Search results for: fast drying traffic marking paint
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3631

Search results for: fast drying traffic marking paint

301 Nuclear Materials and Nuclear Security in India: A Brief Overview

Authors: Debalina Ghoshal

Abstract:

Nuclear security is the ‘prevention and detection of, and response to unauthorised removal, sabotage, unauthorised access, illegal transfer or other malicious acts involving nuclear or radiological material or their associated facilities.’ Ever since the end of Cold War, nuclear materials security has remained a concern for global security. However, with the increase in terrorist attacks not just in India especially, security of nuclear materials remains a priority. Therefore, India has made continued efforts to tighten its security on nuclear materials to prevent nuclear theft and radiological terrorism. Nuclear security is different from nuclear safety. Physical security is also a serious concern and India had been careful of the physical security of its nuclear materials. This is more so important since India is expanding its nuclear power capability to generate electricity for economic development. As India targets 60,000 MW of electricity production by 2030, it has a range of reactors to help it achieve its goal. These include indigenous Pressurised Heavy Water Reactors, now standardized at 700 MW per reactor Light Water Reactors, and the indigenous Fast Breeder Reactors that can generate more fuel for the future and enable the country to utilise its abundant thorium resource. Nuclear materials security can be enhanced through two important ways. One is through proliferation resistant technologies and diplomatic efforts to take non proliferation initiatives. The other is by developing technical means to prevent any leakage in nuclear materials in the hands of asymmetric organisations. New Delhi has already implemented IAEA Safeguards on their civilian nuclear installations. Moreover, the IAEA Additional Protocol has also been ratified by India in order to enhance its transparency of nuclear material and strengthen nuclear security. India is a party to the IAEA Conventions on Nuclear Safety and Security, and in particular the 1980 Convention on the Physical Protection of Nuclear Material and its amendment in 2005, Code of Conduct in Safety and Security of Radioactive Sources, 2006 which enables the country to provide for the highest international standards on nuclear and radiological safety and security. India's nuclear security approach is driven by five key components: Governance, Nuclear Security Practice and Culture, Institutions, Technology and International Cooperation. However, there is still scope for further improvements to strengthen nuclear materials and nuclear security. The NTI Report, ‘India’s improvement reflects its first contribution to the IAEA Nuclear Security Fund etc. in the future, India’s nuclear materials security conditions could be further improved by strengthening its laws and regulations for security and control of materials, particularly for control and accounting of materials, mitigating the insider threat, and for the physical security of materials during transport. India’s nuclear materials security conditions also remain adversely affected due to its continued increase in its quantities of nuclear material, and high levels of corruption among public officials.’ This paper would study briefly the progress made by India in nuclear and nuclear material security and the step ahead for India to further strengthen this.

Keywords: India, nuclear security, nuclear materials, non proliferation

Procedia PDF Downloads 346
300 Reading as Moral Afternoon Tea: An Empirical Study on the Compensation Effect between Literary Novel Reading and Readers’ Moral Motivation

Authors: Chong Jiang, Liang Zhao, Hua Jian, Xiaoguang Wang

Abstract:

The belief that there is a strong relationship between reading narrative and morality has generally become the basic assumption of scholars, philosophers, critics, and cultural critics. The virtuality constructed by literary novels inspires readers to regard the narrative as a thinking experiment, creating the distance between readers and events so that they can freely and morally experience the positions of different roles. Therefore, the virtual narrative combined with literary characteristics is always considered as a "moral laboratory." Well-established findings revealed that people show less lying and deceptive behaviors in the morning than in the afternoon, called the morning morality effect. As a limited self-regulation resource, morality will be constantly depleted with the change of time rhythm under the influence of the morning morality effect. It can also be compensated and restored in various ways, such as eating, sleeping, etc. As a common form of entertainment in modern society, literary novel reading gives people more virtual experience and emotional catharsis, just as a relaxing afternoon tea that helps people break away from fast-paced work, restore physical strength, and relieve stress in a short period of leisure. In this paper, inspired by the compensation control theory, we wonder whether reading literary novels in the digital environment could replenish a kind of spiritual energy for self-regulation to compensate for people's moral loss in the afternoon. Based on this assumption, we leverage the social annotation text content generated by readers in digital reading to represent the readers' reading attention. We then recognized the semantics and calculated the readers' moral motivation expressed in the annotations and investigated the fine-grained dynamics of the moral motivation changing in each time slot within 24 hours of a day. Comprehensively comparing the division of different time intervals, sufficient experiments showed that the moral motivation reflected in the annotations in the afternoon is significantly higher than that in the morning. The results robustly verified the hypothesis that reading compensates for moral motivation, which we called the moral afternoon tea effect. Moreover, we quantitatively identified that such moral compensation can last until 14:00 in the afternoon and 21:00 in the evening. In addition, it is interesting to find that the division of time intervals of different units impacts the identification of moral rhythms. Dividing the time intervals by four-hour time slot brings more insights of moral rhythms compared with that of three-hour and six-hour time slot.

Keywords: digital reading, social annotation, moral motivation, morning morality effect, control compensation

Procedia PDF Downloads 144
299 Landing Performance Improvement Using Genetic Algorithm for Electric Vertical Take Off and Landing Aircrafts

Authors: Willian C. De Brito, Hernan D. C. Munoz, Erlan V. C. Carvalho, Helder L. C. De Oliveira

Abstract:

In order to improve commute time for small distance trips and relieve large cities traffic, a new transport category has been the subject of research and new designs worldwide. The air taxi travel market promises to change the way people live and commute by using the concept of vehicles with the ability to take-off and land vertically and to provide passenger’s transport equivalent to a car, with mobility within large cities and between cities. Today’s civil air transport remains costly and accounts for 2% of the man-made CO₂ emissions. Taking advantage of this scenario, many companies have developed their own Vertical Take Off and Landing (VTOL) design, seeking to meet comfort, safety, low cost and flight time requirements in a sustainable way. Thus, the use of green power supplies, especially batteries, and fully electric power plants is the most common choice for these arising aircrafts. However, it is still a challenge finding a feasible way to handle with the use of batteries rather than conventional petroleum-based fuels. The batteries are heavy and have an energy density still below from those of gasoline, diesel or kerosene. Therefore, despite all the clear advantages, all electric aircrafts (AEA) still have low flight autonomy and high operational cost, since the batteries must be recharged or replaced. In this sense, this paper addresses a way to optimize the energy consumption in a typical mission of an aerial taxi aircraft. The approach and landing procedure was chosen to be the subject of an optimization genetic algorithm, while final programming can be adapted for take-off and flight level changes as well. A real tilt rotor aircraft with fully electric power plant data was used to fit the derived dynamic equations of motion. Although a tilt rotor design is used as a proof of concept, it is possible to change the optimization to be applied for other design concepts, even those with independent motors for hover and cruise flight phases. For a given trajectory, the best set of control variables are calculated to provide the time history response for aircraft´s attitude, rotors RPM and thrust direction (or vertical and horizontal thrust, for independent motors designs) that, if followed, results in the minimum electric power consumption through that landing path. Safety, comfort and design constraints are assumed to give representativeness to the solution. Results are highly dependent on these constraints. For the tested cases, performance improvement ranged from 5 to 10% changing initial airspeed, altitude, flight path angle, and attitude.

Keywords: air taxi travel, all electric aircraft, batteries, energy consumption, genetic algorithm, landing performance, optimization, performance improvement, tilt rotor, VTOL design

Procedia PDF Downloads 107
298 Innovative Fabric Integrated Thermal Storage Systems and Applications

Authors: Ahmed Elsayed, Andrew Shea, Nicolas Kelly, John Allison

Abstract:

In northern European climates, domestic space heating and hot water represents a significant proportion of total primary total primary energy use and meeting these demands from a national electricity grid network supplied by renewable energy sources provides an opportunity for a significant reduction in EU CO2 emissions. However, in order to adapt to the intermittent nature of renewable energy generation and to avoid co-incident peak electricity usage from consumers that may exceed current capacity, the demand for heat must be decoupled from its generation. Storage of heat within the fabric of dwellings for use some hours, or days, later provides a route to complete decoupling of demand from supply and facilitates the greatly increased use of renewable energy generation into a local or national electricity network. The integration of thermal energy storage into the building fabric for retrieval at a later time requires much evaluation of the many competing thermal, physical, and practical considerations such as the profile and magnitude of heat demand, the duration of storage, charging and discharging rate, storage media, space allocation, etc. In this paper, the authors report investigations of thermal storage in building fabric using concrete material and present an evaluation of several factors that impact upon performance including heating pipe layout, heating fluid flow velocity, storage geometry, thermo-physical material properties, and also present an investigation of alternative storage materials and alternative heat transfer fluids. Reducing the heating pipe spacing from 200 mm to 100 mm enhances the stored energy by 25% and high-performance Vacuum Insulation results in heat loss flux of less than 3 W/m2, compared to 22 W/m2 for the more conventional EPS insulation. Dense concrete achieved the greatest storage capacity, relative to medium and light-weight alternatives, although a material thickness of 100 mm required more than 5 hours to charge fully. Layers of 25 mm and 50 mm thickness can be charged in 2 hours, or less, facilitating a fast response that could, aggregated across multiple dwellings, provide significant and valuable reduction in demand from grid-generated electricity in expected periods of high demand and potentially eliminate the need for additional new generating capacity from conventional sources such as gas, coal, or nuclear.

