Search results for: inclusive business models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10106

Search results for: inclusive business models

6806 Biosorption of Metal Ions from Sarcheshmeh Acid Mine Drainage by Immobilized Bacillus thuringiensis in a Fixed-Bed Column

Authors: V. Khosravi, F. D. Ardejani, A. Aryafar, M. Sedighi

Abstract:

Heavy metals have a damaging impact for the environment, animals and humans due to their extreme toxicity and removing them from wastewaters is a very important and interesting task in the field of water pollution control. Biosorption is a relatively new method for treatment of wastewaters and recovery of heavy metals. In this study, a continuous fixed bed study was carried out by using Bacillus thuringiensis as a biosorbent for the removal of Cu and Mn ions from Sarcheshmeh Acid Mine Drainage (AMD). The effect of operating parameters such as flow rate and bed height on the sorption characteristics of B. thuringiensis was investigated at pH 6.0 for each metal ion. The experimental results showed that the breakthrough time decreased with increasing flow rate and decreasing bed height. The data also indicated that the equilibrium uptake of both metals increased with decreasing flow rate and increasing bed height. BDST, Thomas, and Yoon–Nelson models were applied to experimental data to predict the breakthrough curves. All models were found suitable for describing the whole dynamic behavior of the column with respect to flow rate and bed height. In order to regenerate the adsorbent, an elution step was carried out with 1 M HCl and five adsorption-desorption cycles were carried out in continuous manner.

Keywords: acid mine drainage, bacillus thuringiensis, biosorption, cu and mn ions, fixed bed

Procedia PDF Downloads 404
6805 Optimization of the Fabrication Process for Particleboards Made from Oil Palm Fronds Blended with Empty Fruit Bunch Using Response Surface Methodology

Authors: Ghazi Faisal Najmuldeen, Wahida Amat-Fadzil, Zulkafli Hassan, Jinan B. Al-Dabbagh

Abstract:

The objective of this study was to evaluate the optimum fabrication process variables to produce particleboards from oil palm fronds (OPF) particles and empty fruit bunch fiber (EFB). Response surface methodology was employed to analyse the effect of hot press temperature (150–190°C); press time (3–7 minutes) and EFB blending ratio (0–40%) on particleboards modulus of rupture, modulus of elasticity, internal bonding, water absorption and thickness swelling. A Box-Behnken experimental design was carried out to develop statistical models used for the optimisation of the fabrication process variables. All factors were found to be statistically significant on particleboards properties. The statistical analysis indicated that all models showed significant fit with experimental results. The optimum particleboards properties were obtained at optimal fabrication process condition; press temperature; 186°C, press time; 5.7 min and EFB / OPF ratio; 30.4%. Incorporating of oil palm frond and empty fruit bunch to produce particleboards has improved the particleboards properties. The OPF–EFB particleboards fabricated at optimized conditions have satisfied the ANSI A208.1–1999 specification for general purpose particleboards.

Keywords: empty fruit bunch fiber, oil palm fronds, particleboards, response surface methodology

Procedia PDF Downloads 226
6804 A Bibliometric Analysis on Filter Bubble

Authors: Misbah Fatma, Anam Saiyeda

Abstract:

This analysis charts the introduction and expansion of research into the filter bubble phenomena over the last 10 years using a large dataset of academic publications. This bibliometric study demonstrates how interdisciplinary filter bubble research is. The identification of key authors and organizations leading the filter bubble study sheds information on collaborative networks and knowledge transfer. Relevant papers are organized based on themes including algorithmic bias, polarisation, social media, and ethical implications through a systematic examination of the literature. In order to shed light on how these patterns have changed over time, the study plots their historical history. The study also looks at how research is distributed globally, showing geographic patterns and discrepancies in scholarly output. The results of this bibliometric analysis let us fully comprehend the development and reach of filter bubble research. This study offers insights into the ongoing discussion surrounding information personalization and its implications for societal discourse, democratic participation, and the potential risks to an informed citizenry by exposing dominant themes, interdisciplinary collaborations, and geographic patterns. In order to solve the problems caused by filter bubbles and to advance a more diverse and inclusive information environment, this analysis is essential for scholars and researchers.

Keywords: bibliometric analysis, social media, social networking, algorithmic personalization, self-selection, content moderation policies and limited access to information, recommender system and polarization

Procedia PDF Downloads 118
6803 Introduction of Artificial Intelligence for Estimating Fractal Dimension and Its Applications in the Medical Field

Authors: Zerroug Abdelhamid, Danielle Chassoux

Abstract:

Various models are given to simulate homogeneous or heterogeneous cancerous tumors and extract in each case the boundary. The fractal dimension is then estimated by least squares method and compared to some previous methods.

Keywords: simulation, cancerous tumor, Markov fields, fractal dimension, extraction, recovering

Procedia PDF Downloads 365
6802 Organizational Challenges Facing a Small Recruitment Agency: Case Study of a Firm Based in South India

Authors: Anirban Sengupta

Abstract:

The recruitment industry plays a critical role in connecting employers with talent. While there are many big recruitment firms and big organizations can also afford to have their own recruitment teams, small recruitment agencies form an essential part of the ecosystem serving a vast majority of small and medium sized clients. These clients utilize the services of the recruitment agencies to be able to scale their operations. However, there are significant organizational challenges that a small recruitment agency faces to build a sustainable and growing business. This case study explores the organizational challenges faced by a small recruitment agency in South India in an increasingly competitive landscape. Through this paper, the authors hope to understand, analyze and share the challenges faced by this firm and suggest a systematic approach to address the challenges. The study uses both qualitative and quantitative data collected from the agency’s management and employees based on the year 2024. The findings reveal that the agency struggles with limited resources, unpredictable clients, and a lack of scalable processes and systems, which impacts not only the business outcomes but also key areas like employee performance management, compensation and benefits, and employee well-being. Based on these insights, the study proposes several strategies for overcoming these challenges, such as implementing scalable systems and processes. This research contributes to the understanding of the specific obstacles faced by small recruitment agencies in regional contexts and offers actionable recommendations for improving their organizational health, which may, in turn, positively impact their competitiveness.

