Search results for: yield component
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4801

Search results for: yield component

1441 Studies on Climatic and Soil Site Suitability of Major Grapes-Growing Soils of Eastern and Southern Dry Zones of Karnataka

Authors: Harsha B. R., Anil Kumar K. S.

Abstract:

Climate and soils are the two most dynamic entities among the factors affecting growth and grapes productivity. Studying of prevailing climate over the years in a region provides sufficient information related to management practices to be carried out in vineyards. Evaluating the suitability of vineyard soils under different climatic conditions serves as the yardstick to analyse the performance of grapevines. This study was formulated to study the climate and evaluate the site-suitability of soils in vineyards of southern Karnataka, which has registered its superiority in the quality production of wine. Ten soil profiles were excavated for suitability evaluation of soils, and six taluks were studied for climatic analysis. In almost all the regions studied, recharge starts at the end of the May or June months, peaking in either September or October months. Soil Starts drying from mid of December months in the taluks studied. Bangalore North (Rajanukunte) soils were highly suited for grapes cultivation with no or slight limitations. Bangalore North (GKVK Farm) was moderately suited with slight to moderate limitations of slope and available nitrogen content. Moderate suitability was observed in the rest of the profiles studied in Eastern dry zone soils with the slight to moderate limitations of either organic carbon or available nitrogen or both in the Eastern dry zone. Magadi (Southern dry zone) soils were moderately suitable with slight to moderate limitations of graveliness, available nitrogen, organic carbon, and exchangeable sodium percentage. Sustainable performance of vineyards in terms of yield can be achieved in these taluks by managing the constraints existing in soils.

Keywords: climatic analysis, dry zone, water recharge, growing period, suitability, sustainability

Procedia PDF Downloads 115
1440 Emergency Management of Poisoning Tracery Care Hospital in India

Authors: Rajiv Ratan Singh, Sachin Kumar Tripathi, Pradeep Kumar Yadav

Abstract:

The timely evaluation, diagnosis, and treatment of people who have been exposed to toxic chemicals is a crucial component of emergency poison management in the medical field. The various substances that can poison include chemicals, medications, and naturally occurring poisons. The toxicology of the particular drug involved, as well as the symptoms and indicators of poisoning, must be thoroughly understood to handle poisoning emergencies effectively. One of the most important aspects of emergency poison management in medicine is the prompt examination, diagnosis, and treatment of persons who have been exposed to dangerous substances. To properly manage poisoning crises, one must have a good understanding of the toxicology of the particular medication concerned, as well as the signs and indicators of poisoning. Emergency management of poisoning includes not only prompt medical attention but also patient education, follow-up care, and monitoring for any long-term consequences. To achieve the greatest results for patients, the management of poisoning is a complicated and dynamic process that calls for collaboration between medical professionals, first responders, and toxicologists. All poisoned patients who present to the emergency room are assessed and diagnosed based on a collection of symptoms and a biochemical diagnosis, and they are then provided targeted, specialized treatment for the toxin identified. This article focuses on the loxodromic strategy as the primary method of treatment for poisoned patients. The authors of this article conclude that mortality and morbidity can be reduced if patients visit the emergency room promptly and receive targeted treatment.

Keywords: antidotes, blood poisoning, emergency medicine, gastric lavage, medico-legal aspects, patient care

Procedia PDF Downloads 84
1439 Sexual Behaviors and Its Predictors among Iranian Women in Iran: A Cross-Sectional Study

Authors: Zahra Karimian, Effat Merghati Khoei, Raziyeh Maasoumi

Abstract:

Background: Women's sexual well-being is center of focus in the field of sexology. Study of sexual behavior and investigating its predictors is important in women's health promotion. Objectives: This study aimed to explore the components of sexual behaviors and their possible associations with the women's demographic. Methods: A National Sexual Behavior Assessment Questionnaire was administered to 500 women ages 15 to 45 who referred to the public health centers seeking for health care services. The associations with demographic were examined. Results: From all participant, 31.8% of women obtain high score in the sexual capacity 21.2% in sexual motivation and 0.2% in sexual function. In sexual script component, 86.2% of women were holding traditional beliefs toward sexual behaviors; the majority (91.5%) of women believed in mutual and relational sexuality, 83.4% believed in androcentricity (male-dominated sexuality). Pearson correlation test showed significant positive correlations between sexual capacity, motivation, function and sexual script (p < 0.05). Regression model showed that sexual capacity is associated with women's education, age of her spouse. Sexual function and sexual motivation were significantly associated with the age of subjects' spouses. Conclusion: In this study, lower score was found in sexual performance while women were scored higher in the sexual capacity and motivation. We argue that these lower score in sexual performance more likely is due to the level of participants' religiosity and formation of their sexuality through an androcentric culture. Women's level of education and the spouse age appear to be predicting factors in the scores the subjects gained. We suggest that gender-specific and culturally sensitive sexuality education should be focus of women's health programs in Iran.

Keywords: sexual behaviors, women, health, Iran

Procedia PDF Downloads 228
1438 Evaluating Habitat Manipulation as a Strategy for Rodent Control in Agricultural Ecosystems of Pothwar Region, Pakistan

Authors: Nadeem Munawar, Tariq Mahmood

Abstract:

Habitat manipulation is an important technique that can be used for controlling rodent damage in agricultural ecosystems. It involves intentionally manipulation of vegetation cover in adjacent habitats around the active burrows of rodents to reduce shelter, food availability and to increase predation pressure. The current study was conducted in the Pothwar Plateau during the respective non-crop period of wheat-groundnut (post-harvested and un-ploughed/non-crop fallow lands) with the aim to assess the impact of the reduction in vegetation height of adjacent habitats (field borders) on rodent’s richness and abundance. The study area was divided into two sites viz. treated and non-treated. At the treated sites, habitat manipulation was carried out by removing crop cache, and non-crop vegetation’s over 10 cm in height to a distance of approximately 20 m from the fields. The trapping sessions carried out at both treated and non-treated sites adjacent to wheat-groundnut fields were significantly different (F 2, 6 = 13.2, P = 0.001) from each other, which revealed that a maximum number of rodents were captured from non-treated sites. There was a significant difference in the overall abundance of rodents (P < 0.05) between crop stages and between treatments in both crops. The manipulation effect was significantly observed on damage to crops, and yield production resulted in the reduction of damage within the associated croplands (P < 0.05). The outcomes of this study indicated a significant reduction of rodent population at treated sites due to changes in vegetation height and cover which affect important components, i.e., food, shelter, movements and increased risk sensitivity in their feeding behavior; therefore, they were unable to reach levels where they cause significant crop damage. This method is recommended for being a cost-effective and easy application.