Keywords: fabric integrated thermal storage, FITS, demand side management, energy storage, load shifting, renewable energy integration

Procedia PDF Downloads 165
297 Assessment of Physical Activity and Sun Exposure of Saudi Patients with Type 2 Diabetes Mellitus in Ramadan and Non-Ramadan Periods

Authors: Abdullah S. Alghamdi, Khaled Alghamdi, Richard O. Jenkins, Parvez I. Haris

Abstract:

Background: Physical activity is an important factor in the treatment and prevention of type 2 diabetes mellitus (T2DM). Reduction in HbA1c level, an important diabetes biomarker, was reported in patients who increased their daily physical activity. Although the ambient temperature was reported to be positively correlated to a negative impact on health and increase the incidences of diabetes, the exposure to bright sunlight was recently found to be associated with enhanced insulin sensitivity and improved beta-cell function. How Ramadan alters physical activity, and especially sunlight exposure, has not been adequately investigated. Aim: This study aimed to assess the physical activity and sun exposure of Saudis with T2DM over different periods (before, during, and after Ramadan) and related this to HbA1c levels. Methods: This study recruited 82 Saudis with T2DM, who chose to fast during Ramadan, from the Endocrine and Diabetic Centre of Al Iman General Hospital, Riyadh, Saudi Arabia. Ethical approvals for this study were obtained from De Montfort University and Saudi Ministry of Health. Physical activity and sun exposure were assessed by a self-administered questionnaire. Physical activity was estimated using the International Physical Activity Questionnaire (IPAQ), while the sun exposure was assessed by asking the patients about their hours per week of direct exposure to the sun, and daily hours spent outdoors. Blood samples were collected in each period for measuring HbA1c. Results: Low physical activity was observed in more than 60% of the patients, with no significant changes between periods. There were no significant variances between periods in the daily hours spent outdoors and the total number of weekly hours of direct exposure to the sun. The majority of patients reported only few hours of exposure to the sun (1h or less per week) and time spent outdoors (1h or less per day). The mean HbA1c significantly changed between periods (P = 0.001), with lowest level during Ramadan. There were significant differences in the mean HbA1c between the groups for the level of physical activity (P < 0.001), with significant lower mean HbA1c in the higher-level group. There were no significant variances in the mean of HbA1c between the groups for the daily hours spent outdoors. The mean HbA1c of the patients, who reported never in their total weekly hours of exposure to the sun, was significantly lower than the mean HbA1c of those who reported 1 hour or less (P = 0.001). Conclusion: Physical inactivity was prevalent among the study population with very little exposure to the sun or time spent outdoors. Higher level of physical activity was associated with lower mean HbA1c levels. Encouraging T2DM patients to achieve the recommended levels of physical activity may help them to obtain greater benefits of Ramadan fasting, such as reducing their HbA1c levels. The impact of low direct exposure to the sun and the time spent outdoors needs to be further investigated in both healthy and diabetic patients.

Keywords: diabetes, fasting, physical activity, sunlight, Ramadan

Procedia PDF Downloads 156
296 Structural Invertibility and Optimal Sensor Node Placement for Error and Input Reconstruction in Dynamic Systems

Authors: Maik Kschischo, Dominik Kahl, Philipp Wendland, Andreas Weber

Abstract:

Understanding and modelling of real-world complex dynamic systems in biology, engineering and other fields is often made difficult by incomplete knowledge about the interactions between systems states and by unknown disturbances to the system. In fact, most real-world dynamic networks are open systems receiving unknown inputs from their environment. To understand a system and to estimate the state dynamics, these inputs need to be reconstructed from output measurements. Reconstructing the input of a dynamic system from its measured outputs is an ill-posed problem if only a limited number of states is directly measurable. A first requirement for solving this problem is the invertibility of the input-output map. In our work, we exploit the fact that invertibility of a dynamic system is a structural property, which depends only on the network topology. Therefore, it is possible to check for invertibility using a structural invertibility algorithm which counts the number of node disjoint paths linking inputs and outputs. The algorithm is efficient enough, even for large networks up to a million nodes. To understand structural features influencing the invertibility of a complex dynamic network, we analyze synthetic and real networks using the structural invertibility algorithm. We find that invertibility largely depends on the degree distribution and that dense random networks are easier to invert than sparse inhomogeneous networks. We show that real networks are often very difficult to invert unless the sensor nodes are carefully chosen. To overcome this problem, we present a sensor node placement algorithm to achieve invertibility with a minimum set of measured states. This greedy algorithm is very fast and also guaranteed to find an optimal sensor node-set if it exists. Our results provide a practical approach to experimental design for open, dynamic systems. Since invertibility is a necessary condition for unknown input observers and data assimilation filters to work, it can be used as a preprocessing step to check, whether these input reconstruction algorithms can be successful. If not, we can suggest additional measurements providing sufficient information for input reconstruction. Invertibility is also important for systems design and model building. Dynamic models are always incomplete, and synthetic systems act in an environment, where they receive inputs or even attack signals from their exterior. Being able to monitor these inputs is an important design requirement, which can be achieved by our algorithms for invertibility analysis and sensor node placement.

Keywords: data-driven dynamic systems, inversion of dynamic systems, observability, experimental design, sensor node placement

Procedia PDF Downloads 146
295 Synthesis and Characterization of High-Aspect-Ratio Hematite Nanostructures for Solar Water Splitting

Authors: Paula Quiterio, Arlete Apolinario, Celia T. Sousa, Joao Azevedo, Paula Dias, Adelio Mendes, Joao P. Araujo

Abstract:

Nowadays one of the mankind's greatest challenges has been the supply of low-cost and environmentally friendly energy sources as an alternative to non-renewable fossil fuels. Hydrogen has been considered a promising solution, representing a clean and low-cost fuel. It can be produced directly from clean and abundant resources, such as sunlight and water, using photoelectrochemical cells (PECs), in a process that mimics the nature´s photosynthesis. Hematite (alpha-Fe2O3) has attracted considerable attention as a promising photoanode for solar water splitting, due to its high chemical stability, nontoxicity, availability and low band gap (2.2 eV), which allows reaching a high thermodynamic solar-to-hydrogen efficiency of 16.8 %. However, the main drawbacks of hematite such as the short hole diffusion length and the poor conductivity that lead to high electron-hole recombination result in significant PEC efficiency losses. One strategy to overcome these limitations and to increase the PEC efficiency is to use 1D nanostructures, such as nanotubes (NTs) and nanowires (NWs), which present high aspect ratios and large surface areas providing direct pathways for electron transport up to the charge collector and minimizing the recombination losses. In particular, due to the ultrathin walls of the NTs, the holes can reach the surface faster than in other nanostructures, representing a key factor for the NTs photoresponse. In this work, we prepared hematite NWs and NTs, respectively by hydrothermal process and electrochemical anodization. For hematite NWs growing, we studied the effect of variable hydrothermal conditions, different annealing temperatures and time, and the use of Ti and Sn dopants on the morphology and PEC performance. The crystalline phase characterization by X-ray diffraction was crucial to distinguish the formation of hematite and other iron oxide phases, alongside its effect on the photoanodes conductivity and consequent PEC efficiency. The conductivity of the as-prepared NWs is very low, in the order of 10-5 S cm-1, but after doping and annealing optimization it increased by a factor of 105. A high photocurrent density of 1.02 mA cm-2 at 1.45 VRHE was obtained under simulated sunlight, which is a very promising value for this kind of hematite nanostructures. The stability of the photoelectrodes was also tested, presenting good stability after several J-V measurements over time. The NTs, synthesized by fast anodizations with potentials ranging from 20-100 V, presented a linear growth of the NTs pore walls, with very low thicknesses from 10 - 18 nm. These preliminary results are also very promising for the use of hematite photoelectrodes on PEC hydrogen applications.

