Search results for: network of tourism actors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6344

Search results for: network of tourism actors

2984 Synthesising Smart City and Smart Port Concepts: A Conceptualization for Small and Medium-Sized Port City Ecosystems

Authors: Christopher Meyer, Laima Gerlitz

Abstract:

European Ports are about to take an important step towards their future economic development. Existing legislatives such as the European Green Deal are changing the perspective on ports as individual logistic institutions and demand a more holistic view on ports in their characteristic as ecosystem involving several different actors in an interdisciplinary and multilevel approach. A special role is taken by small and medium-sized ports facing the same political restriction and future goals - such as reducing environmental impacts with 2030 and 2050 as targets - while suffering from low financing capacity, outdated infrastructure, low innovation measures and missing political support. In contrast, they are playing a key role in regional economic development and cross-border logistics as well as facilitator for the regional hinterland. Also, in comparison to their big counterparts, small and medium-sized ports are often located within or close to city areas. This does not only bear more challenges especially when it comes to the environmental performance, but can also carry out growth potentials by putting the city as a key actor into the port ecosystem. For city development, the Smart City concept is one of the key strategies currently applied mostly on demonstration level in selected cities. Hence, the basic idea behind is par to the Smart Port concept. Thus, this paper is analysing potential synergetic effects resulting from the application of Smart City and Smart Port concepts for small and medium-sized ports' ecosystems closely located to cities with focus on innovation application, greening measurements and economic performances as well as strategic positioning of the ports in Smart City initiatives.

Keywords: port-city ecosystems, regional development, sustainability transition, innovation policy

Procedia PDF Downloads 78
2983 Selection of Optimal Reduced Feature Sets of Brain Signal Analysis Using Heuristically Optimized Deep Autoencoder

Authors: Souvik Phadikar, Nidul Sinha, Rajdeep Ghosh

Abstract:

In brainwaves research using electroencephalogram (EEG) signals, finding the most relevant and effective feature set for identification of activities in the human brain is a big challenge till today because of the random nature of the signals. The feature extraction method is a key issue to solve this problem. Finding those features that prove to give distinctive pictures for different activities and similar for the same activities is very difficult, especially for the number of activities. The performance of a classifier accuracy depends on this quality of feature set. Further, more number of features result in high computational complexity and less number of features compromise with the lower performance. In this paper, a novel idea of the selection of optimal feature set using a heuristically optimized deep autoencoder is presented. Using various feature extraction methods, a vast number of features are extracted from the EEG signals and fed to the autoencoder deep neural network. The autoencoder encodes the input features into a small set of codes. To avoid the gradient vanish problem and normalization of the dataset, a meta-heuristic search algorithm is used to minimize the mean square error (MSE) between encoder input and decoder output. To reduce the feature set into a smaller one, 4 hidden layers are considered in the autoencoder network; hence it is called Heuristically Optimized Deep Autoencoder (HO-DAE). In this method, no features are rejected; all the features are combined into the response of responses of the hidden layer. The results reveal that higher accuracy can be achieved using optimal reduced features. The proposed HO-DAE is also compared with the regular autoencoder to test the performance of both. The performance of the proposed method is validated and compared with the other two methods recently reported in the literature, which reveals that the proposed method is far better than the other two methods in terms of classification accuracy.

Keywords: autoencoder, brainwave signal analysis, electroencephalogram, feature extraction, feature selection, optimization

Procedia PDF Downloads 114
2982 Changing Roles and Skills of Urban Planners in the Turkish Planning System

Authors: Fatih Eren

Abstract:

This research aims to find an answer to the question of which knowledge and skills do the Turkish urban planners need in their business practice. Understanding change in cities, making a prediction, making an urban decision and putting it into practice, working together with actors from different organizations from various academic disciplines, persuading people to accept something and developing good personal and professional relationships have become very complex and difficult in today’s world. The truth is that urban planners work in many institutions under various positions which are not similar to each other by field of activity and all planners are forced to develop some knowledge and skills for success in their business in Turkey. This study targets to explore what urban planners do in the global information age. The study is the product of a comprehensive nation-wide research. In-depth interviews were conducted with 174 experienced urban planners, who work in different public institutions and private companies under varied positions in the Turkish Planning System, to find out knowledge and skills needed by next-generation urban planners. The main characteristics of next-generation urban planners are defined; skills that planners needed today are explored in this paper. Findings show that the positivist (traditional) planning approach has given place to anti-positivist planning approaches in the Turkish Planning System so next-generation urban planners who seek success and want to carve out a niche for themselves in business life have to equip themselves with innovative skills. The result section also includes useful and instructive findings for planners about what is the meaning of being an urban planner and what is the ideal content and context of planning education at universities in the global age.

Keywords: global information age, Turkish Planning System, the institutional approach, urban planners, roles, skills, values

Procedia PDF Downloads 285
2981 Appraisal of Road Transport Infrastructure and Commercial Activities in Ede, Osun State Nigeria

Authors: Rafiu Babatunde Ibrahim, Richard Oluseyi Taiwo, Abiodun Toheeb Akintunde

Abstract:

The relationship between road transport infrastructure and commercial activities in Nigeria has been a topical issue and identified as one of the crucial components for economic development in the country. This study examines road transport infrastructure and commercial activities along selected roads in Ede, Nigeria. The study assesses the characteristics of the selected roads, the condition of road infrastructure, the degree of road network connectivity, maintenance culture for the road infrastructure as well as commercial activities along identified roads in the study area. Stratified Sampling Techniques were used to partition the study area into core, Intermediate and Suburb Township zones. Roads were also classified into Major, Distributor and Access Roads. Field observation and measurement, as well as a questionnaire, were used to obtain primary data from 246 systematically sampled respondents along the roads selected, and they were analyzed using descriptive and inferential statistics. The study revealed that most of the roads were characterized by an incidence of potholes. A total of 448 potholes were observed, where Olowoibida Road accounted for (19.0%), Federal Polytechnic Road (17.4%), and Back to Land Road (16.3%). The majority of the selected roads have no street lights and are of open drainage systems. Also, the condition of road surfaces was observed to be deteriorating. Road network connectivity of the study area was found to be poorly connected with 11% using the alpha index and 40% of Gamma index. It was found that the tailoring business (39) is predominant on major roads and Distributor Roads, while petty trading (35) is dominant on the access road. Results of correlation analysis (r = 0.242) show that there is a low positive correlation between road infrastructure and commercial activities; the significant relationships have indeed explained how important it is in influencing commercial activities across the study area. The study concluded by emphasizing the need for the provision of more roads and proper maintenance of the existing ones. This will no doubt improve the commercial activities along the roads in the study area.