Keywords: recruitment, organizational challenges, performance management, recruitment technology

Procedia PDF Downloads 8
6801 Magnification Factor Based Seismic Response of Moment Resisting Frames with Open Ground Storey

Authors: Subzar Ahmad Bhat, Saraswati Setia, V. K.Sehgal

Abstract:

During the past earthquakes, open ground storey buildings have performed poorly due to the soft storey defect. Indian Standard IS 1893:2002 allows analysis of open ground storey buildings without considering infill stiffness but with a multiplication factor 2.5 in compensation for the stiffness discontinuity. Therefore, the aim of this paper is to check the applicability of the multiplication factor of 2.5 and study behaviour of the structure after the application of the multiplication factor. For this purpose, study is performed on models considering infill stiffness using SAP 2000 (Version 14) by linear static analysis and response spectrum analysis. Total seven models are analysed and designed for the range of multiplication factor ranging from 1.25 to 2.5. The value of multiplication factor equal to 2.5 has been found on the higher side, resulting in increased dimension and percentage of reinforcement without significant enhancement beyond a certain multiplication factor. When the building with OGS is designed for values of MF higher than 1.25 considering infill stiffness soft storey effect shifts from ground storey to first storey. For the analysis of the OGS structure best way to analysis the structure is to analyse it as the frame with stiffness and strength of the infill taken into account. The provision of infill walls in the upper storeys enhances the performance of the structure in terms of displacement and storey drift controls.

Keywords: open ground storey, multiplication factor, IS 1893:2002 provisions, static analysis, response spectrum analysis, infill stiffness, equivalent strut

Procedia PDF Downloads 394
6800 Multiscale Modeling of Damage in Textile Composites

Authors: Jaan-Willem Simon, Bertram Stier, Brett Bednarcyk, Evan Pineda, Stefanie Reese

Abstract:

Textile composites, in which the reinforcing fibers are woven or braided, have become very popular in numerous applications in aerospace, automotive, and maritime industry. These textile composites are advantageous due to their ease of manufacture, damage tolerance, and relatively low cost. However, physics-based modeling of the mechanical behavior of textile composites is challenging. Compared to their unidirectional counterparts, textile composites introduce additional geometric complexities, which cause significant local stress and strain concentrations. Since these internal concentrations are primary drivers of nonlinearity, damage, and failure within textile composites, they must be taken into account in order for the models to be predictive. The macro-scale approach to modeling textile-reinforced composites treats the whole composite as an effective, homogenized material. This approach is very computationally efficient, but it cannot be considered predictive beyond the elastic regime because the complex microstructural geometry is not considered. Further, this approach can, at best, offer a phenomenological treatment of nonlinear deformation and failure. In contrast, the mesoscale approach to modeling textile composites explicitly considers the internal geometry of the reinforcing tows, and thus, their interaction, and the effects of their curved paths can be modeled. The tows are treated as effective (homogenized) materials, requiring the use of anisotropic material models to capture their behavior. Finally, the micro-scale approach goes one level lower, modeling the individual filaments that constitute the tows. This paper will compare meso- and micro-scale approaches to modeling the deformation, damage, and failure of textile-reinforced polymer matrix composites. For the mesoscale approach, the woven composite architecture will be modeled using the finite element method, and an anisotropic damage model for the tows will be employed to capture the local nonlinear behavior. For the micro-scale, two different models will be used, the one being based on the finite element method, whereas the other one makes use of an embedded semi-analytical approach. The goal will be the comparison and evaluation of these approaches to modeling textile-reinforced composites in terms of accuracy, efficiency, and utility.

Keywords: multiscale modeling, continuum damage model, damage interaction, textile composites

Procedia PDF Downloads 354
6799 Evaluating Closed-List Proportional Representation System and Its Compatibility in Contemporary Indonesian Election

Authors: Ridho Al-Hamdi, Sakir, Tanto Lailam

Abstract:

During the democratic period of 1999-present, Indonesia has consistently applied a List Proportional Representation (List PR) system in the parliamentary election. Between 1999 and 2004, it adopted a closed-list proportional representation (CLPR) system. In the meantime, it employed open-list proportional representation (OLPR) system from 2009 to 2019. Recently, some parties intended to propose the application of CLPR while others are still consistent in adopting OLPR. An unfinished debate is taking place. Thus, this article aims to evaluate the application of CLPR in Indonesia and, in turn, analyze its compatibility in contemporary parliamentary election system. From a methodological standpoint, it is qualitative research by applying a case study approach. Data-gathering relies on field data, mainly focus group discussion (FGD) and in-depth interviews with political parties, electoral management bodies (EMBs), NGO activists, and scholars spread in six provinces and nine regencies/cities across the country. Using SWOT analysis and the compatibility of CLPR and embedded democracy framework, the finding demonstrates that CLPR is no longer relevant for contemporary Indonesian elections. This paper recommends OLPR by considering that CLPR has numerous weaknesses and threats that can jeopardize embedded democracy. More importantly, CLPR can remove inclusive suffrage significantly.

