Search results for: 2d and 3d data conversion
23055 Reactive Analysis of Different Protocol in Mobile Ad Hoc Network
Authors: Manoj Kumar
Abstract:
Routing protocols have a central role in any mobile ad hoc network (MANET). There are many routing protocols that exhibit different performance levels in different scenarios. In this paper, we compare AODV, DSDV, DSR, and ZRP routing protocol in mobile ad hoc networks to determine the best operational conditions for each protocol. We analyze these routing protocols by extensive simulations in OPNET simulator and show how to pause time and the number of nodes affect their performance. In this study, performance is measured in terms of control traffic received, control traffic sent, data traffic received, sent data traffic, throughput, retransmission attempts.Keywords: AODV, DSDV, DSR, ZRP
Procedia PDF Downloads 52323054 Establishment of Landslide Warning System Using Surface or Sub-Surface Sensors Data
Authors: Neetu Tyagi, Sumit Sharma
Abstract:
The study illustrates the results of an integrated study done on Tangni landslide located on NH-58 at Chamoli, Uttarakhand. Geological, geo-morphological and geotechnical investigations were carried out to understand the mechanism of landslide and to plan further investigation and monitoring. At any rate, the movements were favored by continuous rainfall water infiltration from the zones where the phyllites/slates and Dolomites outcrop. The site investigations were carried out including the monitoring of landslide movements and of the water level fluctuations due to rainfall give us a better understanding of landslide dynamics that have been causing in time soil instability at Tangni landslide site. The Early Warning System (EWS) installed different types of sensors and all sensors were directly connected to data logger and raw data transfer to the Defence Terrain Research Laboratory (DTRL) server room with the help of File Transfer Protocol (FTP). The slip surfaces were found at depths ranging from 8 to 10 m from Geophysical survey and hence sensors were installed to the depth of 15m at various locations of landslide. Rainfall is the main triggering factor of landslide. In this study, the developed model of unsaturated soil slope stability is carried out. The analysis of sensors data available for one year, indicated the sliding surface of landslide at depth between 6 to 12m with total displacement up to 6cm per year recorded at the body of landslide. The aim of this study is to set the threshold and generate early warning. Local peoples already alert towards landslide, if they have any types of warning system.Keywords: early warning system, file transfer protocol, geo-morphological, geotechnical, landslide
Procedia PDF Downloads 16523053 Digital Phase Shifting Holography in a Non-Linear Interferometer using Undetected Photons
Authors: Sebastian Töpfer, Marta Gilaberte Basset, Jorge Fuenzalida, Fabian Steinlechner, Juan P. Torres, Markus Gräfe
Abstract:
This work introduces a combination of digital phase-shifting holography with a non-linear interferometer using undetected photons. Non-linear interferometers can be used in combination with a measurement scheme called quantum imaging with undetected photons, which allows for the separation of the wavelengths used for sampling an object and detecting it in the imaging sensor. This method recently faced increasing attention, as it allows to use of exotic wavelengths (e.g., mid-infrared, ultraviolet) for object interaction while at the same time keeping the detection in spectral areas with highly developed, comparable low-cost imaging sensors. The object information, including its transmission and phase influence, is recorded in the form of an interferometric pattern. To collect these, this work combines the method of quantum imaging with undetected photons with digital phase-shifting holography with a minimal sampling of the interference. With this, the quantum imaging scheme gets extended in its measurement capabilities and brings it one step closer to application. Quantum imaging with undetected photons uses correlated photons generated by spontaneous parametric down-conversion in a non-linear interferometer to create indistinguishable photon pairs, which leads to an effect called induced coherence without induced emission. Placing an object inside changes the interferometric pattern depending on the object’s properties. Digital phase-shifting holography records multiple images of the interference with determined phase shifts to reconstruct the complete interference shape, which can afterward be used to analyze the changes introduced by the object and conclude its properties. An extensive characterization of this method was done using a proof-of-principle setup. The measured spatial resolution, phase accuracy, and transmission accuracy are compared for different combinations of camera exposure times and the number of interference sampling steps. The current limits of this method are shown to allow further improvements. To summarize, this work presents an alternative holographic measurement method using non-linear interferometers in combination with quantum imaging to enable new ways of measuring and motivating continuing research.Keywords: digital holography, quantum imaging, quantum holography, quantum metrology
Procedia PDF Downloads 9623052 Microchip-Integrated Computational Models for Studying Gait and Motor Control Deficits in Autism
Authors: Noah Odion, Honest Jimu, Blessing Atinuke Afuape
Abstract:
Introduction: Motor control and gait abnormalities are commonly observed in individuals with autism spectrum disorder (ASD), affecting their mobility and coordination. Understanding the underlying neurological and biomechanical factors is essential for designing effective interventions. This study focuses on developing microchip-integrated wearable devices to capture real-time movement data from individuals with autism. By applying computational models to the collected data, we aim to analyze motor control patterns and gait abnormalities, bridging a crucial knowledge gap in autism-related motor dysfunction. Methods: We designed microchip-enabled wearable devices capable of capturing precise kinematic data, including joint angles, acceleration, and velocity during movement. A cross-sectional study was conducted on individuals with ASD and a control group to collect comparative data. Computational modelling was applied using machine learning algorithms to analyse motor control patterns, focusing on gait variability, balance, and coordination. Finite element models were also used to simulate muscle and joint dynamics. The study employed descriptive and analytical methods to interpret the motor data. Results: The wearable devices effectively captured detailed movement data, revealing significant gait variability in the ASD group. For example, gait cycle time was 25% longer, and stride length was reduced by 15% compared to the control group. Motor control analysis showed a 30% reduction in balance stability in individuals with autism. Computational models successfully predicted movement irregularities and helped identify motor control deficits, particularly in the lower limbs. Conclusions: The integration of microchip-based wearable devices with computational models offers a powerful tool for diagnosing and treating motor control deficits in autism. These results have significant implications for patient care, providing objective data to guide personalized therapeutic interventions. The findings also contribute to the broader field of neuroscience by improving our understanding of the motor dysfunctions associated with ASD and other neurodevelopmental disorders.Keywords: motor control, gait abnormalities, autism, wearable devices, microchips, computational modeling, kinematic analysis, neurodevelopmental disorders
Procedia PDF Downloads 2823051 Radio Frequency Identification Device Based Emergency Department Critical Care Billing: A Framework for Actionable Intelligence
Authors: Shivaram P. Arunachalam, Mustafa Y. Sir, Andy Boggust, David M. Nestler, Thomas R. Hellmich, Kalyan S. Pasupathy
Abstract:
Emergency departments (EDs) provide urgent care to patients throughout the day in a complex and chaotic environment. Real-time location systems (RTLS) are increasingly being utilized in healthcare settings, and have shown to improve safety, reduce cost, and increase patient satisfaction. Radio Frequency Identification Device (RFID) data in an ED has been shown to compute variables such as patient-provider contact time, which is associated with patient outcomes such as 30-day hospitalization. These variables can provide avenues for improving ED operational efficiency. A major challenge with ED financial operations is under-coding of critical care services due to physicians’ difficulty reporting accurate times for critical care provided under Current Procedural Terminology (CPT) codes 99291 and 99292. In this work, the authors propose a framework to optimize ED critical care billing using RFID data. RFID estimated physician-patient contact times could accurately quantify direct critical care services which will help model a data-driven approach for ED critical care billing. This paper will describe the framework and provide insights into opportunities to prevent under coding as well as over coding to avoid insurance audits. Future work will focus on data analytics to demonstrate the feasibility of the framework described.Keywords: critical care billing, CPT codes, emergency department, RFID
Procedia PDF Downloads 13723050 Estimation of Service Quality and Its Impact on Market Share Using Business Analytics
Authors: Haritha Saranga
Abstract:
Service quality has become an important driver of competition in manufacturing industries of late, as many products are being sold in conjunction with service offerings. With increase in computational power and data capture capabilities, it has become possible to analyze and estimate various aspects of service quality at the granular level and determine their impact on business performance. In the current study context, dealer level, model-wise warranty data from one of the top two-wheeler manufacturers in India is used to estimate service quality of individual dealers and its impact on warranty related costs and sales performance. We collected primary data on warranty costs, number of complaints, monthly sales, type of quality upgrades, etc. from the two-wheeler automaker. In addition, we gathered secondary data on various regions in India, such as petrol and diesel prices, geographic and climatic conditions of various regions where the dealers are located, to control for customer usage patterns. We analyze this primary and secondary data with the help of a variety of analytics tools such as Auto-Regressive Integrated Moving Average (ARIMA), Seasonal ARIMA and ARIMAX. Study results, after controlling for a variety of factors, such as size, age, region of the dealership, and customer usage pattern, show that service quality does influence sales of the products in a significant manner. A more nuanced analysis reveals the dynamics between product quality and service quality, and how their interaction affects sales performance in the Indian two-wheeler industry context. We also provide various managerial insights using descriptive analytics and build a model that can provide sales projections using a variety of forecasting techniques.Keywords: service quality, product quality, automobile industry, business analytics, auto-regressive integrated moving average