Keywords: road transport, infrastructure, commercial activities, maintenance culture

Procedia PDF Downloads 35
2980 Retrospective Audit of Antibiotic Prophylaxis in Spinal Patient at Mater Private Network Cork 2019 vs 2021

Authors: Ciaran Smiddy, Fergus Nugent, Karen Fitzmaurice

Abstract:

A measure of prescribing and administration of Antimicrobial Prophylaxis before and during Covid-19(2019 vs. 2021) was desired to assess how these were affected by Covid-19. Antimicrobial Prophylaxis was assessed for 60 patients, under 3 Orthopaedic Consultants, against local guidelines. The study found that compliance with guidelines improved significantly, from 60% to 83%, but Appropriate use of Vancomycin reduced from 37% to 29%.

Keywords: antimicrobial stewardship, prescribing, spinal surgery, vancomycin

Procedia PDF Downloads 172
2979 A Convolutional Neural Network Based Vehicle Theft Detection, Location, and Reporting System

Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala

Abstract:

One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets especially in the motorist industry, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. Sixty (60) vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.

Keywords: CNN, location identification, tracking, GPS, GSM

Procedia PDF Downloads 166
2978 Actresses as Eunuchs: The Versatility of Cross-Gendered Roles in Eighteenth-Century Orientalist Theatre

Authors: Anne Greenfield

Abstract:

Introductory Statement: During the eighteenth century in London, there were over two dozen theatrical productions that featured eunuchoid characters, most of which were set in 'Eastern' locales, including the Ottoman Empire, Persia, India, and China. These characters have gone largely overlooked by recent scholars, and more analysis is needed in order to illustrate the contemporary values and anxieties reflected in these popular and recurring figures at the time. Methodology: This paper adopts a New Historical and Cultural Studies approach to the subject of theatrical depictions of eunuchs, drawing insights from seventeenth- and eighteenth-century literary works, travel narratives, medical treatises, and histories of the age. Major Findings: As this paper demonstrates, there was a high degree of complexity, variety, and -at times- respect underlying orientalist theatrical depictions of eunuchs. Not only were eunuchoid characters represented in strikingly diverse ways in scripts, but these roles were also played by a heterogeneous group of actors and even actresses. More specifically, this paper looks closely at three actresses who took roles as eunuchs in tragedies: Mrs. Verbruggen (aka Mrs. Mountfort), Mrs. Rogers, and Mrs. Bicknell—all of whom were otherwise best known as comediennes. These casting choices provided an entertaining twist on the breeches roles these actresses often played. In fact, the staging and scripting of these roles, when analyzed through the lens of these cross-gendered roles, becomes ironic and comical in several scenes that are usually assumed (by recent scholars) to be thoroughly tragic. Conclusion: Ultimately, a careful look at the staging of eunuchoid characters sheds light on not only how these productions were performed and understood, but also on how writers and theatre managers navigated the Other, whether in gender identity or culture, during this era.

Keywords: eunuch, actress, literature, drama

Procedia PDF Downloads 134
2977 Analysis and Comparison of Asymmetric H-Bridge Multilevel Inverter Topologies

Authors: Manel Hammami, Gabriele Grandi

Abstract:

In recent years, multilevel inverters have become more attractive for single-phase photovoltaic (PV) systems, due to their known advantages over conventional H-bridge pulse width-modulated (PWM) inverters. They offer improved output waveforms, smaller filter size, lower total harmonic distortion (THD), higher output voltages and others. The most common multilevel converter topologies, presented in literature, are the neutral-point-clamped (NPC), flying capacitor (FC) and Cascaded H-Bridge (CHB) converters. In both NPC and FC configurations, the number of components drastically increases with the number of levels what leads to complexity of the control strategy, high volume, and cost. Whereas, increasing the number of levels in case of the cascaded H-bridge configuration is a flexible solution. However, it needs isolated power sources for each stage, and it can be applied to PV systems only in case of PV sub-fields. In order to improve the ratio between the number of output voltage levels and the number of components, several hybrids and asymmetric topologies of multilevel inverters have been proposed in the literature such as the FC asymmetric H-bridge (FCAH) and the NPC asymmetric H-bridge (NPCAH) topologies. Another asymmetric multilevel inverter configuration that could have interesting applications is the cascaded asymmetric H-bridge (CAH), which is based on a modular half-bridge (two switches and one capacitor, also called level doubling network, LDN) cascaded to a full H-bridge in order to double the output voltage level. This solution has the same number of switches as the above mentioned AH configurations (i.e., six), and just one capacitor (as the FCAH). CAH is becoming popular, due to its simple, modular and reliable structure, and it can be considered as a retrofit which can be added in series to an existing H-Bridge configuration in order to double the output voltage levels. In this paper, an original and effective method for the analysis of the DC-link voltage ripple is given for single-phase asymmetric H-bridge multilevel inverters based on level doubling network (LDN). Different possible configurations of the asymmetric H-Bridge multilevel inverters have been considered and the analysis of input voltage and current are analytically determined and numerically verified by Matlab/Simulink for the case of cascaded asymmetric H-bridge multilevel inverters. A comparison between FCAH and the CAH configurations is done on the basis of the analysis of the DC and voltage ripple for the DC source (i.e., the PV system). The peak-to-peak DC and voltage ripple amplitudes are analytically calculated over the fundamental period as a function of the modulation index. On the basis of the maximum peak-to-peak values of low frequency and switching ripple voltage components, the DC capacitors can be designed. Reference is made to unity output power factor, as in case of most of the grid-connected PV generation systems. Simulation results will be presented in the full paper in order to prove the effectiveness of the proposed developments in all the operating conditions.

