Search results for: anti-tubercular therapy induced hepatotoxicity
1201 Comparison of Health Related Quality of Life in End Stage Renal Diseases Undergoing Twice and Thrice Hemodialysis
Authors: Anamika A. Sharma, Arezou Ahmadi R. A., Narendra B. Parihar, Manjusha Sajith
Abstract:
Introduction: Hemodialysis is the most effective therapeutic technique for patient with ESRD second to renal transplantation. However it is a lifelong therapy which requires frequent hospital, or dialysis centers visits mainly twice and thrice weekly, thus considerably changes the normal way of patient’s living. So this study aimed to Assess Health-Related Quality of life in End-Stage Renal Disease (ESRD) Undergoing Twice and Thrice weekly Hemodialysis. Method: A prospective observational, cross-sectional study was carried out from September 2016 to April 2017 in end-stage renal disease patients undergoing hemodialysis. Socio-demographic and clinical details of patients were obtained from the medical records. WHOQOL-BREF questionnaire was used to Access Health-Related Quality Of Life. Quality of Life scores of Twice weekly and Thrice weekly hemodialysis was analyzed by Kruskal Wallis Test. Results: Majority of respondents were male (72.55%), married (89.31%), employed (58.02%), belong to middle class (71.00%) and resides in rural area (58.78%). The mean ages in the patient undergoing twice weekly and thrice weekly hemodialysis were 51.89 ± 15.64 years and 51.33 ± 15.70 years respectively. Average Quality of Life scores observed in twice weekly and thrice weekly hemodialysis was 52.07 ± 13.30 (p=0.0037) and 52.87 ± 13.47 (p=0.0004) respectively. The hemoglobin of thrice weekly dialysis patients (10.28 gm/dL) was high as compared to twice weekly dialysis (9.23 gm/dL). Patients undergoing thrice weekly dialysis had improved serum urea, serum creatinine values (95.85 mg/dL, 8.32 mg/dL) as compared to twice weekly hemodialysis ( 104.94 mg/dL, 8.68 mg/dL). Conclusion: Our study concluded that there was no significant difference between overall Health-Related Quality Of Life in twice weekly and thrice weekly hemodialysis. Frequent hemodialysis was associated with improved control of hypertension, serum urea, serum creatinine levels.Keywords: end stage renal disease, health related quality of life, twice weekly hemodialysis, thrice weekly hemodialysis
Procedia PDF Downloads 1801200 Improved Wearable Monitoring and Treatment System for Parkinson’s Disease
Authors: Bulcha Belay Etana, Benny Malengier, Janarthanan Krishnamoorthy, Timothy Kwa, Lieva VanLangenhove
Abstract:
Electromyography measures the electrical activity of muscles using surface electrodes or needle electrodes to monitor various disease conditions. Recent developments in the signal acquisition of electromyograms using textile electrodes facilitate wearable devices, enabling patients to monitor and control their health status outside of healthcare facilities. Here, we have developed and tested wearable textile electrodes to acquire electromyography signals from patients suffering from Parkinson’s disease and incorporated a feedback-control system to relieve muscle cramping through thermal stimulus. In brief, the textile electrodes made of stainless steel was knitted into a textile fabric as a sleeve, and their electrical characteristic, such as signal-to-noise ratio, was compared with traditional electrodes. To relieve muscle cramping, a heating element made of stainless-steel conductive yarn sewn onto cotton fabric, coupled with a vibration system, was developed. The system integrated a microcontroller and a Myoware muscle sensor to activate the heating element as well as the vibration motor when cramping occurs, and at the same time, the element gets deactivated when the muscle cramping subsides. An optimum therapeutic temperature of 35.5 °C is regulated by continuous temperature monitoring to deactivate the heating system when this threshold value is reached. The textile electrode exhibited a signal-to-noise ratio of 6.38dB, comparable to that of the traditional electrode’s value of 7.05 dB. For a given 9 V power supply, the rise time was about 6 minutes for the developed heating element to reach an optimum temperature.Keywords: smart textile system, wearable electronic textile, electromyography, heating textile, vibration therapy, Parkinson’s disease
Procedia PDF Downloads 1061199 Corrosion Resistance of 17-4 Precipitation Hardenable Stainless Steel Fabricated by Selective Laser Melting
Authors: Michella Alnajjar, Frederic Christien, Krzysztof Wolski, Cedric Bosch
Abstract:
Additive manufacturing (AM) has gained more interest in the past few years because it allows 3D parts often having a complex geometry to be directly fabricated, layer by layer according to a CAD model. One of the AM techniques is the selective laser melting (SLM) which is based on powder bed fusion. In this work, the corrosion resistance of 17-4 PH steel obtained by SLM is investigated. Wrought 17-4 PH steel is a martensitic precipitation hardenable stainless steel. It is widely used in a variety of applications such as aerospace, medical and food industries, due to its high strength and relatively good corrosion resistance. However, the combined findings of X-Ray diffraction and electron backscatter diffraction (EBSD) proved that SLM-ed 17-4 PH steel has a fully ferritic microstructure, more specifically δ ferrite. The microstructure consists of coarse ferritic grains elongated along the build direction, with a pronounced solidification crystallographic texture. These results were associated with the high cooling and heating rates experienced throughout the SLM process (10⁵-10⁶ K/s) that suppressed the austenite formation and produced a 'by-passing' phenomenon of this phase during the numerous thermal cycles. Furthermore, EDS measurements revealed a uniform distribution of elements without any dendritic structure. The extremely high cooling kinetics induced a diffusionless solidification, resulting in a homogeneous elemental composition. Consequently, the corrosion properties of this steel are altered from that of conventional ones. By using electrochemical means, it was found that SLM-ed 17-4 PH is more resistant to general corrosion than the wrought steel. However, the SLM-ed material exhibits metastable pitting due to its high porosity density. In addition, the hydrogen embrittlement of SLM-ed 17-4 PH steel is investigated, and a correlation between its behavior and the observed microstructure is made.Keywords: corrosion resistance, 17-4 PH stainless steel, selective laser melting, hydrogen embrittlement
Procedia PDF Downloads 1411198 Tokyo Skyscrapers: Technologically Advanced Structures in Seismic Areas
Authors: J. Szolomicki, H. Golasz-Szolomicka
Abstract:
The architectural and structural analysis of selected high-rise buildings in Tokyo is presented in this paper. The capital of Japan is the most densely populated city in the world and moreover is located in one of the most active seismic zones. The combination of these factors has resulted in the creation of sophisticated designs and innovative engineering solutions, especially in the field of design and construction of high-rise buildings. The foreign architectural studios (as, for Jean Nouvel, Kohn Pedesen Associates, Skidmore, Owings & Merill) which specialize in the designing of skyscrapers, played a major role in the development of technological ideas and architectural forms for such extraordinary engineering structures. Among the projects completed by them, there are examples of high-rise buildings that set precedents for future development. An essential aspect which influences the design of high-rise buildings is the necessity to take into consideration their dynamic reaction to earthquakes and counteracting wind vortices. The need to control motions of these buildings, induced by the force coming from earthquakes and wind, led to the development of various methods and devices for dissipating energy which occur during such phenomena. Currently, Japan is a global leader in seismic technologies which safeguard seismic influence on high-rise structures. Due to these achievements the most modern skyscrapers in Tokyo are able to withstand earthquakes with a magnitude of over seven degrees at the Richter scale. Damping devices applied are of a passive, which do not require additional power supply or active one which suppresses the reaction with the input of extra energy. In recent years also hybrid dampers were used, with an additional active element to improve the efficiency of passive damping.Keywords: core structures, damping system, high-rise building, seismic zone