Keywords: hematite, nanotubes, nanowires, photoelectrochemical cells

Procedia PDF Downloads 224
294 Socio-Political Crisis in the North West and South West Regions of Cameroon and the Emergence of New Cultures

Authors: Doreen Mekunda

Abstract:

This paper is built on the premise that the current socio-political crisis in the two restive regions of Cameroon, though enveloped with destructive and devastating trends (effects) on both property and human lives, is not without its strengths and merits. It is incontestable that many cultures, to a greater extent, are going to be destroyed as people forcibly move from war-stricken habitats to non-violent places. Many cultural potentials, traditional shrines, artifacts, art, and crafts, etc., are unknowingly or knowingly disfigured, and many other ugly things will, by the end of the crisis, affect the cultures of these two regions under siege and of the receiving population. A plethora of other problems like the persecution of Internally Displaced Persons (IDPs) for being displaced and blamed for increased crime rates and the existence of cultural and ethnic differences that produce both inter-tribal and interpersonal conflicts and conflicts between communities will abound. However, there is the emergence of rapid literature, and other forms of cultural productions, whether written or oral, is visible, thereby precipitating a rich cultural diversity due to the coming together of a variety of cultures of both the IDPs and the receiving populations, rapid urbanization, improvement of health-related issues, the rebirth of indigenous cultural practices, the development of social and lingua-cultural competences, dependence on alternative religions, faith and spirituality. Even financial and economic dependence, though a burden to others by IDPs, has its own merits as it improves the living standards of the IDPs. To be able to obtain plausible results, cultural materialism, which is a literary theory that hinges on the empirical study of socio-cultural systems within a materialist infrastructure-super-structure framework, is employed together with the postcolonial theory. Postcolonial theory because the study deals with postcolonial experiences/tenets of migration, hybridity, ethnicity, indignity, language, double consciousness, migration, center/margin binaries, and identity, amongst others. The study reveals that the involuntary movement of persons from their habitual homes brings about movement in cultures, thus, the emergence of new cultures. The movement of people who hold fast to their cultural heritage can only influence new forms of literature, the development of new communication competences, the rise of alternative religion, faith and spirituality, the re-emergence of customary and traditional legal systems that might have been abandoned for the new judicial systems, and above all the revitalization of traditional health care systems.

Keywords: alternative religion, emergence, socio-political crisis, spirituality, lingua-cultural competences

Procedia PDF Downloads 169
293 The Effectiveness of an Occupational Therapy Metacognitive-Functional Intervention for the Improvement of Human Risk Factors of Bus Drivers

Authors: Navah Z. Ratzon, Rachel Shichrur

Abstract:

Background: Many studies have assessed and identified the risk factors of safe driving, but there is relatively little research-based evidence concerning the ability to improve the driving skills of drivers in general and in particular of bus drivers, who are defined as a population at risk. Accidents involving bus drivers can endanger dozens of passengers and cause high direct and indirect damages. Objective: To examine the effectiveness of a metacognitive-functional intervention program for the reduction of risk factors among professional drivers relative to a control group. Methods: The study examined 77 bus drivers working for a large public company in the center of the country, aged 27-69. Twenty-one drivers continued to the intervention stage; four of them dropped out before the end of the intervention. The intervention program we developed was based on previous driving models and the guiding occupational therapy practice framework model in Israel, while adjusting the model to the professional driving in public transportation and its particular risk factors. Treatment focused on raising awareness to safe driving risk factors identified at prescreening (ergonomic, perceptual-cognitive and on-road driving data), with reference to the difficulties that the driver raises and providing coping strategies. The intervention has been customized for each driver and included three sessions of two hours. The effectiveness of the intervention was tested using objective measures: In-Vehicle Data Recorders (IVDR) for monitoring natural driving data, traffic accident data before and after the intervention, and subjective measures (occupational performance questionnaire for bus drivers). Results: Statistical analysis found a significant difference between the degree of change in the rate of IVDR perilous events (t(17)=2.14, p=0.046), before and after the intervention. There was significant difference in the number of accidents per year before and after the intervention in the intervention group (t(17)=2.11, p=0.05), but no significant change in the control group. Subjective ratings of the level of performance and of satisfaction with performance improved in all areas tested following the intervention. The change in the ‘human factors/person’ field, was significant (performance : t=- 2.30, p=0.04; satisfaction with performance : t=-3.18, p=0.009). The change in the ‘driving occupation/tasks’ field, was not significant but showed a tendency toward significance (t=-1.94, p=0.07,). No significant differences were found in driving environment-related variables. Conclusions: The metacognitive-functional intervention significantly improved the objective and subjective measures of safety of bus drivers’ driving. These novel results highlight the potential contribution of occupational therapists, using metacognitive functional treatment, to preventing car accidents among the healthy drivers population and improving the well-being of these drivers. This study also enables familiarity with advanced technologies of IVDR systems and enriches the knowledge of occupational therapists in regards to using a wide variety of driving assessment tools and making the best practice decisions.

Keywords: bus drivers, IVDR, human risk factors, metacognitive-functional intervention

Procedia PDF Downloads 343
292 Promoting 21st Century Skills through Telecollaborative Learning

Authors: Saliha Ozcan

Abstract:

Technology has become an integral part of our lives, aiding individuals in accessing higher order competencies, such as global awareness, creativity, collaborative problem solving, and self-directed learning. Students need to acquire these competencies, often referred to as 21st century skills, in order to adapt to a fast changing world. Today, an ever-increasing number of schools are exploring how engagement through telecollaboration can support language learning and promote 21st century skill development in classrooms. However, little is known regarding how telecollaboration may influence the way students acquire 21st century skills. In this paper, we aim to shed light to the potential implications of telecollaborative practices in acquisition of 21st century skills. In our context, telecollaboration, which might be carried out in a variety of settings both synchronously or asynchronously, is considered as the process of communicating and working together with other people or groups from different locations through online digital tools or offline activities to co-produce a desired work output. The study presented here will describe and analyse the implementation of a telecollaborative project between two high school classes, one in Spain and the other in Sweden. The students in these classes were asked to carry out some joint activities, including creating an online platform, aimed at raising awareness of the situation of the Syrian refugees. We conduct a qualitative study in order to explore how language, culture, communication, and technology merge into the co-construction of knowledge, as well as supporting the attainment of the 21st century skills needed for network-mediated communication. To this end, we collected a significant amount of audio-visual data, including video recordings of classroom interaction and external Skype meetings. By analysing this data, we verify whether the initial pedagogical design and intended objectives of the telecollaborative project coincide with what emerges from the actual implementation of the tasks. Our findings indicate that, as well as planned activities, unplanned classroom interactions may lead to acquisition of certain 21st century skills, such as collaborative problem solving and self-directed learning. This work is part of a wider project (KONECT, EDU2013-43932-P; Spanish Ministry of Economy and Finance), which aims to explore innovative, cross-competency based teaching that can address the current gaps between today’s educational practices and the needs of informed citizens in tomorrow’s interconnected, globalised world.

Keywords: 21st century skills, telecollaboration, language learning, network mediated communication

Procedia PDF Downloads 123
291 Web and Smart Phone-based Platform Combining Artificial Intelligence and Satellite Remote Sensing Data to Geoenable Villages for Crop Health Monitoring

Authors: Siddhartha Khare, Nitish Kr Boro, Omm Animesh Mishra

Abstract:

Recent food price hikes may signal the end of an era of predictable global grain crop plenty due to climate change, population expansion, and dietary changes. Food consumption will treble in 20 years, requiring enormous production expenditures. Climate and the atmosphere changed owing to rainfall and seasonal cycles in the past decade. India's tropical agricultural relies on evapotranspiration and monsoons. In places with limited resources, the global environmental change affects agricultural productivity and farmers' capacity to adjust to changing moisture patterns. Motivated by these difficulties, satellite remote sensing might be combined with near-surface imaging data (smartphones, UAVs, and PhenoCams) to enable phenological monitoring and fast evaluations of field-level consequences of extreme weather events on smallholder agriculture output. To accomplish this technique, we must digitally map all communities agricultural boundaries and crop kinds. With the improvement of satellite remote sensing technologies, a geo-referenced database may be created for rural Indian agriculture fields. Using AI, we can design digital agricultural solutions for individual farms. Main objective is to Geo-enable each farm along with their seasonal crop information by combining Artificial Intelligence (AI) with satellite and near-surface data and then prepare long term crop monitoring through in-depth field analysis and scanning of fields with satellite derived vegetation indices. We developed an AI based algorithm to understand the timelapse based growth of vegetation using PhenoCam or Smartphone based images. We developed an android platform where user can collect images of their fields based on the android application. These images will be sent to our local server, and then further AI based processing will be done at our server. We are creating digital boundaries of individual farms and connecting these farms with our smart phone application to collect information about farmers and their crops in each season. We are extracting satellite-based information for each farm from Google earth engine APIs and merging this data with our data of tested crops from our app according to their farm’s locations and create a database which will provide the data of quality of crops from their location.