Keywords: agricultural ecosystems, crop damage, habitat manipulation, rodents, trapping

Procedia PDF Downloads 150
1437 Development of Automatic Farm Manure Spreading Machine for Orchards

Authors: Barış Ozluoymak, Emin Guzel, Ahmet İnce

Abstract:

Since chemical fertilizers are used for meeting the deficiency of plant nutrients, its many harmful effects are not taken into consideration for the structure of the earth. These fertilizers are hampering the work of the organisms in the soil immediately after thrown to the ground. This interference is first started with a change of the soil pH and micro organismic balance is disrupted by reaction in the soil. Since there can be no fragmentation of plant residues, organic matter in the soil will be increasingly impoverished in the absence of micro organismic living. Biological activity reduction brings about a deterioration of the soil structure. If the chemical fertilization continues intensively, soils will get worse every year; plant growth will slow down and stop due to the intensity of chemical fertilizers, yield decline will be experienced and farmer will not receive an adequate return on his investment. In this research, a prototype of automatic farm manure spreading machine for orange orchards that not just manufactured in Turkey was designed, constructed, tested and eliminate the human drudgery involved in spreading of farm manure in the field. The machine comprised several components as a 5 m3 volume hopper, automatic controlled hydraulically driven chain conveyor device and side delivery conveyor belts. To spread the solid farm manure automatically, the machine was equipped with an electronic control system. The hopper and side delivery conveyor designs fitted between orange orchard tree row spacing. Test results showed that the control system has significant effects on reduction in the amount of unnecessary solid farm manure use and avoiding inefficient manual labor.

Keywords: automatic control system, conveyor belt application, orchard, solid farm manure

Procedia PDF Downloads 277
1436 Effect of Chemical Mutagen on Seeds Germination of Lima Bean

Authors: G. Ultanbekova, Zh. Suleimenova, Zh. Rakhmetova, G. Mombekova, S. Mantieva

Abstract:

Plant Growth Promoting Rhizobacteria (PGPR) are a group of free-living bacteria that colonize the rhizosphere, enhance plant growth of many cereals and other important agricultural crops and protect plants from disease and abiotic stresses through a wide variety of mechanisms. The use of PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth. In the present study, strain improvement of PGPR isolates were carried out by chemical mutagenesis for the improvement of growth and yield of lima bean. Induced mutagenesis is widely used for the selection of microorganisms producing biologically active substances and further improving their activities. Strain improvement is usually done by classical mutagenesis which involves exposing the microbes to chemical or physical mutagens. The strains of Pseudomonas putida 4/1, Azotobacter chroococcum Р-29 and Bacillus subtilis were subjected to mutation process for strain improvement by treatment with a chemical agent (sodium nitrite) to cause mutation and were observed for its consequent action on the seeds germination and plant growth of lima bean (Phaseolus lunatus). Bacterial mutant strains of Pseudomonas putida M-1, Azotobacter chroococcum M-1 and Bacillus subtilis M-1, treated with sodium nitrite in the concentration of 5 mg/ml for 120 min, were found effective to enhance the germination of lima bean seeds compared to parent strains. Moreover, treatment of the lima bean seeds with a mutant strain of Bacillus subtilis M-1 had a significant stimulation effect on plant growth. The length of the stems and roots of lima bean treated with Bacillus subtilis M-1 increased significantly in comparison with parent strain in 1.6 and 1.3 times, respectively.

Keywords: chemical mutagenesis, germination, kidney bean, plant growth promoting rhizobacteria (PGPR)

Procedia PDF Downloads 185
1435 Identification and Characterization of Groundwater Recharge Sites in Kuwait

Authors: Dalal Sadeqi

Abstract:

Groundwater is an important component of Kuwait’s water resources. Although limited in quantity and often poor in quality, the significance of this natural source of water cannot be overemphasized. Recharge of groundwater in Kuwait occurs during periodical storm events, especially in open desert areas. Runoff water dissolves accumulated surficial meteoric salts and subsequently leaches them into the groundwater following a period of evaporative enrichment at or near the soil surface. Geochemical processes governing groundwater recharge vary in time and space. Stable isotope (18O and 2H) and geochemical signatures are commonly used to gain some insight into recharge processes and groundwater salinization mechanisms, particularly in arid and semiarid regions. This article addresses the mechanism used in identifying and characterizing the main water shed areas in Kuwait using stable isotopes in an attempt to determine favorable groundwater recharge sites in the country. Stable isotopes of both rainwater and groundwater were targeted in different hydrogeological settings. Additionally, data and information obtained from subsurface logs in the study area were collected and analyzed to develop a better understanding of the lateral and vertical extent of the groundwater aquifers. Geographic Information System (GIS) and RockWorks 3D modelling software were used to map out the hydrogeomorphology of the study area and the subsurface lithology of the investigated aquifers. The collected data and information, including major ion chemistry, isotopes, subsurface characteristics, and hydrogeomorphology, were integrated in a GIS platform to identify and map out suitable natural recharge areas as part of an integrated water resources management scheme that addresses the challenges of the sustainability of the groundwater reserves in the country.

Keywords: scarcity, integrated, recharge, isotope

Procedia PDF Downloads 99
1434 Conversion of Sweet Sorghum Bagasse to Sugars for Succinic Acid Production

Authors: Enlin Lo, Ioannis Dogaris, George Philippidis

Abstract:

Succinic acid is a compound used for manufacturing lacquers, resins, and other coating chemicals. It is also used in the food and beverage industry as a flavor additive. It is predominantly manufactured from petrochemicals, but it can also be produced by fermentation of sugars from renewable feedstocks, such as plant biomass. Bio-based succinic acid has great potential in becoming a platform chemical (building block) for commodity and high-value chemicals. In this study, the production of bio-based succinic acid from sweet sorghum was investigated. Sweet sorghum has high fermentable sugar content and can be cultivated in a variety of climates. In order to avoid competition with food feedstocks, its non-edible ‘bagasse’ (the fiber part after extracting the juice) was targeted. Initially, various conditions of pretreating sweet sorghum bagasse (SSB) were studied in an effort to remove most of the non-fermentable components and expose the cellulosic fiber containing the fermentable sugars (glucose). Concentrated (83%) phosphoric acid was utilized at temperatures 50-80 oC for 30-60 min at various SSB loadings (10-15%), coupled with enzymatic hydrolysis using commercial cellulase (Ctec2, Novozymes) enzyme, to identify the conditions that lead to the highest glucose yields for subsequent fermentation to succinic acid. As the pretreatment temperature and duration increased, the bagasse color changed from light brown to dark brown-black, indicating decomposition, which ranged from 15% to 72%, while the theoretical glucose yield is 91%. With Minitab software statistical analysis, a model was built to identify the optimal pretreatment condition for maximum glucose released. The projected theoretical bio-based succinic acid production is 23g per 100g of SSB, which will be confirmed with fermentation experiments using the bacterium Actinobacillus succinogenes.

