat transfer, CFD

Procedia PDF Downloads 488
1973 Internet of Things, Edge and Cloud Computing in Rock Mechanical Investigation for Underground Surveys

Authors: Esmael Makarian, Ayub Elyasi, Fatemeh Saberi, Olusegun Stanley Tomomewo

Abstract:

Rock mechanical investigation is one of the most crucial activities in underground operations, especially in surveys related to hydrocarbon exploration and production, geothermal reservoirs, energy storage, mining, and geotechnics. There is a wide range of traditional methods for driving, collecting, and analyzing rock mechanics data. However, these approaches may not be suitable or work perfectly in some situations, such as fractured zones. Cutting-edge technologies have been provided to solve and optimize the mentioned issues. Internet of Things (IoT), Edge, and Cloud Computing technologies (ECt & CCt, respectively) are among the most widely used and new artificial intelligence methods employed for geomechanical studies. IoT devices act as sensors and cameras for real-time monitoring and mechanical-geological data collection of rocks, such as temperature, movement, pressure, or stress levels. Structural integrity, especially for cap rocks within hydrocarbon systems, and rock mass behavior assessment, to further activities such as enhanced oil recovery (EOR) and underground gas storage (UGS), or to improve safety risk management (SRM) and potential hazards identification (P.H.I), are other benefits from IoT technologies. EC techniques can process, aggregate, and analyze data immediately collected by IoT on a real-time scale, providing detailed insights into the behavior of rocks in various situations (e.g., stress, temperature, and pressure), establishing patterns quickly, and detecting trends. Therefore, this state-of-the-art and useful technology can adopt autonomous systems in rock mechanical surveys, such as drilling and production (in hydrocarbon wells) or excavation (in mining and geotechnics industries). Besides, ECt allows all rock-related operations to be controlled remotely and enables operators to apply changes or make adjustments. It must be mentioned that this feature is very important in environmental goals. More often than not, rock mechanical studies consist of different data, such as laboratory tests, field operations, and indirect information like seismic or well-logging data. CCt provides a useful platform for storing and managing a great deal of volume and different information, which can be very useful in fractured zones. Additionally, CCt supplies powerful tools for predicting, modeling, and simulating rock mechanical information, especially in fractured zones within vast areas. Also, it is a suitable source for sharing extensive information on rock mechanics, such as the direction and size of fractures in a large oil field or mine. The comprehensive review findings demonstrate that digital transformation through integrated IoT, Edge, and Cloud solutions is revolutionizing traditional rock mechanical investigation. These advanced technologies have empowered real-time monitoring, predictive analysis, and data-driven decision-making, culminating in noteworthy enhancements in safety, efficiency, and sustainability. Therefore, by employing IoT, CCt, and ECt, underground operations have experienced a significant boost, allowing for timely and informed actions using real-time data insights. The successful implementation of IoT, CCt, and ECt has led to optimized and safer operations, optimized processes, and environmentally conscious approaches in underground geological endeavors.

Keywords: rock mechanical studies, internet of things, edge computing, cloud computing, underground surveys, geological operations

Procedia PDF Downloads 63
1972 Thermomechanical Behaviour of Various Pressurized Installations Subjected to Thermal Load Due to the Combustion of Metal Particles

Authors: Khaled Ayfi, Morgan Dal, Frederic Coste, Nicolas Gallienne, Martina Ridlova, Philippe Lorong

Abstract:

In the gas industry, contamination of equipment by metal particles is one of the feared phenomena. Indeed, particles inside equipment can be driven by the gas flow and accumulate in places where the velocity is low. As they constitute a potential ignition hazard, particular attention is paid to the presence of particles in the oxygen industry. Indeed, the heat release from ignited particles may damage the equipment and even result in a loss of integrity. The objective of this work is to support the development of new design criteria. Studying the thermomechanical behavior of this equipment, thanks to numerical simulations, allows us to test the influence of various operating parameters (oxygen pressure, wall thickness, initial operating temperature, nature of the metal, etc.). Therefore, in this study, we propose a numerical model that describes the thermomechanical behavior of various pressurized installations heated locally by the combustion of small particles. This model takes into account the geometric and material nonlinearity and has been validated by the comparison of simulation results with experimental measurements obtained by a new device developed in this work.