Keywords: artificial intelligence, satellite remote sensing, crop monitoring, android and web application

Procedia PDF Downloads 94
290 First-Trimester Screening of Preeclampsia in a Routine Care

Authors: Tamar Grdzelishvili, Zaza Sinauridze

Abstract:

Introduction: Preeclampsia is a complication of the second trimester of pregnancy, which is characterized by high morbidity and multiorgan damage. Many complex pathogenic mechanisms are now implicated to be responsible for this disease (1). Preeclampsia is one of the leading causes of maternal mortality worldwide. Statistics are enough to convince you of the seriousness of this pathology: about 100,000 women die of preeclampsia every year. It occurs in 3-14% (varies significantly depending on racial origin or ethnicity and geographical region) of pregnant women, in 75% of cases - in a mild form, and in 25% - in a severe form. During severe pre-eclampsia-eclampsia, perinatal mortality increases by 5 times and stillbirth by 9.6 times. Considering that the only way to treat the disease is to end the pregnancy, the main thing is timely diagnosis and prevention of the disease. Identification of high-risk pregnant women for PE and giving prophylaxis would reduce the incidence of preterm PE. First-trimester screening model developed by the Fetal Medicine Foundation (FMF), which uses the Bayes-theorem to combine maternal characteristics and medical history together with measurements of mean arterial pressure, uterine artery pulsatility index, and serum placental growth factor, has been proven to be effective and have superior screening performance to that of traditional risk factor-based approach for the prediction of PE (2) Methods: Retrospective single center screening study. The study population consisted of women from the Tbilisi maternity hospital “Pineo medical ecosystem” who met the following criteria: they spoke Georgian, English, or Russian and agreed to participate in the study after discussing informed consent and answering questions. Prior to the study, the informed consent forms approved by the Institutional Review Board were obtained from the study subjects. Early assessment of preeclampsia was performed between 11-13 weeks of pregnancy. The following were evaluated: anamnesis, dopplerography of the uterine artery, mean arterial blood pressure, and biochemical parameter: Pregnancy-associated plasma protein A (PAPP-A). Individual risk assessment was performed with performed by Fast Screen 3.0 software ThermoFisher scientific. Results: A total of 513 women were recruited and through the study, 51 women were diagnosed with preeclampsia (34.5% in the pregnant women with high risk, 6.5% in the pregnant women with low risk; P<0.000 1). Conclusions: First-trimester screening combining maternal factors with uterine artery Doppler, blood pressure, and pregnancy-associated plasma protein-A is useful to predict PE in a routine care setting. More patient studies are needed for final conclusions. The research is still ongoing.

Keywords: first-trimester, preeclampsia, screening, pregnancy-associated plasma protein

Procedia PDF Downloads 73
289 Industrial Hemp Agronomy and Fibre Value Chain in Pakistan: Current Progress, Challenges, and Prospects

Authors: Saddam Hussain, Ghadeer Mohsen Albadrani

Abstract:

Pakistan is one of the most vulnerable countries to climate change. Being a country where 23% of the country’s GDP relies on agriculture, this is a serious cause of concern. Introducing industrial hemp in Pakistan can help build climate resilience in the agricultural sector of the country, as hemp has recently emerged as a sustainable, eco-friendly, resource-efficient, and climate-resilient crop globally. Hemp has the potential to absorb huge amounts of CO₂, nourish the soil, and be used to create various biodegradable and eco-friendly products. Hemp is twice as effective as trees at absorbing and locking up carbon, with 1 hectare (2.5 acres) of hemp reckoned to absorb 8 to 22 tonnes of CO₂ a year, more than any woodland. Along with its high carbon-sequestration ability, it produces higher biomass and can be successfully grown as a cover crop. Hemp can grow in almost all soil conditions and does not require pesticides. It has fast-growing qualities and needs only 120 days to be ready for harvest. Compared with cotton, hemp requires 50% less water to grow and can produce three times higher fiber yield with a lower ecological footprint. Recently, the Government of Pakistan has allowed the cultivation of industrial hemp for industrial and medicinal purposes, making it possible for hemp to be reinserted into the country’s economy. Pakistan’s agro-climatic and edaphic conditions are well-suitable to produce industrial hemp, and its cultivation can bring economic benefits to the country. Pakistan can enter global markets as a new exporter of hemp products. The production of hemp in Pakistan can be most exciting to the workforce, especially for farmers participating in hemp markets. The minimum production cost of hemp makes it affordable to small holding farmers, especially those who need their cropping system to be as highly sustainable as possible. Dr. Saddam Hussain is leading the first pilot project of Industrial Hemp in Pakistan. In the past three years, he has been able to recruit high-impact research grants on industrial hemp as Principal Investigator. He has already screened the non-toxic hemp genotypes, tested the adaptability of exotic material in various agroecological conditions, formulated the production agronomy, and successfully developed the complete value chain. He has developed prototypes (fabric, denim, knitwear) using hemp fibre in collaboration with industrial partners and has optimized the indigenous fibre processing techniques. In this lecture, Dr. Hussain will talk on hemp agronomy and its complete fibre value chain. He will discuss the current progress, and will highlight the major challenges and future research direction on hemp research.

Keywords: industrial hemp, agricultural sustainability, agronomic evaluation, hemp value chain

Procedia PDF Downloads 72
288 Fast-Tracking University Education for Youth Employment: Empirical Evidence from University Graduates in Rwanda

Authors: Fred Alinda, Marjorie Negesa, Gerald Karyeija

Abstract:

Like elsewhere in the world, youth unemployment remains a big problem more so to the most educated youth and female. In Rwanda, unemployment is estimated at 13.2% among youth graduates compared to 10.9% and 2.6 among secondary and primary graduates respectively. Though empirical evidence elsewhere associate youth unemployment with education level, relevance of skills and access to business support opportunities, mixed evidence still exist on the significance of these factors to youth employment. As youth employment strategies in countries like Rwanda continue to recognize the potential role university education can play to enhance employment, there is a need to understand the catalysts or barriers. This paper, therefore, draws empirical evidence from a survey on the influence of education qualification, skills relevance and access to business support opportunities on employment of the youth university graduates in Masaka sector, Rwanda. The analysis tested four hypotheses; access to university education significantly affects youth employment, Relevance of university education significantly contributes to youth employment; access to business support opportunities significantly contributes to youth employment, and significant gender differences exist in the employment of youth university graduates. A cross-section survey was used in lieu of the need to explore the prevailing status of youth employment and contributing factors across the sector. A questionnaire was used to collect data on a large sample of 269 youth to allow statistical analysis. This was beefed up with qualitative views of leaders and technical officials in the sector. The youth University graduates were selected using simple random sampling while the leaders and technical officials were selected purposively. Percentages were used to describe respondents in line with the variables under while a regression model for youth employment was fitted to determine the significant factors. The model results indicated a significant influence (p<0.05) of gender, education level and access to business support opportunities on employment of youth university graduates. This finding was also affirmed by the qualitative views of key informants. Qualitative views pointed to the fact that university education generally equipped the youth with skills that enabled their transition into employment mainly for a salary or wage. The skills were, however, deficient in technical and practical aspects. In addition, the youth generally lacked limited access to business support opportunities particularly guarantees for loans, business advisory, and grants for business as well as training in business skills that would help them gain salaried employment or transit into self-employment. The study findings bear an implication on the strategy for catalyzing youth employment through university education. The findings imply that university education should be embraced but with greater emphasis on or supplementation with specialized training in practical and technical skills as well as extending business support opportunities to the youth. This will accelerate the contribution of university education to youth employment.

Keywords: education, employment, self-employment, youth

Procedia PDF Downloads 247
287 Graphic Narratives: Representations of Refugeehood in the Form of Illustration

Authors: Pauline Blanchet

Abstract:

In a world where images are a prominent part of our daily lives and a way of absorbing information, the analysis of the representation of migration narratives is vital. This thesis raises questions concerning the power of illustrations, drawings and visual culture in order to represent the migration narratives in the age of Instagram. The rise of graphic novels and comics has come about in the last fifteen years, specifically regarding contemporary authors engaging with complex social issues such as migration and refugeehood. Due to this, refugee subjects are often in these narratives, whether they are autobiographical stories or whether the subject is included in the creative process. Growth in discourse around migration has been present in other art forms; in 2018, there has been dedicated exhibitions around migration such as Tania Bruguera at the TATE (2018-2019), ‘Journeys Drawn’ at the House of Illustration (2018-2019) and dedicated film festivals (2018; the Migration Film Festival), which have shown the recent considerations of using the arts as a medium of expression regarding themes of refugeehood and migration. Graphic visuals are fast becoming a key instrument when representing migration, and the central thesis of this paper is to show the strength and limitations of this form as well the methodology used by the actors in the production process. Recent works which have been released in the last ten years have not being analysed in the same context as previous graphic novels such as Palestine and Persepolis. While a lot of research has been done on the mass media portrayals of refugees in photography and journalism, there is a lack of literature on the representation with illustrations. There is little research about the accessibility of graphic novels such as where they can be found and what the intentions are when writing the novels. It is interesting to see why these authors, NGOs, and curators have decided to highlight these migrant narratives in a time when the mainstream media has done extensive coverage on the ‘refugee crisis’. Using primary data by doing one on one interviews with artists, curators, and NGOs, this paper investigates the efficiency of graphic novels for depicting refugee stories as a viable alternative to other mass medium forms. The paper has been divided into two distinct sections. The first part is concerned with the form of the comic itself and how it either limits or strengthens the representation of migrant narratives. This will involve analysing the layered and complex forms that comics allow such as multimedia pieces, use of photography and forms of symbolism. It will also show how the illustration allows for anonymity of refugees, the empathetic aspect of the form and how the history of the graphic novel form has allowed space for positive representations of women in the last decade. The second section will analyse the creative and methodological process which takes place by the actors and their involvement with the production of the works.