Keywords: biomass, cellulose, enzymatic hydrolysis, fermentation, pretreatment, succinic acid

Procedia PDF Downloads 205
1433 The Cost-Effectiveness of High-Volume Hospital’s Surgical Care for Pancreatic Cancer: Economic Evidence Reviewed

Authors: Shannon Hearney, Jeffrey Hoch

Abstract:

Pancreatic cancer is a notoriously costly and deadly form of cancer. Many types of treatment centers exist for patients to seek care from, including high-volume centers which have shown promise to provide the highest quality of care. While it may be true that this type of center provides the best care it is unclear if that care is cost-effective. Studies in the US have confirmed that high-volume hospitals do provide higher quality of care but have shown inconsistencies in the cost-effectiveness of that care. Other studies, like those from Finland have shown that high-volume centers had lower mortality and lower costs than low-volume centers. This paper thus seeks to review the current scientific literature to better understand if high-volume centers are cost-effective in delivering care in both a European setting and in the US. A review of major reference databases such as Medline, Embase and PubMed will be conducted for cost-effectiveness studies on the surgical treatment of pancreatic cancer at high-volume centers. Possible MeSH terms to be included, but not limited to, are: “pancreatic cancer”, “cost analysis”, “cost-effectiveness”, “economic evaluation”, “pancreatic neoplasms”, “surgical”, and “high-volume”. Studies must also have been available in the English language. This review will encompass European scientific literature, as well as those in the US. Based on our preliminary findings, we anticipate high-volume hospitals to provide better care at greater costs. We anticipate that high-volume hospitals may be cost-effective in different contexts depending on the national structure of a healthcare system. Countries with more centralized and socialized healthcare may yield results that are more cost-effective. High-volume centers may differ in their cost-effectiveness of the surgical care of pancreatic cancer internationally especially when comparing those in the United States to others throughout Europe.

Keywords: cost-effectiveness analysis, economic evaluation, pancreatic cancer, scientific literature review

Procedia PDF Downloads 80
1432 Studying the Effect of Different Sizes of Carbon Fiber on Locally Developed Copper Based Composites

Authors: Tahir Ahmad, Abubaker Khan, Muhammad Kamran, Muhammad Umer Manzoor, Muhammad Taqi Zahid Butt

Abstract:

Metal Matrix Composites (MMC) is a class of weight efficient structural materials that are becoming popular in engineering applications especially in electronic, aerospace, aircraft, packaging and various other industries. This study focuses on the development of carbon fiber reinforced copper matrix composite. Keeping in view the vast applications of metal matrix composites,this specific material is produced for its unique mechanical and thermal properties i.e. high thermal conductivity and low coefficient of thermal expansion at elevated temperatures. The carbon fibers were not pretreated but coated with copper by electroless plating in order to increase the wettability of carbon fiber with the copper matrix. Casting is chosen as the manufacturing route for the C-Cu composite. Four different compositions of the composite were developed by varying the amount of carbon fibers by 0.5, 1, 1.5 and 2 wt. % of the copper. The effect of varying carbon fiber content and sizes on the mechanical properties of the C-Cu composite is studied in this work. The tensile test was performed on the tensile specimens. The yield strength decreases with increasing fiber content while the ultimate tensile strength increases with increasing fiber content. Rockwell hardness test was also performed and the result followed the increasing trend for increasing carbon fibers and the hardness numbers are 30.2, 37.2, 39.9 and 42.5 for sample 1, 2, 3 and 4 respectively. The microstructures of the specimens were also examined under the optical microscope. Wear test and SEM also done for checking characteristic of C-Cu marix composite. Through casting may be a route for the production of the C-Cu matrix composite but still powder metallurgy is better to follow as the wettability of carbon fiber with matrix, in that case, would be better.

Keywords: copper based composites, mechanical properties, wear properties, microstructure

Procedia PDF Downloads 352
1431 Fabrication of Nanoengineered Radiation Shielding Multifunctional Polymeric Sandwich Composites

Authors: Nasim Abuali Galehdari, Venkat Mani, Ajit D. Kelkar

Abstract:

Space Radiation has become one of the major factors in successful long duration space exploration. Exposure to space radiation not only can affect the health of astronauts but also can disrupt or damage materials and electronics. Hazards to materials include degradation of properties, such as, modulus, strength, or glass transition temperature. Electronics may experience single event effects, gate rupture, burnout of field effect transistors and noise. Presently aluminum is the major component in most of the space structures due to its lightweight and good structural properties. However, aluminum is ineffective at blocking space radiation. Therefore, most of the past research involved studying at polymers which contain large amounts of hydrogen. Again, these materials are not structural materials and would require large amounts of material to achieve the structural properties needed. One of the materials to alleviate this problem is polymeric composite materials, which has good structural properties and use polymers that contained large amounts of hydrogen. This paper presents steps involved in fabrication of multi-functional hybrid sandwich panels that can provide beneficial radiation shielding as well as structural strength. Multifunctional hybrid sandwich panels were manufactured using vacuum assisted resin transfer molding process and were subjected to radiation treatment. Study indicates that various nanoparticles including Boron Nano powder, Boron Carbide and Gadolinium nanoparticles can be successfully used to block the space radiation without sacrificing the structural integrity.

Keywords: multi-functional, polymer composites, radiation shielding, sandwich composites

Procedia PDF Downloads 271
1430 Experimental Simulation Set-Up for Validating Out-Of-The-Loop Mitigation when Monitoring High Levels of Automation in Air Traffic Control

Authors: Oliver Ohneiser, Francesca De Crescenzio, Gianluca Di Flumeri, Jan Kraemer, Bruno Berberian, Sara Bagassi, Nicolina Sciaraffa, Pietro Aricò, Gianluca Borghini, Fabio Babiloni

Abstract:

An increasing degree of automation in air traffic will also change the role of the air traffic controller (ATCO). ATCOs will fulfill significantly more monitoring tasks compared to today. However, this rather passive role may lead to Out-Of-The-Loop (OOTL) effects comprising vigilance decrement and less situation awareness. The project MINIMA (Mitigating Negative Impacts of Monitoring high levels of Automation) has conceived a system to control and mitigate such OOTL phenomena. In order to demonstrate the MINIMA concept, an experimental simulation set-up has been designed. This set-up consists of two parts: 1) a Task Environment (TE) comprising a Terminal Maneuvering Area (TMA) simulator as well as 2) a Vigilance and Attention Controller (VAC) based on neurophysiological data recording such as electroencephalography (EEG) and eye-tracking devices. The current vigilance level and the attention focus of the controller are measured during the ATCO’s active work in front of the human machine interface (HMI). The derived vigilance level and attention trigger adaptive automation functionalities in the TE to avoid OOTL effects. This paper describes the full-scale experimental set-up and the component development work towards it. Hence, it encompasses a pre-test whose results influenced the development of the VAC as well as the functionalities of the final TE and the two VAC’s sub-components.

