Search results for: energy-efficient components
722 Using a Phenomenological Approach to Explore the Experiences of Nursing Students in Coping with Their Emotional Responses in Caring for End-Of-Life Patients
Authors: Yun Chan Lee
Abstract:
Background: End-of-life care is a large area of all nursing practice and student nurses are likely to meet dying patients in many placement areas. It is therefore important to understand the emotional responses and coping strategies of student nurses in order for nursing education systems to have some appreciation of how nursing students might be supported in the future. Methodology: This research used a qualitative phenomenological approach. Six student nurses understanding a degree-level adult nursing course were interviewed. Their responses to questions were analyzed using interpretative phenomenological analysis. Finding: The findings identified 3 main themes. First, the common experience of ‘unpreparedness’. A very small number of participants felt that this was unavoidable and that ‘no preparation is possible’, the majority felt that they were unprepared because of ‘insufficient input’ from the university and as a result of wider ‘social taboos’ around death and dying. The second theme showed that emotions were affected by ‘the personal connection to the patient’ and the important sub-themes of ‘the evoking of memories’, ‘involvement in care’ and ‘sense of responsibility’. The third theme, the coping strategies used by students, seemed to fall into two broad areas those ‘internal’ with the student and those ‘external’. In terms of the internal coping strategies, ‘detachment’, ‘faith’, ‘rationalization’ and ‘reflective skills’ are the important components of this part. Regarding the external coping strategies, ‘clinical staff’ and ‘the importance of family and friends’ are the importance of accessing external forms of support. Implication: It is clear that student nurses are affected emotionally by caring for dying patients and many of them have apprehension even before they begin on their placements but very often this is unspoken. Those anxieties before the placement become more pronounced during and continue after the placements. This has implications for when support is offered and possibly its duration. Another significant point of the study is that participants often highlighted their wish to speak to qualified nurses after their experiences of being involved in end-of-life care and especially when they had been present at the time of death. Many of the students spoke that qualified nurses were not available to them. This seemed to be due to a number of reasons. Because the qualified nurses were not available, students had to make use of family members and friends to talk to. Consequently, the implication of this study is not only to educate student nurses but also to educate the qualified mentors on the importance of providing emotional support to students.Keywords: nursing students, coping strategies, end-of-life care, emotional responses
Procedia PDF Downloads 162721 Engineering Topology of Construction Ecology in Urban Environments: Suez Canal Economic Zone
Authors: Moustafa Osman Mohammed
Abstract:
Integration sustainability outcomes give attention to construction ecology in the design review of urban environments to comply with Earth’s System that is composed of integral parts of the (i.e., physical, chemical and biological components). Naturally, exchange patterns of industrial ecology have consistent and periodic cycles to preserve energy flows and materials in Earth’s System. When engineering topology is affecting internal and external processes in system networks, it postulated the valence of the first-level spatial outcome (i.e., project compatibility success). These instrumentalities are dependent on relating the second-level outcome (i.e., participant security satisfaction). Construction ecology approach feedback energy from resources flows between biotic and abiotic in the entire Earth’s ecosystems. These spatial outcomes are providing an innovation, as entails a wide range of interactions to state, regulate and feedback “topology” to flow as “interdisciplinary equilibrium” of ecosystems. The interrelation dynamics of ecosystems are performing a process in a certain location within an appropriate time for characterizing their unique structure in “equilibrium patterns”, such as biosphere and collecting a composite structure of many distributed feedback flows. These interdisciplinary systems regulate their dynamics within complex structures. These dynamic mechanisms of the ecosystem regulate physical and chemical properties to enable a gradual and prolonged incremental pattern to develop a stable structure. The engineering topology of construction ecology for integration sustainability outcomes offers an interesting tool for ecologists and engineers in the simulation paradigm as an initial form of development structure within compatible computer software. This approach argues from ecology, resource savings, static load design, financial other pragmatic reasons, while an artistic/architectural perspective, these are not decisive. The paper described an attempt to unify analytic and analogical spatial modeling in developing urban environments as a relational setting, using optimization software and applied as an example of integrated industrial ecology where the construction process is based on a topology optimization approach.Keywords: construction ecology, industrial ecology, urban topology, environmental planning
Procedia PDF Downloads 132720 Extension of the Simplified Theory of Plastic Zones for Analyzing Elastic Shakedown in a Multi-Dimensional Load Domain
Authors: Bastian Vollrath, Hartwig Hubel
Abstract:
In case of over-elastic and cyclic loading, strain may accumulate due to a ratcheting mechanism until the state of shakedown is possibly achieved. Load history dependent numerical investigations by a step-by-step analysis are rather costly in terms of engineering time and numerical effort. In the case of multi-parameter loading, where various independent loadings affect the final state of shakedown, the computational effort becomes an additional challenge. Therefore, direct methods like the Simplified Theory of Plastic Zones (STPZ) are developed to solve the problem with a few linear elastic analyses. Post-shakedown quantities such as strain ranges and cyclic accumulated strains are calculated approximately by disregarding the load history. The STPZ is based on estimates of a transformed internal variable, which can be used to perform modified elastic analyses, where the elastic material parameters are modified, and initial strains are applied as modified loading, resulting in residual stresses and strains. The STPZ already turned out to work well with respect to cyclic loading between two states of loading. Usually, few linear elastic analyses are sufficient to obtain a good approximation to the post-shakedown quantities. In a multi-dimensional load domain, the approximation of the transformed internal variable transforms from a plane problem into a hyperspace problem, where time-consuming approximation methods need to be applied. Therefore, a solution restricted to structures with four stress components was developed to estimate the transformed internal variable by means of three-dimensional vector algebra. This paper presents the extension to cyclic multi-parameter loading so that an unlimited number of load cases can be taken into account. The theoretical basis and basic presumptions of the Simplified Theory of Plastic Zones are outlined for the case of elastic shakedown. The extension of the method to many load cases is explained, and a workflow of the procedure is illustrated. An example, adopting the FE-implementation of the method into ANSYS and considering multilinear hardening is given which highlights the advantages of the method compared to incremental, step-by-step analysis.Keywords: cyclic loading, direct method, elastic shakedown, multi-parameter loading, STPZ
Procedia PDF Downloads 163719 Linguistic Analysis of Argumentation Structures in Georgian Political Speeches
Authors: Mariam Matiashvili
Abstract:
Argumentation is an integral part of our daily communications - formal or informal. Argumentative reasoning, techniques, and language tools are used both in personal conversations and in the business environment. Verbalization of the opinions requires the use of extraordinary syntactic-pragmatic structural quantities - arguments that add credibility to the statement. The study of argumentative structures allows us to identify the linguistic features that make the text argumentative. Knowing what elements make up an argumentative text in a particular language helps the users of that language improve their skills. Also, natural language processing (NLP) has become especially relevant recently. In this context, one of the main emphases is on the computational processing of argumentative texts, which will enable the automatic recognition and analysis of large volumes of textual data. The research deals with the linguistic analysis of the argumentative structures of Georgian political speeches - particularly the linguistic structure, characteristics, and functions of the parts of the argumentative text - claims, support, and attack statements. The research aims to describe the linguistic cues that give the sentence a judgmental/controversial character and helps to identify reasoning parts of the argumentative text. The empirical data comes from the Georgian Political Corpus, particularly TV debates. Consequently, the texts are of a dialogical nature, representing a discussion between two or more people (most often between a journalist and a politician). The research uses the following approaches to identify and analyze the argumentative structures Lexical Classification & Analysis - Identify lexical items that are relevant in argumentative texts creating process - Creating the lexicon of argumentation (presents groups of words gathered from a semantic point of view); Grammatical Analysis and Classification - means grammatical analysis of the words and phrases identified based on the arguing lexicon. Argumentation Schemas - Describe and identify the Argumentation Schemes that are most likely used in Georgian Political Speeches. As a final step, we analyzed the relations between the above mentioned components. For example, If an identified argument scheme is “Argument from Analogy”, identified lexical items semantically express analogy too, and they are most likely adverbs in Georgian. As a result, we created the lexicon with the words that play a significant role in creating Georgian argumentative structures. Linguistic analysis has shown that verbs play a crucial role in creating argumentative structures.Keywords: georgian, argumentation schemas, argumentation structures, argumentation lexicon