Keywords: closed-list proportional representation, embedded democracy, Indonesia, parliamentary election

Procedia PDF Downloads 158
6798 Using Computer Vision to Detect and Localize Fractures in Wrist X-ray Images

Authors: John Paul Q. Tomas, Mark Wilson L. de los Reyes, Kirsten Joyce P. Vasquez

Abstract:

The most frequent type of fracture is a wrist fracture, which often makes it difficult for medical professionals to find and locate. In this study, fractures in wrist x-ray pictures were located and identified using deep learning and computer vision. The researchers used image filtering, masking, morphological operations, and data augmentation for the image preprocessing and trained the RetinaNet and Faster R-CNN models with ResNet50 backbones and Adam optimizers separately for each image filtering technique and projection. The RetinaNet model with Anisotropic Diffusion Smoothing filter trained with 50 epochs has obtained the greatest accuracy of 99.14%, precision of 100%, sensitivity/recall of 98.41%, specificity of 100%, and an IoU score of 56.44% for the Posteroanterior projection utilizing augmented data. For the Lateral projection using augmented data, the RetinaNet model with an Anisotropic Diffusion filter trained with 50 epochs has produced the highest accuracy of 98.40%, precision of 98.36%, sensitivity/recall of 98.36%, specificity of 98.43%, and an IoU score of 58.69%. When comparing the test results of the different individual projections, models, and image filtering techniques, the Anisotropic Diffusion filter trained with 50 epochs has produced the best classification and regression scores for both projections.

Keywords: Artificial Intelligence, Computer Vision, Wrist Fracture, Deep Learning

Procedia PDF Downloads 73
6797 Small and Medium Sized Ports between Specialisation and Diversification: A Framework Tool for Sustainable Development

Authors: Christopher Meyer, Laima Gerlitz

Abstract:

European ports are facing high political pressure through the implementation of initiatives such as the European Green Deal or IMO's 2030 targets (Fit for 55). However, small and medium-sized ports face even higher challenges compared to bigger ones due to lower capacities in various fields such as investments, infra-structure, Human Resources, and funding opportunities. Small and Medium-Sized Ports (SMPs) roles in economic systems are various depending on their specific functionality in maritime ecosystems. Depending on their different situations, being an actor in multiport gateways, aligned to core ports, regional nodes in peripheries for the hinterland, specialized cluster members, or logistical nodes, different strategic business models may be applied to increase SMPs' competitiveness among other bigger ports. Additionally, SMPs are facing more challenges for future development in terms of digital and green transition of their operations. Thus, it is necessary to evaluate the own strategical position and apply management strategies alongside the regional growth and innovation strategies for diversification or specialisation of own port businesses. The research uses inductive perspectives to set up a transferable framework based on case studies to be analysed. In line with particular research and document analysis, qualitative approaches were considered. The research is based on a deep literature review on SMPs as well as theories on diversification and specialisation. Existing theories from different fields are evaluated on their application for the port sector and these specific maritime actors, paying respect to enabling innovation incorporation to enhance digital and environmental transition with fu-ture perspectives for SMPs. The paper aims to provide a decision-making matrix for the strategic positioning of SMPs in Europe, including opportunities to get access to particular EU funds for future development alongside the Regional In-novation Strategies on Smart Specialisation.

Keywords: strategic planning, sustainability transition, competitiveness portfolio, EU green deal

Procedia PDF Downloads 79
6796 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases

Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar

Abstract:

Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.

Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning

Procedia PDF Downloads 119
6795 Knowledge Creation Environment in the Iranian Universities: A Case Study

Authors: Mahdi Shaghaghi, Amir Ghaebi, Fariba Ahmadi

Abstract:

Purpose: The main purpose of the present research is to analyze the knowledge creation environment at a Iranian University (Alzahra University) as a typical University in Iran, using a combination of the i-System and Ba models. This study is necessary for understanding the determinants of knowledge creation at Alzahra University as a typical University in Iran. Methodology: To carry out the present research, which is an applied study in terms of purpose, a descriptive survey method was used. In this study, a combination of the i-System and Ba models has been used to analyze the knowledge creation environment at Alzahra University. i-System consists of 5 constructs including intervention (input), intelligence (process), involvement (process), imagination (process), and integration (output). The Ba environment has three pillars, namely the infrastructure, the agent, and the information. The integration of these two models resulted in 11 constructs which were as follows: intervention (input), infrastructure-intelligence, agent-intelligence, information-intelligence (process); infrastructure-involvement, agent-involvement, information-involvement (process); infrastructure-imagination, agent-imagination, information-imagination (process); and integration (output). These 11 constructs were incorporated into a 52-statement questionnaire and the validity and reliability of the questionnaire were examined and confirmed. The statistical population included the faculty members of Alzahra University (344 people). A total of 181 participants were selected through the stratified random sampling technique. The descriptive statistics, binomial test, regression analysis, and structural equation modeling (SEM) methods were also utilized to analyze the data. Findings: The research findings indicated that among the 11 research constructs, the levels of intervention, information-intelligence, infrastructure-involvement, and agent-imagination constructs were average and not acceptable. The levels of infrastructure-intelligence and information-imagination constructs ranged from average to low. The levels of agent-intelligence and information-involvement constructs were also completely average. The level of infrastructure-imagination construct was average to high and thus was considered acceptable. The levels of agent-involvement and integration constructs were above average and were in a highly acceptable condition. Furthermore, the regression analysis results indicated that only two constructs, viz. the information-imagination and agent-involvement constructs, positively and significantly correlate with the integration construct. The results of the structural equation modeling also revealed that the intervention, intelligence, and involvement constructs are related to the integration construct with the complete mediation of imagination. Discussion and conclusion: The present research suggests that knowledge creation at Alzahra University relatively complies with the combination of the i-System and Ba models. Unlike this model, the intervention, intelligence, and involvement constructs are not directly related to the integration construct and this seems to have three implications: 1) the information sources are not frequently used to assess and identify the research biases; 2) problem finding is probably of less concern at the end of studies and at the time of assessment and validation; 3) the involvement of others has a smaller role in the summarization, assessment, and validation of the research.