Keywords: graphic novel, refugee, communication, media, migration

Procedia PDF Downloads 110
286 Steel Concrete Composite Bridge: Modelling Approach and Analysis

Authors: Kaviyarasan D., Satish Kumar S. R.

Abstract:

India being vast in area and population with great scope of international business, roadways and railways network connection within the country is expected to have a big growth. There are numerous rail-cum-road bridges constructed across many major rivers in India and few are getting very old. So there is more possibility of repairing or coming up with such new bridges in India. Analysis and design of such bridges are practiced through conventional procedure and end up with heavy and uneconomical sections. Such heavy class steel bridges when subjected to high seismic shaking has more chance to fail by stability because the members are too much rigid and stocky rather than being flexible to dissipate the energy. This work is the collective study of the researches done in the truss bridge and steel concrete composite truss bridges presenting the method of analysis, tools for numerical and analytical modeling which evaluates its seismic behaviour and collapse mechanisms. To ascertain the inelastic and nonlinear behaviour of the structure, generally at research level static pushover analysis is adopted. Though the static pushover analysis is now extensively used for the framed steel and concrete buildings to study its lateral action behaviour, those findings by pushover analysis done for the buildings cannot directly be used for the bridges as such, because the bridges have completely a different performance requirement, behaviour and typology as compared to that of the buildings. Long span steel bridges are mostly the truss bridges. Truss bridges being formed by many members and connections, the failure of the system does not happen suddenly with single event or failure of one member. Failure usually initiates from one member and progresses gradually to the next member and so on when subjected to further loading. This kind of progressive collapse of the truss bridge structure is dependent on many factors, in which the live load distribution and span to length ratio are most significant. The ultimate collapse is anyhow by the buckling of the compression members only. For regular bridges, single step pushover analysis gives results closer to that of the non-linear dynamic analysis. But for a complicated bridge like heavy class steel bridge or the skewed bridges or complicated dynamic behaviour bridges, nonlinear analysis capturing the progressive yielding and collapse pattern is mandatory. With the knowledge of the postelastic behaviour of the bridge and advancements in the computational facility, the current level of analysis and design of bridges has moved to state of ascertaining the performance levels of the bridges based on the damage caused by seismic shaking. This is because the buildings performance levels deals much with the life safety and collapse prevention levels, whereas the bridges mostly deal with the extent damages and how quick it can be repaired with or without disturbing the traffic after a strong earthquake event. The paper would compile the wide spectrum of modeling to analysis of the steel concrete composite truss bridges in general.

Keywords: bridge engineering, performance based design of steel truss bridge, seismic design of composite bridge, steel-concrete composite bridge

Procedia PDF Downloads 181
285 Application of Unstructured Mesh Modeling in Evolving SGE of an Airport at the Confluence of Multiple Rivers in a Macro Tidal Region

Authors: A. A. Purohit, M. M. Vaidya, M. D. Kudale

Abstract:

Among the various developing countries in the world like China, Malaysia, Korea etc., India is also developing its infrastructures in the form of Road/Rail/Airports and Waterborne facilities at an exponential rate. Mumbai, the financial epicenter of India is overcrowded and to relieve the pressure of congestion, Navi Mumbai suburb is being developed on the east bank of Thane creek near Mumbai. The government due to limited space at existing Mumbai Airports (domestic and international) to cater for the future demand of airborne traffic, proposes to build a new international airport near Panvel at Navi Mumbai. Considering the precedence of extreme rainfall on 26th July 2005 and nearby townships being in a low-lying area, wherein new airport is proposed, it is inevitable to study this complex confluence area from a hydrodynamic consideration under both tidal and extreme events (predicted discharge hydrographs), to avoid inundation of the surrounding due to the proposed airport reclamation (1160 hectares) and to determine the safe grade elevation (SGE). The model studies conducted using the application of unstructured mesh to simulate the Panvel estuarine area (93 km2), calibration, validation of a model for hydraulic field measurements and determine the maxima water levels around the airport for various extreme hydrodynamic events, namely the simultaneous occurrence of highest tide from the Arabian Sea and peak flood discharges (Probable Maximum Precipitation and 26th July 2005) from five rivers, the Gadhi, Kalundri, Taloja, Kasadi and Ulwe, meeting at the proposed airport area revealed that: (a) The Ulwe River flowing beneath the proposed airport needs to be diverted. The 120m wide proposed Ulwe diversion channel having a wider base width of 200 m at SH-54 Bridge on the Ulwe River along with the removal of the existing bund in Moha Creek is inevitable to keep the SGE of the airport to a minimum. (b) The clear waterway of 80 m at SH-54 Bridge (Ulwe River) and 120 m at Amra Marg Bridge near Moha Creek is also essential for the Ulwe diversion and (c) The river bank protection works on the right bank of Gadhi River between the NH-4B and SH-54 bridges as well as upstream of the Ulwe River diversion channel are essential to avoid inundation of low lying areas. The maxima water levels predicted around the airport keeps SGE to a minimum of 11m with respect to Chart datum of Ulwe Bundar and thus development is not only technologically-economically feasible but also sustainable. The unstructured mesh modeling is a promising tool to simulate complex extreme hydrodynamic events and provides a reliable solution to evolve optimal SGE of airport.

Keywords: airport, hydrodynamics, safe grade elevation, tides

Procedia PDF Downloads 257
284 A Comprehensive Finite Element Model for Incremental Launching of Bridges: Optimizing Construction and Design

Authors: Mohammad Bagher Anvari, Arman Shojaei

Abstract:

Incremental launching, a widely adopted bridge erection technique, offers numerous advantages for bridge designers. However, accurately simulating and modeling the dynamic behavior of the bridge during each step of the launching process proves to be tedious and time-consuming. The perpetual variation of internal forces within the deck during construction stages adds complexity, exacerbated further by considerations of other load cases, such as support settlements and temperature effects. As a result, there is an urgent need for a reliable, simple, economical, and fast algorithmic solution to model bridge construction stages effectively. This paper presents a novel Finite Element (FE) model that focuses on studying the static behavior of bridges during the launching process. Additionally, a simple method is introduced to normalize all quantities in the problem. The new FE model overcomes the limitations of previous models, enabling the simulation of all stages of launching, which conventional models fail to achieve due to underlying assumptions. By leveraging the results obtained from the new FE model, this study proposes solutions to improve the accuracy of conventional models, particularly for the initial stages of bridge construction that have been neglected in previous research. The research highlights the critical role played by the first span of the bridge during the initial stages, a factor often overlooked in existing studies. Furthermore, a new and simplified model termed the "semi-infinite beam" model, is developed to address this oversight. By utilizing this model alongside a simple optimization approach, optimal values for launching nose specifications are derived. The practical applications of this study extend to optimizing the nose-deck system of incrementally launched bridges, providing valuable insights for practical usage. In conclusion, this paper introduces a comprehensive Finite Element model for studying the static behavior of bridges during incremental launching. The proposed model addresses limitations found in previous approaches and offers practical solutions to enhance accuracy. The study emphasizes the importance of considering the initial stages and introduces the "semi-infinite beam" model. Through the developed model and optimization approach, optimal specifications for launching nose configurations are determined. This research holds significant practical implications and contributes to the optimization of incrementally launched bridges, benefiting both the construction industry and bridge designers.

Keywords: incremental launching, bridge construction, finite element model, optimization

Procedia PDF Downloads 88
283 Oxalate Method for Assessing the Electrochemical Surface Area for Ni-Based Nanoelectrodes Used in Formaldehyde Sensing Applications

Authors: S. Trafela, X. Xua, K. Zuzek Rozmana

Abstract:

In this study, we used an accurate and precise method to measure the electrochemically active surface areas (Aecsa) of nickel electrodes. Calculated Aecsa is really important for the evaluation of an electro-catalyst’s activity in electrochemical reaction of different organic compounds. The method involves the electrochemical formation of Ni(OH)₂ and NiOOH in the presence of adsorbed oxalate in alkaline media. The studies were carried out using cyclic voltammetry with polycrystalline nickel as a reference material and electrodeposited nickel nanowires, homogeneous and heterogeneous nickel films. From cyclic voltammograms, the charge (Q) values for the formation of Ni(OH)₂ and NiOOH surface oxides were calculated under various conditions. At sufficiently fast potential scan rates (200 mV s⁻¹), the adsorbed oxalate limits the growth of the surface hydroxides to a monolayer. Although the Ni(OH)₂/NiOOH oxidation peak overlaps with the oxygen evolution reaction, in the reverse scan, the NiOOH/ Ni(OH)₂ reduction peak is well-separated from other electrochemical processes and can be easily integrated. The values of these integrals were used to correlate experimentally measured charge density with an electrochemically active surface layer. The Aecsa of the nickel nanowires, homogeneous and heterogeneous nickel films were calculated to be Aecsa-NiNWs = 4.2066 ± 0.0472 cm², Aecsa-homNi = 1.7175 ± 0.0503 cm² and Aecsa-hetNi = 2.1862 ± 0.0154 cm². These valuable results were expanded and used in electrochemical studies of formaldehyde oxidation. As mentioned nickel nanowires, heterogeneous and homogeneous nickel films were used as simple and efficient sensor for formaldehyde detection. For this purpose, electrodeposited nickel electrodes were modified in 0.1 mol L⁻¹ solution of KOH in order to expect electrochemical activity towards formaldehyde. The investigation of the electrochemical behavior of formaldehyde oxidation in 0.1 mol L⁻¹ NaOH solution at the surface of modified nickel nanowires, homogeneous and heterogeneous nickel films were carried out by means of electrochemical techniques such as cyclic voltammetric and chronoamperometric methods. From investigations of effect of different formaldehyde concentrations (from 0.001 to 0.1 mol L⁻¹) on electrochemical signal - current we provided catalysis mechanism of formaldehyde oxidation, detection limit and sensitivity of nickel electrodes. The results indicated that nickel electrodes participate directly in the electrocatalytic oxidation of formaldehyde. In the overall reaction, formaldehyde in alkaline aqueous solution exists predominantly in form of CH₂(OH)O⁻, which is oxidized to CH₂(O)O⁻. Taking into account the determined (Aecsa) values we have been able to calculate the sensitivities: 7 mA mol L⁻¹ cm⁻² for nickel nanowires, 3.5 mA mol L⁻¹ cm⁻² for heterogeneous nickel film and 2 mA mol L⁻¹ cm⁻² for heterogeneous nickel film. The detection limit was 0.2 mM for nickel nanowires, 0.5 mM for porous Ni film and 0.8 mM for homogeneous Ni film. All of these results make nickel electrodes capable for further applications.

Keywords: electrochemically active surface areas, nickel electrodes, formaldehyde, electrocatalytic oxidation

Procedia PDF Downloads 155
282 Numerical Investigation on Transient Heat Conduction through Brine-Spongy Ice

Authors: S. R. Dehghani, Y. S. Muzychka, G. F. Naterer

Abstract:

The ice accretion of salt water on cold substrates creates brine-spongy ice. This type of ice is a mixture of pure ice and liquid brine. A real case of creation of this type of ice is superstructure icing which occurs on marine vessels and offshore structures in cold and harsh conditions. Transient heat transfer through this medium causes phase changes between brine pockets and pure ice. Salt rejection during the process of transient heat conduction increases the salinity of brine pockets to reach a local equilibrium state. In this process the only effect of passing heat through the medium is not changing the sensible heat of the ice and brine pockets; latent heat plays an important role and affects the mechanism of heat transfer. In this study, a new analytical model for evaluating heat transfer through brine-spongy ice is suggested. This model considers heat transfer and partial solidification and melting together. Properties of brine-spongy ice are obtained using properties of liquid brine and pure ice. A numerical solution using Method of Lines discretizes the medium to reach a set of ordinary differential equations. Boundary conditions are chosen using one of the applicable cases of this type of ice; one side is considered as a thermally isolated surface, and the other side is assumed to be suddenly affected by a constant temperature boundary. All cases are evaluated in temperatures between -20 C and the freezing point of brine-spongy ice. Solutions are conducted using different salinities from 5 to 60 ppt. Time steps and space intervals are chosen properly to maintain the most stable and fast solution. Variation of temperature, volume fraction of brine and brine salinity versus time are the most important outputs of this study. Results show that transient heat conduction through brine-spongy ice can create a various range of salinity of brine pockets from the initial salinity to that of 180 ppt. The rate of variation of temperature is found to be slower for high salinity cases. The maximum rate of heat transfer occurs at the start of the simulation. This rate decreases as time passes. Brine pockets are smaller at portions closer to the colder side than that of the warmer side. A the start of the solution, the numerical solution tends to increase instabilities. This is because of sharp variation of temperature at the start of the process. Changing the intervals improves the unstable situation. The analytical model using a numerical scheme is capable of predicting thermal behavior of brine spongy ice. This model and numerical solutions are important for modeling the process of freezing of salt water and ice accretion on cold structures.

Keywords: method of lines, brine-spongy ice, heat conduction, salt water

Procedia PDF Downloads 213
281 Evaluating the Teaching and Learning Value of Tablets

Authors: Willem J. A. Louw

Abstract:

The wave of new advanced computing technology that has been developed during the recent past has significantly changed the way we communicate, collaborate and collect information. It has created a new technology environment and paradigm in which our children and students grow-up and this impacts on their learning. Research confirmed that Generation Y students have a preference for learning in the new technology environment. The challenge or question is: How do we adjust our teaching and learning to make the most of these changes. The complexity of effective and efficient teaching and learning must not be underestimated and changes must be preceded by proper objective research to prevent any haphazard developments that could do more harm than benefit. A blended learning approach has been used in the Forestry department for a few numbers of years including the use of electronic-peer assisted learning (e-pal) in a fixed-computer set-up within a learning management system environment. It was decided to extend the investigation and do some exploratory research by using a range of different Tablet devices. For this purpose, learning activities or assignments were designed to cover aspects of communication, collaboration and collection of information. The Moodle learning management system was used to present normal module information, to communicate with students and for feedback and data collection. Student feedback was collected by using an online questionnaire and informal discussions. The research project was implemented in 2013, 2014 and 2015 amongst first and third-year students doing a forestry three-year technical tertiary qualification in commercial plantation management. In general, more than 80% of the students alluded to that the device was very useful in their learning environment while the rest indicated that the devices were not very useful. More than ninety percent of the students acknowledged that they would like to continue using the devices for all of their modules whilst the rest alluded to functioning efficiently without the devices. Results indicated that information collection (access to resources) was rated the highest advantageous factor followed by communication and collaboration. The main general advantages of using Tablets were listed by the students as being mobility (portability), 24/7 access to learning material and information of any kind on a user friendly device in a Wi-Fi environment, fast computing process speeds, saving time, effort and airtime through skyping and e-mail, and use of various applications. Ownership of the device is a critical factor while the risk was identified as a major potential constraint. Significant differences were reported between the different types and quality of Tablets. The preferred types are those with a bigger screen and the ones with overall better functionality and quality features. Tablets significantly increase the collaboration, communication and information collection needs of the students. It does, however, not replace the need of a computer/laptop because of limited storage and computation capacity, small screen size and inefficient typing.

Keywords: tablets, teaching, blended learning, tablet quality

Procedia PDF Downloads 245
280 Research on Internet Attention of Tourism and Marketing Strategy in Northeast Sichuan Economic Zone in China Based on Baidu Index

Authors: Chuanqiao Zheng, Wei Zeng, Haozhen Lin

Abstract:

As of March 2020, the number of Chinese netizens has reached 904 million. The proportion of Internet users accessing the Internet through mobile phones is as high as 99.3%. Under the background of 'Internet +', tourists have a stronger sense of independence in the choice of tourism destinations and tourism products. Tourists are more inclined to learn about the relevant information on tourism destinations and other tourists' evaluations of tourist products through the Internet. The search engine, as an integrated platform that contains a wealth of information, is highly valuable to the analysis of the characteristics of the Internet attention given to various tourism destinations, through big data mining and analysis. This article uses the Baidu Index as the data source, which is one of the products of Baidu Search. The Baidu Index is based on big data, which collects and shares the search results of a large number of Internet users on the Baidu search engine. The big data used in this article includes search index, demand map, population profile, etc. The main research methods used are: (1) based on the search index, analyzing the Internet attention given to the tourism in five cities in Northeast Sichuan at different times, so as to obtain the overall trend and individual characteristics of tourism development in the region; (2) based on the demand map and the population profile, analyzing the demographic characteristics and market positioning of the tourist groups in these cities to understand the characteristics and needs of the target groups; (3) correlating the Internet attention data with the permanent population of each province in China in the corresponding to construct the Boston matrix of the Internet attention rate of the Northeast Sichuan tourism, obtain the tourism target markets, and then propose development strategies for different markets. The study has found that: a) the Internet attention given to the tourism in the region can be categorized into tourist off-season and peak season; the Internet attention given to tourism in different cities is quite different. b) tourists look for information including tour guide information, ticket information, traffic information, weather information, and information on the competing tourism cities; with regard to the population profile, the main group of potential tourists searching for the keywords of tourism in the five prefecture-level cities in Northeast Sichuan are youth. The male to female ratio is about 6 to 4, with males being predominant. c) through the construction of the Boston matrix, it is concluded that the star market for tourism in the Northeast Sichuan Economic Zone includes Sichuan and Shaanxi; the cash cows market includes Hainan and Ningxia; the question market includes Jiangsu and Shanghai; the dog market includes Hubei and Jiangxi. The study concludes with the following planning strategies and recommendations: i) creating a diversified business format that integrates cultural and tourism; ii) creating a brand image of niche tourism; iii) focusing on the development of tourism products; iv) innovating composite three-dimensional marketing channels.