Keywords: automation, human factors, air traffic controller, MINIMA, OOTL (Out-Of-The-Loop), EEG (Electroencephalography), HMI (Human Machine Interface)

Procedia PDF Downloads 369
1429 Accuracy/Precision Evaluation of Excalibur I: A Neurosurgery-Specific Haptic Hand Controller

Authors: Hamidreza Hoshyarmanesh, Benjamin Durante, Alex Irwin, Sanju Lama, Kourosh Zareinia, Garnette R. Sutherland

Abstract:

This study reports on a proposed method to evaluate the accuracy and precision of Excalibur I, a neurosurgery-specific haptic hand controller, designed and developed at Project neuroArm. Having an efficient and successful robot-assisted telesurgery is considerably contingent on how accurate and precise a haptic hand controller (master/local robot) would be able to interpret the kinematic indices of motion, i.e., position and orientation, from the surgeon’s upper limp to the slave/remote robot. A proposed test rig is designed and manufactured according to standard ASTM F2554-10 to determine the accuracy and precision range of Excalibur I at four different locations within its workspace: central workspace, extreme forward, far left and far right. The test rig is metrologically characterized by a coordinate measuring machine (accuracy and repeatability < ± 5 µm). Only the serial linkage of the haptic device is examined due to the use of the Structural Length Index (SLI). The results indicate that accuracy decreases by moving from the workspace central area towards the borders of the workspace. In a comparative study, Excalibur I performs on par with the PHANToM PremiumTM 3.0 and more accurate/precise than the PHANToM PremiumTM 1.5. The error in Cartesian coordinate system shows a dominant component in one direction (δx, δy or δz) for the movements on horizontal, vertical and inclined surfaces. The average error magnitude of three attempts is recorded, considering all three error components. This research is the first promising step to quantify the kinematic performance of Excalibur I.

Keywords: accuracy, advanced metrology, hand controller, precision, robot-assisted surgery, tele-operation, workspace

Procedia PDF Downloads 329
1428 Physiological and Biochemical Based Analysis to Assess the Efficacy of Mulch under Partial Root Zone Drying in Wheat

Authors: Salman Ahmad, Muhammad Aown Sammar Raza, Muhammad Farrukh Saleem, Rashid Iqbal, Muhammad Saqlain Zaheer, Muhammad Usman Aslam, Imran Haider, Muhammad Adnan Nazar, Muhammad Ali

Abstract:

Among the various abiotic stresses, drought stress is one of the most challenging for field crops. Wheat is one of the major staple food of the world, which is highly affected by water deficit stress in the current scenario of climate change. In order to ensure food security by depleting water resources, there is an urgent need to adopt technologies which result in sufficient crop yield with less water consumption. Mulching and partial rootzone drying (PRD) are two important management techniques used for water conservation and to mitigate the negative impacts of drought. The experiment was conducted to screen out the best-suited mulch for wheat under PRD system. Two water application techniques (I1= full irrigation I2= PRD irrigation) and four mulch treatments (M0= un-mulched, M1= black plastic mulch, M2= wheat straw mulch and M4= cotton sticks mulch) were conducted in completely randomized design with four replications. The treatment, black plastic mulch was performed the best than other mulch treatments. For irrigation levels, higher values of growth, physiological and water-related parameters were recorded in control treatment while, quality traits and enzymatic activities were higher under partial root zone drying. The current study concluded that adverse effects of drought on wheat can be significantly mitigated by using mulches but black plastic mulch was best suited for partial rootzone drying irrigation system in wheat.

Keywords: antioxidants, leaf water relations, Mulches, osmolytes, partial root zone drying, photosynthesis

Procedia PDF Downloads 245
1427 Egg Hatching Inhibition Activity of Volatile Oils Extracted from Some Medicinal and Aromatic Plants against Root-Knot Nematode Meloidogyne hapla

Authors: Anil F. Felek, Mehmet M. Ozcan, Faruk Akyazi

Abstract:

Volatile oils of medicinal and aromatic plants are important for managing nematological problems in agriculture. In present study, volatile oils extracted from five medicinal and aromatic plants including Origanum onites (flower+steam+leaf), Salvia officinalis (leaf), Lippia citriodora (leaf+seed), Mentha spicata (leaf) and Mentha longifolia (leaf) were tested for egg hatching inhibition activity against root-knot nematode Meloidogyne hapla under laboratory conditions. The essential oils were extracted using water distillation method with a Clevenger system. For the homogenisation process of the oils, 2% gum arabic solution was used and 4 µl oils was added into 1ml filtered gum arabic solution to prepare the last stock solution. 5 ml of stock solution and 1 ml of M. hapla egg suspension (about 100 eggs) were added into petri dishes. Gum arabic solution was used as control. Seven days after exposure to oils at room temperature (26±2 °C), the cumulative hatched and unhatched eggs were counted under 40X inverted light microscope and Abbott’s formula was used to calculate egg hatching inhibition rates. As a result, the highest inhibition rate was found as 54% for O. onites. In addition, the other inhibition rates varied as 31.4%, 21.6%, 23.8%, 25.67% for the other plants, S. officinalis, M. longifolia, M. spicata and L. citriodora, respectively. Carvacrol was found as the main component (68.8%) of O. onites followed by Thujone 27.77% for S. officinalis, I-Menthone 76.92% for M. longifolia, Carvone 27.05% for M. spicata and Citral 19.32% for L. citriodora.

Keywords: egg hatching, Meloidogyne hapla, medicinal and aromatic plants, root-knot nematodes, volatile oils

Procedia PDF Downloads 253
1426 The Effect of Gender Role Socialization on Marketing of Gendered Products: The Case of Cultural Ghana

Authors: Priscilla Adoley Moffat

Abstract:

One common element of African cultures is gender role socialization. This is a significant component of African cultures because gender roles are considered in these cultures, to define males and females and distinguish males from females. Various studies have established the impact of gender role socialization on individuals, on activities of individuals, including business activities, and on society, in general. This study further examined the effect of gender role socialization on the marketing of gendered products. The study sought to establish whether gender role socialization affects marketing, particularly word-of-mouth marketing, of gender-specific products. For a comprehensive examination of the influence of gender role socialization on word-of-mouth marketing of gendered products, 2150 respondents (1075 males and 1075 females), comprising 550 students of Marketing from various Ghanaian universities/colleges and 1600 other individuals (100 from each of the 16 regions of Ghana, representing the various cultures) were randomly sampled and interviewed. The study found that females are more willing to market male products than males when tasked to market female products. Also, females are more efficient in marketing male products than males in marketing female products. Again, most female audiences feel uncomfortable or embarrassed and are less receptive when approached by a male marketer of female products. Then, the study found that the fear of stigmatization is a major influencer of males’ negative attitude towards marketing of female products and that female marketers of male products, however, suffer less or no stigma. Aside from its addition to the literature on the impact of gender role socialization on marketing and, for that matter, the influence of socialization on marketing, the findings of the study are useful to multinational companies, which become better informed in their strategy when assigning marketing roles, especially in Africa.