Keywords: i-System, Ba model , knowledge creation , knowledge management, knowledge creation environment, Iranian Universities

Procedia PDF Downloads 101
6794 Wolof Voice Response Recognition System: A Deep Learning Model for Wolof Audio Classification

Authors: Krishna Mohan Bathula, Fatou Bintou Loucoubar, FNU Kaleemunnisa, Christelle Scharff, Mark Anthony De Castro

Abstract:

Voice recognition algorithms such as automatic speech recognition and text-to-speech systems with African languages can play an important role in bridging the digital divide of Artificial Intelligence in Africa, contributing to the establishment of a fully inclusive information society. This paper proposes a Deep Learning model that can classify the user responses as inputs for an interactive voice response system. A dataset with Wolof language words ‘yes’ and ‘no’ is collected as audio recordings. A two stage Data Augmentation approach is adopted for enhancing the dataset size required by the deep neural network. Data preprocessing and feature engineering with Mel-Frequency Cepstral Coefficients are implemented. Convolutional Neural Networks (CNNs) have proven to be very powerful in image classification and are promising for audio processing when sounds are transformed into spectra. For performing voice response classification, the recordings are transformed into sound frequency feature spectra and then applied image classification methodology using a deep CNN model. The inference model of this trained and reusable Wolof voice response recognition system can be integrated with many applications associated with both web and mobile platforms.

Keywords: automatic speech recognition, interactive voice response, voice response recognition, wolof word classification

Procedia PDF Downloads 116
6793 The Influence of Alvar Aalto on the Early Work of Álvaro Siza

Authors: Eduardo Jorge Cabral dos Santos Fernandes

Abstract:

The expression ‘Porto School’, usually associated with an educational institution, the School of Fine Arts of Porto, is applied for the first time with the sense of an architectural trend by Nuno Portas in a text published in 1983. The expression is used to characterize a set of works by Porto architects, in which common elements are found, namely the desire to reuse languages and forms of the German and Dutch rationalism of the twenties, using the work of Alvar Aalto as a mediation for the reinterpretation of these models. In the same year, Álvaro Siza classifies the Finnish architect as a miscegenation agent who transforms experienced models and introduces them to different realities in a text published in Jornal de Letras, Artes e Ideias. The influence of foreign models and their adaptation to the context has been a recurrent theme in Portuguese architecture, which finds important contributions in the writings of Alexandre Alves Costa, at this time. However, the identification of these characteristics in Siza’s work is not limited to the Portuguese theoretical production: it is the recognition of this attitude towards the context that leads Kenneth Frampton to include Siza in the restricted group of architects who embody Critical Regionalism (in his book Modern architecture: a critical history). For Frampton, his work focuses on the territory and on the consequences of the intervention in the context, viewing architecture as a tectonic fact rather than a series of scenographic episodes and emphasizing site-specific aspects (topography, light, climate). Therefore, the motto of this paper is the dichotomous opposition between foreign influences and adaptation to the context in the early work of Álvaro Siza (designed in the sixties) in which the influence (theoretical, methodological, and formal) of Alvar Aalto manifests itself in the form and the language: the pool at Quinta da Conceição, the Seaside Pools and the Tea House (three works in Leça da Palmeira) and the Lordelo Cooperative (in Porto). This work is part of a more comprehensive project, which considers several case studies throughout the Portuguese architect's vast career, built in Portugal and abroad, in order to obtain a holistic view.

Keywords: Alvar Aalto, Álvaro Siza, foreign influences, adaptation to the context

Procedia PDF Downloads 30
6792 Survey of Hawke's Bay Tourism Based Businesses: Tsunami Understanding and Preparation

Authors: V. A. Ritchie

Abstract:

The loss of life and livelihood experienced after the magnitude 9.3 Sumatra earthquake and tsunami on 26 December 2004 and magnitude 9 earthquake and tsunami in northeastern Japan on 11 March 2011, has raised global awareness and brought tsunami phenomenology, nomenclature, and representation into sharp focus. At the same time, travel and tourism continue to increase, contributing around 1 in 11 jobs worldwide. This increase in tourism is especially true for coastal zones, placing pressure on decision-makers to downplay tsunami risks and at the same time provide adequate tsunami warning so that holidaymakers will feel confident enough to visit places of high tsunami risk. This study investigates how well tsunami preparedness messages are getting through for tourist-based businesses in Hawke’s Bay New Zealand, a region of frequent seismic activity and a high probability of experiencing a nearshore tsunami. The aim of this study is to investigate whether tourists based businesses are well informed about tsunamis, how well they understand that information and to what extent their clients are included in awareness raising and evacuation processes. In high-risk tsunami zones, such as Hawke’s Bay, tourism based businesses face competitive tension between short term business profitability and longer term reputational issues related to preventable loss of life from natural hazards, such as tsunamis. This study will address ways to accommodate culturally and linguistically relevant tourist awareness measures without discouraging tourists or being too costly to implement.

Keywords: tsunami risk and response, travel and tourism, business preparedness, cross cultural knowledge transfer

Procedia PDF Downloads 151
6791 Joint Modeling of Longitudinal and Time-To-Event Data with Latent Variable

Authors: Xinyuan Y. Song, Kai Kang

Abstract:

Joint models for analyzing longitudinal and survival data are widely used to investigate the relationship between a failure time process and time-variant predictors. A common assumption in conventional joint models in the survival analysis literature is that all predictors are observable. However, this assumption may not always be supported because unobservable traits, namely, latent variables, which are indirectly observable and should be measured through multiple observed variables, are commonly encountered in the medical, behavioral, and financial research settings. In this study, a joint modeling approach to deal with this feature is proposed. The proposed model comprises three parts. The first part is a dynamic factor analysis model for characterizing latent variables through multiple observed indicators over time. The second part is a random coefficient trajectory model for describing the individual trajectories of latent variables. The third part is a proportional hazard model for examining the effects of time-invariant predictors and the longitudinal trajectories of time-variant latent risk factors on hazards of interest. A Bayesian approach coupled with a Markov chain Monte Carlo algorithm to perform statistical inference. An application of the proposed joint model to a study on the Alzheimer's disease neuroimaging Initiative is presented.