Keywords: asymmetric inverters, dc-link voltage, level doubling network, single-phase multilevel inverter

Procedia PDF Downloads 207
2976 Effect of Wettability Alteration on Production Performance in Unconventional Tight Oil Reservoirs

Authors: Rashid S. Mohammad, Shicheng Zhang, Xinzhe Zhao

Abstract:

In tight oil reservoirs, wettability alteration has generally been considered as an effective way to remove fracturing fluid retention on the surface of the fracture and consequently improved oil production. However, there is a lack of a reliable productivity prediction model to show the relationship between the wettability and oil production in tight oil well. In this paper, a new oil productivity prediction model of immiscible oil-water flow and miscible CO₂-oil flow accounting for wettability is developed. This mathematical model is established by considering two different length scales: nonporous network and propped fractures. CO₂ flow diffuses in the nonporous network and high velocity non-Darcy flow in propped fractures are considered by taking into account the effect of wettability alteration on capillary pressure and relative permeability. A laboratory experiment is also conducted here to validate this model. Laboratory experiments have been designed to compare the water saturation profiles for different contact angle, revealing the fluid retention in rock pores that affects capillary force and relative permeability. Four kinds of brines with different concentrations are selected here to create different contact angles. In water-wet porous media, as the system becomes more oil-wet, water saturation decreases. As a result, oil relative permeability increases. On the other hand, capillary pressure which is the resistance for the oil flow increases as well. The oil production change due to wettability alteration is the result of the comprehensive changes of oil relative permeability and capillary pressure. The results indicate that wettability is a key factor for fracturing fluid retention removal and oil enhancement in tight reservoirs. By incorporating laboratory test into a mathematical model, this work shows the relationship between wettability and oil production is not a simple linear pattern but a parabolic one. Additionally, it can be used for a better understanding of optimization design of fracturing fluids.

Keywords: wettability, relative permeability, fluid retention, oil production, unconventional and tight reservoirs

Procedia PDF Downloads 236
2975 A Comparison of Convolutional Neural Network Architectures for the Classification of Alzheimer’s Disease Patients Using MRI Scans

Authors: Tomas Premoli, Sareh Rowlands

Abstract:

In this study, we investigate the impact of various convolutional neural network (CNN) architectures on the accuracy of diagnosing Alzheimer’s disease (AD) using patient MRI scans. Alzheimer’s disease is a debilitating neurodegenerative disorder that affects millions worldwide. Early, accurate, and non-invasive diagnostic methods are required for providing optimal care and symptom management. Deep learning techniques, particularly CNNs, have shown great promise in enhancing this diagnostic process. We aim to contribute to the ongoing research in this field by comparing the effectiveness of different CNN architectures and providing insights for future studies. Our methodology involved preprocessing MRI data, implementing multiple CNN architectures, and evaluating the performance of each model. We employed intensity normalization, linear registration, and skull stripping for our preprocessing. The selected architectures included VGG, ResNet, and DenseNet models, all implemented using the Keras library. We employed transfer learning and trained models from scratch to compare their effectiveness. Our findings demonstrated significant differences in performance among the tested architectures, with DenseNet201 achieving the highest accuracy of 86.4%. Transfer learning proved to be helpful in improving model performance. We also identified potential areas for future research, such as experimenting with other architectures, optimizing hyperparameters, and employing fine-tuning strategies. By providing a comprehensive analysis of the selected CNN architectures, we offer a solid foundation for future research in Alzheimer’s disease diagnosis using deep learning techniques. Our study highlights the potential of CNNs as a valuable diagnostic tool and emphasizes the importance of ongoing research to develop more accurate and effective models.

Keywords: Alzheimer’s disease, convolutional neural networks, deep learning, medical imaging, MRI

Procedia PDF Downloads 73
2974 Application of Combined Cluster and Discriminant Analysis to Make the Operation of Monitoring Networks More Economical

Authors: Norbert Magyar, Jozsef Kovacs, Peter Tanos, Balazs Trasy, Tamas Garamhegyi, Istvan Gabor Hatvani

Abstract:

Water is one of the most important common resources, and as a result of urbanization, agriculture, and industry it is becoming more and more exposed to potential pollutants. The prevention of the deterioration of water quality is a crucial role for environmental scientist. To achieve this aim, the operation of monitoring networks is necessary. In general, these networks have to meet many important requirements, such as representativeness and cost efficiency. However, existing monitoring networks often include sampling sites which are unnecessary. With the elimination of these sites the monitoring network can be optimized, and it can operate more economically. The aim of this study is to illustrate the applicability of the CCDA (Combined Cluster and Discriminant Analysis) to the field of water quality monitoring and optimize the monitoring networks of a river (the Danube), a wetland-lake system (Kis-Balaton & Lake Balaton), and two surface-subsurface water systems on the watershed of Lake Neusiedl/Lake Fertő and on the Szigetköz area over a period of approximately two decades. CCDA combines two multivariate data analysis methods: hierarchical cluster analysis and linear discriminant analysis. Its goal is to determine homogeneous groups of observations, in our case sampling sites, by comparing the goodness of preconceived classifications obtained from hierarchical cluster analysis with random classifications. The main idea behind CCDA is that if the ratio of correctly classified cases for a grouping is higher than at least 95% of the ratios for the random classifications, then at the level of significance (α=0.05) the given sampling sites don’t form a homogeneous group. Due to the fact that the sampling on the Lake Neusiedl/Lake Fertő was conducted at the same time at all sampling sites, it was possible to visualize the differences between the sampling sites belonging to the same or different groups on scatterplots. Based on the results, the monitoring network of the Danube yields redundant information over certain sections, so that of 12 sampling sites, 3 could be eliminated without loss of information. In the case of the wetland (Kis-Balaton) one pair of sampling sites out of 12, and in the case of Lake Balaton, 5 out of 10 could be discarded. For the groundwater system of the catchment area of Lake Neusiedl/Lake Fertő all 50 monitoring wells are necessary, there is no redundant information in the system. The number of the sampling sites on the Lake Neusiedl/Lake Fertő can decrease to approximately the half of the original number of the sites. Furthermore, neighbouring sampling sites were compared pairwise using CCDA and the results were plotted on diagrams or isoline maps showing the location of the greatest differences. These results can help researchers decide where to place new sampling sites. The application of CCDA proved to be a useful tool in the optimization of the monitoring networks regarding different types of water bodies. Based on the results obtained, the monitoring networks can be operated more economically.