Keywords: Baidu Index, big data, internet attention, tourism

Procedia PDF Downloads 118
279 Reagentless Detection of Urea Based on ZnO-CuO Composite Thin Film

Authors: Neha Batra Bali, Monika Tomar, Vinay Gupta

Abstract:

A reagentless biosensor for detection of urea based on ZnO-CuO composite thin film is presented in following work. Biosensors have immense potential for varied applications ranging from environmental to clinical testing, health care, and cell analysis. Immense growth in the field of biosensors is due to the huge requirement in today’s world to develop techniques which are both cost effective and accurate for prevention of disease manifestation. The human body comprises of numerous biomolecules which in their optimum levels are essential for functioning. However mismanaged levels of these biomolecules result in major health issues. Urea is one of the key biomolecules of interest. Its estimation is of paramount significance not only for healthcare sector but also from environmental perspectives. If level of urea in human blood/serum is abnormal, i.e., above or below physiological range (15-40mg/dl)), it may lead to diseases like renal failure, hepatic failure, nephritic syndrome, cachexia, urinary tract obstruction, dehydration, shock, burns and gastrointestinal, etc. Various metal nanoparticles, conducting polymer, metal oxide thin films, etc. have been exploited to act as matrix to immobilize urease to fabricate urea biosensor. Amongst them, Zinc Oxide (ZnO), a semiconductor metal oxide with a wide band gap is of immense interest as an efficient matrix in biosensors by virtue of its natural abundance, biocompatibility, good electron communication feature and high isoelectric point (9.5). In spite of being such an attractive candidate, ZnO does not possess a redox couple of its own which necessitates the use of electroactive mediators for electron transfer between the enzyme and the electrode, thereby causing hindrance in realization of integrated and implantable biosensor. In the present work, an effort has been made to fabricate a matrix based on ZnO-CuO composite prepared by pulsed laser deposition (PLD) technique in order to incorporate redox properties in ZnO matrix and to utilize the same for reagentless biosensing applications. The prepared bioelectrode Urs/(ZnO-CuO)/ITO/glass exhibits high sensitivity (70µAmM⁻¹cm⁻²) for detection of urea (5-200 mg/dl) with high stability (shelf life ˃ 10 weeks) and good selectivity (interference ˂ 4%). The enhanced sensing response obtained for composite matrix is attributed to the efficient electron exchange between ZnO-CuO matrix and immobilized enzymes, and subsequently fast transfer of generated electrons to the electrode via matrix. The response is encouraging for fabricating reagentless urea biosensor based on ZnO-CuO matrix.

Keywords: biosensor, reagentless, urea, ZnO-CuO composite

Procedia PDF Downloads 288
278 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI

Authors: James Rigor Camacho, Wansu Lim

Abstract:

Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.

Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors

Procedia PDF Downloads 103
277 Modeling and Simulating Productivity Loss Due to Project Changes

Authors: Robert Pellerin, Michel Gamache, Remi Trudeau, Nathalie Perrier

Abstract:

The context of large engineering projects is particularly favorable to the appearance of engineering changes and contractual modifications. These elements are potential causes for claims. In this paper, we investigate one of the critical components of the claim management process: the calculation of the impacts of changes in terms of losses of productivity due to the need to accelerate some project activities. When project changes are initiated, delays can arise. Indeed, project activities are often executed in fast-tracking in an attempt to respect the completion date. But the acceleration of project execution and the resulting rework can entail important costs as well as induce productivity losses. In the past, numerous methods have been proposed to quantify the duration of delays, the gains achieved by project acceleration, and the loss of productivity. The calculation related to those changes can be divided into two categories: direct cost and indirect cost. The direct cost is easily quantifiable as opposed to indirect costs which are rarely taken into account during the calculation of the cost of an engineering change or contract modification despite several research projects have been made on this subject. However, proposed models have not been accepted by companies yet, nor they have been accepted in court. Those models require extensive data and are often seen as too specific to be used for all projects. These techniques are also ignoring the resource constraints and the interdependencies between the causes of delays and the delays themselves. To resolve this issue, this research proposes a simulation model that mimics how major engineering changes or contract modifications are handled in large construction projects. The model replicates the use of overtime in a reactive scheduling mode in order to simulate the loss of productivity present when a project change occurs. Multiple tests were conducted to compare the results of the proposed simulation model with statistical analysis conducted by other researchers. Different scenarios were also conducted in order to determine the impact the number of activities, the time of occurrence of the change, the availability of resources, and the type of project changes on productivity loss. Our results demonstrate that the number of activities in the project is a critical variable influencing the productivity of a project. When changes occur, the presence of a large number of activities leads to a much lower productivity loss than a small number of activities. The speed of reducing productivity for 30-job projects is about 25 percent faster than the reduction speed for 120-job projects. The moment of occurrence of a change also shows a significant impact on productivity. Indeed, the sooner the change occurs, the lower the productivity of the labor force. The availability of resources also impacts the productivity of a project when a change is implemented. There is a higher loss of productivity when the amount of resources is restricted.

Keywords: engineering changes, indirect costs overtime, productivity, scheduling, simulation

Procedia PDF Downloads 235
276 An Exploration of Policy-related Documents on District Heating and Cooling in Flanders: a Slow and Bottom-up Process

Authors: Isaura Bonneux

Abstract:

District heating and cooling (DHC) is increasingly recognized as a viable path towards sustainable heating and cooling. While some countries like Sweden and Denmark have a longstanding tradition of DHC, Belgium is lacking behind. The Northern part of Belgium, Flanders, had only a total of 95 heating networks in July 2023. Nevertheless, it is increasingly exploring its possibilities to enhance the scope of DHC. DHC is a complex energy system, requiring a lot of collaboration between various stakeholders on various levels. Therefore, it is of interest to look closer at policy-related documents at the Flemish (regional) level, as these policies set the scene for DHC development in the Flemish region. This kind of analysis has not been undertaken so far. This paper has the following research question: “Who talks about DHC, and in which way and context is DHC discussed in Flemish policy-related documents?” To answer this question, the Overton policy database was used to search and retrieve relevant policy-related documents. Overton retrieves data from governments, think thanks, NGOs, and IGOs. In total, out of the 244 original results, 117 documents between 2009 and 2023 were analyzed. Every selected document included theme keywords, policymaking department(s), date, and document type. These elements were used for quantitative data description and visualization. Further, qualitative content analysis revealed patterns and main themes regarding DHC in Flanders. Four main conclusions can be drawn: First, it is obvious from the timeframe that DHC is a new topic in Flanders with still limited attention; 2014, 2016 and 2017 were the years with the most documents, yet this number is still only 12 documents. In addition, many documents talked about DHC but not much in depth and painted it as a future scenario with a lot of uncertainty around it. The largest part of the issuing government departments had a link to either energy or climate (e.g. Flemish Environmental Agency) or policy (e.g. Socio-Economic Council of Flanders) Second, DHC is mentioned most within an ‘Environment and Sustainability’ context, followed by ‘General Policy and Regulation’. This is intuitive, as DHC is perceived as a sustainable heating and cooling technique and this analysis compromises policy-related documents. Third, Flanders seems mostly interested in using waste or residual heat as a heating source for DHC. The harbors and waste incineration plants are identified as potential and promising supply sources. This approach tries to conciliate environmental and economic incentives. Last, local councils get assigned a central role and the initiative is mostly taken by them. The policy documents and policy advices demonstrate that Flanders opts for a bottom-up organization. As DHC is very dependent on local conditions, this seems a logic step. Nevertheless, this can impede smaller councils to create DHC networks and slow down systematic and fast implementation of DHC throughout Flanders.

Keywords: district heating and cooling, flanders, overton database, policy analysis

Procedia PDF Downloads 40
275 The Location of Park and Ride Facilities Using the Fuzzy Inference Model

Authors: Anna Lower, Michal Lower, Robert Masztalski, Agnieszka Szumilas

Abstract:

Contemporary cities are facing serious congestion and parking problems. In urban transport policy the introduction of the park and ride system (P&R) is an increasingly popular way of limiting vehicular traffic. The determining of P&R facilities location is a key aspect of the system. Criteria for assessing the quality of the selected location are formulated generally and descriptively. The research outsourced to specialists are expensive and time consuming. The most focus is on the examination of a few selected places. The practice has shown that the choice of the location of these sites in a intuitive way without a detailed analysis of all the circumstances, often gives negative results. Then the existing facilities are not used as expected. Methods of location as a research topic are also widely taken in the scientific literature. Built mathematical models often do not bring the problem comprehensively, e.g. assuming that the city is linear, developed along one important communications corridor. The paper presents a new method where the expert knowledge is applied to fuzzy inference model. With such a built system even a less experienced person could benefit from it, e.g. urban planners, officials. The analysis result is obtained in a very short time, so a large number of the proposed location can also be verified in a short time. The proposed method is intended for testing of car parks location in a city. The paper will show selected examples of locations of the P&R facilities in cities planning to introduce the P&R. The analysis of existing objects will also be shown in the paper and they will be confronted with the opinions of the system users, with particular emphasis on unpopular locations. The research are executed using the fuzzy inference model which was built and described in more detail in the earlier paper of the authors. The results of analyzes are compared to documents of P&R facilities location outsourced by the city and opinions of existing facilities users expressed on social networking sites. The research of existing facilities were conducted by means of the fuzzy model. The results are consistent with actual users feedback. The proposed method proves to be good, but does not require the involvement of a large experts team and large financial contributions for complicated research. The method also provides an opportunity to show the alternative location of P&R facilities. The performed studies show that the method has been confirmed. The method can be applied in urban planning of the P&R facilities location in relation to the accompanying functions. Although the results of the method are approximate, they are not worse than results of analysis of employed experts. The advantage of this method is ease of use, which simplifies the professional expert analysis. The ability of analyzing a large number of alternative locations gives a broader view on the problem. It is valuable that the arduous analysis of the team of people can be replaced by the model's calculation. According to the authors, the proposed method is also suitable for implementation on a GIS platform.