Keywords: Bayesian analysis, joint model, longitudinal data, time-to-event data

Procedia PDF Downloads 143
6790 The Construction of the Meaning of Beauty by the Representation of Wardah Halal Beauty

Authors: Indhie Febrianti Herlina, Riri Akadafi, Alna Hanana

Abstract:

This research describes the constructivism of the Halal beauty of Wardah commercials that present hijab women as the advertising models and shows the sign of Halal in each promotion. There are differences of the concept of beauty between wardah and other beauty ads. When today’s ads describe that beautiful women are who have bright skin, sharp nose and long hair, wardah describes that beautiful women are the hijab women and wear Halal beauty product. This research is interesting because it is so rare when the beauty is presented by hijab women. By using the constructivism paradigm and combining it with reception theory, the author wants to reveal whether women are constructed by these commercials. Reception theory is about how public accept the content of a media. The informants are the women who wear hijab, wear Wardah products and join ‘Wardah Goes to Campus’, a roadshow event conducted by Wardah in Universities all around Indonesia. By interviewing the informants, a statement can be inferred that informants A, B, C, and D assumed that beauty is a physical beauty. However, after they have learned about the true meaning of beauty and watched Wardah commercials, those informants understand that beauty is reflected by the women who wear hijab and wear Halal Cosmetics. Meanwhile, the informant E assumes that beauty is relative, inner, and good-looking. The conclusion of this research is that the informants are constructed by the halal beauty described by Wardah commercials. By presenting the models wearing hijab and wear natural-looking cosmetics, Wardah successfully influences the informants to be more confident to look good by wearing hijab.

Keywords: ad, commercial, construction, halal beauty, wardah

Procedia PDF Downloads 268
6789 Gamification Beyond Competition: the Case of DPG Lab Collaborative Learning Program for High-School Girls by GameLab KBTU and UNICEF in Kazakhstan

Authors: Nazym Zhumabayeva, Aleksandr Mezin, Alexandra Knysheva

Abstract:

Women's underrepresentation in STEM is critical, worsened by ineffective engagement in educational practices. UNICEF Kazakhstan and GameLab KBTU's collaborative initiatives aim to enhance female STEM participation by fostering an inclusive environment. Learning from LEVEL UP's 2023 program, which featured a hackathon, the 2024 strategy pivots towards non-competitive gamification. Although the data from last year's project showed higher than average student engagement, observations and in-depth interviews with participants showed that the format was stressful for the girls, making them focus on points rather than on other values. This study presents a gamified educational system, DPG Lab, aimed at incentivizing young women's participation in STEM through the development of digital public goods (DPGs). By prioritizing collaborative gamification elements, the project seeks to create an inclusive learning environment that increases engagement and interest in STEM among young women. The DPG Lab aims to find a solution to minimize competition and support collaboration. The project is designed to motivate female participants towards the development of digital solutions through an introduction to the concept of DPGs. It consists of a short online course, a simulation videogame, and a real-time online quest with an offline finale at the KBTU campus. The online course offers short video lectures on open-source development and DPG standards. The game facilitates the practical application of theoretical knowledge, enriching the learning experience. Learners can also participate in a quest that encourages participants to develop DPG ideas in teams by choosing missions throughout the quest path. At the offline quest finale, the participants will meet in person to exchange experiences and accomplishments without engaging in comparative assessments: the quest ensures that each team’s trajectory is distinct by design. This marks a shift from competitive hackathons to a collaborative format, recognizing the unique contributions and achievements of each participant. The pilot batch of students is scheduled to commence in April 2024, with the finale anticipated in June. It is projected that this group will comprise 50 female high-school students from various regions across Kazakhstan. Expected outcomes include increased engagement and interest in STEM fields among young female participants, positive emotional and psychological impact through an emphasis on collaborative learning environments, and improved understanding and skills in DPG development. GameLab KBTU intends to undertake a hypothesis evaluation, employing a methodology similar to that utilized in the preceding LEVEL UP project. This approach will encompass the compilation of quantitative metrics (conversion funnels, test results, and surveys) and qualitative data from in-depth interviews and observational studies. For comparative analysis, a select group of participants from the previous year's project will be recruited to engage in the DPG Lab. By developing and implementing a gamified framework that emphasizes inclusion, engagement, and collaboration, the study seeks to provide practical knowledge about effective gamification strategies for promoting gender diversity in STEM. The expected outcomes of this initiative can contribute to the broader discussion on gamification in education and gender equality in STEM by offering a replicable and scalable model for similar interventions around the world.