Keywords: combined cluster and discriminant analysis, cost efficiency, monitoring network optimization, water quality

Procedia PDF Downloads 348
2973 Design and Simulation of All Optical Fiber to the Home Network

Authors: Rahul Malhotra

Abstract:

Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 555
2972 U Slot Loaded Wearable Textile Antenna

Authors: Varsha Kheradiya, Ganga Prasad Pandey

Abstract:

The use of wearable antennas is rising because wireless devices become small. The wearable antenna is part of clothes used in communication applications, including energy harvesting, medical application, navigation, and tracking. In current years, Antennas embroidered on clothes, conducting antennas based on fabric, polymer embedded antennas, and inkjet-printed antennas are all attractive ways. Also shows the analysis required for wearable antennas, such as wearable antennae interacting with the human body. The primary requirements for the antenna are small size, low profile minimizing radiation absorption by the human body, high efficiency, structural integrity to survive worst situations, and good gain. Therefore, research in energy harvesting, biomedicine, and military application design is increasingly favoring flexible wearable antennas. Textile materials that are effectively used for designing and developing wearable antennas for body area networks. The wireless body area network is primarily concerned with creating effective antenna systems. The antenna should reduce their size, be lightweight, and be adaptable when integrated into clothes. When antennas integrate into clothes, it provides a convenient alternative to those fabricated using rigid substrates. This paper presents a study of U slot loaded wearable textile antenna. U slot patch antenna design is illustrated for wideband from 1GHz to 6 GHz using textile material jeans as substrate and pure copper polyester taffeta fabric as conducting material. This antenna design exhibits dual band results for WLAN at 2.4 GHz and 3.6 GHz frequencies. Also, study U slot position horizontal and vertical shifting. Shifting the horizontal positive X-axis position of the U slot produces the third band at 5.8 GHz.

Keywords: microstrip patch antenna, textile material, U slot wearable antenna, wireless body area network

Procedia PDF Downloads 90
2971 The Strategic Role of Accommodation Providers in Encouraging Travelers to Adopt Environmentally-Friendly Modes of Transportation: An Experiment from France

Authors: Luc Beal

Abstract:

Introduction. Among the stakeholders involved in the tourist decision-making process, the accommodation provider has the potential to play a crucial role in raising awareness, disseminating information, and thus influencing the tourists’ choice of transportation. Since the early days of tourism, the accommodation provider has consistently served as the primary point of contact with the destination, and consequently, as the primary source of information for visitors. By offering accommodation and hospitality, the accommodation provider has evolved into a trusted third party, functioning as an 'ambassador' capable of recommending the finest attractions and activities available at the destination. In contemporary times, when tourists plan their trips, they make a series of consecutive decisions, with the most important decision being to lock-in the accommodation reservation for the earliest days, so as to secure a safe arrival. Consequently, tourists place their trust in the accommodation provider not only for lodging but also for recommendations regarding restaurants, activities, and more. Thus, the latter has the opportunity to inform and influence tourists well in advance of their arrival, particularly during the booking phase, namely when it comes to selecting their mode of transportation. The pressing need to reduce greenhouse gas emissions within the tourism sector presents an opportunity to underscore the influence that accommodation providers have historically exerted on tourist decision-making . Methodology A participatory research, currently ongoing in south-western France, in collaboration with a nationwide hotel group and several destination management organizations, aims at examining the factors that determine the ability of accommodation providers to influence tourist transportation choices. Additionally, the research seeks to identify the conditions that motivate accommodation providers to assume a proactive role, such as fostering customer loyalty, reduced distribution costs, and financial compensation mechanisms. A panel of hotels participated in a series of focus group sessions with tourists, with the objective of modeling the decision-making process of tourists regarding their choice of transportation mode and to identify and quantify the types and levels of incentives liable to encourage environmentally responsible choices. Individual interviews were also conducted with hotel staff, including receptionists and guest relations officers, to develop a framework for interactions with tourists during crucial decision-making moments related to transportation choices. The primary finding of this research indicates that financial incentives significantly outweigh symbolic incentives in motivating tourists to opt for eco-friendly modes of transportation. Another noteworthy result underscores the crucial impact of organizational conditions governing interactions with tourists both before and during their stay. These conditions greatly influence the ability to raise awareness at key decision-making moments and the possibility of gathering data about the chosen transportation mode during the stay. In conclusion, this research has led to the formulation of practical recommendations for accommodation providers and Destination Marketing Organizations (DMOs). These recommendations pertain to communication protocols with tourists, the collection of evidences confirming chosen transportation modes, and the implementation of necessary incentives. Through these measures, accommodation provider can assume a central role in guiding tourists towards making responsible choices in terms of transportation.

Keywords: accommodation provider, trusted third party, environmentally-friendly transportation, green house gas, tourist decision-making process

Procedia PDF Downloads 58
2970 A Hybrid Model of Structural Equation Modelling-Artificial Neural Networks: Prediction of Influential Factors on Eating Behaviors

Authors: Maryam Kheirollahpour, Mahmoud Danaee, Amir Faisal Merican, Asma Ahmad Shariff

Abstract:

Background: The presence of nonlinearity among the risk factors of eating behavior causes a bias in the prediction models. The accuracy of estimation of eating behaviors risk factors in the primary prevention of obesity has been established. Objective: The aim of this study was to explore the potential of a hybrid model of structural equation modeling (SEM) and Artificial Neural Networks (ANN) to predict eating behaviors. Methods: The Partial Least Square-SEM (PLS-SEM) and a hybrid model (SEM-Artificial Neural Networks (SEM-ANN)) were applied to evaluate the factors affecting eating behavior patterns among university students. 340 university students participated in this study. The PLS-SEM analysis was used to check the effect of emotional eating scale (EES), body shape concern (BSC), and body appreciation scale (BAS) on different categories of eating behavior patterns (EBP). Then, the hybrid model was conducted using multilayer perceptron (MLP) with feedforward network topology. Moreover, Levenberg-Marquardt, which is a supervised learning model, was applied as a learning method for MLP training. The Tangent/sigmoid function was used for the input layer while the linear function applied for the output layer. The coefficient of determination (R²) and mean square error (MSE) was calculated. Results: It was proved that the hybrid model was superior to PLS-SEM methods. Using hybrid model, the optimal network happened at MPLP 3-17-8, while the R² of the model was increased by 27%, while, the MSE was decreased by 9.6%. Moreover, it was found that which one of these factors have significantly affected on healthy and unhealthy eating behavior patterns. The p-value was reported to be less than 0.01 for most of the paths. Conclusion/Importance: Thus, a hybrid approach could be suggested as a significant methodological contribution from a statistical standpoint, and it can be implemented as software to be able to predict models with the highest accuracy.