Keywords: gender, socialization, marketing, gendered, role, Ghana

Procedia PDF Downloads 54
1425 Experimental and Numerical Evaluation of a Shaft Failure Behaviour Using Three-Point Bending Test

Authors: Bernd Engel, Sara Salman Hassan Al-Maeeni

Abstract:

A substantial amount of natural resources are nowadays consumed at a growing rate, as humans all over the world used materials obtained from the Earth. Machinery manufacturing industry is one of the major resource consumers on a global scale. Even though the incessant finding out of the new material, metals, and resources, it is urgent for the industry to develop methods to use the Earth's resources intelligently and more sustainable than before. Re-engineering of machine tools regarding design and failure analysis is an approach whereby out-of-date machines are upgraded and returned to useful life. To ensure the reliable future performance of the used machine components, it is essential to investigate the machine component failure through the material, design, and surface examinations. This paper presents an experimental approach aimed at inspecting the shaft of the rotary draw bending machine as a case to study. The testing methodology, which is based on the principle of the three-point bending test, allows assessing the shaft elastic behavior under loading. Furthermore, the shaft elastic characteristics include the maximum linear deflection, and maximum bending stress was determined by using an analytical approach and finite element (FE) analysis approach. In the end, the results were compared with the ones obtained by the experimental approach. In conclusion, it is seen that the measured bending deflection and bending stress were well close to the permissible design value. Therefore, the shaft can work in the second life cycle. However, based on previous surface tests conducted, the shaft needs surface treatments include re-carburizing and refining processes to ensure the reliable surface performance.

Keywords: deflection, FE analysis, shaft, stress, three-point bending

Procedia PDF Downloads 144
1424 Alumina Supported Copper-manganese Catalysts for Combustion of Exhaust Gases: Catalysts Characterization

Authors: Krasimir I. Ivanov, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Georgi V. Avdeev, Tatyana T. Tabakova

Abstract:

In recent research copper and manganese systems were found to be the most active in CO and organic compounds oxidation among the base catalysts. The mixed copper manganese oxide has been widely studied in oxidation reactions because of their higher activity at low temperatures in comparison with single oxide catalysts. The results showed that the formation of spinel CuxMn3−xO4 in the oxidized catalyst is responsible for the activity even at room temperature. That is why most of the investigations are focused on the hopcalite catalyst (CuMn2O4) as the best copper-manganese catalyst. Now it’s known that this is true only for CO oxidation, but not for mixture of CO and VOCs. The purpose of this study is to investigate the alumina supported copper-manganese catalysts with different Cu/Mn molar ratio in terms of oxidation of CO, methanol and dimethyl ether. The catalysts were prepared by impregnation of γ-Al2O3 with copper and manganese nitrates and the catalytic activity measurements were carried out in continuous flow equipment with a four-channel isothermal stainless steel reactor. Gas mixtures on the input and output of the reactor were analyzed with a gas chromatograph, equipped with FID and TCD detectors. The texture characteristics were determined by low-temperature (- 196 oС) nitrogen adsorption in a Quantachrome Instruments NOVA 1200e (USA) specific surface area&pore analyzer. Thermal, XRD and TPR analyses were performed. It was established that the active component of the mixed Cu-Mn/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio. Highly active alumina supported Cu-Mn catalysts for CO, methanol and DME oxidation were synthesized. While the hopcalite is the best catalyst for CO oxidation, the best compromise for simultaneous oxidation of all components is the catalyst with Cu/Mn molar ratio 1:5.

Keywords: supported copper-manganese catalysts, CO, VOCs oxidation, combustion of exhaust gases

Procedia PDF Downloads 275
1423 Knowledge and Utilization of Partograph among Obstetric Care Givers in Public Health Institutions of Addis Ababa, Ethiopia

Authors: Engida Yisma, Berhanu Dessalegn, Ayalew Astatkie, Nebreed Fesseha

Abstract:

Background: The use of the partograph is a well-known best practice for quality monitoring of labour and subsequent prevention of obstructed and prolonged labour. However, a number of cases of obstructed labour do happen in health facilities due to poor quality of intrapartum care. Methods: A cross-sectional quantitative study assessed knowledge and utilization of partograph among obstetric care givers in public health institutions of Addis Ababa, Ethiopia using a structured interviewer administered questionnaire. The collected data was analyzed using SPSS version 16.0. Logistic regression analysis was used to identify factors associated with knowledge and use of partograph among obstetric care givers. Results: Knowledge about the partograph was fair: 189 (96.6%) of all the respondents correctly mentioned at least one component of the partograph, 104 (53.3%) correctly explained the function of alert line and 161 (82.6%) correctly explained the function of action line. The study showed that 112 (57.3%) of the obstetric care givers at public health institutions reportedly utilized partograph to monitor mothers in labour. The utilization of the partograph was significantly higher among obstetric care givers working in health centres (67.9%) compared to those working in hospitals (34.4%) [Adjusted OR = 3.63(95%CI: 1.81, 7.28)]. Conclusions: A significant percentage of obstetric care givers had fair knowledge of the partograph and why it is necessary to use it in the management of labour and over half of obstetric care givers reported use of the partograph to monitor mothers in labour. Pre-service and on-job training of obstetric care givers on the use of the partograph should be given emphasis. Mandatory health facility policy is also recommended to ensure safety of women in labour in public health facilities in Addis Ababa, Ethiopia.