Keywords: collaborative learning, competitive learning, digital public goods, educational gamification, emerging regions, STEM, underprivileged groups

Procedia PDF Downloads 62
6788 Quantitative Seismic Interpretation in the LP3D Concession, Central of the Sirte Basin, Libya

Authors: Tawfig Alghbaili

Abstract:

LP3D Field is located near the center of the Sirt Basin in the Marada Trough approximately 215 km south Marsa Al Braga City. The Marada Trough is bounded on the west by a major fault, which forms the edge of the Beda Platform, while on the east, a bounding fault marks the edge of the Zelten Platform. The main reservoir in the LP3D Field is Upper Paleocene Beda Formation. The Beda Formation is mainly limestone interbedded with shale. The reservoir average thickness is 117.5 feet. To develop a better understanding of the characterization and distribution of the Beda reservoir, quantitative seismic data interpretation has been done, and also, well logs data were analyzed. Six reflectors corresponding to the tops of the Beda, Hagfa Shale, Gir, Kheir Shale, Khalifa Shale, and Zelten Formations were picked and mapped. Special work was done on fault interpretation part because of the complexities of the faults at the structure area. Different attribute analyses were done to build up more understanding of structures lateral extension and to view a clear image of the fault blocks. Time to depth conversion was computed using velocity modeling generated from check shot and sonic data. The simplified stratigraphic cross-section was drawn through the wells A1, A2, A3, and A4-LP3D. The distribution and the thickness variations of the Beda reservoir along the study area had been demonstrating. Petrophysical analysis of wireline logging also was done and Cross plots of some petrophysical parameters are generated to evaluate the lithology of reservoir interval. Structure and Stratigraphic Framework was designed and run to generate different model like faults, facies, and petrophysical models and calculate the reservoir volumetric. This study concluded that the depth structure map of the Beda formation shows the main structure in the area of study, which is north to south faulted anticline. Based on the Beda reservoir models, volumetric for the base case has been calculated and it has STOIIP of 41MMSTB and Recoverable oil of 10MMSTB. Seismic attributes confirm the structure trend and build a better understanding of the fault system in the area.

Keywords: LP3D Field, Beda Formation, reservoir models, Seismic attributes

Procedia PDF Downloads 213
6787 Dynamic Modeling of Energy Systems Adapted to Low Energy Buildings in Lebanon

Authors: Nadine Yehya, Chantal Maatouk

Abstract:

Low energy buildings have been developed to achieve global climate commitments in reducing energy consumption. They comprise energy efficient buildings, zero energy buildings, positive buildings and passive house buildings. The reduced energy demands in Low Energy buildings call for advanced building energy modeling that focuses on studying active building systems such as heating, cooling and ventilation, improvement of systems performances, and development of control systems. Modeling and building simulation have expanded to cover different modeling approach i.e.: detailed physical model, dynamic empirical models, and hybrid approaches, which are adopted by various simulation tools. This paper uses DesignBuilder with EnergyPlus simulation engine in order to; First, study the impact of efficiency measures on building energy behavior by comparing Low energy residential model to a conventional one in Beirut-Lebanon. Second, choose the appropriate energy systems for the studied case characterized by an important cooling demand. Third, study dynamic modeling of Variable Refrigerant Flow (VRF) system in EnergyPlus that is chosen due to its advantages over other systems and its availability in the Lebanese market. Finally, simulation of different energy systems models with different modeling approaches is necessary to confront the different modeling approaches and to investigate the interaction between energy systems and building envelope that affects the total energy consumption of Low Energy buildings.

Keywords: physical model, variable refrigerant flow heat pump, dynamic modeling, EnergyPlus, the modeling approach

Procedia PDF Downloads 221
6786 Shear Layer Investigation through a High-Load Cascade in Low-Pressure Gas Turbine Conditions

Authors: Mehdi Habibnia Rami, Shidvash Vakilipour, Mohammad H. Sabour, Rouzbeh Riazi, Hossein Hassannia

Abstract:

This paper deals with the steady and unsteady flow behavior on the separation bubble occurring on the rear portion of the suction side of T106A blade. The first phase was to implement the steady condition capturing the separation bubble. To accurately predict the separated region, the effects of three different turbulence models and computational grids were separately investigated. The results of Large Eddy Simulation (LES) model on the finest grid structure are acceptably in a good agreement with its relevant experimental results. The second phase is mainly to address the effects of wake entrance on bubble disappearance in unsteady situation. In the current simulations, from what was suggested in an experiment, simulating the flow unsteadiness, with concentrations on small scale disturbances instead of simulating a complete oncoming wake, is the key issue. Subsequently, the results from the current strategy to apply the effects of the wake and two other experimental work were compared to be in a good agreement. Between the two experiments, one of them deals with wake passing unsteady flow, and the other one implements experimentally the same approach as the current Computational Fluid Dynamics (CFD) simulation.

Keywords: low-pressure turbine cascade, large-Eddy simulation (LES), RANS turbulence models, unsteady flow measurements, flow separation

Procedia PDF Downloads 305
6785 Using Machine Learning to Classify Human Fetal Health and Analyze Feature Importance

Authors: Yash Bingi, Yiqiao Yin

Abstract:

Reduction of child mortality is an ongoing struggle and a commonly used factor in determining progress in the medical field. The under-5 mortality number is around 5 million around the world, with many of the deaths being preventable. In light of this issue, Cardiotocograms (CTGs) have emerged as a leading tool to determine fetal health. By using ultrasound pulses and reading the responses, CTGs help healthcare professionals assess the overall health of the fetus to determine the risk of child mortality. However, interpreting the results of the CTGs is time-consuming and inefficient, especially in underdeveloped areas where an expert obstetrician is hard to come by. Using a support vector machine (SVM) and oversampling, this paper proposed a model that classifies fetal health with an accuracy of 99.59%. To further explain the CTG measurements, an algorithm based on Randomized Input Sampling for Explanation ((RISE) of Black-box Models was created, called Feature Alteration for explanation of Black Box Models (FAB), and compared the findings to Shapley Additive Explanations (SHAP) and Local Interpretable Model Agnostic Explanations (LIME). This allows doctors and medical professionals to classify fetal health with high accuracy and determine which features were most influential in the process.