Keywords: ignition, oxygen, numerical simulation, thermomechanical behaviour

Procedia PDF Downloads 154
1971 Simulation-Based Learning: Cases at Slovak University of Technology, at Faculty of Materials Science and Technology

Authors: Gabriela Chmelikova, Ludmila Hurajova, Pavol Bozek

Abstract:

Current era has brought hand in hand with the vast and fast development of technologies enormous pressure on individuals to keep being well - oriented in their professional fields. Almost all projects in the real world require an interdisciplinary perspective. These days we notice some cases when students face that real requirements for jobs are in contrast to the knowledge and competences they gained at universities. Interlacing labor market and university programs is a big issue these days. Sometimes it seems that higher education only “chases” reality. Simulation-based learning can support students’ touch with real demand on competences and knowledge of job world. The contribution provided a descriptive study of some cases of simulation-based teaching environment in different courses at STU MTF in Trnava and discussed how students and teachers perceive this model of teaching-learning approach. Finally, some recommendations are proposed how to enhance closer relationship between academic world and labor market.

Keywords: interdisciplinary approach, simulation-based learning, students' job readiness, teaching environment in higher education

Procedia PDF Downloads 273
1970 Effectiveness of Gamified Virtual Physiotherapy Patients with Shoulder Problems

Authors: A. Barratt, M. H. Granat, S. Buttress, B. Roy

Abstract:

Introduction: Physiotherapy is an essential part of the treatment of patients with shoulder problems. The focus of treatment is usually centred on addressing specific physiotherapy goals, ultimately resulting in the improvement in pain and function. This study investigates if computerised physiotherapy using gamification principles are as effective as standard physiotherapy. Methods: Physiotherapy exergames were created using a combination of commercially available hardware, the Microsoft Kinect, and bespoke software. The exergames used were validated by mapping physiotherapy goals of physiotherapy which included; strength, range of movement, control, speed, and activation of the kinetic chain. A multicenter, randomised prospective controlled trial investigated the use of exergames on patients with Shoulder Impingement Syndrome who had undergone Arthroscopic Subacromial Decompression surgery. The intervention group was provided with the automated sensor-based technology, allowing them to perform exergames and track their rehabilitation progress. The control group was treated with standard physiotherapy protocols. Outcomes from different domains were used to compare the groups. An important metric was the assessment of shoulder range of movement pre- and post-operatively. The range of movement data included abduction, forward flexion and external rotation which were measured by the software, pre-operatively, 6 weeks and 12 weeks post-operatively. Results: Both groups show significant improvement from pre-operative to 12 weeks in elevation in forward flexion and abduction planes. Results for abduction showed an improvement for the interventional group (p < 0.015) as well as the test group (p < 0.003). Forward flexion improvement was interventional group (p < 0.0201) with the control group (p < 0.004). There was however no significant difference between the groups at 12 weeks for abduction (p < 0.118067) , forward flexion (p < 0.189755) or external rotation (p < 0.346967). Conclusion: Exergames may be used as an alternative to standard physiotherapy regimes; however, further analysis is required focusing on patient engagement.

Keywords: shoulder, physiotherapy, exergames, gamification

Procedia PDF Downloads 194
1969 RANS Simulation of Viscous Flow around Hull of Multipurpose Amphibious Vehicle

Authors: M. Nakisa, A. Maimun, Yasser M. Ahmed, F. Behrouzi, A. Tarmizi

Abstract:

The practical application of the Computational Fluid Dynamics (CFD), for predicting the flow pattern around Multipurpose Amphibious Vehicle (MAV) hull has made much progress over the last decade. Today, several of the CFD tools play an important role in the land and water going vehicle hull form design. CFD has been used for analysis of MAV hull resistance, sea-keeping, maneuvering and investigating its variation when changing the hull form due to varying its parameters, which represents a very important task in the principal and final design stages. Resistance analysis based on CFD (Computational Fluid Dynamics) simulation has become a decisive factor in the development of new, economically efficient and environmentally friendly hull forms. Three-dimensional finite volume method (FVM) based on Reynolds Averaged Navier-Stokes equations (RANS) has been used to simulate incompressible flow around three types of MAV hull bow models in steady-state condition. Finally, the flow structure and streamlines, friction and pressure resistance and velocity contours of each type of hull bow will be compared and discussed.