Keywords: partograph, knowledge, utilization, obstetric care givers, public health institutions

Procedia PDF Downloads 504
1422 Enzyme Immobilization on Functionalized Polystyrene Nanofibersfor Bioprocessing Applications

Authors: Mailin Misson, Bo Jin, Sheng Dai, Hu Zhang

Abstract:

Advances in biotechnology have witnessed a growing interest in enzyme applications for the development of green and sustainable bio processes. While known as powerful bio catalysts, enzymes are no longer of economic value when extended to large commercialization. Alternatively, immobilization technology allows enzyme recovery and continuous reuse which subsequently compensates high operating costs. Employment of enzymes on nano structured materials has been recognized as a promising approach to enhance enzyme catalytic performances. High porosity, inter connectivity and self-assembling behaviors endow nano fibers as exciting candidate for enzyme carrier in bio reactor systems. In this study, nano fibers were successfully fabricated via electro spinning system by optimizing the polymer concentration (10-30 %, w/v), applied voltage (10-30 kV) and discharge distance (11-26 cm). Microscopic images have confirmed the quality as homogeneous and good fiber alignment. The nano fibers surface was modified using strong oxidizing agent to facilitate bio molecule binding. Bovine serum albumin and β-galactosidase enzyme were employed as model bio catalysts and immobilized onto the oxidized surfaces through covalent binding. Maximum enzyme adsorption capacity of the modified nano fibers was 3000 mg/g, 3-fold higher than the unmodified counterpart (1000 mg/g). The highest immobilization yield was 80% and reached the saturation point at 2 mg/ml of enzyme concentration. The results indicate a significant increase of activity retention by the enzyme-bound modified nano fibers (80%) as compared to the nascent one (60%), signifying excellent enzyme-nano carrier bio compatibility. The immobilized enzyme was further used for the bio conversion of dairy wastes into value-added products. This study demonstrates great potential of acid-modified electrospun polystyrene nano fibers as enzyme carriers.

Keywords: immobilization, enzyme, nanocarrier, nanofibers

Procedia PDF Downloads 284
1421 Intercropping Immature Oil Palm (Elaeisguineensis) with Banana, Ginger and Turmeric in Galle District, Sri Lanka

Authors: S. M. Dissanayake, I. R. Palihakkara , K. G. Premathilaka

Abstract:

Oil palm (Elaeisguineensis) is the world’s leading vegetable oil-producing plant and is well established as a perennial plantation crop in tropical countries. Oil palm in Sri Lanka has spread over 10,000 hectares in the wet zone of the Island. In immature plantations, land productivity can be increased with some selected intercrops. At the immature stage of the plantations (age up to 3-5 years), there is a large amount of free space available inside the plantations. This study attempts to determine the suitability of different intercrops during the immature phase of the oil palm. A field experiment is being conducted at Thalgaswella estate (WL2a) in Galle district, Sri Lanka. The objectives of the study are to evaluate and recommend a suitable immature oil palm-based intercropping system/s. This experiment was established with randomized complete block design (RCBD) with four treatments, including control in three replicates. Banana, ginger, and turmeric were selected as intercrops. Growth parameters of intercrops (plant height, length, width of D-leaf, and yield of intercrops) and girth, length, and number of leaflets of 17th frond in oil palms were taken at two months intervals. In addition to this, chlorophyll content was also measured in both intercrops and oil palm trees. Soil chemical parameters were measured annually. Results were statistically analyzed with SAS software. Results revealed that intercropped banana, turmeric, and ginger had given yields of 7.61Mt/ha, 4.92Mt/ha, and 4.53Mt/ha, respectively. When comparing these yields with mono-crop, banana, turmeric, and ginger intercrop yields as percentages of 16.9%, 24.6%, and 30.2%, respectively. The results of this study could be used to make appropriate policies to increase the unit land productivity in oil palm plantations in a low country wet zone (WL2a) of Sri Lanka.

Keywords: inter-cropping, oil palm, policies, mono-crop, land productivity

Procedia PDF Downloads 145
1420 Hydrothermal Liquefaction for Astaxanthin Extraction from Wet Algae

Authors: Spandana Ramisetty, Mandan Chidambaram, Ramesh Bhujade

Abstract:

Algal biomass is not only a potential source for biocrude but also for high value chemicals like carotenoids, fatty acids, proteins, polysaccharides, vitamins etc. Astaxanthin is one such high value vital carotenoid which has extensive applications in pharmaceutical, aquaculture, poultry and cosmetic industries and expanding as dietary supplement to humans. Green microalgae Haematococcus pluvialis is identified as the richest natural source of astaxanthin and is the key source of commercial astaxanthin. Several extraction processes from wet and dry Haematococcus pluvialis biomass have been explored by researchers. Extraction with supercritical CO₂ and various physical disruption techniques like mortar and pestle, homogenization, ultrasonication and ball mill from dried algae are widely used extraction methods. However, these processes require energy intensive drying of biomass that escalates overall costs notably. From the process economics perspective, it is vital to utilize wet processing technology in order to eliminate drying costs. Hydrothermal liquefaction (HTL) is a thermo-chemical conversion process that converts wet biomass containing over 80% water to bio-products under high temperature and high pressure conditions. Astaxanthin is a lipid soluble pigment and is usually extracted along with lipid component. Mild HTL at 200°C and 60 bar has been demonstrated by researchers in a microfluidic platform achieving near complete extraction of astaxanthin from wet biomass. There is very limited work done in this field. An integrated approach of sequential HTL offers cost-effective option to extract astaxanthin/lipid from wet algal biomass without drying algae and also recovering water, minerals and nutrients. This paper reviews past work and evaluates the astaxanthin extraction processes with focus on hydrothermal extraction.

Keywords: astaxanthin, extraction, high value chemicals, hydrothermal liquefaction

Procedia PDF Downloads 296
1419 Window Analysis and Malmquist Index for Assessing Efficiency and Productivity Growth in a Pharmaceutical Industry

Authors: Abbas Al-Refaie, Ruba Najdawi, Nour Bata, Mohammad D. AL-Tahat

Abstract:

The pharmaceutical industry is an important component of health care systems throughout the world. Measurement of a production unit-performance is crucial in determining whether it has achieved its objectives or not. This paper applies data envelopment (DEA) window analysis to assess the efficiencies of two packaging lines; Allfill (new) and DP6, in the Penicillin plant in a Jordanian Medical Company in 2010. The CCR and BCC models are used to estimate the technical efficiency, pure technical efficiency, and scale efficiency. Further, the Malmquist productivity index is computed to measure then employed to assess productivity growth relative to a reference technology. Two primary issues are addressed in computation of Malmquist indices of productivity growth. The first issue is the measurement of productivity change over the period, while the second is to decompose changes in productivity into what are generally referred to as a ‘catching-up’ effect (efficiency change) and a ‘frontier shift’ effect (technological change). Results showed that DP6 line outperforms the Allfill in technical and pure technical efficiency. However, the Allfill line outperforms DP6 line in scale efficiency. The obtained efficiency values can guide production managers in taking effective decisions related to operation, management, and plant size. Moreover, both machines exhibit a clear fluctuations in technological change, which is the main reason for the positive total factor productivity change. That is, installing a new Allfill production line can be of great benefit to increasing productivity. In conclusions, the DEA window analysis combined with the Malmquist index are supportive measures in assessing efficiency and productivity in pharmaceutical industry.