Procedia PDF Downloads 75718 Artificial Membrane Comparison for Skin Permeation in Skin PAMPA
Authors: Aurea C. L. Lacerda, Paulo R. H. Moreno, Bruna M. P. Vianna, Cristina H. R. Serra, Airton Martin, André R. Baby, Vladi O. Consiglieri, Telma M. Kaneko
Abstract:
The modified Franz cell is the most widely used model for in vitro permeation studies, however it still presents some disadvantages. Thus, some alternative methods have been developed such as Skin PAMPA, which is a bio- artificial membrane that has been applied for skin penetration estimation of xenobiotics based on HT permeability model consisting. Skin PAMPA greatest advantage is to carry out more tests, in a fast and inexpensive way. The membrane system mimics the stratum corneum characteristics, which is the primary skin barrier. The barrier properties are given by corneocytes embedded in a multilamellar lipid matrix. This layer is the main penetration route through the paracellular permeation pathway and it consists of a mixture of cholesterol, ceramides, and fatty acids as the dominant components. However, there is no consensus on the membrane composition. The objective of this work was to compare the performance among different bio-artificial membranes for studying the permeation in skin PAMPA system. Material and methods: In order to mimetize the lipid composition`s present in the human stratum corneum six membranes were developed. The membrane composition was equimolar mixture of cholesterol, ceramides 1-O-C18:1, C22, and C20, plus fatty acids C20 and C24. The membrane integrity assay was based on the transport of Brilliant Cresyl Blue, which has a low permeability; and Lucifer Yellow with very poor permeability and should effectively be completely rejected. The membrane characterization was performed using Confocal Laser Raman Spectroscopy, using stabilized laser at 785 nm with 10 second integration time and 2 accumulations. The membrane behaviour results on the PAMPA system were statistically evaluated and all of the compositions have shown integrity and permeability. The confocal Raman spectra were obtained in the region of 800-1200 cm-1 that is associated with the C-C stretches of the carbon scaffold from the stratum corneum lipids showed similar pattern for all the membranes. The ceramides, long chain fatty acids and cholesterol in equimolar ratio permitted to obtain lipid mixtures with self-organization capability, similar to that occurring into the stratum corneum. Conclusion: The artificial biological membranes studied for Skin PAMPA showed to be similar and with comparable properties to the stratum corneum.Keywords: bio-artificial membranes, comparison, confocal Raman, skin PAMPA
Procedia PDF Downloads 510717 Diabetes and Medical Plant's Treatment: Ethnobotanical Studies Carried out in Morocco
Authors: Jamila Fakchich, Mostafa Jamila Lazaar Elachouri, Lakhder Fakchich, Fatna Ouali, Abd Errazzak Belkacem
Abstract:
Diabetes is a chronic metabolic disease that has a significant impact on the health, quality of life, and life expectancy of patients as well as the health care system. By its nature diabetes, is a multisystem disease with wide-ranging complication that span nearly all region of the body. This epidemic problem, however, is not unique to the industrialized society, but has also hardly struck the developing countries. In Morocco, as developing country, there is an epidemic rise in diabetes, with ensuing concern about the management and control of this disease; it began a chronic burdensome disease of largely middle-aged and elderly people, with a long course and serious complications often resulting in high death-rate, the treatment of diabetes spent vast amount of resources including medicines, diets, physical training. Treatment of this disease is considered problematic due to the lack of effective and safe drugs capable of inducing sustained clinical, biochemical, and histological cure. In Moroccan society, the phytoremedies are some times the only affordable sources of healthcare, particularly for the people in remote areas. In this paper, we present a synthesis work obtained from the ethnobotanical data reported in different specialized journals. A Synthesis of four published ethnobotanical studies that have been carried out in different region of Morocco by different team seekers during the period from 1997 to 2015. Medicinal plants inventoried by different seekers in four Moroccan’s areas have been regrouped and codified, then, Factorial Analysis (FA) and Principal Components Analysis (PCA) are used to analyse the aggregated data from the four studies and plants are classified according to their frequency of use by population. Our work deals with an attempt to gather information on some traditional uses of medicinal plants from different regions of Morocco, also, it was designed to give a set of medicinal plants commonly used by Moroccan people in the treatment of diabetes; In this paper, we intended to provide a basic knowledge about plant species used by Moroccan society for treatment of diabetes. One of the most interesting aspects of this type of works is to assess the relative cultural importance of medicinal plants for specific illnesses and exploring its usefulness in the context of diabetes.Keywords: Morocco, medicinal plants, ethnobotanical, diabetes, phytoremedies
Procedia PDF Downloads 334716 Influence of Plant Cover and Redistributing Rainfall on Green Roof Retention and Plant Drought Stress
Authors: Lubaina Soni, Claire Farrell, Christopher Szota, Tim D. Fletcher
Abstract:
Green roofs are a promising engineered ecosystem for reducing stormwater runoff and restoring vegetation cover in cities. Plants can contribute to rainfall retention by rapidly depleting water in the substrate; however, this increases the risk of plant drought stress. Green roof configurations, therefore, need to provide plants the opportunity to efficiently deplete the substrate but also avoid severe drought stress. This study used green roof modules placed in a rainout shelter during a six-month rainfall regime simulated in Melbourne, Australia. Rainfall was applied equally with an overhead irrigation system on each module. Aside from rainfall, modules were under natural climatic conditions, including temperature, wind, and radiation. A single species, Ficinia nodosa, was planted with five different treatments and three replicates of each treatment. In this experiment, we tested the impact of three plant cover treatments (0%, 50% and 100%) on rainfall retention and plant drought stress. We also installed two runoff zone treatments covering 50% of the substrate surface for additional modules with 0% and 50% plant cover to determine whether directing rainfall resources towards plant roots would reduce drought stress without impacting rainfall retention. The retention performance for the simulated rainfall events was measured, quantifying all components for hydrological performance and survival on green roofs. We found that evapotranspiration and rainfall retention were similar for modules with 50% and 100% plant cover. However, modules with 100% plant cover showed significantly higher plant drought stress. Therefore, planting at a lower cover/density reduced plant drought stress without jeopardizing rainfall retention performance. Installing runoff zones marginally reduced evapotranspiration and rainfall retention, but by approximately the same amount for modules with 0% and 50% plant cover. This indicates that reduced evaporation due to the installation of the runoff zones likely contributed to reduced evapotranspiration and rainfall retention. Further, runoff occurred from modules with runoff zones faster than those without, indicating that we created a faster pathway for water to enter and leave the substrate, which also likely contributed to lower overall evapotranspiration and retention. However, despite some loss in retention performance, modules with 50% plant cover installed with runoff zones showed significantly lower drought stress in plants compared to those without runoff zones. Overall, we suggest that reducing plant cover represents a simple means of optimizing green roof performance but creating runoff zones may reduce plant drought stress at the cost of reduced rainfall retention.Keywords: green roof, plant cover, plant drought stress, rainfall retention
Procedia PDF Downloads 117715 The Thoughts and Feelings Associated with Goal Achievement
Authors: Lindsay Foreman
Abstract:
Introduction: Goals have become synonymous with the quest for the good life and the pursuit of happiness, with coaching and positive psychology gaining popularity as an approach in recent decades. And yet mental health is on the rise and the leading cause of disability, wellbeing is on the decline, stress is leading to 50-60% of workday absences and the need for action is indisputable and urgent. Purpose: The purpose of this study is to better understand two things we cannot see, but that play the most significant role in these outcomes - what we think and how we feel. With many working on the assumption that positive thinking and an optimistic outlook are necessary or valuable components of goal pursuit, this study uncovers the reality of the ‘inner-game’ from the coachee's perspective. Method: With a mixed methods design using a Q Method study of subjectivity to ‘make the unseen seen’. First, a wide-ranging universe of subjective thoughts and feelings experienced during goal pursuit are explored. These are generated from literature and a Qualtrics survey to create a Q-Set of 40 statements. Then 19 participants in professional and organisational settings offer their perspectives on these 40 Q-Set statements. Each rank them in a semi-forced distribution from ‘most like me’ to ‘least like me’ using Q-Sort software. From these individual perspectives, clusters of perspectives are identified using factor analysis and four distinct viewpoints have emerged. Findings: These Goal Pursuit Viewpoints offer insight into the states and self-talk experienced by coachees and may not reflect the assumption of positive thinking associated with achieving goals. The four Viewpoints are 1) the Optimistic View, 2) the Realistic View 3) The Dreamer View and 4) The Conflicted View. With only a quarter of the Dreamer View, and a third of the Optimistic view going on to achieve their goals, these assumptions need review. And with all the Realistic Views going on to achieve their goals, the role of self-doubt, overwhelm and anxiousness in goal achievement cannot be overlooked. Contribution: This study offers greater insight and understanding of people's inner experiences as they pursue goals and highlights the necessary and normal negative states associated with goal achievement. It also offers a practical tool of the Q-set statements to help coaches and coachees explore the current state and help navigate the journey towards goal achievement. It calls into question whether goals should always be part of coaching and if values, identity, and purpose may play a greater role than goals.Keywords: coaching, goals, positive psychology, mindset, leadership, mental health, beliefs, cognition, emotional intelligence
Procedia PDF Downloads 114714 Process Flows and Risk Analysis for the Global E-SMC
Authors: Taeho Park, Ming Zhou, Sangryul Shim
Abstract:
With the emergence of the global economy, today’s business environment is getting more competitive than ever in the past. And many supply chain (SC) strategies and operations have significantly been altered over the past decade to overcome more complexities and risks imposed onto the global business. First, offshoring and outsourcing are more adopted as operational strategies. Manufacturing continues to move to better locations for enhancing competitiveness. Second, international operations are a challenge to a company’s SC system. Third, the products traded in the SC system are not just physical goods, but also digital goods (e.g., software, e-books, music, video materials). There are three main flows involved in fulfilling the activities in the SC system: physical flow, information flow, and financial flow. An advance of the Internet and electronic communication technologies has enabled companies to perform the flows of SC activities in electronic formats, resulting in the advent of an electronic supply chain management (e-SCM) system. A SC system for digital goods is somewhat different from the supply chain system for physical goods. However, it involves many similar or identical SC activities and flows. For example, like the production of physical goods, many third parties are also involved in producing digital goods for the production of components and even final products. This research aims at identifying process flows of both physical and digital goods in a SC system, and then investigating all risk elements involved in the physical, information, and financial flows during the fulfilment of SC activities. There are many risks inherent in the e-SCM system. Some risks may have severe impact on a company’s business, and some occur frequently but are not detrimental enough to jeopardize a company. Thus, companies should assess the impact and frequency of those risks, and then prioritize them in terms of their severity, frequency, budget, and time in order to be carefully maintained. We found risks involved in the global trading of physical and digital goods in four different categories: environmental risk, strategic risk, technological risk, and operational risk. And then the significance of those risks was investigated through a survey. The survey asked companies about the frequency and severity of the identified risks. They were also asked whether they had faced those risks in the past. Since the characteristics and supply chain flows of digital goods are varying industry by industry and country by country, it is more meaningful and useful to analyze risks by industry and country. To this end, more data in each industry sector and country should be collected, which could be accomplished in the future research.Keywords: digital goods, e-SCM, risk analysis, supply chain flows
Procedia PDF Downloads 423713 Safeguarding the Cloud: The Crucial Role of Technical Project Managers in Security Management for Cloud Environments
Authors: Samuel Owoade, Zainab Idowu, Idris Ajibade, Abel Uzoka
Abstract:
Cloud computing adoption continues to soar, with 83% of enterprise workloads estimated to be in the cloud by 2022. However, this rapid migration raises security concerns, needing strong security management solutions to safeguard sensitive data and essential applications. This paper investigates the critical role of technical project managers in orchestrating security management initiatives for cloud environments, evaluating their responsibilities, challenges, and best practices for assuring the resilience and integrity of cloud infrastructures. Drawing from a comprehensive review of industry reports and interviews with cloud security experts, this research highlights the multifaceted landscape of security management in cloud environments. Despite the rapid adoption of cloud services, only 25% of organizations have matured their cloud security practices, indicating a pressing need for effective management strategies. This paper proposes a strategy framework adapted to the demands of technical project managers, outlining the important components of effective cloud security management. Notably, 76% of firms identify misconfiguration as a major source of cloud security incidents, underlining the significance of proactive risk assessment and constant monitoring. Furthermore, the study emphasizes the importance of technical project managers in facilitating cross-functional collaboration, bridging the gap between cybersecurity professionals, cloud architects, compliance officers, and IT operations teams. With 68% of firms seeing difficulties integrating security policies into their cloud systems, effective communication and collaboration are critical to success. Case studies from industry leaders illustrate the practical use of security management projects in cloud settings. These examples demonstrate the importance of technical project managers in using their expertise to address obstacles and generate meaningful outcomes, with 92% of firms reporting improved security practices after implementing proactive security management tactics. In conclusion, this research underscores the critical role of technical project managers in safeguarding cloud environments against evolving threats. By embracing their role as guardians of the cloud realm, project managers can mitigate risks, optimize resource utilization, and uphold the trust and integrity of cloud infrastructures in an era of digital transformation.Keywords: cloud security, security management, technical project management, cybersecurity, cloud infrastructure, risk management, compliance
Procedia PDF Downloads 55712 Functional Snacks Bars: A Healthy Alternative to a Poor Diet Quality
Authors: Daniela Istrati, Camelia Vizireanu, Camelia Grozavu, Rodica Mihaela Dinica
Abstract:
In last years, eating habits have changed, and snacking has become more common. Snacking habits, including eating whole fruit, vegetables and crackers, were found to contribute to better overall diet quality, while consuming snacks such as cookies, pastries, sweets, milk desserts and soft drinks was associated with poorer diet quality. The nutritional quality of the snack is very important and choosing nutritious foods as snacks can be beneficial for our health. For this reason, the development of functional snacks bars represents a necessity for this niche market. The aim of this work was to develop some formulations of energizing snack bars with high dietary fibers and antioxidant activity. Snack bars contain both fruits with antioxidant activity and components (cereals and seeds) rich in carbohydrates and polyunsaturated fats that provide energy during sports activities, physical and mental stress. Three types of samples were prepared and stored in refrigerated conditions at 40°C for 30 days. The first sample (S1) contains wheat germs, raw pumpkin seeds, toasted oat flakes, flaxseeds flour, cinnamon honey, raw sunflower seeds, sea buckthorn, amaranth flour, cinnamon and olive oil. The second sample (S2) has the same composition as the first, less flour and cinnamon flour and the honey used was ginger, honey. The third sample (S3) is like the first less amaranth flour and the honey used was buckthorn sea honey. The physicochemical, antioxidant activity, polyphenolic and flavonoid content and sensorial characteristics of the samples were investigated. Results showed that snacks bars had important level of extracted phenolics, flavonoids, fibers, proteins, carbohydrates and fats. Therefore, snack bars may be a convenient functional food, offering an important source of flavonoids and polyphenols, a healthy alternative to a poor diet quality, with balanced nutritional and sensory characteristics that recommend it in the diet of all consumers concerned with maintaining health. Acknowledgment: This study has been founded by the Francophone University Agency, Project Réseau régional dans le domaine de la santé, la nutrition et la sécurité alimentaire (SaIN), No. at Dunarea de Jos University of Galati 21899/ 06.09.2017Keywords: antioxidant activity, functional food, sea buckthorn, snack bars
Procedia PDF Downloads 171711 Nanostructured Multi-Responsive Coatings for Tuning Surface Properties
Authors: Suzanne Giasson, Alberto Guerron
Abstract:
Stimuli-responsive polymer coatings can be used as functional elements in nanotechnologies, such as valves in microfluidic devices, as membranes in biomedical engineering, as substrates for the culture of biological tissues or in developing nanomaterials for targeted therapies in different diseases. However, such coatings usually suffer from major shortcomings, such as a lack of selectivity and poor environmental stability. The study will present multi-responsive hierarchical and hybrid polymer-based coatings aiming to overcome some of these limitations. Hierarchical polymer coatings, consisting of two-dimensional arrays of thermo-responsive cationic PNIPAM-based microgels and surface-functionalized with non-responsive or pH-responsive polymers, were covalently grafted to substrates to tune the surface chemistry and the elasticity of the surface independently using different stimuli. The characteristic dimensions (i.e., layer thickness) and surface properties (i.e., adhesion, friction) of the microgel coatings were assessed using the Surface Forces Apparatus. The ability to independently control the swelling and surface properties using temperature and pH as triggers were investigated for microgels in aqueous suspension and microgels immobilized on substrates. Polymer chain grafting did not impede the ability of cationic PNIPAM microgels to undergo a volume phase transition above the VPTT, either in suspension or immobilized on a substrate. Due to the presence of amino groups throughout the entirety of the microgel polymer network, the swelling behavior was also pH dependent. However, the thermo-responsive swelling was more significant than the pH-triggered one. The microgels functionalized with PEG exhibited the most promising behavior. Indeed, the thermo-triggered swelling of microgel-co-PEG did not give rise to changes in the microgel surface properties (i.e., surface potential and adhesion) within a wide range of pH values. It was possible for the immobilized microgel-co-PEG to undergo a volume transition (swelling/shrinking) with no change in adhesion, suggesting that the surface of the thermal-responsive microgels remains rather hydrophilic above the VPTT. This work confirms the possibility of tuning the swelling behavior of microgels without changing the adhesive properties. Responsive surfaces whose swelling properties can be reversibly and externally altered over space and time regardless of the surface chemistry are very innovative and will enable revolutionary advances in technologies, particularly in biomedical surface engineering and microfluidics, where advanced assembly of functional components is increasingly required.Keywords: responsive materials, polymers, surfaces, cell culture
Procedia PDF Downloads 81710 Mesocarbon Microbeads Modification of Stainless-Steel Current Collector to Stabilize Lithium Deposition and Improve the Electrochemical Performance of Anode Solid-State Lithium Hybrid Battery
Authors: Abebe Taye
Abstract:
The interest in enhancing the performance of all-solid-state batteries featuring lithium metal anodes as a potential alternative to traditional lithium-ion batteries has prompted exploration into new avenues. A promising strategy involves transforming lithium-ion batteries into hybrid configurations by integrating lithium-ion and lithium-metal solid-state components. This study is focused on achieving stable lithium deposition and advancing the electrochemical capabilities of solid-state lithium hybrid batteries with anodes by incorporating mesocarbon microbeads (MCMBs) blended with silver nanoparticles. To achieve this, mesocarbon microbeads (MCMBs) blended with silver nanoparticles are coated on stainless-steel current collectors. These samples undergo a battery of analyses employing diverse techniques. Surface morphology is studied through scanning electron microscopy (SEM). The electrochemical behavior of the coated samples is evaluated in both half-cell and full-cell setups utilizing an argyrodite-type sulfide electrolyte. The stability of MCMBs in the electrolyte is assessed using electrochemical impedance spectroscopy (EIS). Additional insights into the composition are gleaned through X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDS). At an ultra-low N/P ratio of 0.26, stability is upheld for over 100 charge/discharge cycles in half-cells. When applied in a full-cell configuration, the hybrid anode preserves 60.1% of its capacity after 80 cycles at 0.3 C under a low N/P ratio of 0.45. In sharp contrast, the capacity retention of the cell using untreated MCMBs declines to 20.2% after a mere 60 cycles. The introduction of mesocarbon microbeads (MCMBs) combined with silver nanoparticles into the hybrid anode of solid-state lithium batteries substantially elevates their stability and electrochemical performance. This approach ensures consistent lithium deposition and removal, mitigating dendrite growth and the accumulation of inactive lithium. The findings from this investigation hold significant value in elevating the reversibility and energy density of lithium-ion batteries, thereby making noteworthy contributions to the advancement of more efficient energy storage systems.Keywords: MCMB, lithium metal, hybrid anode, silver nanoparticle, cycling stability
Procedia PDF Downloads 78709 Quantum Graph Approach for Energy and Information Transfer through Networks of Cables
Authors: Mubarack Ahmed, Gabriele Gradoni, Stephen C. Creagh, Gregor Tanner
Abstract:
High-frequency cables commonly connect modern devices and sensors. Interestingly, the proportion of electric components is rising fast in an attempt to achieve lighter and greener devices. Modelling the propagation of signals through these cable networks in the presence of parameter uncertainty is a daunting task. In this work, we study the response of high-frequency cable networks using both Transmission Line and Quantum Graph (QG) theories. We have successfully compared the two theories in terms of reflection spectra using measurements on real, lossy cables. We have derived a generalisation of the vertex scattering matrix to include non-uniform networks – networks of cables with different characteristic impedances and propagation constants. The QG model implicitly takes into account the pseudo-chaotic behavior, at the vertices, of the propagating electric signal. We have successfully compared the asymptotic growth of eigenvalues of the Laplacian with the predictions of Weyl law. We investigate the nearest-neighbour level-spacing distribution of the resonances and compare our results with the predictions of Random Matrix Theory (RMT). To achieve this, we will compare our graphs with the generalisation of Wigner distribution for open systems. The problem of scattering from networks of cables can also provide an analogue model for wireless communication in highly reverberant environments. In this context, we provide a preliminary analysis of the statistics of communication capacity for communication across cable networks, whose eventual aim is to enable detailed laboratory testing of information transfer rates using software defined radio. We specialise this analysis in particular for the case of MIMO (Multiple-Input Multiple-Output) protocols. We have successfully validated our QG model with both TL model and laboratory measurements. The growth of Eigenvalues compares well with Weyl’s law and the level-spacing distribution agrees so well RMT predictions. The results we achieved in the MIMO application compares favourably with the prediction of a parallel on-going research (sponsored by NEMF21.)Keywords: eigenvalues, multiple-input multiple-output, quantum graph, random matrix theory, transmission line
Procedia PDF Downloads 174708 Advancing Microstructure Evolution in Tungsten Through Rolling in Laser Powder Bed Fusion
Authors: Narges Shayesteh Moghaddam
Abstract:
Tungsten (W), a refractory metal known for its remarkably high melting temperature, offers tremendous potential for use in challenging environments prevalent in sectors such as space exploration, defense, and nuclear industries. Additive manufacturing, especially the Laser Powder-Bed Fusion (LPBF) technique, emerges as a beneficial method for fabricating tungsten parts. This technique enables the production of intricate components while simultaneously reducing production lead times and associated costs. However, the inherent brittleness of tungsten and its tendency to crack under high-temperature conditions pose significant challenges to the manufacturing process. Our research primarily focuses on the process of rolling tungsten parts in a layer-by-layer manner in LPBF and the subsequent changes in microstructure. Our objective is not only to identify the alterations in the microstructure but also to assess their implications on the physical properties and performance of the fabricated tungsten parts. To examine these aspects, we conducted an extensive series of experiments that included the fabrication of tungsten samples through LPBF and subsequent characterization using advanced materials analysis techniques. These investigations allowed us to scrutinize shifts in various microstructural features, including, but not limited to, grain size and grain boundaries occurring during the rolling process. The results of our study provide crucial insights into how specific factors, such as plastic deformation occurring during the rolling process, influence the microstructural characteristics of the fabricated parts. This information is vital as it provides a foundation for understanding how the parameters of the layer-by-layer rolling process affect the final tungsten parts. Our research significantly broadens the current understanding of microstructural evolution in tungsten parts produced via the layer-by-layer rolling process in LPBF. The insights obtained will play a pivotal role in refining and optimizing manufacturing parameters, thus improving the mechanical properties of tungsten parts and, therefore, enhancing their performance. Furthermore, these findings will contribute to the advancement of manufacturing techniques, facilitating the wider application of tungsten parts in various high-demand sectors. Through these advancements, this research represents a significant step towards harnessing the full potential of tungsten in high-temperature and high-stress applications.Keywords: additive manufacturing, rolling, tungsten, refractory materials
Procedia PDF Downloads 100707 Chemical Pollution of Water: Waste Water, Sewage Water, and Pollutant Water
Authors: Nabiyeva Jamala
Abstract:
We divide water into drinking, mineral, industrial, technical and thermal-energetic types according to its use and purpose. Drinking water must comply with sanitary requirements and norms according to organoleptic devices and physical and chemical properties. Mineral water - must comply with the norms due to some components having therapeutic properties. Industrial water must fulfill its normative requirements by being used in the industrial field. Technical water should be suitable for use in the field of agriculture, household, and irrigation, and the normative requirements should be met. Heat-energy water is used in the national economy, and it consists of thermal and energy water. Water is a filter-accumulator of all types of pollutants entering the environment. This is explained by the fact that it has the property of dissolving compounds of mineral and gaseous water and regular water circulation. Environmentally clean, pure, non-toxic water is vital for the normal life activity of humans, animals and other living beings. Chemical pollutants enter water basins mainly with wastewater from non-ferrous and ferrous metallurgy, oil, gas, chemical, stone, coal, pulp and paper and forest materials processing industries and make them unusable. Wastewater from the chemical, electric power, woodworking and machine-building industries plays a huge role in the pollution of water sources. Chlorine compounds, phenols, and chloride-containing substances have a strong lethal-toxic effect on organisms when mixed with water. Heavy metals - lead, cadmium, mercury, nickel, copper, selenium, chromium, tin, etc. water mixed with ingredients cause poisoning in humans, animals and other living beings. Thus, the mixing of selenium with water causes liver diseases in people, the mixing of mercury with the nervous system, and the mixing of cadmium with kidney diseases. Pollution of the World's ocean waters and other water basins with oil and oil products is one of the most dangerous environmental problems facing humanity today. So, mixing even the smallest amount of oil and its products in drinking water gives it a bad, unpleasant smell. Mixing one ton of oil with water creates a special layer that covers the water surface in an area of 2.6 km2. As a result, the flood of light, photosynthesis and oxygen supply of water is getting weak and there is a great danger to the lives of living beings.Keywords: chemical pollutants, wastewater, SSAM, polyacrylamide
Procedia PDF Downloads 74706 Ho-Doped Lithium Niobate Thin Films: Raman Spectroscopy, Structure and Luminescence
Authors: Edvard Kokanyan, Narine Babajanyan, Ninel Kokanyan, Marco Bazzan
Abstract:
Lithium niobate (LN) crystals, renowned for their exceptional nonlinear optical, electro-optical, piezoelectric, and photorefractive properties, stand as foundational materials in diverse fields of study and application. While they have long been utilized in frequency converters of laser radiation, electro-optical modulators, and holographic information recording media, LN crystals doped with rare earth ions represent a compelling frontier for modern compact devices. These materials exhibit immense potential as key components in infrared lasers, optical sensors, self-cooling systems, and radiation balanced laser setups. In this study, we present the successful synthesis of Ho-doped lithium niobate (LN:Ho) thin films on sapphire substrates employing the Sol-Gel technique. The films exhibit a strong crystallographic orientation along the perpendicular direction to the substrate surface, with X-ray diffraction analysis confirming the predominant alignment of the film's "c" axis, notably evidenced by the intense (006) reflection peak. Further characterization through Raman spectroscopy, employing a confocal Raman microscope (LabRAM HR Evolution) with exciting wavelengths of 532 nm and 785 nm, unraveled intriguing insights. Under excitation with a 785 nm laser, Raman scattering obeyed selection rules, while employing a 532 nm laser unveiled additional forbidden lines reminiscent of behaviors observed in bulk LN:Ho crystals. These supplementary lines were attributed to luminescence induced by excitation at 532 nm. Leveraging data from anti-Stokes Raman lines facilitated the disentanglement of luminescence spectra from the investigated samples. Surface scanning affirmed the uniformity of both structure and luminescence across the thin films. Notably, despite the robust orientation of the "c" axis perpendicular to the substrate surface, Raman signals indicated a stochastic distribution of "a" and "b" axes, validating the mosaic structure of the films along the mentioned axis. This study offers valuable insights into the structural properties of Ho-doped lithium niobate thin films, with the observed luminescence behavior holding significant promise for potential applications in optoelectronic devices.Keywords: lithium niobate, Sol-Gel, luminescence, Raman spectroscopy
Procedia PDF Downloads 61705 Wind Generator Control in Isolated Site
Authors: Glaoui Hachemi
Abstract:
Wind has been proven as a cost effective and reliable energy source. Technological advancements over the last years have placed wind energy in a firm position to compete with conventional power generation technologies. Algeria has a vast uninhabited land area where the south (desert) represents the greatest part with considerable wind regime. In this paper, an analysis of wind energy utilization as a viable energy substitute in six selected sites widely distributed all over the south of Algeria is presented. In this presentation, wind speed frequency distributions data obtained from the Algerian Meteorological Office are used to calculate the average wind speed and the available wind power. The annual energy produced by the Fuhrlander FL 30 wind machine is obtained using two methods. The analysis shows that in the southern Algeria, at 10 m height, the available wind power was found to vary between 160 and 280 W/m2, except for Tamanrasset. The highest potential wind power was found at Adrar, with 88 % of the time the wind speed is above 3 m/s. Besides, it is found that the annual wind energy generated by that machine lie between 33 and 61 MWh, except for Tamanrasset, with only 17 MWh. Since the wind turbines are usually installed at a height greater than 10 m, an increased output of wind energy can be expected. However, the wind resource appears to be suitable for power production on the south and it could provide a viable substitute to diesel oil for irrigation pumps and electricity generation. In this paper, a model of the wind turbine (WT) with permanent magnet generator (PMSG) and its associated controllers is presented. The increase of wind power penetration in power systems has meant that conventional power plants are gradually being replaced by wind farms. In fact, today wind farms are required to actively participate in power system operation in the same way as conventional power plants. In fact, power system operators have revised the grid connection requirements for wind turbines and wind farms, and now demand that these installations be able to carry out more or less the same control tasks as conventional power plants. For dynamic power system simulations, the PMSG wind turbine model includes an aerodynamic rotor model, a lumped mass representation of the drive train system and generator model. In this paper, we propose a model with an implementation in MATLAB / Simulink, each of the system components off-grid small wind turbines.Keywords: windgenerator systems, permanent magnet synchronous generator (PMSG), wind turbine (WT) modeling, MATLAB simulink environment
Procedia PDF Downloads 339704 Assess the Accessibility to Culturally Competent Mental Health Services for Haitian Communities in New York State
Authors: Natacha Julceus Fabien, Maryse Emmanuel Garcy
Abstract:
Mental illness encompasses more than two hundred types of mental troubles, and more than half of the American population is at risk of being affected. If not effectively treated, mental illness can have dire consequences on health, the economy, and society. New York State, the second state after Florida with the most prominent Haitian/American, counted 180,710 inhabitants distributed in 60321 households in 2021, with almost half 46.4% being less than 35 years old. Studies show that while blacks are resilient, they are more likely to have severe mental diseases leading to disabilities compared to their white counterparts. Cultural competence in mental health services can narrow health disparities. Achieving this cultural competency in the health system involves good coordination in a robust health system where everyone is ready to contribute to its practical implementation. An effective way to address the issue is to have good baseline knowledge. However, there is not enough data that specifically informs on the accessibility to culturally competent mental health services for the Haitian American communities in New York. The purpose of this Community Needs Assessment is to assess the accessibility of minorities, particularly Haitian communities in New York, to culturally competent mental health services. This assessment will be conducted in the ten regions of New York State. Providers, clients, members of the community, and minority organizations will be recruited to collect quantitative and qualitative data. The quantitative part will be done in two surveys, one collecting primary data from the general population receiving the services and the other from health providers that provide health services. The questions and answers will be saved in Excel and analyzed on SPSS. For qualitative data, focus groups and in-depth guide interviews will be conducted and analyzed through Strengths, Weaknesses, Opportunities, and Threats (SWOT) Analysis of how the population and critical informants understand and identify cultural competency components in the mental health system. This research will be presented at the HAFALI research forum and specific minority organizations in New York. It will be submitted to mental health conferences and specific journals for publication. It will be shared with the heads of the community health service and the heads of the New York State Office of Mental Health. This needs assessment will be used as a tool to improve access to culturally competent mental health services nationally and worldwide.Keywords: mental health, minorities, New York, needs assessment
Procedia PDF Downloads 18703 Evaluation of Microbial Accumulation of Household Wastewater Purified by Advanced Oxidation Process
Authors: Nazlı Çetindağ, Pelin Yılmaz Çetiner, Metin Mert İlgün, Emine Birci, Gizemnur Yıldız Uysal, Özcan Hatipoğlu, Ehsan Tuzcuoğlu, Gökhan Sır
Abstract:
Water scarcity is an unavoidable issue impacting an increasing number of individuals daily, representing a global crisis stemming from swift population growth, urbanization, and excessive resource exploitation. Consequently, solutions that involve the reclamation of wastewater are considered essential. In this context, household wastewater, categorized as greywater, plays a significant role in freshwater used for residential purposes and is attributed to washing. This type of wastewater comprises diverse elements, including organic substances, soaps, detergents, solvents, biological components, and inorganic elements such as certain metal ions and particles. The physical characteristics of wastewater vary depending on its source, whether commercial, domestic, or from a hospital setting. Consequently, the treatment strategy for this wastewater type necessitates comprehensive investigation and appropriate handling. The advanced oxidation process (AOP) emerges as a promising technique associated with the generation of reactive hydroxyl radicals highly effective in oxidizing organic pollutants. This method takes precedence over others like coagulation, flocculation, sedimentation, and filtration due to its avoidance of undesirable by-products. In the current study, the focus was on exploring the feasibility of the AOP for treating actual household wastewater. To achieve this, a laboratory-scale device was designed to effectively target the formed radicals toward organic pollutants, resulting in lower organic compounds in wastewater. Then, the number of microorganisms present in treated wastewater, in addition to the chemical content of the water, was analyzed to determine whether the lab-scale device eliminates microbial accumulation with AOP. This was also an important parameter since microbes can indirectly affect human health and machine hygiene. To do this, water samples were taken from treated and untreated conditions and then inoculated on general purpose agar to track down the total plate count. Analysis showed that AOP might be an option to treat household wastewater and lower microorganism growth.Keywords: usage of household water, advanced oxidation process, water reuse, modelling
Procedia PDF Downloads 51702 Social Participation and Associated Life Satisfaction among Older Adults in India: Moderating Role of Marital Status and Living Arrangements
Authors: Varsha Pandurang Nagargoje, K. S. James
Abstract:
Background: Social participation is considered as one of the central components of successful and healthy aging. This study aimed to examine the moderating role of marital status and living arrangement in the relationship between social participation and life satisfaction and other potential factors associated with life satisfaction of Indian older adults. Method: For analyses, the nationally representative study sample of 31,464 adults aged ≥60 years old was extracted from the Longitudinal Ageing Study in India (LASI) wave 1, 2017-18. Descriptive statistics and bivariate analysis have been performed to determine the proportion of life satisfaction. The first set of multivariable linear regression analyses examined Diener’s Satisfaction with Life Scale and its association with various predictor variables, including social participation, marital status, living arrangements, socio-demographic, economic, and health-related variables. Further, the second and third sets of regression investigated the moderating role of marital status and living arrangements respectively in the association of social participation and level of life satisfaction among Indian older adults. Results: Overall, the proportion of life satisfaction among older men was relatively higher than women counterparts in most background characteristics. Regression results stressed the importance of older adults’ involvement in social participation [β = 0.39, p < 0.05], being in marital union [β = 0.68, p < 0.001] and co-residential living arrangements either only with spouse [β = 1.73, p < 0.001] or with other family members [β = 2.18, p < 0.001] for the improvement of life satisfaction. Results also showed that some factors were significant for life satisfaction: in particular, increased age, having a higher level of educational status, MPCE quintile, and caste category. Higher risk of life dissatisfaction found among Indian older adults who were exposed to vulnerabilities like consuming tobacco, poor self-rated health, having difficulty in performing ADL and IADL were of major concern. The interaction effect of social participation with marital status or with living arrangements explained that currently married older individuals, and those older adults who were either co-residing with their spouse only or with other family members irrespective of their involvement in social participation remained an important modifiable factor for life satisfaction. Conclusion: It would be crucial for policymakers and practitioners to advocate social policy programs and service delivery oriented towards meaningful social connections, especially for those Indian older adults who were staying alone or currently not in the marital union to enhance their overall life satisfaction.Keywords: Indian, older adults, social participation, life satisfaction, marital status, living arrangement
Procedia PDF Downloads 133701 Reduction of Residual Stress by Variothermal Processing and Validation via Birefringence Measurement Technique on Injection Molded Polycarbonate Samples
Authors: Christoph Lohr, Hanna Wund, Peter Elsner, Kay André Weidenmann
Abstract:
Injection molding is one of the most commonly used techniques in the industrial polymer processing. In the conventional process of injection molding, the liquid polymer is injected into the cavity of the mold, where the polymer directly starts hardening at the cooled walls. To compensate the shrinkage, which is caused predominantly by the immediate cooling, holding pressure is applied. Through that whole process, residual stresses are produced by the temperature difference of the polymer melt and the injection mold and the relocation of the polymer chains, which were oriented by the high process pressures and injection speeds. These residual stresses often weaken or change the structural behavior of the parts or lead to deformation of components. One solution to reduce the residual stresses is the use of variothermal processing. Hereby the mold is heated – i.e. near/over the glass transition temperature of the polymer – the polymer is injected and before opening the mold and ejecting the part the mold is cooled. For the next cycle, the mold gets heated again and the procedure repeats. The rapid heating and cooling of the mold are realized indirectly by convection of heated and cooled liquid (here: water) which is pumped through fluid channels underneath the mold surface. In this paper, the influences of variothermal processing on the residual stresses are analyzed with samples in a larger scale (500 mm x 250 mm x 4 mm). In addition, the influence on functional elements, such as abrupt changes in wall thickness, bosses, and ribs, on the residual stress is examined. Therefore the polycarbonate samples are produced by variothermal and isothermal processing. The melt is injected into a heated mold, which has in our case a temperature varying between 70 °C and 160 °C. After the filling of the cavity, the closed mold is cooled down varying from 70 °C to 100 °C. The pressure and temperature inside the mold are monitored and evaluated with cavity sensors. The residual stresses of the produced samples are illustrated by birefringence where the effect on the refractive index on the polymer under stress is used. The colorful spectrum can be uncovered by placing the sample between a polarized light source and a second polarization filter. To show the achievement and processing effects on the reduction of residual stress the birefringence images of the isothermal and variothermal produced samples are compared and evaluated. In this comparison to the variothermal produced samples have a lower amount of maxima of each color spectrum than the isothermal produced samples, which concludes that the residual stress of the variothermal produced samples is lower.Keywords: birefringence, injection molding, polycarbonate, residual stress, variothermal processing
Procedia PDF Downloads 283700 Maintenance Optimization for a Multi-Component System Using Factored Partially Observable Markov Decision Processes
Authors: Ipek Kivanc, Demet Ozgur-Unluakin
Abstract:
Over the past years, technological innovations and advancements have played an important role in the industrial world. Due to technological improvements, the degree of complexity of the systems has increased. Hence, all systems are getting more uncertain that emerges from increased complexity, resulting in more cost. It is challenging to cope with this situation. So, implementing efficient planning of maintenance activities in such systems are getting more essential. Partially Observable Markov Decision Processes (POMDPs) are powerful tools for stochastic sequential decision problems under uncertainty. Although maintenance optimization in a dynamic environment can be modeled as such a sequential decision problem, POMDPs are not widely used for tackling maintenance problems. However, they can be well-suited frameworks for obtaining optimal maintenance policies. In the classical representation of the POMDP framework, the system is denoted by a single node which has multiple states. The main drawback of this classical approach is that the state space grows exponentially with the number of state variables. On the other side, factored representation of POMDPs enables to simplify the complexity of the states by taking advantage of the factored structure already available in the nature of the problem. The main idea of factored POMDPs is that they can be compactly modeled through dynamic Bayesian networks (DBNs), which are graphical representations for stochastic processes, by exploiting the structure of this representation. This study aims to demonstrate how maintenance planning of dynamic systems can be modeled with factored POMDPs. An empirical maintenance planning problem of a dynamic system consisting of four partially observable components deteriorating in time is designed. To solve the empirical model, we resort to Symbolic Perseus solver which is one of the state-of-the-art factored POMDP solvers enabling approximate solutions. We generate some more predefined policies based on corrective or proactive maintenance strategies. We execute the policies on the empirical problem for many replications and compare their performances under various scenarios. The results show that the computed policies from the POMDP model are superior to the others. Acknowledgment: This work is supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under grant no: 117M587.Keywords: factored representation, maintenance, multi-component system, partially observable Markov decision processes