Procedia PDF Downloads 1751197 Acupoint Injection of High Concentration of Glucose Attenuates Mice Chronic Pain and Depression Comorbidity
Authors: Chanya Inprasit, Yi-Wen Lin
Abstract:
Inflammation causes changes of peripheral and central nervous system properties, affecting both neuronal and non-neuronal cells, resulting in inflammatory pain. Acupoint injection (AI) was developed in the 1950s and has been widely used for relieving pain. It is an acupoint-stimulating technique that utilizes anatomically based meridians derived from Chinese medicine theory. AI has been accepted as an effective treatment and is thought to display superior results when compared to traditional acupuncture methods. However, the mechanism of AI needs to be ratified by more scientific evidence in order to support the theory and its therapeutic development. In this study, we explored the effect of AI on the comorbidity of chronic pain and depression. Mice hindpaw was injected by complete Freund’s adjuvant (CFA) to induce the condition of chronic pain. Measurements of mechanical and thermal hyperalgesia and depression-like behavior were analyzed. The results indicated a positive tendency to AI treatment. The comorbidity of chronic pain and depression was investigated with relation to transient receptor potential V1 (TRPV1) mechanism through the use of TRPV1 gene deletion. The expression of nociceptors such as voltage-gated sodium channels (Navs) or TRPV1, was significantly down-regulated by AI. The expression of inflammation-activated molecules: astrocytic marker glial fibrillary acidic protein (GFAP), the microglial marker Iba-1, S100B, and related kinases, were reversed by AI in both the peripheral and central nervous system. Taken together, these data provided a detailed molecular mechanism of AI-induced analgesia and anti-inflammatory properties. This finding may be utilized for clinical practice to treat chronic pain and depression comorbidity.Keywords: inflammatory pain, acupoint injection, TRPV1, GFAP, S100B
Procedia PDF Downloads 1491196 Simulated Mechanical Analysis on Hydroxyapatite Coated Porous Polylactic Acid Scaffold for Bone Grafting
Authors: Ala Abobakr Abdulhafidh Al-Dubai
Abstract:
Bone loss has risen due to fractures, surgeries, and traumatic injuries. Scientists and engineers have worked over the years to find solutions to heal and accelerate bone regeneration. The bone grafting technique has been utilized, which projects significant improvement in the bone regeneration area. An extensive study is essential on the relation between the mechanical properties of bone scaffolds and the pore size of the scaffolds, as well as the relation between the mechanical properties of bone scaffolds with the development of bioactive coating on the scaffolds. In reducing the cost and time, a mechanical simulation analysis is beneficial to simulate both relations. Therefore, this study highlights the simulated mechanical analyses on three-dimensional (3D) polylactic acid (PLA) scaffolds at two different pore sizes (P: 400 and 600 μm) and two different internals distances of (D: 600 and 900 μm), with and without the presence of hydroxyapatite (HA) coating. The 3D scaffold models were designed using SOLIDWORKS software. The respective material properties were assigned with the fixation of boundary conditions on the meshed 3D models. Two different loads were applied on the PLA scaffolds, including side loads of 200 N and vertical loads of 2 kN. While only vertical loads of 2 kN were applied on the HA coated PLA scaffolds. The PLA scaffold P600D900, which has the largest pore size and maximum internal distance, generated the minimum stress under the applied vertical load. However, that same scaffold became weaker under the applied side load due to the high construction gap between the pores. The development of HA coating on top of the PLA scaffolds induced greater stress generation compared to the non-coated scaffolds which is tailorable for bone implantation. This study concludes that the pore size and the construction of HA coating on bone scaffolds affect the mechanical strength of the bone scaffolds.Keywords: hydroxyapatite coating, bone scaffold, mechanical simulation, three-dimensional (3D), polylactic acid (PLA).
Procedia PDF Downloads 601195 Laboratory Simulation of Subway Dynamic Stray Current Interference with Cathodically Protected Structures
Authors: Mohammad Derakhshani, Saeed Reza Allahkaram, Michael Isakani-Zakaria, Masoud Samadian, Hojat Sharifi Rasaey
Abstract:
Dynamic stray currents tend to change their magnitude and polarity with time at their source which will create anodic and cathodic spots on a nearby interfered structure. To date, one of the biggest known dynamic stray current sources are DC traction systems. Laboratory simulation is a suitable method to apply theoretical principles in order to identify effective parameters in dynamic stray current influenced corrosion. Simulation techniques can be utilized for various mitigation methods applied in a small scales for selection of the most efficient method with regards to field applications. In this research, laboratory simulation of potential fluctuations caused by dynamic stray current on a cathodically protected structure was investigated. A lab model capable of generating DC static and dynamic stray currents and simulating its effects on cathodically protected samples were developed based on stray current induced (contact-less) polarization technique. Stray current pick-up and discharge spots on an influenced structure were simulated by inducing fluctuations in the sample’s stationary potential. Two mitigation methods for dynamic stray current interference on buried structures namely application of sacrificial anodes as preferred discharge point for the stray current and potentially controlled cathodic protection was investigated. Results showed that the application of sacrificial anodes can be effective in reducing interference only in discharge spot. But cathodic protection through potential controlling is more suitable for mitigating dynamic stray current effects.Keywords: simulation, dynamic stray current, fluctuating potentials, sacrificial anode
Procedia PDF Downloads 3001194 External Validation of Risk Prediction Score for Candidemia in Critically Ill Patients: A Retrospective Observational Study
Authors: Nurul Mazni Abdullah, Saw Kian Cheah, Raha Abdul Rahman, Qurratu 'Aini Musthafa
Abstract:
Purpose: Candidemia was associated with high mortality in the critically ill patients. Early candidemia prediction is imperative for preemptive antifungal treatment. This study aimed to externally validate the candidemia risk prediction scores by Jameran et al. (2021) by identifying risk factors of acute kidney injury, renal replacement therapy, parenteral nutrition, and multifocal candida colonization. Methods: This single-center, retrospective observational study included all critically ill patients admitted to the intensive care unit (ICU) in a tertiary referral center from January 2018 to December 2023. The study evaluated the candidemia risk prediction score performance by analysing the occurrence of candidemia within the study period. Patients’ demographic characteristics, comorbidities, SOFA scores, and ICU outcomes were analyzed. Patients who were diagnosed with candidemia prior to ICU admission were excluded. Results: A total of 500 patients were analyzed with 2 dropouts due to incomplete data. Validation analysis showed that the candidemia risk prediction score has a sensitivity of 75.00% (95% CI: 59.66-86.81), specificity of 65.35% (95% CI: 60.78-69.72), positive predictive value of 17.28, and negative predictive value of 96.44. The incidence of candidemia was 8.86%, with no significant differences in demographics or comorbidities except for higher SOFA scoring in the candidemia group. The candidemia group showed significantly longer ICU, hospital LOS, and higher ICU in-hospital mortality. Conclusion: This study concluded the candidemia risk prediction score by Jameran et al. (2021) had good sensitivity and a high negative prediction value. Thus, the risk prediction score was validated for candidemia prediction in critically ill patients.Keywords: Candidemia, intensive care, acute kidney injury, clinical prediction rule, incidence
Procedia PDF Downloads 81193 Prediction of Rotating Machines with Rolling Element Bearings and Its Components Deterioration
Authors: Marimuthu Gurusamy
Abstract:
In vibration analysis (with accelerometers) of rotating machines with rolling element bearing, the customers are interested to know the failure of the machine well in advance to plan the spare inventory and maintenance. But in real world most of the machines fails before the prediction of vibration analyst or Expert analysis software. Presently the prediction of failure is based on ISO 10816 vibration limits only. But this is not enough to monitor the failure of machines well in advance. Because more than 50% of the machines will fail even the vibration readings are within acceptable zone as per ISO 10816.Hence it requires further detail analysis and different techniques to predict the failure well in advance. In vibration Analysis, the velocity spectrum is used to analyse the root cause of the mechanical problems like unbalance, misalignment and looseness etc. The envelope spectrum are used to analyse the bearing frequency components, hence the failure in inner race, outer race and rolling elements are identified. But so far there is no correlation made between these two concepts. The author used both velocity spectrum and Envelope spectrum to analyse the machine behaviour and bearing condition to correlated the changes in dynamic load (by unbalance, misalignment and looseness etc.) and effect of impact on the bearing. Hence we could able to predict the expected life of the machine and bearings in the rotating equipment (with rolling element bearings). Also we used process parameters like temperature, flow and pressure to correlate with flow induced vibration and load variations, when abnormal vibration occurs due to changes in process parameters. Hence by correlation of velocity spectrum, envelope spectrum and process data with 20 years of experience in vibration analysis, the author could able to predict the rotating Equipment and its component’s deterioration and expected duration for maintenance.Keywords: vibration analysis, velocity spectrum, envelope spectrum, prediction of deterioration
Procedia PDF Downloads 4511192 Clinical Prediction Rules for Using Open Kinetic Chain Exercise in Treatment of Knee Osteoarthritis
Authors: Mohamed Aly, Aliaa Rehan Youssef, Emad Sawerees, Mounir Guirgis
Abstract:
Relevance: Osteoarthritis (OA) is the most common degenerative disease seen in all populations. It causes disability and substantial socioeconomic burden. Evidence supports that exercise are the most effective conservative treatment for patients with OA. Therapists experience and clinical judgment play major role in exercise prescription and scientific evidence for this regard is lacking. The development of clinical prediction rules to identify patients who are most likely benefit from exercise may help solving this dilemma. Purpose: This study investigated whether body mass index and functional ability at baseline can predict patients’ response to a selected exercise program. Approach: Fifty-six patients, aged 35 to 65 years, completed an exercise program consisting of open kinetic chain strengthening and passive stretching exercises. The program was given for 3 sessions per week, 45 minutes per session, for 6 weeks Evaluation: At baseline and post treatment, pain severity was assessed using the numerical pain rating scale, whereas functional ability was being assessed by step test (ST), time up and go test (TUG) and 50 feet time walk test (50 FTW). After completing the program, global rate of change (GROC) score of greater than 4 was used to categorize patients as successful and non-successful. Thirty-eight patients (68%) had successful response to the intervention. Logistic regression showed that BMI and 50 FTW test were the only significant predictors. Based on the results, patients with BMI less than 34.71 kg/m2 and 50 FTW test less than 25.64 sec are 68% to 89% more likely to benefit from the exercise program. Conclusions: Clinicians should consider the described strengthening and flexibility exercise program for patents with BMI less than 34.7 Kg/m2 and 50 FTW faster than 25.6 seconds. The validity of these predictors should be investigated for other exercise.Keywords: clinical prediction rule, knee osteoarthritis, physical therapy exercises, validity
Procedia PDF Downloads 4221191 Numerical Evaluation of Deep Ground Settlement Induced by Groundwater Changes During Pumping and Recovery Test in Shanghai
Authors: Shuo Wang
Abstract:
The hydrogeological parameters of the engineering site and the hydraulic connection between the aquifers can be obtained by the pumping test. Through the recovery test, the characteristics of water level recovery and the law of surface subsidence recovery can be understood. The above two tests can provide the basis for subsequent engineering design. At present, the deformation of deep soil caused by pumping tests is often neglected. However, some studies have shown that the maximum settlement subject to groundwater drawdown is not necessarily on the surface but in the deep soil. In addition, the law of settlement recovery of each soil layer subject to water level recovery is not clear. If the deformation-sensitive structure is deep in the test site, safety accidents may occur. In this study, the pumping test and recovery test of a confined aquifer in Shanghai are introduced. The law of measured groundwater changes and surface subsidence are analyzed. In addition, the fluid-solid coupling model was established by ABAQUS based on the Biot consolidation theory. The models are verified by comparing the computed and measured results. Further, the variation law of water level and the deformation law of deep soil during pumping and recovery tests under different site conditions and different times and spaces are discussed through the above model. It is found that the maximum soil settlement caused by pumping in a confined aquifer is related to the permeability of the overlying aquitard and pumping time. There is a lag between soil deformation and groundwater changes, and the recovery rate of settlement deformation of each soil layer caused by the rise of water level is different. Finally, some possible research directions are proposed to provide new ideas for academic research in this field.Keywords: coupled hydro-mechanical analysis, deep ground settlement, numerical simulation, pumping test, recovery test