Keywords: machine learning, fetal health, gradient boosting, support vector machine, Shapley values, local interpretable model agnostic explanations

Procedia PDF Downloads 144
6784 Analysis of Thermoelectric Coolers as Energy Harvesters for Low Power Embedded Applications

Authors: Yannick Verbelen, Sam De Winne, Niek Blondeel, Ann Peeters, An Braeken, Abdellah Touhafi

Abstract:

The growing popularity of solid state thermoelectric devices in cooling applications has sparked an increasing diversity of thermoelectric coolers (TECs) on the market, commonly known as “Peltier modules”. They can also be used as generators, converting a temperature difference into electric power, and opportunities are plentiful to make use of these devices as thermoelectric generators (TEGs) to supply energy to low power, autonomous embedded electronic applications. Their adoption as energy harvesters in this new domain of usage is obstructed by the complex thermoelectric models commonly associated with TEGs. Low cost TECs for the consumer market lack the required parameters to use the models because they are not intended for this mode of operation, thereby urging an alternative method to obtain electric power estimations in specific operating conditions. The design of the test setup implemented in this paper is specifically targeted at benchmarking commercial, off-the-shelf TECs for use as energy harvesters in domestic environments: applications with limited temperature differences and space available. The usefulness is demonstrated by testing and comparing single and multi stage TECs with different sizes. The effect of a boost converter stage on the thermoelectric end-to-end efficiency is also discussed.

Keywords: thermoelectric cooler, TEC, complementary balanced energy harvesting, step-up converter, DC/DC converter, energy harvesting, thermal harvesting

Procedia PDF Downloads 260
6783 The Development of Packaging to Create Additional Value for Organic Rice Products of Uttaradit Province, Thailand

Authors: Juntima Pokkrong

Abstract:

The objectives of the study were to develop packaging made from rice straws left after the harvest in order to create additional value for organic rice products of Uttaradit Province and to demonstrate the technology of producing straw packaging to the community. The population was promoters of organic rice distributors, governmental organizations, consumers, and three groups of organic rice producers which are the Agriculturist Group of Khorrum Sub-district, Pichai District, Uttaradit Province; the Agriculturist Group of Wangdin Sub-district, Muang District, Uttaradit Province; and the Agriculturist Group of Wangkapi Sub-district, Muang District, Uttaradit Province. The data were collected via group discussions, and two types of questionnaires. The data acquired were then analyzed using descriptive statistic for percentage, mean, standard deviation, and content analysis. It has been found that primary packaging for one kilogram of rice requires vacuumed plastic bags made from thermoplastic or resin because they are able to preserve the quality of rice for a long time, and they are also very cheap. For secondary packaging, the making of straw paper was studied and applied. Straw paper can be used for various purposes, and in this study, it was used to create the secondary packaging models in compliance with packaging preferences acquired from the questionnaires. The models were surveyed among the population for their opinion using satisfaction questionnaires, and the result was overall highly satisfactory.

Keywords: environmentally friendly, organic rice, packaging, straw paper

Procedia PDF Downloads 245
6782 Influence of the Granular Mixture Properties on the Rheological Properties of Concrete: Yield Stress Determination Using Modified Chateau et al. Model

Authors: Rachid Zentar, Mokrane Bala, Pascal Boustingorry

Abstract:

The prediction of the rheological behavior of concrete is at the center of current concerns of the concrete industry for different reasons. The shortage of good quality standard materials combined with variable properties of available materials imposes to improve existing models to take into account these variations at the design stage of concrete. The main reasons for improving the predictive models are, of course, saving time and cost at the design stage as well as to optimize concrete performances. In this study, we will highlight the different properties of the granular mixtures that affect the rheological properties of concrete. Our objective is to identify the intrinsic parameters of the aggregates which make it possible to predict the yield stress of concrete. The work was done using two typologies of grains: crushed and rolled aggregates. The experimental results have shown that the rheology of concrete is improved by increasing the packing density of the granular mixture using rolled aggregates. The experimental program realized allowed to model the yield stress of concrete by a modified model of Chateau et al. through a dimensionless parameter following Krieger-Dougherty law. The modelling confirms that the yield stress of concrete depends not only on the properties of cement paste but also on the packing density of the granular skeleton and the shape of grains.

Keywords: crushed aggregates, intrinsic viscosity, packing density, rolled aggregates, slump, yield stress of concrete

Procedia PDF Downloads 126
6781 Crack Size and Moisture Issues in Thermally Modified vs. Native Norway Spruce Window Frames: A Hygrothermal Simulation Study

Authors: Gregor Vidmar, Rožle Repič, Boštjan Lesar, Miha Humar

Abstract:

The study investigates the impact of cracks in surface coatings on moisture content (MC) and related fungal growth in window frames made of thermally modified (TM) and native Norway spruce using hygrothermal simulations for Ljubljana, Slovenia. Comprehensive validation against field test data confirmed the numerical model's predictions, demonstrating similar trends in MC changes over the investigated four years. Various established mould growth models (isopleth, VTT, bio hygrothermal) did not appropriately reflect differences between the spruce types because they do not consider material moisture content, leading to the main conclusion that TM spruce is more resistant to moisture-related issues. Wood's MC influences fungal decomposition, typically occurring above 25% - 30% MC, with some fungi growing at lower MC under conducive conditions. Surface coatings cannot wholly prevent water penetration, which becomes significant when the coating is damaged. This study investigates the detrimental effects of surface coating cracks on wood moisture absorption, comparing TM spruce and native spruce window frames. Simulations were conducted for undamaged and damaged coatings (from 1 mm to 9 mm wide cracks) on window profiles as well as for uncoated profiles. Sorption curves were also measured up to 95% of the relative humidity. MC was measured in the frames exposed to actual climatic conditions and compared to simulated data for model validation. The study utilizes a simplified model of the bottom frame part due to convergence issues with simulations of the whole frame. TM spruce showed about 4% lower MC content compared to native spruce. Simulations showed that a 3 mm wide crack in native spruce coatings for the north orientation poses significant moisture risks, while a 9 mm wide crack in TM spruce coatings remains acceptable furthermore in the case of uncoated TM spruce could be acceptable. In addition, it seems that large enough cracks may cause even worse moisture dynamics compared to uncoated native spruce profiles. The absorption curve comes out to be the far most influential parameter, and the next one is density. Existing mould growth models need to be upgraded to reflect wood material differences accurately. Due to the lower sorption curve of TM spruce, in reality, higher RH values are obtained under the same boundary conditions, which implies a more critical situation according to these mould growth models. Still, it does not reflect the difference in materials, especially under external exposure conditions. Even if different substrate categories in the isopleth and bio-hygrothermal model or different sensitivity material classes for standard and TM wood are used, it does not necessarily change the expected trends; thus, models with MC being the inherent part of the models should be introduced. Orientation plays a crucial role in moisture dynamics. Results show that for similar moisture dynamics, for Norway spruce, the crack could be about 2 mm wider on the south than on the north side. In contrast, for TM spruce, orientation isn't as important, compared to other material properties. The study confirms the enhanced suitability of TM spruce for window frames in terms of moisture resistance and crack tolerance in surface coatings.