Keywords: RANS simulation, multipurpose amphibious vehicle, viscous flow structure, mechatronic

Procedia PDF Downloads 312
1968 Experimental Characterization and Modelling of Microfluidic Radial Diffusers

Authors: Eric Chappel, Dimitry Dumont-Fillon, Hugo Musard, Harald van Lintel

Abstract:

A microfluidic radial diffuser typically comprises a hole in a membrane, a small gap and pillar centred with the hole. The fluid is forced to flow radially in this gap between the membrane and the pillar. Such diffusers are notably used to form flow control valves, wherein several holes are machined into a flexible membrane progressively deflecting against pillars as the pressure increases. The fluidic modelling of such diffuser is made difficult by the presence of a transition region between the hole and the diffuser itself. An experimental investigation has been conducted using SOI wafers to form membranes with only one centred hole and Pyrex wafers for the substrate and pillars, both wafers being anodically bonded after alignment. A simple fluidic model accounting for the specific geometry of the diffuser is proposed and compared to experimental results. A good match is obtained, for Reynolds number in the range 0.5 to 35 using the analytical formula of a radial diffuser in the laminar regime with an effective inner radius that is 40% smaller than the real radius, in order to simulate correctly the flow constriction at the entrance of the diffuser.

Keywords: radial diffuser, flow control valve, numerical modelling, drug delivery

Procedia PDF Downloads 278
1967 Sharia, Legal Pluralism and Muslim Personal Law in Contemporary India

Authors: K. C. Mujeebu Rahman

Abstract:

Over the years, discussions in India regarding personal law in India have focused on its deficiencies, increasing involvement of the judiciary, and the pursuit of uniformity. However, little attention has been given to understanding how the law functions in a multicultural nation committed to political secularism. This paper addresses this gap by exploring the mahallu system in Malabar, shedding light on the decision-making process within Muslim personal law. It reveals that this process is deeply rooted in everyday micro-politics, sectarian dynamics, social pressure, and emotions. Through an in-depth examination of a triple talaq case, the paper demonstrates how love (or the lack of it), family expectations, and community authority intersect in resolving marital disputes. Instead of a straightforward legal interpretation, this process leads to a complex maze of micro-politics involving local religious factions and authorities. The paper underscores that the non-state quasi-legal institutions within the mahallu system represent a distinct form of legal pluralism characterized by intricate power dynamics at multiple levels. Moreover, it highlights the interplay between what is considered legally valid and what is deemed socially legitimate.

Keywords: islamic law, sharia, fatwa, muslim personal law

Procedia PDF Downloads 65
1966 Thermodynamic Modeling of Methane Injection in Gas-Condensate Reservoir Core: A Case Study

Authors: F. S. Alavi, D. Mowla, F. Esmaeilzadeh

Abstract:

In this paper, the core of Sarkhoon Gas Condensate Reservoir located in the south of Iran was thermodynamically modeled in order to study the natural depletion process and methane injection phenomena for enhanced gas-condensate recovery using the Eclipse 300 compositional simulator. Modeling was performed for three different core lengths with different production and injection flow rates in both vertical and horizontal cases. According to the results, the final condensate in place value in the natural depletion process is approximately independent of the production rate for a given pressure drop. The final condensate in place value is lower in vertical cases compared to horizontal cases. An increase in the injection flow rate leads to a decrease in the percentage of gascondensate recovery. In cores of equal length, gas condensate recovery percent is higher in vertical cases in comparison to horizontal cases. For a constant injection rate, decreasing the core length leads to a decrease in gas condensate recovery.

Keywords: reservoir simulation, methane injection, enhanced condensate recovery, reservoir core, modeling

Procedia PDF Downloads 94
1965 Reimagining the Potential of Street Lighting Infrastructure in Nairobi City

Authors: Clifford Otieno Ochieng, Nsenda Lukumwena

Abstract:

Cities worldwide and most notably those in the global south, including Nairobi City are experiencing accelerated population growth and urban sprawl, accompanied with multiple socioeconomic challenges’ which in turn increase the pressure on already limited infrastructure such as public lighting and on limited financial resources. Based on this premise, through reimaging the value of street lighting infrastructure, the study attempts to highlight the affordance and affordability of streetlights and suggests them as a tool to optimally address limited financial resources that characterize cities in the global south. As a methodology, the paper reviews and analyzes literature available online including Nairobi city budgets; reports from Kenya Power, World Health Organization and United Nations; and articles on enterprise level Internet of Things (IoT) solutions. In conclusion, this study illustrates that streetlights can go well beyond their traditional roles of illuminating cities at night. They can be as suggested in this paper charging stations, communication network terminals and disease prevention nodes.

Keywords: affordance, Nairobi, developing economies, IoT, smart street lights, smart cities

Procedia PDF Downloads 185