Keywords: fuzzy logic inference, park and ride system, P&R facilities, P&R location

Procedia PDF Downloads 320
274 Peculiarities of Snow Cover in Belarus

Authors: Aleh Meshyk, Anastasiya Vouchak

Abstract:

On the average snow covers Belarus for 75 days in the south-west and 125 days in the north-east. During the cold season snowpack often destroys due to thaws, especially at the beginning and end of winter. Over 50% of thawing days have a positive mean daily temperature, which results in complete snow melting. For instance, in December 10% of thaws occur at 4 С mean daily temperature. Stable snowpack lying for over a month forms in the north-east in the first decade of December but in the south-west in the third decade of December. The cover disappears in March: in the north-east in the last decade but in the south-west in the first decade. This research takes into account that precipitation falling during a cold season could be not only liquid and solid but also a mixed type (about 10-15 % a year). Another important feature of snow cover is its density. In Belarus, the density of freshly fallen snow ranges from 0.08-0.12 g/cm³ in the north-east to 0.12-0.17 g/cm³ in the south-west. Over time, snow settles under its weight and after melting and refreezing. Averaged annual density of snow at the end of January is 0.23-0.28 g/сm³, in February – 0.25-0.30 g/сm³, in March – 0.29-0.36 g/сm³. Sometimes it can be over 0.50 g/сm³ if the snow melts too fast. The density of melting snow saturated with water can reach 0.80 g/сm³. Average maximum of snow depth is 15-33 cm: minimum is in Brest, maximum is in Lyntupy. Maximum registered snow depth ranges within 40-72 cm. The water content in snowpack, as well as its depth and density, reaches its maximum in the second half of February – beginning of March. Spatial distribution of the amount of liquid in snow corresponds to the trend described above, i.e. it increases in the direction from south-west to north-east and on the highlands. Average annual value of maximum water content in snow ranges from 35 mm in the south-west to 80-100 mm in the north-east. The water content in snow is over 80 mm on the central Belarusian highland. In certain years it exceeds 2-3 times the average annual values. Moderate water content in snow (80-95 mm) is characteristic of western highlands. Maximum water content in snow varies over the country from 107 mm (Brest) to 207 mm (Novogrudok). Maximum water content in snow varies significantly in time (in years), which is confirmed by high variation coefficient (Cv). Maximums (0.62-0.69) are in the south and south-west of Belarus. Minimums (0.42-0.46) are in central and north-eastern Belarus where snow cover is more stable. Since 1987 most gauge stations in Belarus have observed a trend to a decrease in water content in snow. It is confirmed by the research. The biggest snow cover forms on the highlands in central and north-eastern Belarus. Novogrudok, Minsk, Volkovysk, and Sventayny highlands are a natural orographic barrier which prevents snow-bringing air masses from penetrating inside the country. The research is based on data from gauge stations in Belarus registered from 1944 to 2014.

Keywords: density, depth, snow, water content in snow

Procedia PDF Downloads 155
273 In-situ Acoustic Emission Analysis of a Polymer Electrolyte Membrane Water Electrolyser

Authors: M. Maier, I. Dedigama, J. Majasan, Y. Wu, Q. Meyer, L. Castanheira, G. Hinds, P. R. Shearing, D. J. L. Brett

Abstract:

Increasing the efficiency of electrolyser technology is commonly seen as one of the main challenges on the way to the Hydrogen Economy. There is a significant lack of understanding of the different states of operation of polymer electrolyte membrane water electrolysers (PEMWE) and how these influence the overall efficiency. This in particular means the two-phase flow through the membrane, gas diffusion layers (GDL) and flow channels. In order to increase the efficiency of PEMWE and facilitate their spread as commercial hydrogen production technology, new analytic approaches have to be found. Acoustic emission (AE) offers the possibility to analyse the processes within a PEMWE in a non-destructive, fast and cheap in-situ way. This work describes the generation and analysis of AE data coming from a PEM water electrolyser, for, to the best of our knowledge, the first time in literature. Different experiments are carried out. Each experiment is designed so that only specific physical processes occur and AE solely related to one process can be measured. Therefore, a range of experimental conditions is used to induce different flow regimes within flow channels and GDL. The resulting AE data is first separated into different events, which are defined by exceeding the noise threshold. Each acoustic event consists of a number of consequent peaks and ends when the wave diminishes under the noise threshold. For all these acoustic events the following key attributes are extracted: maximum peak amplitude, duration, number of peaks, peaks before the maximum, average intensity of a peak and time till the maximum is reached. Each event is then expressed as a vector containing the normalized values for all criteria. Principal Component Analysis is performed on the resulting data, which orders the criteria by the eigenvalues of their covariance matrix. This can be used as an easy way of determining which criteria convey the most information on the acoustic data. In the following, the data is ordered in the two- or three-dimensional space formed by the most relevant criteria axes. By finding spaces in the two- or three-dimensional space only occupied by acoustic events originating from one of the three experiments it is possible to relate physical processes to certain acoustic patterns. Due to the complex nature of the AE data modern machine learning techniques are needed to recognize these patterns in-situ. Using the AE data produced before allows to train a self-learning algorithm and develop an analytical tool to diagnose different operational states in a PEMWE. Combining this technique with the measurement of polarization curves and electrochemical impedance spectroscopy allows for in-situ optimization and recognition of suboptimal states of operation.

Keywords: acoustic emission, gas diffusion layers, in-situ diagnosis, PEM water electrolyser

Procedia PDF Downloads 151
272 Patterns of TV Simultaneous Interpreting of Emotive Overtones in Trump’s Victory Speech from English into Arabic

Authors: Hanan Al-Jabri

Abstract:

Simultaneous interpreting is deemed to be the most challenging mode of interpreting by many scholars. The special constraints involved in this task including time constraints, different linguistic systems, and stress pose a great challenge to most interpreters. These constraints are likely to maximise when the interpreting task is done live on TV. The TV interpreter is exposed to a wide variety of audiences with different backgrounds and needs and is mostly asked to interpret high profile tasks which raise his/her levels of stress, which further complicate the task. Under these constraints, which require fast and efficient performance, TV interpreters of four TV channels were asked to render Trump's victory speech into Arabic. However, they had also to deal with the burden of rendering English emotive overtones employed by the speaker into a whole different linguistic system. The current study aims at investigating the way TV interpreters, who worked in the simultaneous mode, handled this task; it aims at exploring and evaluating the TV interpreters’ linguistic choices and whether the original emotive effect was maintained, upgraded, downgraded or abandoned in their renditions. It also aims at exploring the possible difficulties and challenges that emerged during this process and might have influenced the interpreters’ linguistic choices. To achieve its aims, the study analysed Trump’s victory speech delivered on November 6, 2016, along with four Arabic simultaneous interpretations produced by four TV channels: Al-Jazeera, RT, CBC News, and France 24. The analysis of the study relied on two frameworks: a macro and a micro framework. The former presents an overview of the wider context of the English speech as well as an overview of the speaker and his political background to help understand the linguistic choices he made in the speech, and the latter framework investigates the linguistic tools which were employed by the speaker to stir people’s emotions. These tools were investigated based on Shamaa’s (1978) classification of emotive meaning according to their linguistic level: phonological, morphological, syntactic, and semantic and lexical levels. Moreover, this level investigates the patterns of rendition which were detected in the Arabic deliveries. The results of the study identified different rendition patterns in the Arabic deliveries, including parallel rendition, approximation, condensation, elaboration, transformation, expansion, generalisation, explicitation, paraphrase, and omission. The emerging patterns, as suggested by the analysis, were influenced by factors such as speedy and continuous delivery of some stretches, and highly-dense segments among other factors. The study aims to contribute to a better understanding of TV simultaneous interpreting between English and Arabic, as well as the practices of TV interpreters when rendering emotiveness especially that little is known about interpreting practices in the field of TV, particularly between Arabic and English.

Keywords: emotive overtones, interpreting strategies, political speeches, TV interpreting

Procedia PDF Downloads 157