Keywords: hybrid model, structural equation modeling, artificial neural networks, eating behavior patterns

Procedia PDF Downloads 156
2969 Tendency of Smoking, Factors Influencing and Knowledge Related to Smoking among Male Students in Tamil Primary School in Kuala Lumpur

Authors: T. Jivita, M. S. Salmiah

Abstract:

The aims of this study were to determine the prevalence of smoking, reasons for tried smoking, factors that influence smoking, and knowledge level on health risk among male Tamil primary school students. Seven urban Tamil primary schools in Kuala Lumpur were identified based on cluster sampling. A cross-sectional study was conducted in May 2014 and a total of 380 male children in standard 4 and 5 were selected. Survey included information on history of ever smoking even a puff, smoking a whole cigarette, smoking every day at least for 7 days, reasons for tried smoking, potential factors of smoking and knowledge related to smoking and health. Fifty seven had previously smoked, with a prevalence of 15.0% (95% CI = 11.4, 18.6) and 17 had smoked a whole cigarette (4.5%, 95% CI = 2.42, 6.58) while 8 had at least smoked 7 days continuously (2.1%, 95% CI = 0.66, 3.54). The reasons for tried smoking were because of curiosity (63.2%), it is not allowed (42.6%), it is relaxing (35.2%), it is cool (33.3%), to lose weight (20.4%), style (1.8%), by mistake (0.5%), for prayers purpose (0.3%), given by uncle (0.3%), and introduced by elder brother (0.3%). None of these reasons were associated with age factors (p > 0.05). Of those who had smoked a whole cigarette, 42.9% were significantly influenced by father (χ2 (1) = 6.42, p = 0.040) and 47.8% were significantly influenced by friends (χ2 (2) = 6.27, p = 0.043). Overall 91.5% had good level of knowledge about smoking, where the majority knew that smoking was dangerous to their health. However only 61.7% and 63.1% of them knew that smoking can cause high blood pressure and stroke, respectively. There is no significant different in mean rank between 10 years old and 11 years old students (p=0.987 < 0.05) for level of knowledge, tested by Mann-Whitney U Test. Odds of smoking increased 1.37 times having seen actors smoking (95% CI= 1.01, 1.86), 1.55 times having a father who smokes (95% CI= 1.26, 1.92), 1.64 times having siblings who smokes (95% CI= 1.32, 2.04), and 10.55 times having friends who offered cigarette (95% CI= 4.17, 26.68). As a conclusion, cessation of smoking in family members, who are role models, so as to reduce rates to taking up smoking among children.

Keywords: factors influence, knowledge on smoking, prevalence on smoking, reasons

Procedia PDF Downloads 309
2968 Hormone Replacement Therapy (HRT) and Its Impact on the All-Cause Mortality of UK Women: A Matched Cohort Study 1984-2017

Authors: Nurunnahar Akter, Elena Kulinskaya, Nicholas Steel, Ilyas Bakbergenuly

Abstract:

Although Hormone Replacement Therapy (HRT) is an effective treatment in ameliorating menopausal symptoms, it has mixed effects on different health outcomes, increasing, for instance, the risk of breast cancer. Because of this, many symptomatic women are left untreated. Untreated menopausal symptoms may result in other health issues, which eventually put an extra burden and costs to the health care system. All-cause mortality analysis may explain the net benefits and risks of the HRT therapy. However, it received far less attention in HRT studies. This study investigated the impact of HRT on all-cause mortality using electronically recorded primary care data from The Health Improvement Network (THIN) that broadly represents the female population in the United Kingdom (UK). The study entry date for this study was the record of the first HRT prescription from 1984, and patients were followed up until death or transfer to another GP practice or study end date, which was January 2017. 112,354 HRT users (cases) were matched with 245,320 non-users by age at HRT initiation and general practice (GP). The hazards of all-cause mortality associated with HRT were estimated by a parametric Weibull-Cox model adjusting for a wide range of important medical, lifestyle, and socio-demographic factors. The multilevel multiple imputation techniques were used to deal with missing data. This study found that during 32 years of follow-up, combined HRT reduced the hazard ratio (HR) of all-cause mortality by 9% (HR: 0.91; 95% Confidence Interval, 0.88-0.94) in women of age between 46 to 65 at first treatment compared to the non-users of the same age. Age-specific mortality analyses found that combined HRT decreased mortality by 13% (HR: 0.87; 95% CI, 0.82-0.92), 12% (HR: 0.88; 95% CI, 0.82-0.93), and 8% (HR: 0.92; 95% CI, 0.85-0.98), in 51 to 55, 56 to 60, and 61 to 65 age group at first treatment, respectively. There was no association between estrogen-only HRT and women’s all-cause mortality. The findings from this study may help to inform the choices of women at menopause and to further educate the clinicians and resource planners.

Keywords: hormone replacement therapy, multiple imputations, primary care data, the health improvement network (THIN)

Procedia PDF Downloads 170
2967 A Universal Troupe, “Athens Dramatic Company”: Tours and Performances (1887-1935)

Authors: Papazafeiropoulou Olga

Abstract:

The “Athens Dramatic Company” was one of the longest-running and most widely traveled troupes in the history of modern Greek theatre. The theatre company had been established since 1887, and the following: Euthychios Vonaseras, Eleni Kotopoulis, etc., like the founder of the troupe Theodoros Pofantis, referred to the distribution of the works presented in Patras: The price of a crime, The niece of her uncle, Agathopoulos, Amphitryon, The Two Sergeants, Lawyer and Actors, The Crusaders, The Daughter of Pantopolos, He Will Kill Himself, Macbeth, The Two Orphans, The Auction, Pistis Hope and Mercy, Love Attempt, The Crusaders, The lady is in Loutra, Markos Votsaris. In 1921, after peregrinations in Cyprus, Constantinople, Romania, Crete, Thessaloniki, Volos, Smyrna, the “Athens Dramatic Company” toured in Africa, where the Greek communities flourished. In 1923, the collaborations of troupe’s members and the repertoire varied several times, such as in Johannesburg, from where they traveled via Cape Town to Australia, where they presented the works: Dikaioma o Eros, Enochos, Psychokori, Kolokotronis. Atimoi, Voskopoula, Golfo, etc., while they impressed with the tragedy Oedipus Tyrannus, which was watched by Australians. Alongside the “Athens Dramatic Company” was also touring “Vrysoula’s Pantopoulos Troupe” and most of the members of the two troupes went to America, uniting their formation. In 1927, the old leader of “Athens Dramatic Company” (Theodoros Pofantis) decided to re-establish his troupe, but after unpleasant adventures, he passed away. In the year 1934, the Greek Dramatic Troupe of Athens revived with works including: The Man of the Day, A Dying Heart, A Dream Was and Gone, An Inspection, The Two Sergeants, The Mother, the Father-in-Law and the Non-existent Son-in-law, before finally expiring in 1935, after nearly 40 years of historical passage.