Procedia PDF Downloads 441190 Nitrogen-Fixing Rhizobacteria (Rhizobium mililoti 2011) Enhances the Tolerance and the Accumulation of Cadmium in Medicago sativa
Authors: Tahar Ghnaya, Majda Mnasri, Hanen Zaier, Rim Ghabriche, Chedly Abdelly
Abstract:
It is known that the symbiotic association between plant and microorganisms are beneficial for plant growth and resistance to metal stress. Hence, it was demonstrated that Arbuscular mycorrhizal fungi have a positive effect on host plants growing in metal polluted soils. Legume plants are those which normally associate to rhizobacteria in order to fix atmospheric nitrogen. The aim of this work was to evaluate the effect this type of symbiosis on the tolerance and the accumulation of Cd. We chose Medicago sativa, as a modal for host legume plants and Rhizobium mililoti 2011 as rhizobial strain. Inoculated and non-inoculated plants of M. sativa were submitted during three month to 0, 50, and 100 mgCd/kg dry soil. Results showed that the presence of Cd in the medium induced, in both inoculated and non-inoculated plants, a chlorosis and necrosis. However, these symptoms were more pronounced in non-inoculated plants. The beneficial effect of inoculation of M. sativa with R. meliloti, on plant growth was confirmed by the measurement of biomass production which showed that the symbiotic association between host plant and rhizobacteria alleviates significantly Cd effect on biomass production, so inoculated plants produced more dry weight as compared to non-inoculated ones in the presence of all Cd tretments. On the other hand, under symbiosis conditions, Cd was more accumulated in different plant organs. Hence, in these plants, shoot Cd concentration reached 425 and it was 280 µg/gDW in non-inoculated ones in the presence of 100 ppm Cd. This result suggests that symbiosis enhances the absorption and translocation of Cd in this plant. In nodules and roots, we detected the highest Cd concentrations, demonstrating that these organs are able to concentrate Cd in their tissues. These data confirm that M. sataiva, cultivated in symbiosis with Rhizobium mililoti could be used in phytoextraction of Cd from contaminated soils.Keywords: Cd, phytoremediation, Medicago sativa, Arbuscular mycorrhizal
Procedia PDF Downloads 2771189 Treatment of Porphyromonas gingivalis Induced Gingivitis in Albino Rats with Tetracycline-Loaded Nanochitosan, an Immunohistochemical Analysis
Authors: Rania Hanafi Said, Rasha Mohamed Taha
Abstract:
Background: By using nanoparticles as drug delivery, it may be possible to avoid the drawbacks of systemic antibiotic dosing, including bacterial antibiotic resistance. The goal of this study was to see how well tetracycline loaded on nanochitosan worked to treat gingival inflammation in albino rats caused by Porphyromonas gingivalis. The study analyzed immunohistochemically the localization of the pro-inflammatory cytokine Interleukin-1beta (IL-1β). Material and methods: In this study, fifty mature male albino rats weighing 150 to 180 grams each were used. They were randomly divided into five groups. We checked for weight changes in rats. Ten male albino rats were included in Group I, which served as a negative control group. Ten rats were included in Group II, where they were exposed once to Porphyromonas. Group III contained ten rats, which were treated the same as Group II plus daily injections of diluted tetracycline powder at the infection sites. Ten rats in Group IV received the same procedure as those in Group II before receiving daily injections of nanochitosan at the injection sites. Finally, Group V, which had ten rats. Following the same protocol as Group II, they received localized injections of tetracycline loaded on nanochitosan once daily. Rats' gingivae were extracted and prepared after they were anesthetized. The biopsies were examined histologically and immunohistochemically by light microscopy. Results: Groups I and V had a nearly normal histological appearance of gingival tissue. In Groups II, III, and IV, degeneration was seen because the epithelial cells were bigger, collagen fibers were pulling away from the lamina propria connective tissue, and the basement membranes had come to an end. There was no discernible difference between groups V and I when they were examined immunohistochemically. Conclusion: The use of nano chitosan as a tetracycline carrier is a novel technique to overcome the drug's rising level of resistance.Keywords: Immunohistochemistry, Nanochitosan, porphyromonas gingivitis, Tetracycline
Procedia PDF Downloads 831188 Effectiveness of Computer Video Games on the Levels of Anxiety of Children Scheduled for Tooth Extraction
Authors: Marji Umil, Miane Karyle Urolaza, Ian Winston Dale Uy, John Charle Magne Valdez, Karen Elizabeth Valdez, Ervin Charles Valencia, Cheryleen Tan-Chua
Abstract:
Objective: Distraction techniques can be successful in reducing the anxiety of children during medical procedures. Dental procedures, in particular, are associated with dental anxiety which has been identified as a significant and common problem in children, however, only limited studies were conducted to address such problem. Thus, this study determined the effectiveness of computer video games on the levels of anxiety of children between 5-12 years old scheduled for tooth extraction. Methods: A pre-test post-test quasi-experimental study was conducted involving 30 randomly-assigned subjects, 15 in the experimental and 15 in the control. Subjects in the experimental group played computer video games for a maximum of 15 minutes, however, no intervention was done on the control. The modified Yale Pre-operative Anxiety Scale (m-YPAS) with a Cronbach’s alpha of 0.9 was used to assess anxiety at two different points: upon arrival in the clinic (pre-test anxiety) and 15 minutes after the first measurement (post-test anxiety). Paired t-test and ANCOVA were used to analyze the gathered data. Results: Results showed that there is a significant difference between the pre-test and post-test anxiety scores of the control group (p=0.0002) which indicates an increased anxiety. A significant difference was also noted between the pre-test and post-test anxiety scores of the experimental group (p=0.0002) which indicates decreased anxiety. Comparatively, the experimental group showed lower anxiety score (p=<0.0001) than the control. Conclusion: The use of computer video games is effective in reducing the pre-operative anxiety among children and can be an alternative non-pharmacological management in giving pre-operative care.Keywords: play therapy, preoperative anxiety, tooth extraction, video games
Procedia PDF Downloads 4521187 Susceptibility of Different Clones of Eucalyptus Species against Gall Wasp, Leptocybe invasa Fisher and La Salle in Punjab, India
Authors: Ashwinder K. Dhaliwal, G. P. S. Dhillon
Abstract:
Eucalyptus is one of the most important forest tree species that can tolerate and grow well on degraded and unfertile soils which are not suitable for other tree species. Besides this, these trees have a short rotation and good economic value. However, the gall inducing wasp Leptocybe invasa Fisher and La Salle has been reported from many countries throughout the world. The spread of L. invasa is of huge economic concern as more than 20,000 ha of young Eucalyptus trees have already been affected in southern states of India. The host plant resistance being the first line of defense against insect pests demands the screening of different germplasm source against L. invasa. Keeping this in view, fourteen different clones of Eucalyptus spp. were evaluated for their susceptibility to L. invasa from a replicated clonal trial planted at Punjab Agricultural University, Ludhiana. The degree of gall infestation was recorded from three plants of each clone in each replication. Three branches selected from the lower, middle and upper canopy of the trees were selected for recording the total number of galls induced by L. invasa. The statistical analysis was done as per the procedure laid down for completely randomised block design (CRBD), analysis of variance (ANOVA), critical difference (CD) and variance components using Proc GLM (SAS software 9.3, SAS Institute Ltd. U.S.A). All possible treatment means were compared with Duncan’s multiple range test (DMRT) at 1 % probability level. The results showed that the clones C-9, C-45 and C-42 were completely free from the infestation of L. invasa. However, there was minor infestation of L. invasa on C-2135, C-413, C-407, C-35, C-72 and C-37 clones. The clone C-6 was severely infested by L. invasa followed by C-11, C-12, F-316 and C-25 clones. The information generated by this study will be helpful for future breeding and use in afforestation programmes.Keywords: eucalyptus clones, gall wasp, Leptocybe invasa, screening, susceptibility
Procedia PDF Downloads 2211186 A Structure-Switching Electrochemical Aptasensor for Rapid, Reagentless and Single-Step, Nanomolar Detection of C-Reactive Protein
Authors: William L. Whitehouse, Louisa H. Y. Lo, Andrew B. Kinghorn, Simon C. C. Shiu, Julian. A. Tanner
Abstract:
C-reactive protein (CRP) is an acute-phase reactant and sensitive indicator for sepsis and other life-threatening pathologies, including systemic inflammatory response syndrome (SIRS). Currently, clinical turn-around times for established CRP detection methods take between 30 minutes to hours or even days from centralized laboratories. Here, we report the development of an electrochemical biosensor using redox probe-tagged DNA aptamers functionalized onto cheap, commercially available screen-printed electrodes. Binding-induced conformational switching of the CRP-targeting aptamer induces a specific and selective signal-ON event, which enables single-step and reagentless detection of CRP in as little as 1 minute. The aptasensor dynamic range spans 5-1000nM (R=0.97) or 5-500nM (R=0.99) in 50% diluted human serum, with a LOD of 3nM, corresponding to 2-orders of magnitude sensitivity under the clinically relevant cut-off for CRP. The sensor is stable for up to one week and can be reused numerous times, as judged from repeated real-time dosing and dose-response assays. By decoupling binding events from the signal induction mechanism, structure-switching electrochemical aptamer-based sensors (SS-EABs) provide considerable advantages over their adsorption-based counterparts. Our work expands on the retinue of such sensors reported in the literature and is the first instance of an SS-EAB for reagentless CRP detection. We hope this study can inspire further investigations into the suitability of SS-EABs for diagnostics, which will aid translational R&D toward fully realized devices aimed at point-of-care applications or for use more broadly by the public.Keywords: structure-switching, C-reactive protein, electrochemical, biosensor, aptasensor.
Procedia PDF Downloads 701185 Investigating the Behaviour of Composite Floors (Steel Beams and Concrete Slabs) under Mans Rhythmical Movement
Authors: M. Ali Lotfollahi Yaghin, M. Reza Bagerzadeh Karimi, Ali Rahmani, V. Sadeghi Balkanlou
Abstract:
Structural engineers have long been trying to develop solutions using the full potential of its composing materials. Therefore, there is no doubt that the structural solution progress is directly related to an increase in materials science knowledge. These efforts in conjunction with up-to-date modern construction techniques have led to an extensive use of composite floors in large span structures. On the other hand, the competitive trends of the world market have long been forcing structural engineers to develop minimum weight and labour cost solutions. A direct consequence of this new design trend is a considerable increase in problems related to unwanted floor vibrations. For this reason, the structural floors systems become vulnerable to excessive vibrations produced by impacts such as human rhythmic activities. The main objective of this paper is to present an analysis methodology for the evaluation of the composite floors human comfort. This procedure takes into account a more realistic loading model developed to incorporate the dynamic effects induced by human walking. The investigated structural models were based on various composite floors, with main spans varying from 5 to 10 m. based on an extensive parametric study the composite floors dynamic response, in terms of peak accelerations, was obtained and compared to the limiting values proposed by several authors and design standards. This strategy was adopted to provide a more realistic evaluation for this type of structure when subjected to vibration due to human walking.Keywords: vibration, resonance, composite floors, people’s rhythmic movement, dynamic analysis, Abaqus software
Procedia PDF Downloads 3041184 Impact of Totiviridae L-A dsRNA Virus on Saccharomyces Cerevisiae Host: Transcriptomic and Proteomic Approach
Authors: Juliana Lukša, Bazilė Ravoitytė, Elena Servienė, Saulius Serva
Abstract:
Totiviridae L-A virus is a persistent Saccharomyces cerevisiae dsRNA virus. It encodes the major structural capsid protein Gag and Gag-Pol fusion protein, responsible for virus replication and encapsulation. These features also enable the copying of satellite dsRNAs (called M dsRNAs) encoding a secreted toxin and immunity to it (known as killer toxin). Viral capsid pore presumably functions in nucleotide uptake and viral mRNA release. During cell division, sporogenesis, and cell fusion, the virions remain intracellular and are transferred to daughter cells. By employing high throughput RNA sequencing data analysis, we describe the influence of solely L-A virus on the expression of genes in three different S. cerevisiae hosts. We provide a new perception into Totiviridae L-A virus-related transcriptional regulation, encompassing multiple bioinformatics analyses. Transcriptional responses to L-A infection were similar to those induced upon stress or availability of nutrients. It also delves into the connection between the cell metabolism and L-A virus-conferred demands to the host transcriptome by uncovering host proteins that may be associated with intact virions. To better understand the virus-host interaction, we applied differential proteomic analysis of virus particle-enriched fractions of yeast strains that harboreither complete killer system (L-A-lus and M-2 virus), M-2 depleted orvirus-free. Our analysis resulted in the identification of host proteins, associated with structural proteins of the virus (Gag and Gag-Pol). This research was funded by the European Social Fund under the No.09.3.3-LMT-K-712-19-0157“Development of Competences of Scientists, other Researchers, and Students through Practical Research Activities” measure.Keywords: totiviridae, killer virus, proteomics, transcriptomics
Procedia PDF Downloads 1461183 Fused Deposition Modelling as the Manufacturing Method of Fully Bio-Based Water Purification Filters
Authors: Natalia Fijol, Aji P. Mathew
Abstract:
We present the processing and characterisation of three-dimensional (3D) monolith filters based on polylactic acid (PLA) reinforced with various nature-derived nanospecies such as hydroxyapatite, modified cellulose fibers and chitin fibers. The nanospecies of choice were dispersed in PLA through Thermally Induced Phase Separation (TIPS) method. The biocomposites were developed via solvent-assisted blending and the obtained pellets were further single-screw extruded into 3D-printing filaments and processed into various geometries using Fused Deposition Modelling (FDM) technique. The printed prototypes included cubic, cylindrical and hour-glass shapes with diverse patterns of printing infill as well as varying pore structure including uniform and multiple level gradual pore structure. The pores and channel structure as well as overall shape of the prototypes were designed in attempt to optimize the flux and maximize the adsorption-active time. FDM is a cost and energy-efficient method, which does not require expensive tools and elaborated post-processing maintenance. Therefore, FDM offers the possibility to produce customized, highly functional water purification filters with tuned porous structures suitable for removal of wide range of common water pollutants. Moreover, as 3D printing becomes more and more available worldwide, it allows producing portable filters at the place and time where they are most needed. The study demonstrates preparation route for the PLA-based, fully biobased composite and their processing via FDM technique into water purification filters, addressing water treatment challenges on an industrial scale.Keywords: fused deposition modelling, water treatment, biomaterials, 3D printing, nanocellulose, nanochitin, polylactic acid
Procedia PDF Downloads 1151182 Methicillin Resistant Staphylococcus aureus Specific Bacteriophage Isolation from Sewage Treatment Plant and in vivo Analysis of Phage Efficiency in Swiss Albino Mice
Authors: Pratibha Goyal, Nupur Mathur, Anuradha Singh
Abstract:
Antibiotic resistance is the worldwide threat to human health in this century. Excessive use of antibiotic after their discovery in 1940 makes certain bacteria to become resistant against antibiotics. Most common antibiotic-resistant bacteria include Staphylococcus aureus, Salmonella typhi, E.coli, Klebsiella pneumonia, and Streptococcus pneumonia. Among all Staphylococcus resistant strain called Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for several lives threatening infection in human commonly found in the hospital environment. Our study aimed to isolate bacteriophage against MRSA from the hospital sewage treatment plant and to analyze its efficiency In Vivo in Swiss albino mice model. Sewage sample for the isolation of bacteriophages was collected from SDMH hospital sewage treatment plant in Jaipur. Bacteriophages isolated by the use of enrichment technique and after characterization, isolated phages used to determine phage treatment efficiency in mice. Mice model used to check the safety and suitability of phage application in human need which in turn directly support the use of natural bacteriophage rather than synthetic chemical to kill pathogens. Results show the plaque formation in-vitro and recovery of MRSA infected mice during the experiment. Favorable lytic efficiency determination of MRSA and Salmonella presents a natural way to treat lethal infections caused by Multidrug-resistant bacteria by using their natural host-pathogen relationship.Keywords: antibiotic resistance, bacteriophages, methicillin resistance Staphylococcus aureus, pathogens, phage therapy, Salmonella typhi
Procedia PDF Downloads 1431181 Influence of Structural Cracks on Transport Performance of Reinforced Concrete
Authors: V. A. Okenyi, K. Yang, P. A. M. Basheer
Abstract:
Concrete structures in service are constantly under the influence of load. Microstructural cracks often develop in them and considering those in the marine environment; these microcracks often serve as a means for transportation of harmful fluids into the concrete. This paper studies the influence of flexural tensile stress that structural elements undergo on the transport properties of such concrete in the tensile zone of the structural member. Reinforced concrete beams of 1200mm ⨉ 230mm ⨉ 150mm in dimension in a four-point bending set up were subjected to various levels of the loading required to cause a microcrack width of 100µm. The use of Autoclam permeability tests, sorptivity tests as well as the Permit chloride ion migration tests were employed, and results showed that air permeability, sorptivity and water permeability all increased as the load increased in the concrete tensile zone. For air permeability, an increase in stress levels led to more permeability, and the addition of steel macrofibers had no significant effect until at 75% of stress level where it decreased air permeability. For sorptivity, there was no absorption into concrete when no load was added, but water sorptivity index was high at 75% stress levels and higher in steel fiber reinforced concrete (SFRC). Steel macrofibers produced more water permeability into the concrete at 75% stress level under the 100µm crack width considered while steel macrofibers helped in slightly reducing the migration of chloride into concrete by 8.8% reduction, compared to control samples at 75% stress level. It is clear from this research that load-induced cracking leads to an increase in fluid permeability into concrete and the effect of the addition of steel macrofiber to concrete for durability is not significant under 100µm crack width.Keywords: durability, microcracks, SFRC, stress Level, transport properties
Procedia PDF Downloads 1291180 Anticancer Lantadene Derivatives: Synthesis, Cytotoxic and Docking Studies
Authors: A. Monika, Manu Sharma, Hong Boo Lee, Richa Dhingra, Neelima Dhingra
Abstract:
Nuclear factor-κappa B serve as a molecular lynchpin that links persistent infections and chronic inflammation to increased cancer risk. Inflammation has been recognized as a hallmark and cause of cancer. Natural products present a privileged source of inspiration for chemical probe and drug design. Herbal remedies were the first medicines used by humans due to the many pharmacologically active secondary metabolites produced by plants. Some of the metabolites like Lantadene (pentacyclic triterpenoids) from the weed Lantana camara has been known to inhibit cell division and showed anti-antitumor potential. The C-3 aromatic esters of lantadenes were synthesized, characterized and evaluated for cytotoxicity and inhibitory potential against Tumor necrosis factor alpha-induced activation of Nuclear factor-κappa B in lung cancer cell line A549. The 3-methoxybenzoyloxy substituted lead analogue inhibited kinase activity of the inhibitor of nuclear factor-kappa B kinase in a single-digit micromolar concentration. At the same time, the lead compound showed promising cytotoxicity against A549 lung cancer cells with IC50 ( half maximal inhibitory concentration) of 0.98l µM. Further, molecular docking of 3-methoxybenzoyloxy substituted analogue against Inhibitor of nuclear factor-kappa B kinase (Protein data bank ID: 3QA8) showed hydrogen bonding interaction involving oxygen atom of 3-methoxybenzoyloxy with the Arginine-31 and Glutamine-110. Encouraging results indicate the Lantadene’s potential to be developed as anticancer agents.Keywords: anticancer, lantadenes, pentacyclic triterpenoids, weed
Procedia PDF Downloads 1561179 Magnetic versus Non-Magnetic Adatoms in Graphene Nanoribbons: Tuning of Spintronic Applications and the Quantum Spin Hall Phase
Authors: Saurabh Basu, Sudin Ganguly
Abstract:
Conductance in graphene nanoribbons (GNR) in presence of magnetic (for example, Iron) and non-magnetic (for example, Gold) adatoms are explored theoretically within a Kane-Mele model for their possible spintronic applications and topologically non-trivial properties. In our work, we have considered the magnetic adatoms to induce a Rashba spin-orbit coupling (RSOC) and an exchange bias field, while the non-magnetic ones induce an RSOC and an intrinsic spin-orbit (SO) coupling. Even though RSOC is present in both, they, however, represent very different physical situations, where the magnetic adatoms do not preserve the time reversal symmetry, while the non-magnetic case does. This has important implications on the topological properties. For example, the non-magnetic adatoms, for moderately strong values of SO, the GNR denotes a quantum spin Hall insulator as evident from a 2e²/h plateau in the longitudinal conductance and presence of distinct conducting edge states with an insulating bulk. Since the edge states are protected by time reversal symmetry, the magnetic adatoms in GNR yield trivial insulators and do not possess any non-trivial topological property. However, they have greater utility than the non-magnetic adatoms from the point of view of spintronic applications. Owing to the broken spatial symmetry induced by the presence of adatoms of either type, all the x, y and z components of the spin-polarized conductance become non-zero (only the y-component survives in pristine Graphene owing to a mirror symmetry present there) and hence become suitable for spintronic applications. However, the values of the spin polarized conductances are at least two orders of magnitude larger in the case of magnetic adatoms than their non-magnetic counterpart, thereby ensuring more efficient spintronic applications. Further the applications are tunable by altering the adatom densities.Keywords: magnetic and non-magnetic adatoms, quantum spin hall phase, spintronic applications, spin polarized conductance, time reversal symmetry
Procedia PDF Downloads 3021178 Assessment of Land Use Land Cover Change-Induced Climatic Effects
Authors: Mahesh K. Jat, Ankan Jana, Mahender Choudhary
Abstract:
Rapid population and economic growth resulted in changes in large-scale land use land cover (LULC) changes. Changes in the biophysical properties of the Earth's surface and its impact on climate are of primary concern nowadays. Different approaches, ranging from location-based relationships or modelling earth surface - atmospheric interaction through modelling techniques like surface energy balance (SEB) are used in the recent past to examine the relationship between changes in Earth surface land cover and climatic characteristics like temperature and precipitation. A remote sensing-based model i.e., Surface Energy Balance Algorithm for Land (SEBAL), has been used to estimate the surface heat fluxes over Mahi Bajaj Sagar catchment (India) from 2001 to 2020. Landsat ETM and OLI satellite data are used to model the SEB of the area. Changes in observed precipitation and temperature, obtained from India Meteorological Department (IMD) have been correlated with changes in surface heat fluxes to understand the relative contributions of LULC change in changing these climatic variables. Results indicate a noticeable impact of LULC changes on climatic variables, which are aligned with respective changes in SEB components. Results suggest that precipitation increases at a rate of 20 mm/year. The maximum and minimum temperature decreases and increases at 0.007 ℃ /year and 0.02 ℃ /year, respectively. The average temperature increases at 0.009 ℃ /year. Changes in latent heat flux and sensible heat flux positively correlate with precipitation and temperature, respectively. Variation in surface heat fluxes influences the climate parameters and is an adequate reason for climate change. So, SEB modelling is helpful to understand the LULC change and its impact on climate.Keywords: LULC, sensible heat flux, latent heat flux, SEBAL, landsat, precipitation, temperature
Procedia PDF Downloads 1161177 Phytochemical Screening, Antioxidant and Hepatoprotection Assessment of Extracts of Coriandrum sativm L. on Wistar Rats
Authors: Hiba T. Allah ALtieb Gusm ALsied, Amna Beshir Medani Ahmed, Ikram Mohamed ELtayeb, Saad Mohamed Hussein Ayoub
Abstract:
This study was carried out to determine the hepatoactivity and the antioxidant activity of Coiradrum sativum L. aerial part and fruit extracts against CCL4 induced acute liver damages in Wistar rats. The aerial parts and fruits part of the plant were extracted 96% ethanol with soxhlet apparatus. Hepatic injury was achieved by subcutaneous injection of 3 ml/kg of CCL4 diluted with olive oil with ratio 1:1. The extracts were mixed together 1:1 ratio and given in different doses 100,200,400 mg/kg/day for 5 days under CCL4 induction at 3rd day. The significance of differences between means by using T-test was compared among the groups. The mixture of the two extracts didn’t show any significant result in protecting liver injury (antagonistic effects), it shows high level of liver enzyme like alkaline phosphatase (ALP), glutamate oxaloacetate transaminase (SGOT) and glutamate pyruvate transaminase (SGPT). Serological studies further confirmed the results. The results obtained were compared with silymarin (70 mg/kg/day) orally, the standard drug for hepatoprotection which show recovery close to normalization almost like that of silymarin; therefore, further studies on this plant with different ratios especially in isolated tissue to spot more light on antagonistic effects of the two extracts. Antioxidant activity of the extracts was determined by the DPPH method. The results obtained show high anti-oxidant activity for fruits extract while slight or moderate antioxidant activity to aerial extracts.Keywords: antioxidant, aerial part, Coriadrum sativum L., fruity, hepatoprotection, Silymarin, phytochemical screening
Procedia PDF Downloads 4901176 Harnessing the Generation of Ferromagnetic and Silver Nanostructures from Tropical Aquatic Microbial Nanofactories
Authors: Patricia Jayshree Jacob, Mas Jaffri Masarudinb, Mohd Zobir Hussein, Raha Abdul Rahim
Abstract:
Iron based ferromagnetic nanoparticles (IONP) and silver nanostructures (AgNP) have found a wide range of application in antimicrobial therapy, cell targeting, and environmental applications. As such, the design of well-defined monodisperse IONPs and AgNPs have become an essential tool in nanotechnology. Fabrication of these nanostructures using conventional methods is not environmentally conducive and weigh heavily on energy and outlays. Selected microorganisms possess the innate ability to reduce metallic ions in colloidal aqueous solution to generate nanoparticles. Hence, harnessing this potential is a way forward in constructing microbial nano-factories, capable of churning out high yields of well-defined IONP’s and AgNP's with physicochemical characteristics on par with the best synthetically produced nanostructures. In this paper, we report the isolation and characterization of bacterial strains isolated from the tropical marine and freshwater ecosystems of Malaysia that demonstrated facile and rapid generation of ferromagnetic nanoparticles and silver nanostructures when precursors such as FeCl₃.6H₂O and AgNO₃ were added to the cell-free bacterial lysate in colloidal solution. Characterization of these nanoparticles was carried out using FESEM, UV Spectrophotometer, XRD, DLS and FTIR. This aerobic bioprocess was carried out at ambient temperature and humidity and has the potential to be developed for environmental friendly, cost effective large scale production of IONP’s. A preliminary bioprocess study on the harvesting time, incubation temperature and pH was also carried out to determine pertinent abiotic parameters contributing to the optimal production of these nanostructures.Keywords: iron oxide nanoparticles, silver nanoparticles, biosynthesis, aquatic bacteria
Procedia PDF Downloads 2851175 Right Cerebellar Stroke with a Right Vertebral Artery Occlusion Following an Embolization of the Right Glomus Tympanicum Tumor
Authors: Naim Izet Kajtazi
Abstract:
Context: Although rare, glomus tumor (i.e., nonchromaffin chemodectomas and paragan¬gliomas) is the most common middle ear tumor, with female predominance. Pre-operative embolization is often required to devascularize the hypervascular tumor for better surgical outcomes. Process: A 35-year-old female presented with episodes of frequent dizziness, ear fullness, and right ear tinnitus for 12 months. Head imaging revealed a right glomus tympanicum tumor. She underwent pre-operative endovascular embolization of the glomus tympanicum tumor with surgical, cyanoacrylate-based glue. Immediately after the procedure, she developed drowsiness and severe pain in the right temporal region. Further investigations revealed a right cerebellar stroke in the posterior inferior cerebellar artery territory. She was treated with intravenous heparin, followed by one year of oral anticoagulation. With rehabilitation, she significantly recovered from her post embolization stroke. However, the tumor was resected at another institution. Ten years later, follow-up imaging indicated a gradual increase in the size of the glomus jugulare tumor, compressing the nearby critical vascular structures. She subsequently received radiation therapy to treat the residual tumor. Outcome: Currently, she has no neurological deficit, but her mild dizziness, right ear tinnitus, and hearing impairment persist. Relevance: This case highlights the complex nature of these tumors, which often bring challenges to the patients as well as treatment teams. The multi-disciplinary team approach is necessary to tailor the management plan for individual tumors. Although embolization is a safe procedure, careful attention and thoughtful anatomic knowledge regarding dangerous anastomosis are essential to avoid devastating complications. Complications occur due to encountered vessel anomalies and new anastomoses formed during the gluing and changes in hemodynamics.Keywords: stroke, embolization, MRI brain, cerebral angiogram
Procedia PDF Downloads 711174 Low-Density Lipoproteins Mediated Delivery of Paclitaxel and MRI Imaging Probes for Personalized Medicine Applications
Authors: Sahar Rakhshan, Simonetta Geninatti Crich, Diego Alberti, Rachele Stefania
Abstract:
The combination of imaging and therapeutic agents in the same smart nanoparticle is a promising option to perform a minimally invasive imaging guided therapy. In this study, Low density lipoproteins (LDL), one of the most attractive biodegradable and biocompatible nanoparticles, were used for the simultaneous delivery of Paclitaxel (PTX), a hydrophobic antitumour drug and an amphiphilic contrast agent, Gd-AAZTA-C17, in B16-F10 melanoma cell line. These cells overexpress LDL receptors, as assessed by Flow cytometry analysis. PTX and Gd-AAZTA-C17 loaded LDLs (LDL-PTX-Gd) have been prepared, characterized and their stability was assessed under 72 h incubation at 37 ◦C and compared to LDL loaded with Gd-AAZTA-C17 (LDL-Gd) and LDL-PTX. The cytotoxic effect of LDL-PTX-Gd was evaluated by MTT assay. The anti-tumour drug loaded into LDLs showed a significantly higher toxicity on B16-F10 cells with respect to the commercially available formulation Paclitaxel Kabi (PTX Kabi) used in clinical applications. It was possible to demonstrate a high uptake of LDL-Gd in B16-F10 cells. As a consequence of the high cell uptake, melanoma cells showed significantly high cytotoxic effect when incubated in the presence of PTX (LDL-PTX-Gd). Furthermore, B16-F10 have been used to perform Magnetic Resonance Imaging. By the analysis of the image signal intensity, it was possible to extrapolate the amount of internalized PTX indirectly by the decrease of relaxation times caused by Gd, proportional to its concentration. Finally, the treatment with PTX loaded LDL on B16-F10 tumour bearing mice resulted in a marked reduction of tumour growth compared to the administration of PTX Kabi alone. In conclusion, LDLs are selectively taken-up by tumour cells and can be successfully exploited for the selective delivery of Paclitaxel and imaging agents.Keywords: low density lipoprotein, melanoma cell lines, MRI, paclitaxel, personalized medicine application, theragnostic System
Procedia PDF Downloads 1251173 Space Weather and Earthquakes: A Case Study of Solar Flare X9.3 Class on September 6, 2017
Authors: Viktor Novikov, Yuri Ruzhin
Abstract:
The studies completed to-date on a relation of the Earth's seismicity and solar processes provide the fuzzy and contradictory results. For verification of an idea that solar flares can trigger earthquakes, we have analyzed a case of a powerful surge of solar flash activity early in September 2017 during approaching the minimum of 24th solar cycle was accompanied by significant disturbances of space weather. On September 6, 2017, a group of sunspots AR2673 generated a large solar flare of X9.3 class, the strongest flare over the past twelve years. Its explosion produced a coronal mass ejection partially directed towards the Earth. We carried out a statistical analysis of the catalogs of earthquakes USGS and EMSC for determination of the effect of solar flares on global seismic activity. New evidence of earthquake triggering due to the Sun-Earth interaction has been demonstrated by simple comparison of behavior of Earth's seismicity before and after the strong solar flare. The global number of earthquakes with magnitude of 2.5 to 5.5 within 11 days after the solar flare has increased by 30 to 100%. A possibility of electric/electromagnetic triggering of earthquake due to space weather disturbances is supported by results of field and laboratory studies, where the earthquakes (both natural and laboratory) were initiated by injection of electrical current into the Earth crust. For the specific case of artificial electric earthquake triggering the current density at a depth of earthquake, sources are comparable with estimations of a density of telluric currents induced by variation of space weather conditions due to solar flares. Acknowledgment: The work was supported by RFBR grant No. 18-05-00255.Keywords: solar flare, earthquake activity, earthquake triggering, solar-terrestrial relations
Procedia PDF Downloads 1431172 Effect of a GABA/5-HTP Mixture on Behavioral Changes and Biomodulation in an Invertebrate Model
Authors: Kyungae Jo, Eun Young Kim, Byungsoo Shin, Kwang Soon Shin, Hyung Joo Suh
Abstract:
Gamma-aminobutyric acid (GABA) and 5-hydroxytryptophan (5-HTP) are amino acids of digested nutrients or food ingredients and these can possibly be utilized as non-pharmacologic treatment for sleep disorder. We previously investigated the GABA/5-HTP mixture is the principal concept of sleep-promoting and activity-repressing management in nervous system of D. melanogaster. Two experiments in this study were designed to evaluate sleep-promoting effect of GABA/5-HTP mixture, to clarify the possible ratio of sleep-promoting action in the Drosophila invertebrate model system. Behavioral assays were applied to investigate distance traveled, velocity, movement, mobility, turn angle, angular velocity and meander of two amino acids and GABA/5-HTP mixture with caffeine treated flies. In addition, differentially expressed gene (DEG) analyses from next generation sequencing (NGS) were applied to investigate the signaling pathway and functional interaction network of GABA/5-HTP mixture administration. GABA/5-HTP mixture resulted in significant differences between groups related to behavior (p < 0.01) and significantly induced locomotor activity in the awake model (p < 0.05). As a result of the sequencing, the molecular function of various genes has relationship with motor activity and biological regulation. These results showed that GABA/5-HTP mixture administration significantly involved the inhibition of motor behavior. In this regard, we successfully demonstrated that using a GABA/5-HTP mixture modulates locomotor activity to a greater extent than single administration of each amino acid, and that this modulation occurs via the neuronal system, neurotransmitter release cycle and transmission across chemical synapses.Keywords: sleep, γ-aminobutyric acid, 5-hydroxytryptophan, Drosophila melanogaster
Procedia PDF Downloads 309