Keywords: hygrothermal simulations, mould growth, surface coating, thermally modified wood, window frame

Procedia PDF Downloads 34
6780 The Study of Internship Performances: Comparison of Information Technology Interns towards Students’ Types and Background Profiles

Authors: Shutchapol Chopvitayakun

Abstract:

Internship program is a compulsory course of many undergraduate programs in Thailand. It gives opportunities to a lot of senior students as interns to practice their working skills in the real organizations and also gives chances for interns to face real-world working problems. Interns also learn how to solve those problems by direct and indirect experiences. This program in many schools is a well-structured course with a contract or agreement made with real business organizations. Moreover, this program also offers opportunities for interns to get jobs after completing it from where the internship program takes place. Interns also learn how to work as a team and how to associate with other colleagues, trainers, and superiors of each organization in term of social hierarchy, self-responsibility, and self-disciplinary. This research focuses on senior students of Suan Sunandha Rajabhat University, Thailand whose studying major is information technology program. They practiced their working skills or took internship programs in the real business sector or real operating organizations in 2015-2016. Interns are categorized in to two types: normal program and special program. For special program, students study in weekday evening from Monday to Friday or Weekend and most of them work full-time or part-time job. For normal program, students study in weekday working hours and most of them do not work. The differences of these characters and the outcomes of internship performance were studied and analyzed in this research. This work applied some statistical analytics to find out whether the internship performance of each intern type has different performances statistically or not.

Keywords: internship, intern, senior student, information technology program

Procedia PDF Downloads 263
6779 Protecting Labor Rights in the Platform Economy: Legal Challenges and Innovative Explorations

Authors: Ruwen Pei

Abstract:

In the rapidly evolving landscape of the digital economy, platform employment has emerged as a transformative labor force, fundamentally altering the traditional paradigms of the employer-employee relationship. This paper provides a comprehensive analysis of the unique dynamics and intricate legal challenges associated with platform work, where workers often navigate precarious labor conditions without the robust safety nets typically afforded in traditional industries. It underscores the limitations of current labor regulations, particularly in addressing pressing concerns such as income volatility and disparate benefits. By drawing insights from diverse global case studies, this study emphasizes the compelling need for platform companies to shoulder their social welfare responsibilities, ensuring fair treatment and security for their workers. Moreover, it critically examines the profound influence of socio-cultural factors and educational awareness on the platform economy, shedding light on the complexities of this emerging labor landscape. Advocating for a harmonious equilibrium between flexibility and security, this paper calls for substantial legal reforms and innovative policy initiatives that can adapt to the evolving nature of work in the digital age. Finally, it anticipates forthcoming trends in the digital economy and platform labor relations, underscoring the significance of proactive adaptation to foster equitable and inclusive employment practices.

Keywords: platform employment, labor protections, social welfare, legal reforms, digital economy

Procedia PDF Downloads 70
6778 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home

Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.

Keywords: situation-awareness, smart home, IoT, machine learning, classifier

Procedia PDF Downloads 421
6777 Impact of Economic Crisis on Secondary Education in Anambra State

Authors: Stella Nkechi Ezeaku, Ifunanya Nkechi Ohamobi

Abstract:

This study investigated the impact of economic crisis on education in Anambra state. The population of the study comprised of all principals and teachers in Anambra state numbering 5,887 (253 principles and 5,634 teachers). To guide the study, three research questions and one hypothesis were formulated correlational design was adopted. Stratified random sampling technique was used to select 200 principals and 300 teachers as respondents for the study. A researcher-developed instrument tagged Impact of Economic Crisis on Education questionnaire (IECEQ) was used to collect data needed for the study. The instrument was validated by experts in measurement and evaluation. The reliability of the instrument was established using randomly selected members of the population who did not take part in the study. The data obtained was analyzed using Cronbach alpha technique and reliability co-efficient of .801 and .803 was obtained. The data were analyzed using simple and Multiple Regression Analysis. The formulated hypothesis was tested at .05 level of significance. Findings revealed that: there is a significant relationship between economic crisis and realization of goals of secondary education. The result also shows that economic crisis affect students' academic performance, teachers' morale and productivity and principals' administrative capability. This study therefore concludes that certain strategies must be devised to minimize the impact of economic crisis on secondary education. It is recommended that all stakeholders to education should be more resourceful and self-sufficient in order to cushion the effects of economic crisis currently gripping most world economies Nigeria inclusive.

Keywords: impact, economic, crisis, education

Procedia PDF Downloads 244