Keywords: athens, dramatic, company, universal, troupe

Procedia PDF Downloads 72
2966 Impact of Agricultural Infrastructure on Diffusion of Technology of the Sample Farmers in North 24 Parganas District, West Bengal

Authors: Saikat Majumdar, D. C. Kalita

Abstract:

The Agriculture sector plays an important role in the rural economy of India. It is the backbone of our Indian economy and is the dominant sector in terms of employment and livelihood. Agriculture still contributes significantly to export earnings and is an important source of raw materials as well as of demand for many industrial products particularly fertilizers, pesticides, agricultural implements and a variety of consumer goods, etc. The performance of the agricultural sector influences the growth of Indian economy. According to the 2011 Agricultural Census of India, an estimated 61.5 percentage of rural populations are dependent on agriculture. Proper Agricultural infrastructure has the potential to transform the existing traditional agriculture into a most modern, commercial and dynamic farming system in India through its diffusion of technology. The rate of adoption of modern technology reflects the progress of development in agricultural sector. The adoption of any improved agricultural technology is also dependent on the development of road infrastructure or road network. The present study was consisting of 300 sample farmers out which 150 samples was taken from the developed area and rest 150 samples was taken from underdeveloped area. The samples farmers under develop and underdeveloped areas were collected by using Multistage Random Sampling procedure. In the first stage, North 24 Parganas District have been selected purposively. Then from the district, one developed and one underdeveloped block was selected randomly. In the third phase, 10 villages have been selected randomly from each block. Finally, from each village 15 sample farmers was selected randomly. The extents of adoption of technology in different areas were calculated through various parameters. These are percentage area under High Yielding Variety Cereals, percentage area under High Yielding Variety pulses, area under hybrids vegetables, irrigated area, mechanically operated area, amount spent on fertilizer and pesticides, etc. in both developed and underdeveloped areas of North 24 Parganas District, West Bengal. The percentage area under High Yielding Variety Cereals in the developed and underdeveloped areas was 34.86 and 22.59. 42.07 percentages and 31.46 percentages for High Yielding Variety pulses respectively. In the case the area under irrigation it was 57.66 and 35.71 percent while for the mechanically operated area it was 10.60 and 3.13 percent respectively in developed and underdeveloped areas of North 24 Parganas district, West Bengal. It clearly showed that the extent of adoption of technology was significantly higher in the developed area over underdeveloped area. Better road network system helps the farmers in increasing his farm income, farm assets, cropping intensity, marketed surplus and the rate of adoption of new technology. With this background, an attempt is made in this paper to study the impact of Agricultural Infrastructure on the adoption of modern technology in agriculture in North 24 Parganas District, West Bengal.

Keywords: agricultural infrastructure, adoption of technology, farm income, road network

Procedia PDF Downloads 101
2965 Multiscale Process Modeling Analysis for the Prediction of Composite Strength Allowables

Authors: Marianna Maiaru, Gregory M. Odegard

Abstract:

During the processing of high-performance thermoset polymer matrix composites, chemical reactions occur during elevated pressure and temperature cycles, causing the constituent monomers to crosslink and form a molecular network that gradually can sustain stress. As the crosslinking process progresses, the material naturally experiences a gradual shrinkage due to the increase in covalent bonds in the network. Once the cured composite completes the cure cycle and is brought to room temperature, the thermal expansion mismatch of the fibers and matrix cause additional residual stresses to form. These compounded residual stresses can compromise the reliability of the composite material and affect the composite strength. Composite process modeling is greatly complicated by the multiscale nature of the composite architecture. At the molecular level, the degree of cure controls the local shrinkage and thermal-mechanical properties of the thermoset. At the microscopic level, the local fiber architecture and packing affect the magnitudes and locations of residual stress concentrations. At the macroscopic level, the layup sequence controls the nature of crack initiation and propagation due to residual stresses. The goal of this research is use molecular dynamics (MD) and finite element analysis (FEA) to predict the residual stresses in composite laminates and the corresponding effect on composite failure. MD is used to predict the polymer shrinkage and thermomechanical properties as a function of degree of cure. This information is used as input into FEA to predict the residual stresses on the microscopic level resulting from the complete cure process. Virtual testing is subsequently conducted to predict strength allowables. Experimental characterization is used to validate the modeling.

Keywords: molecular dynamics, finite element analysis, processing modeling, multiscale modeling

Procedia PDF Downloads 92
2964 An Impact Assesment of Festive Events on Sustainable Cultural Heritage: İdrisyayla Village

Authors: Betül Gelengül Eki̇mci̇, Semra Günay Aktaş

Abstract:

Festive, habitual activities celebrated on the specified date by a local community, are conducive to recognition of the region. The main function of festive events is to help gathering people via an annual celebration to create an atmosphere of understanding and the opportunity to participate in the joy of life. At the same time, festive events may serve as special occasions on which immigrants return home to celebrate with their family and community, reaffirming their identity and link to the community’s traditions. Festivals also support the local economy by bringing in different visitors to the region. The tradition of “Beet Brewing-Molasses Production,” which is held in İdrisyayla Village is an intangible cultural heritage with customs, traditions, and rituals carrying impacts of cuisine culture of Rumelian immigrants in the Ottoman. After the harvest of the beet plant in the autumn season of the year, Beet Brewing Molasses syrup is made by traditional production methods with co-op of the local community. Festive occurring brewing paste made process provided transmission of knowledge and experience to the young generations. Making molasses, which is a laborious process, is accompanied by folk games such as "sayacı," which is vital element of the festive performed in İdrisyayla. Performance provides enjoyable time and supporting motivation. Like other forms of intangible cultural heritage, “Beet Brewing-Molasses Festive in İdrasyayla is threatened by rapid urbanisation, young generation migration, industrialisation and environmental change. The festive events are threatened with gradual disappearance due to changes communities undergo in modern societies because it depends on the broad participation of practitioners. Ensuring the continuity of festive events often requires the mobilization of large numbers of individuals and the social, political and legal institutions and mechanisms of society. In 2015, Intangible cultural heritage research project with the title of "İdrisyayla Molasses Process" managed by the Eskişehir Governorship, City Directorate of Culture and Tourism and Anadolu University, project members took part in the festival organization to promote sustainability, making it visible, to encourage the broadest public participation possible, to ensure public awareness on the cultural importance. To preserve the originality of and encourage participation in the festive İdrisyayla, local associations, researchers and institutions created foundation and supports festive events, such as "sayacı" folk game, which is vital element of the festive performed in İdrisyayla. Practitioners find new opportunity to market İdrisyayla Molasses production. Publicity program through the press and exhibition made it possible to stress the cultural importance of the festive in İdrisyayla Village. The research reported here used a survey analysis to evaluate an affect of the festive after the spirit of the 2015 Festive in İdrisyayla Village. Particular attention was paid to the importance of the cultural aspects of the festival. Based on a survey of more than a hundred festival attendees, several recommendations are made to festival planners. Results indicate that the variety of festive activities and products offered for sale very important to attendees. The local participants care product sales rather than cultural heritage.