Keywords: window analysis, malmquist index, efficiency, productivity

Procedia PDF Downloads 597
1418 A Piebald Cladistic Portray of Mitochondrial DNA Control Region Haplogroups in Khyber Pakhtunkhwa, Pakistan

Authors: Shahzad Bhatti, M. Aslamkhan, Sana Abbas, Marcella Attimonelli, Hikmet Hakan Aydin, Erica Martinha Silva de Souza,

Abstract:

Despite being situated at the crossroad of Asia, Pakistan has gained crucial importance because of its pivotal role in subsequent migratory events. To highlight the genetic footprints and to contribute an enigmatic picture of the relative population expansion pattern among four major Pashtun tribes in Khyber Pakhtunkhwa viz., Bangash, Khattak, Mahsuds and Orakzai, the complete mitochondrial control region of 100 Pashtun were analyzed. All Pashtun tribes studied here revealed high genetic diversity; that was comparable to the other Central Asian, Southeast Asian and European populations. The configuration of genetic variation and heterogeneity further unveiled through Multidimensional Scaling, Principal Component Analysis, and phylogenetic analysis. The results revealed that the Pashtun is a composite mosaic of West Eurasian ancestry of numerous geographic origin. They received substantial gene flow during different invasions and have a high element of the Western provenance. The most common haplogroups reported in this study are: South Asian haplogroup M (28%) and R (8%); whereas, West Asians haplogroups are present, albeit in high frequencies (67%) and widespread over all; HV (15%), U (17%), H (9%), J (8%), K (8%), W (4%), N (3%) and T (3%). Herein we linked the unexplored genetic connection between Ashkenazi Jews and Pashtun. The presence of specific haplotypes J1b (4%) and K1a1b1a (5%) point to a genetic connection of Jewish conglomeration with Khattak tribe. This was a result of an ancient genetic influx in the early Neolithic period that led to the formation of a diverse genetic substratum in present day Pashtun.

Keywords: mtDNA haplogroups, control region, Pakistan, KPK, ethnicity

Procedia PDF Downloads 472
1417 Development of Patient Satisfaction Questionnaire for Diabetes Management in Thailand and Lao People Democratic Republic

Authors: Phoutsathaphone Sibounheuang, Phayom Sookaneknun Olson, Chanuttha Ploylearmsang, Santiparp Sookaneknun, Chanthanom Manithip

Abstract:

Patient satisfaction is an outcome that can be measured and used to improve diabetes care and management. There are limited instruments for assessing patient satisfaction covering the whole process of diabetes management. In this study, the questionnaire was developed with items pooled from a systematic review of qualitative studies of patients’ and healthcare providers’ perspectives in diabetes management. The questionnaire consists of 11 domains with 45 items. The Thai version was translated to Lao and then checked by back-translating it into Thai. We tested the questionnaire on 150 diabetes patients in Thailand and 150 in Lao People Democratic Republic (PDR). Validity was performed by factor analysis and Pearson correlation. Internal consistency reliability was estimated by calculating Cronbach’s alpha. The study was approved by the Mahasarakham University Ethics Committee, and the National Ethics Committee for Health Research, Lao PDR. The Thai and Lao versions showed the construct validity by principal component analysis. This consisted of 11 domains which account for 71.23% of the variance (Thai version) and 71.66% of the variance (Lao version) in the total patient satisfaction scores. The Kaiser-Meyer-Olkin (KMO) measures were 0.85 for the Thai version and 0.75 for the Lao version. The Bartlett tests of sphericity of both versions were significant (p < 0.001). The factor loadings of all items in both versions were > 0.40. The convergent validity of the Thai and Lao versions was 93.63% and 79.54% respectively. The discriminant validity for the Thai and Lao versions was 92.68% and 88.68% respectively. Cronbach’s alpha was 0.95 in both versions. The Patient Satisfaction Questionnaire (PSQ) in both versions had acceptable properties. This study has yielded evidence supporting the validity and reliability of both versions.

Keywords: construct validity, diabetes management, patient satisfaction, questionnaire development, reliability

Procedia PDF Downloads 131
1416 Willingness to Pay for the Preservation of Geothermal Areas in Iceland: The Contingent Valuation Studies of Eldvörp and Hverahlíð

Authors: David Cook, Brynhildur Davidsdottir, Dadi. M. Kristofersson

Abstract:

The approval of development projects with significant environmental impacts implies that the economic costs of the affected environmental resources must be less than the financial benefits, but such irreversible decisions are frequently made without ever attempting to estimate the monetary value of the losses. Due to this knowledge gap in the processes informing decision-making, development projects are commonly approved despite the potential for social welfare to be undermined. Heeding a repeated call by the OECD to commence economic accounting of environmental impacts as part of the cost-benefit analysis process for Icelandic energy projects, this paper sets out the results pertaining to the nation’s first two contingent valuation studies of geothermal areas likely to be developed in the near future. Interval regression using log-transformation was applied to estimate willingness to pay (WTP) for the preservation of the high-temperature Eldvörp and Hverahlíð fields. The estimated mean WTP was 8,333 and 7,122 ISK for Eldvörp and Hverahlíð respectively. Scaled up to the Icelandic population of national taxpayers, this equates to estimated total economic value of 2.10 and 1.77 billion ISK respectively. These results reinforce arguments in favour of accounting for the environmental impacts of Iceland’s future geothermal power projects as a mandatory component of the exploratory and production license application process. Further research is necessary to understand the economic impacts to specific ecosystem services associated with geothermal environments, particularly connected to changes in recreational amenity. In so doing, it would be possible to gain greater comprehension of the various components of total economic value, evolving understanding of why one geothermal area – in this case, Eldvörp – has a higher preservation value than another.

Keywords: decision-making, contingent valuation, geothermal energy, preservation

Procedia PDF Downloads 203
1415 Apoptosis Pathway Targeted by Thymoquinone in MCF7 Breast Cancer Cell Line

Authors: M. Marjaneh, M. Y. Narazah, H. Shahrul

Abstract:

Array-based gene expression analysis is a powerful tool to profile expression of genes and to generate information on therapeutic effects of new anti-cancer compounds. Anti-apoptotic effect of thymoquinone was studied in MCF7 breast cancer cell line using gene expression profiling with cDNA micro array. The purity and yield of RNA samples were determined using RNeasyPlus Mini kit. The Agilent RNA 6000 Nano LabChip kit evaluated the quantity of the RNA samples. AffinityScript RT oligo-dT promoter primer was used to generate cDNA strands. T7 RNA polymerase was used to convert cDNA to cRNA. The cRNA samples and human universal reference RNA were labelled with Cy-3-CTP and Cy-5-CTP, respectively. Feature Extraction and GeneSpring software analysed the data. The single experiment analysis revealed involvement of 64 pathways with up-regulated genes and 78 pathways with down-regulated genes. The MAPK and p38-MAPK pathways were inhibited due to the up-regulation of PTPRR gene. The inhibition of p38-MAPK suggested up-regulation of TGF-ß pathway. Inhibition of p38 - MAPK caused up-regulation of TP53 and down-regulation of Bcl2 genes indicating involvement of intrinsic apoptotic pathway. Down-regulation of CARD16 gene as an adaptor molecule regulated CASP1 and suggested necrosis-like programmed cell death and involvement of caspase in apoptosis. Furthermore, down-regulation of GPCR, EGF-EGFR signalling pathways suggested reduction of ER. Involvement of AhR pathway which control cytochrome P450 and glucuronidation pathways showed metabolism of Thymoquinone. The findings showed differential expression of several genes in apoptosis pathways with thymoquinone treatment in estrogen receptor-positive breast cancer cells.