Procedia PDF Downloads 136699 Identification and Characterization of Antimicrobial Peptides Isolated from Entophytic Bacteria and Their Activity against Multidrug-Resistance Gram-Negative Bacteria in South Korea
Authors: Maryam Beiranvand
Abstract:
Multi-drug resistance in various microorganisms has increased globally in many healthcare facilities. Less effective antimicrobial activity of drug therapies for infection control becomes trouble. Since 1980, no new type of antimicrobial drug has been identified, even though combinations of antibiotic drugs have been discovered almost every decade. Between 1981 and 2006, over 70% of novel pharmaceuticals and chemical agents came from natural sources. Microorganisms have yielded almost 22,000 natural compounds. The identification of antimicrobial components from endophytes bacteria could help overcome the threat posed by multi-drug resistant strains. The project aims to analyze and identify antimicrobial peptides isolated from entophytic bacteria and their activity against multidrug-resistant Gram-negative bacteria in South Korea. Endophytic Paenibacillus polymyxa. 4G3 isolated from the plant, Gynura procumbery exhibited considerable antimicrobial activity against Methicillin-resistant Staphylococcus aureus, and Escherichia coli. The Rapid Annotations using Subsystems Technology showed that the total size of the draft genome was 5,739,603bp, containing 5178 genes with 45.8% G+C content. Genome annotation using antiSMASH version 6.0.0 was performed, which predicted the most common types of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS). In this study, diethyl aminoethyl cellulose (DEAEC) resin was used as the first step in purifying for unknown peptides, and then the target protein was identified using hydrophilic and hydrophobic solutions, optimal pH, and step-by-step tests for antimicrobial activity. This crude was subjected to C18 chromatography and elution with 0, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% methanol, respectively. Only the fraction eluted with 20% -60% methanol demonstrated good antimicrobial activity against MDR E. coli. The concentration of the active fragment was measured by the Brad-ford test, and Protein A280 - Thermo Fisher Scientific at the end by examining the SDS PAGE Resolving Gel, 10% Acrylamide and purity were confirmed. Our study showed that, based on the combined results of the analysis and purification. P polymyxa. 4G3 has a high potential exists for producing novel functions of polymyxin E and bacitracin against bacterial pathogens.Keywords: endophytic bacteria, antimicrobial activity, antimicrobial peptide, whole genome sequencing analysis, multi -drug resistance gram negative bacteria
Procedia PDF Downloads 78698 Influence of Species and Harvesting Height on Chemical Composition, Buffer Nitrogen Solubility and in vitro Ruminal Fermentation of Browse Tree Leaves
Authors: Thabiso M. Sebolai, Victor Mlambo, Solomon Tefera, Othusitse R. Madibela
Abstract:
In some tree species, sustained herbivory can induce changes in biosynthetic pathways resulting in overproduction of anti-nutritional secondary plant compounds. This inductive mechanism, which has not been demonstrated in semi-arid rangelands of South Africa, may result in browse leaves of lower nutritive value. In this study we investigate the interactive effect of browsing pressure and tree species on chemical composition, buffer nitrogen solubility index (NSI), in vitro ruminal dry matter degradability (IVDMD) and in vitro ruminal N degradability (IVND) of leaves. Leaves from Maytenus capitata, Olea africana, Coddia rudis, Carissa macrocarpa, Rhus refracta, Ziziphus mucronata, Boscia oliedes, Grewia robusta, Phyllanthus vessucosus and Ehretia rigida trees growing in a communal grazing area were harvested at two heights: browsable ( < 1.5 m) and non-browsable ( > 1.5 m), representing high and low browsing pressure, respectively. The type of animals utilizing the communal rangeland includes cattle at 1 livestock unit (450kg)/12 to 15 hectors and goats at 1 livestock unit/4 ha. Harvested leaves were dried, milled and analysed for proximate components, soluble phenolics, condensed tannins, minerals and in vitro ruminal fermentation. A significant plant species and harvesting height interaction effect (P < 0.05) was observed for total nitrogen (N) and soluble phenolics concentration. Tree species and harvesting height affected (P < 0.05) condensed tannin (CTs) content where samples harvested from the non-browsable height had higher (0.61 AU550 nm/200 mg) levels than those harvested at browsable height (0.55 AU550 nm/200 mg) while their interaction had no effects. Macro and micro-minerals were only influenced (P < 0.05) by browse species but not harvesting height. Species and harvesting height interacted (P < 0.05) to influence IVDMD and IVND of leaves at 12, 24 and 36 hours of incubation. The different browse leaves contained moderate to high protein, moderate level of phenolics and minerals, suggesting that they have the potential to provide supplementary nutrients for ruminants during the dry seasons.Keywords: browse plants, chemical composition, harvesting heights, phenolics
Procedia PDF Downloads 147697 Experimental Design in Extraction of Pseudomonas sp. Protease from Fermented Broth by Polyethylene Glycol/Citrate Aqueous Two-Phase System
Authors: Omar Pillaca-Pullo, Arturo Alejandro-Paredes, Carol Flores-Fernandez, Marijuly Sayuri Kina, Amparo Iris Zavaleta
Abstract:
Aqueous two-phase system (ATPS) is an interesting alternative for separating industrial enzymes due to it is easy to scale-up and low cost. Polyethylene glycol (PEG) mixed with potassium phosphate or magnesium sulfate is one of the most frequently polymer/salt ATPS used, but the consequences of its use is a high concentration of phosphates and sulfates in wastewater causing environmental issues. Citrate could replace these inorganic salts due to it is biodegradable and does not produce toxic compounds. On the other hand, statistical design of experiments is widely used for ATPS optimization and it allows to study the effects of the involved variables in the purification, and to estimate their significant effects on selected responses and interactions. The 24 factorial design with four central points (20 experiments) was employed to study the partition and purification of proteases produced by Pseudomonas sp. in PEG/citrate ATPS system. ATPS was prepared with different sodium citrate concentrations [14, 16 and 18% (w/w)], pH values (7, 8 and 9), PEG molecular weight (2,000; 4,000 and 6,000 g/mol) and PEG concentrations [18, 20 and 22 % (w/w)]. All system components were mixed with 15% (w/w) of the fermented broth and deionized water was added to a final weight of 12.5 g. Then, the systems were mixed and kept at room temperature until to reach two-phases separation. Volumes of the top and bottom phases were measured, and aliquots from both phases were collected for subsequent proteolytic activity and total protein determination. Influence of variables such as PEG molar mass (MPEG), PEG concentration (CPEG), citrate concentration (CSal) and pH were evaluated on the following responses: purification factor (PF), activity yield (Y), partition coefficient (K) and selectivity (S). STATISTICA program version 10 was used for the analysis. According to the obtained results, higher levels of CPEG and MPEG had a positive effect on extraction, while pH did not influence on the process. On the other hand, the CSal could be related with low values of Y because of the citrate ions have a negative effect on solubility and enzymatic structure. The optimum values of Y (66.4 %), PF (1.8), K (5.5) and S (4.3) were obtained at CSal (18%), MPEG (6,000 g/mol), CPEG (22%) and pH 9. These results indicated that the PEG/citrate system is accurate to purify these Pseudomonas sp. proteases from fermented broth as a first purification step.Keywords: citrate, polyethylene glycol, protease, Pseudomonas sp
Procedia PDF Downloads 198696 Using Mathematical Models to Predict the Academic Performance of Students from Initial Courses in Engineering School
Authors: Martín Pratto Burgos
Abstract:
The Engineering School of the University of the Republic in Uruguay offers an Introductory Mathematical Course from the second semester of 2019. This course has been designed to assist students in preparing themselves for math courses that are essential for Engineering Degrees, namely Math1, Math2, and Math3 in this research. The research proposes to build a model that can accurately predict the student's activity and academic progress based on their performance in the three essential Mathematical courses. Additionally, there is a need for a model that can forecast the incidence of the Introductory Mathematical Course in the three essential courses approval during the first academic year. The techniques used are Principal Component Analysis and predictive modelling using the Generalised Linear Model. The dataset includes information from 5135 engineering students and 12 different characteristics based on activity and course performance. Two models are created for a type of data that follows a binomial distribution using the R programming language. Model 1 is based on a variable's p-value being less than 0.05, and Model 2 uses the stepAIC function to remove variables and get the lowest AIC score. After using Principal Component Analysis, the main components represented in the y-axis are the approval of the Introductory Mathematical Course, and the x-axis is the approval of Math1 and Math2 courses as well as student activity three years after taking the Introductory Mathematical Course. Model 2, which considered student’s activity, performed the best with an AUC of 0.81 and an accuracy of 84%. According to Model 2, the student's engagement in school activities will continue for three years after the approval of the Introductory Mathematical Course. This is because they have successfully completed the Math1 and Math2 courses. Passing the Math3 course does not have any effect on the student’s activity. Concerning academic progress, the best fit is Model 1. It has an AUC of 0.56 and an accuracy rate of 91%. The model says that if the student passes the three first-year courses, they will progress according to the timeline set by the curriculum. Both models show that the Introductory Mathematical Course does not directly affect the student’s activity and academic progress. The best model to explain the impact of the Introductory Mathematical Course on the three first-year courses was Model 1. It has an AUC of 0.76 and 98% accuracy. The model shows that if students pass the Introductory Mathematical Course, it will help them to pass Math1 and Math2 courses without affecting their performance on the Math3 course. Matching the three predictive models, if students pass Math1 and Math2 courses, they will stay active for three years after taking the Introductory Mathematical Course, and also, they will continue following the recommended engineering curriculum. Additionally, the Introductory Mathematical Course helps students to pass Math1 and Math2 when they start Engineering School. Models obtained in the research don't consider the time students took to pass the three Math courses, but they can successfully assess courses in the university curriculum.Keywords: machine-learning, engineering, university, education, computational models
Procedia PDF Downloads 100695 Statistical Design of Central Point for Evaluate the Combination of PH and Cinnamon Essential Oil on the Antioxidant Activity Using the ABTS Technique
Authors: H. Minor-Pérez, A. M. Mota-Silva, S. Ortiz-Barrios
Abstract:
Substances of vegetable origin with antioxidant capacity have a high potential for application on the conservation of some foods, can prevent or reduce for example oxidation of lipids. However a food is a complex system whose wide variety of components wich can reduce or eliminate this antioxidant capacity. The antioxidant activity can be determined with the ABTS technique. The radical ABTS+ is generated from the acid 2, 2´ - Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). This radical is a composite color bluish-green, stable and with a spectrum of absorption into the UV-visible. The addition of antioxidants causes discoloration, value that can be reported as a percentage of inhibition of the cation radical ABTS+. The objective of this study was evaluated the effect of the combination of the pH and the essential oil of cinnamon (EOC) on inhibition of the radical ABTS+, using statistical design of central point (Design Expert) to obtain mathematical models that describe this phenomenon. Were evaluated 17 treatments with combinations of pH 5, 6 and 7 (citrate-phosphate buffer) and the concentration of essential oil of cinnamon (C): 0 µg/mL, 100 µg/mL and 200 µg/mL. The samples were analyzed using the ABTS technique. The reagent was dissolved in methanol 80% to standardized the absorbance to 0.7 +/- 0.1 at 754 nm. Then samples were mixed with reagent standardized ABTS and after 1 min and 7 min absorbance was read for each treatment at 754 nm. Was used a curve pattern with vitamin C and reported the values as inhibition (%) of radical ABTS+. The statistical analysis shows the experimental results were adjusted to a quadratic model, to the times of 1 min and 7 min. This model describes the influence of the factors investigated independently: pH and cinnamon essential oil (µg/mL) and the effect of the interaction between pH*C, as well as the square of the pH2 and C2. The model obtained was Y = 10.33684 - 3.98118*pH + 1.17031*C + 0.62745*pH2 - 3.26675*10-3*C2 - 0.013112*pH*C, where Y is the response variable. The coefficient of determination was 0.9949 for 1 min. The equation was obtained at 7 min and = - 10.89710 + 1.52341*pH + 1.32892*C + 0.47953*pH2 - 3.56605*10- *C2 - 0.034687*pH*C. The coefficient of determination was 0.9970. This means that only 1% of the total variation is not explained by the developed models. At 100 µg/mL of EOC was obtained an inhibition percentage of 80%, 84% and 97% for the pH values of 5,6 and 7 respectively, while a value of 200 µg/mL the inhibition (%) was very similar for the treatments. In these values of pH was obtained an inhibition close 97%. In conclusion the pH does not have a significant effect on the antioxidant capacity, while the concentration of EOC was decisive for the antioxidant capacity. The authors acknowledge the funding provided by the CONACYT for the project 131998.Keywords: antioxidant activity, ABTS technique, essential oil of cinnamon, mathematical models
Procedia PDF Downloads 402694 2D Titanium, Vanadium Carbide Mxene, and Polyaniline Heterostructures for Electrochemical Energy Storage
Authors: Ayomide A. Sijuade, Nafiza Anjum
Abstract:
The rising demand to meet the need for clean and sustainable energy solutions has led the market to create effective energy storage technologies. In this study, we look at the possibility of using a heterostructure made of polyaniline (PANI), titanium carbide (Ti₃C₂), and vanadium carbide (V₂C) for energy storage devices. V₂C is a two-dimensional transition metal carbide with remarkable mechanical and electrical conductivity. Ti₃C2 has solid thermal conductivity and mechanical strength. PANI, on the other hand, is a conducting polymer with customizable electrical characteristics and environmental stability. Layer-by-layer assembly creates the heterostructure of V₂C, Ti₃C₂, and PANI, allowing for precise film thickness and interface quality control. Structural and morphological characterization is carried out using X-ray diffraction, scanning electron microscopy, and atomic force microscopy. For energy storage applications, the heterostructure’s electrochemical performance is assessed. Electrochemical experiments, such as cyclic voltammetry and galvanostatic charge-discharge tests, examine the heterostructure’s charge storage capacity, cycle stability, and rate performance. Comparing the heterostructure to the individual components reveals better energy storage capabilities. V₂C, Ti₃C₂, and PANI synergize to increase specific capacitance, boost charge storage, and prolong cycling stability. The heterostructure’s unique arrangement of 2D materials and conducting polymers promotes effective ion diffusion and charge transfer processes, improving the effectiveness of energy storage. The heterostructure also exhibits remarkable electrochemical stability, which minimizes capacity loss after repeated cycling. The longevity and long-term dependability of energy storage systems depend on this quality. By examining the potential of V₂C, Ti₃C₂, and PANI heterostructures, the results of this study expand energy storage technology. These materials’ specialized integration and design show potential for use in hybrid energy storage systems, lithium-ion batteries, and supercapacitors. Overall, the development of high-performance energy storage devices utilizing V₂C, Ti₃C₂, and PANI heterostructures is clarified by this research, opening the door to the realization of effective, long-lasting, and eco-friendly energy storage solutions to satisfy the demands of the modern world.Keywords: MXenes, energy storage materials, conductive polymers, composites
Procedia PDF Downloads 59693 Numerical Modelling and Experiment of a Composite Single-Lap Joint Reinforced by Multifunctional Thermoplastic Composite Fastener
Authors: Wenhao Li, Shijun Guo
Abstract:
Carbon fibre reinforced composites are progressively replacing metal structures in modern civil aircraft. This is because composite materials have large potential of weight saving compared with metal. However, the achievement to date of weight saving in composite structure is far less than the theoretical potential due to many uncertainties in structural integrity and safety concern. Unlike the conventional metallic structure, composite components are bonded together along the joints where structural integrity is a major concern. To ensure the safety, metal fasteners are used to reinforce the composite bonded joints. One of the solutions for a significant weight saving of composite structure is to develop an effective technology of on-board Structural Health Monitoring (SHM) System. By monitoring the real-life stress status of composite structures during service, the safety margin set in the structure design can be reduced with confidence. It provides a means of safeguard to minimize the need for programmed inspections and allow for maintenance to be need-driven, rather than usage-driven. The aim of this paper is to develop smart composite joint. The key technology is a multifunctional thermoplastic composite fastener (MTCF). The MTCF will replace some of the existing metallic fasteners in the most concerned locations distributed over the aircraft composite structures to reinforce the joints and form an on-board SHM network system. Each of the MTCFs will work as a unit of the AU and AE technology. The proposed MTCF technology has been patented and developed by Prof. Guo in Cranfield University, UK in the past a few years. The manufactured MTCF has been successfully employed in the composite SLJ (Single-Lap Joint). In terms of the structure integrity, the hybrid SLJ reinforced by MTCF achieves 19.1% improvement in the ultimate failure strength in comparison to the bonded SLJ. By increasing the diameter or rearranging the lay-up sequence of MTCF, the hybrid SLJ reinforced by MTCF is able to achieve the equivalent ultimate strength as that reinforced by titanium fastener. The predicted ultimate strength in simulation is in good agreement with the test results. In terms of the structural health monitoring, a signal from the MTCF was measured well before the load of mechanical failure. This signal provides a warning of initial crack in the joint which could not be detected by the strain gauge until the final failure.Keywords: composite single-lap joint, crack propagation, multifunctional composite fastener, structural health monitoring
Procedia PDF Downloads 164