Keywords: agritourism, cultural tourism, festival, sustainable cultural heritage

Procedia PDF Downloads 221
2963 Community-Based Destination Sustainable Development: Case of Cicada Walking Street, Hua Hin, Thailand

Authors: Kingkan Pongsiri

Abstract:

This paper aims to study the role and activities of the participants and the impact of activities created in the local area in order to sustainably develop the local areas. This study applied both qualitative and quantitative approaches presented in descriptive style; the data was collected via survey, observation and in-depth interviews with samples. The results illustrated five sorts of roles of participants of the Cicada Walking-street and four types of creative activities; recreation based, art based, cultural based, and live events. Integration of local characteristics, arts and cultures were presented creatively and interestingly. Participants are various. The roles of the participants found in the Cicada Market are group of the property and area management, entrepreneurs, leisure (entertaining persons), local people, and tourists. The good impacts on local communities are those in terms of economy, environmental friendly and local arts and cultures promoting. On the other hand, the traffic congestion, waste and the increasing of energy consumption are negative impacts from area development.

Keywords: creative tourism activity, destination development, sustainable development, walking street

Procedia PDF Downloads 245
2962 Security in Cyberspace: A Comprehensive Review of COVID-19 Continued Effects on Security Threats and Solutions in 2021 and the Trajectory of Cybersecurity Going into 2022

Authors: Mojtaba Fayaz, Richard Hallal

Abstract:

This study examines the various types of dangers that our virtual environment is vulnerable to, including how it can be attacked and how to avoid/secure our data. The terrain of cyberspace is never completely safe, and Covid- 19 has added to the confusion, necessitating daily periodic checks and evaluations. Cybercriminals have been able to enact with greater skill and undertake more conspicuous and sophisticated attacks while keeping a higher level of finesse by operating from home. Different types of cyberattacks, such as operation-based attacks, authentication-based attacks, and software-based attacks, are constantly evolving, but research suggests that software-based threats, such as Ransomware, are becoming more popular, with attacks expected to increase by 93 percent by 2020. The effectiveness of cyber frameworks has shifted dramatically as the pandemic has forced work and private life to become intertwined, destabilising security overall and creating a new front of cyber protection for security analysis and personal. The high-rise formats in which cybercrimes are carried out, as well as the types of cybercrimes that exist, such as phishing, identity theft, malware, and DDoS attacks, have created a new front of cyber protection for security analysis and personal safety. The overall strategy for 2022 will be the introduction of frameworks that address many of the issues associated with offsite working, as well as education that provides better information about commercialised software that does not provide the highest level of security for home users, allowing businesses to plan better security around their systems.

Keywords: cyber security, authentication, software, hardware, malware, COVID-19, threat actors, awareness, home users, confidentiality, integrity, availability, attacks

Procedia PDF Downloads 116
2961 Optimization of Manufacturing Process Parameters: An Empirical Study from Taiwan's Tech Companies

Authors: Chao-Ton Su, Li-Fei Chen

Abstract:

The parameter design is crucial to improving the uniformity of a product or process. In the product design stage, parameter design aims to determine the optimal settings for the parameters of each element in the system, thereby minimizing the functional deviations of the product. In the process design stage, parameter design aims to determine the operating settings of the manufacturing processes so that non-uniformity in manufacturing processes can be minimized. The parameter design, trying to minimize the influence of noise on the manufacturing system, plays an important role in the high-tech companies. Taiwan has many well-known high-tech companies, which show key roles in the global economy. Quality remains the most important factor that enables these companies to sustain their competitive advantage. In Taiwan however, many high-tech companies face various quality problems. A common challenge is related to root causes and defect patterns. In the R&D stage, root causes are often unknown, and defect patterns are difficult to classify. Additionally, data collection is not easy. Even when high-volume data can be collected, data interpretation is difficult. To overcome these challenges, high-tech companies in Taiwan use more advanced quality improvement tools. In addition to traditional statistical methods and quality tools, the new trend is the application of powerful tools, such as neural network, fuzzy theory, data mining, industrial engineering, operations research, and innovation skills. In this study, several examples of optimizing the parameter settings for the manufacturing process in Taiwan’s tech companies will be presented to illustrate proposed approach’s effectiveness. Finally, a discussion of using traditional experimental design versus the proposed approach for process optimization will be made.

Keywords: quality engineering, parameter design, neural network, genetic algorithm, experimental design

Procedia PDF Downloads 145
2960 Angiogenesis and Blood Flow: The Role of Blood Flow in Proliferation and Migration of Endothelial Cells

Authors: Hossein Bazmara, Kaamran Raahemifar, Mostafa Sefidgar, Madjid Soltani

Abstract:

Angiogenesis is formation of new blood vessels from existing vessels. Due to flow of blood in vessels, during angiogenesis, blood flow plays an important role in regulating the angiogenesis process. Multiple mathematical models of angiogenesis have been proposed to simulate the formation of the complicated network of capillaries around a tumor. In this work, a multi-scale model of angiogenesis is developed to show the effect of blood flow on capillaries and network formation. This model spans multiple temporal and spatial scales, i.e. intracellular (molecular), cellular, and extracellular (tissue) scales. In intracellular or molecular scale, the signaling cascade of endothelial cells is obtained. Two main stages in development of a vessel are considered. In the first stage, single sprouts are extended toward the tumor. In this stage, the main regulator of endothelial cells behavior is the signals from extracellular matrix. After anastomosis and formation of closed loops, blood flow starts in the capillaries. In this stage, blood flow induced signals regulate endothelial cells behaviors. In cellular scale, growth and migration of endothelial cells is modeled with a discrete lattice Monte Carlo method called cellular Pott's model (CPM). In extracellular (tissue) scale, diffusion of tumor angiogenic factors in the extracellular matrix, formation of closed loops (anastomosis), and shear stress induced by blood flow is considered. The model is able to simulate the formation of a closed loop and its extension. The results are validated against experimental data. The results show that, without blood flow, the capillaries are not able to maintain their integrity.