Keywords: cDNA microarray, thymoquinone, CARD16, PTPRR, CASP10

Procedia PDF Downloads 336
1414 In situ Real-Time Multivariate Analysis of Methanolysis Monitoring of Sunflower Oil Using FTIR

Authors: Pascal Mwenge, Tumisang Seodigeng

Abstract:

The combination of world population and the third industrial revolution led to high demand for fuels. On the other hand, the decrease of global fossil 8fuels deposits and the environmental air pollution caused by these fuels has compounded the challenges the world faces due to its need for energy. Therefore, new forms of environmentally friendly and renewable fuels such as biodiesel are needed. The primary analytical techniques for methanolysis yield monitoring have been chromatography and spectroscopy, these methods have been proven reliable but are more demanding, costly and do not provide real-time monitoring. In this work, the in situ monitoring of biodiesel from sunflower oil using FTIR (Fourier Transform Infrared) has been studied; the study was performed using EasyMax Mettler Toledo reactor equipped with a DiComp (Diamond) probe. The quantitative monitoring of methanolysis was performed by building a quantitative model with multivariate calibration using iC Quant module from iC IR 7.0 software. 15 samples of known concentrations were used for the modelling which were taken in duplicate for model calibration and cross-validation, data were pre-processed using mean centering and variance scale, spectrum math square root and solvent subtraction. These pre-processing methods improved the performance indexes from 7.98 to 0.0096, 11.2 to 3.41, 6.32 to 2.72, 0.9416 to 0.9999, RMSEC, RMSECV, RMSEP and R2Cum, respectively. The R2 value of 1 (training), 0.9918 (test), 0.9946 (cross-validation) indicated the fitness of the model built. The model was tested against univariate model; small discrepancies were observed at low concentration due to unmodelled intermediates but were quite close at concentrations above 18%. The software eliminated the complexity of the Partial Least Square (PLS) chemometrics. It was concluded that the model obtained could be used to monitor methanol of sunflower oil at industrial and lab scale.

Keywords: biodiesel, calibration, chemometrics, methanolysis, multivariate analysis, transesterification, FTIR

Procedia PDF Downloads 136
1413 Application of Exhaust Gas-Air Brake System in Petrol and Diesel Engine

Authors: Gurlal Singh, Rupinder Singh

Abstract:

The possible role of the engine brake is to convert a power-producing engine into a power-absorbing retarding mechanism. In this braking system, exhaust gas (EG) from the internal combustion (IC) engines is used to operate air brake in the automobiles. Airbrake is most used braking system in vehicles. In the proposed model, instead of air brake, EG is used to operate the brake lever and stored in a specially designed tank. This pressure of EG is used to operate the pneumatic cylinder and brake lever. Filters used to remove the impurities from the EG, then it is allowed to store in the tank. Pressure relief valve is used to achieve a specific pressure in the tank and helps to avoid further damage to the tank as well as in an engine. The petrol engine is used in the proposed EG braking system. The petrol engine is chosen initially because it produces less impurity in the exhaust than diesel engines. Moreover, exhaust brake system (EBS) for the Diesel engines is composed of gate valve, pneumatic cylinder and exhaust brake valve with the on-off solenoid. Exhaust brake valve which is core component of EBS should have characteristics such as high reliability and long life. In a diesel engine, there is butterfly valve in exhaust manifold connected with solenoid switch which is used to on and off the butterfly valve. When butterfly valve closed partially, then the pressure starts built up inside the exhaust manifold and cylinder that actually resist the movement of piston leads to crankshaft getting stops resulting stopping of the flywheel. It creates breaking effect in a diesel engine. The exhaust brake is a supplementary breaking system to the service brake. It is noted that exhaust brake increased 2-3 fold the life of service brake may be due to the creation of negative torque which retards the speed of the engine. More study may also be warranted for the best suitable design of exhaust brake in a diesel engine.

Keywords: exhaust gas, automobiles, solenoid, airbrake

Procedia PDF Downloads 249
1412 Molecular Engineering of Intrinsically Microporous Polybenzimidazole for Energy-efficient Gas Separation

Authors: Mahmoud Abdulhamid, Rifan Hardian, Prashant Bhatt, Shuvo Datta, Adrian Ramirez, Jorge Gascon, Mohamed Eddaoudi, Gyorgy Szekely

Abstract:

Polybenzimidazole (PBI) is a high-performance polymer that exhibits high thermal and chemical stability. However, it suffers from low porosity and low fractional free volume, which hinder its application as separation material. Herein, we demonstrate the molecular engineering of gas separation materials by manipulating a PBI backbone possessing kinked moieties. PBI was selected as it contains NH groups which increase the affinity towards CO₂, increase sorption capacity, and favors CO₂ over other gasses. We have designed and synthesized an intrinsically microporous polybenzimidazole (iPBI) featuring a spirobisindane structure. Introducing a kinked moiety in conjunction with crosslinking enhanced the polymer properties, markedly increasing the gas separation performance. In particular, the BET surface area of PBI increased 30-fold by replacing a flat benzene ring with a kinked structure. iPBI displayed a good CO₂ uptake of 1.4 mmol g⁻¹ at 1 bar and 3.6 mmol g⁻¹ at 10 bar. Gas sorption uptake and breakthrough experiments were conducted using mixtures of CO₂/CH₄ (50%/50%) and CO₂/N₂ (50%/50%), which revealed the high selectivity of CO₂ over both CH₄ and N₂. The obtained CO₂/N₂ selectivity is attractive for power plant flue gas application requiring CO₂ capturing materials. Energy and process simulations of biogas CO₂ removal demonstrated that up to 70% of the capture energy could be saved when iPBI was used rather than the current amine technology (methyl diethanolamine [MDEA]). Similarly, the combination of iPBI and MDEA in a hybrid system exhibited the highest CO₂ capture yield (99%), resulting in nearly 50% energy saving. The concept of enhancing the porosity of PBI using kinked moieties provides new scope for designing highly porous polybenzimidazoles for various separation processes.

Keywords: polybenzimidazole (PBI), intrinsically microporous polybenzimidazole (iPBI), gas separation, pnergy and process simulations

Procedia PDF Downloads 71