Keywords: angiogenesis, endothelial cells, multi-scale model, cellular Pott's model, signaling cascade

Procedia PDF Downloads 425
2959 A Migration Policy Gone Wrong: A Study on How the Encampment Policy Undermines Refugees’ Potentials and Fails Local Economy: A Case of East Africa

Authors: John Bosco Ngendakurio

Abstract:

The key question this paper asks is, ‘how does the refugee encampment policy undermine refugees’ potentials and fail local economy in East African countries?’ It is important to develop a full understanding of the legacies of the encampment policy for refugees’ performances economically, socially, and politically. The negative impacts of the encampment policy include the lack of participation or access to opportunities outside the refugee camps such as employment, education, and local integration, unfair imprisonments and constant alienation of refugees, mental and physical health issues, just to name a few. Evidence suggests that refugee camps in East Africa have progressively become open detention centres due to their designs, their locations, and movement restrictions imposed on refugees. Such restrictions in a region that hosts millions of refugees do not only undermine refugees’ potentials, but it also hurts the local economy- host countries miss out in many ways. Outlining the negative impacts of the encampment policy will enable governments and relevant non-governmental actors, including policymakers, to re-consider this policy with the aim to improve refugees’ participation and contributions in the broader society, promote socially cohesive practices, and help millions of refugees gain independence and reach their potentials financially, socially and politically, finally and truly giving the voice to the voiceless. The encampment policy undermines the general human security in East Africa, and it is one of the migration practices showcasing East African governments’ lack of will to protect human rights, especially within the most vulnerable population groups such as refugees.

Keywords: migration policy, immigration, refugees, encampment, migration, integration, social cohesion

Procedia PDF Downloads 133
2958 An Investigation Enhancing E-Voting Application Performance

Authors: Aditya Verma

Abstract:

E-voting using blockchain provides us with a distributed system where data is present on each node present in the network and is reliable and secure too due to its immutability property. This work compares various blockchain consensus algorithms used for e-voting applications in the past, based on performance and node scalability, and chooses the optimal one and improves on one such previous implementation by proposing solutions for the loopholes of the optimally working blockchain consensus algorithm, in our chosen application, e-voting.

Keywords: blockchain, parallel bft, consensus algorithms, performance

Procedia PDF Downloads 167
2957 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review

Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha

Abstract:

Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision-making has not been far-fetched. Proper classification of this textual information in a given context has also been very difficult. As a result, we decided to conduct a systematic review of previous literature on sentiment classification and AI-based techniques that have been used in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that can correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy by assessing different artificial intelligence techniques. We evaluated over 250 articles from digital sources like ScienceDirect, ACM, Google Scholar, and IEEE Xplore and whittled down the number of research to 31. Findings revealed that Deep learning approaches such as CNN, RNN, BERT, and LSTM outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also necessary for developing a robust sentiment classifier and can be obtained from places like Twitter, movie reviews, Kaggle, SST, and SemEval Task4. Hybrid Deep Learning techniques like CNN+LSTM, CNN+GRU, CNN+BERT outperformed single Deep Learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of sentiment analyzer development due to its simplicity and AI-based library functionalities. Based on some of the important findings from this study, we made a recommendation for future research.

Keywords: artificial intelligence, natural language processing, sentiment analysis, social network, text

Procedia PDF Downloads 115
2956 Attitude towards the Consumption of Social Media: Analyzing Young Consumers’ Travel Behavior

Authors: Farzana Sharmin, Mohammad Tipu Sultan, Benqian Li

Abstract:

Advancement of new media technology and consumption of social media have altered the way of communication in the tourism industry, mostly for consumers’ travel planning, online purchase, and experience sharing activity. There is an accelerating trend among young consumers’ to utilize this new media technology. This paper aims to analyze the attitude of young consumers’ about social media use for travel purposes. The convenience random sample method used to collect data from an urban area of Shanghai (China), consists of 225 young consumers’. This survey identified behavioral determinants of social media consumption by the extended theory of planned behavior (TPB). The instrument developed support on previous research to test hypotheses. The results of structural analyses indicate that attitude towards the use of social media is affected by external factors such as availability and accessibility of technology. In addition, subjective norm and perceived behavioral control have partially influenced the attitude of respondents’. The results of this study could help to improve social media travel marketing and promotional strategies for respective groups.

Keywords: social media, theory of planned behavior, travel behavior, young consumer

Procedia PDF Downloads 195
2955 Emerging Trends of Geographic Information Systems in Built Environment Education: A Bibliometric Review Analysis

Authors: Kiara Lawrence, Robynne Hansmann, Clive Greentsone

Abstract:

Geographic Information Systems (GIS) are used to store, analyze, visualize, capture and monitor geographic data. Built environment professionals as well as urban planners specifically, need to possess GIS skills to effectively and efficiently plan spaces. GIS application extends beyond the production of map artifacts and can be applied to relate to spatially referenced, real time data to support spatial visualization, analysis, community engagement, scenarios, and so forth. Though GIS has been used in the built environment for a few decades, its use in education has not been researched enough to draw conclusions on the trends in the last 20 years. The study looks to discover current and emerging trends of GIS in built environment education. A bibliometric review analysis methodology was carried out through exporting documents from Scopus and Web of Science using keywords around "Geographic information systems" OR "GIS" AND "built environment" OR “geography” OR "architecture" OR "quantity surveying" OR "construction" OR "urban planning" OR "town planning" AND “education” between the years 1994 to 2024. A total of 564 documents were identified and exported. The data was then analyzed using VosViewer software to generate network analysis and visualization maps on the co-occurrence of keywords, co-citation of documents and countries and co-author network analysis. By analyzing each aspect of the data, deeper insight of GIS within education can be understood. Preliminary results from Scopus indicate that GIS research focusing on built environment education seems to have peaked prior to 2014 with much focus on remote sensing, demography, land use, engineering education and so forth. This invaluable data can help in understanding and implementing GIS in built environment education in ways that are foundational and innovative to ensure that students are equipped with sufficient knowledge and skills to carry out tasks in their respective fields.

Keywords: architecture, built environment, construction, education, geography, geographic information systems, quantity surveying, town planning, urban planning

Procedia PDF Downloads 15