Procedia PDF Downloads 12223049 Automatic and High Precise Modeling for System Optimization
Authors: Stephanie Chen, Mitja Echim, Christof Büskens
Abstract:
To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization
Procedia PDF Downloads 41023048 Hydrogen Production By Photoreforming Of n-Butanol And Structural Isomers Over Pt Doped Titanate Catalyst
Authors: Hristina Šalipur, Jasmina Dostanić, Davor Lončarević, Matej Huš
Abstract:
Photocatalytic water splitting/alcohol photoreforming has been used for the conversion of sunlight energy in the process of hydrogen production due to its sustainability, environmental safety, effectiveness and simplicity. Titanate nanotubes are frequently studied materials since they combine the properties of photo-active semiconductors with the properties of layered titanates, such as the ion-exchange ability. Platinum (Pt) doping into titanate structure has been considered an effective strategy in better separation efficiency of electron-hole pairs and lowering the overpotential for hydrogen production, which results in higher photocatalytic activity. In our work, Pt doped titanate catalysts were synthesized via simple alkaline hydrothermal treatment, incipient wetness impregnation method and temperature-programmed reduction. The structural, morphological and optical properties of the prepared catalysts were investigated using various characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 physisorption, and diffuse reflectance spectroscopy (DRS). The activities of the prepared Pt-doped titanate photocatalysts were tested for hydrogen production via photocatalytic water splitting/alcohol photoreforming process under simulated solar light irradiation. Characterization of synthesized Pt doped titanate catalysts showed crystalline anatase phase, preserved nanotubular structure and high specific surface area. The result showed enhancement of activity in photocatalytic water splitting/alcohol photoreforming in the following order 2-butanol>1-butanol>tert-butanol, with obtained maximal hydrogen production rate of 7.5, 5.3 and 2 mmol g-1 h-1, respectively. Different possible factors influencing the hole scavenging ability, such as hole scavenger redox potential and diffusivity, adsorption and desorption rate of the hole scavenger on the surface and stability of the alcohol radical species generated via hole scavenging, were investigated. The theoretical evaluation using density functional theory (DFT) further elucidated the reaction kinetics and detailed mechanism of photocatalytic water splitting/alcohol photoreforming.Keywords: hydrogen production, platinum, semiconductor, water splitting, density functional theory
Procedia PDF Downloads 11623047 Relay-Augmented Bottleneck Throughput Maximization for Correlated Data Routing: A Game Theoretic Perspective
Authors: Isra Elfatih Salih Edrees, Mehmet Serdar Ufuk Türeli
Abstract:
In this paper, an energy-aware method is presented, integrating energy-efficient relay-augmented techniques for correlated data routing with the goal of optimizing bottleneck throughput in wireless sensor networks. The system tackles the dual challenge of throughput optimization while considering sensor network energy consumption. A unique routing metric has been developed to enable throughput maximization while minimizing energy consumption by utilizing data correlation patterns. The paper introduces a game theoretic framework to address the NP-complete optimization problem inherent in throughput-maximizing correlation-aware routing with energy limitations. By creating an algorithm that blends energy-aware route selection strategies with the best reaction dynamics, this framework provides a local solution. The suggested technique considerably raises the bottleneck throughput for each source in the network while reducing energy consumption by choosing the best routes that strike a compromise between throughput enhancement and energy efficiency. Extensive numerical analyses verify the efficiency of the method. The outcomes demonstrate the significant decrease in energy consumption attained by the energy-efficient relay-augmented bottleneck throughput maximization technique, in addition to confirming the anticipated throughput benefits.Keywords: correlated data aggregation, energy efficiency, game theory, relay-augmented routing, throughput maximization, wireless sensor networks
Procedia PDF Downloads 9323046 CSR Reporting, State Ownership, and Corporate Performance in China: Proof from Longitudinal Data of Publicly Traded Enterprises from 2006 to 2020
Authors: Wanda Luen-Wun Siu, Xiaowen Zhang
Abstract:
This paper offered the primary methodical proof on how CSR reporting related to enterprise earnings in listed firms in China in light of most evidence focusing on cross-sectional data or data in a short span of time. Using full economic and business panel data on China’s publicly listed enterprise from 2006 to 2020 over two decades in the China Stock Market and Accounting Research database, we found initial evidence of significant direct relations between CSR reporting and firm corporate performance in both state-owned and privately owned firms over this period, supporting the stakeholder theory. Results also revealed that state-owned enterprises performed as well as private enterprises in the current period. But private enterprises performed better than state-owned enterprises in the subsequent years. Moreover, the release of social responsibility reports had a more significant impact on the financial performance of state-owned and private enterprises in the current period than in the subsequent periods. Specifically, CSR release was not significantly associated with the financial performance of state-owned enterprises on the lag of the first, second, and third periods. But it had an impact on the lag of the first, second, and third periods among private enterprises. Such findings suggested that CSR reporting helped improve the corporate financial performance of state-owned and private enterprises in the current period, but this kind of effect was more significant among private enterprises in the lag periods.Keywords: China’s listed firms, CSR reporting, financial performance, panel analysis
Procedia PDF Downloads 17223045 Opportunities for Precision Feed in Apiculture
Authors: John Michael Russo
Abstract:
Honeybees are important to our food system and continue to suffer from high rates of colony loss. Precision feed has brought many benefits to livestock cultivation and these should transfer to apiculture. However, apiculture has unique challenges. The objective of this research is to understand how principles of precision agriculture, applied to apiculture and feed specifically, might effectively improve state-of-the-art cultivation. The methodology surveys apicultural practice to build a model for assessment. First, a review of apicultural motivators is made. Feed method is then evaluated. Finally, precision feed methods are examined as accelerants with potential to advance the effectiveness of feed practice. Six important motivators emerge: colony loss, disease, climate change, site variance, operational costs, and competition. Feed practice itself is used to compensate for environmental variables. The research finds that the current state-of-the-art in apiculture feed focuses on critical challenges in the management of feed schedules which satisfy requirements of the bees, preserve potency, optimize environmental variables, and manage costs. Many of the challenges are most acute when feed is used to dispense medication. Technology such as RNA treatments have even more rigorous demands. Precision feed solutions focus on strategies which accommodate specific needs of individual livestock. A major component is data; they integrate precise data with methods that respond to individual needs. There is enormous opportunity for precision feed to improve apiculture through the integration of precision data with policies to translate data into optimized action in the apiary, particularly through automation.Keywords: precision agriculture, precision feed, apiculture, honeybees
Procedia PDF Downloads 8323044 An Assessment of Different Blade Tip Timing (BTT) Algorithms Using an Experimentally Validated Finite Element Model Simulator
Authors: Mohamed Mohamed, Philip Bonello, Peter Russhard
Abstract:
Blade Tip Timing (BTT) is a technology concerned with the estimation of both frequency and amplitude of rotating blades. A BTT system comprises two main parts: (a) the arrival time measurement system, and (b) the analysis algorithms. Simulators play an important role in the development of the analysis algorithms since they generate blade tip displacement data from the simulated blade vibration under controlled conditions. This enables an assessment of the performance of the different algorithms with respect to their ability to accurately reproduce the original simulated vibration. Such an assessment is usually not possible with real engine data since there is no practical alternative to BTT for blade vibration measurement. Most simulators used in the literature are based on a simple spring-mass-damper model to determine the vibration. In this work, a more realistic experimentally validated simulator based on the Finite Element (FE) model of a bladed disc (blisk) is first presented. It is then used to generate the necessary data for the assessment of different BTT algorithms. The FE modelling is validated using both a hammer test and two firewire cameras for the mode shapes. A number of autoregressive methods, fitting methods and state-of-the-art inverse methods (i.e. Russhard) are compared. All methods are compared with respect to both synchronous and asynchronous excitations with both single and simultaneous frequencies. The study assesses the applicability of each method for different conditions of vibration, amount of sampling data, and testing facilities, according to its performance and efficiency under these conditions.Keywords: blade tip timing, blisk, finite element, vibration measurement
Procedia PDF Downloads 31423043 Blood Glucose Measurement and Analysis: Methodology
Authors: I. M. Abd Rahim, H. Abdul Rahim, R. Ghazali
Abstract:
There is numerous non-invasive blood glucose measurement technique developed by researchers, and near infrared (NIR) is the potential technique nowadays. However, there are some disagreements on the optimal wavelength range that is suitable to be used as the reference of the glucose substance in the blood. This paper focuses on the experimental data collection technique and also the analysis method used to analyze the data gained from the experiment. The selection of suitable linear and non-linear model structure is essential in prediction system, as the system developed need to be conceivably accurate.Keywords: linear, near-infrared (NIR), non-invasive, non-linear, prediction system
Procedia PDF Downloads 46323042 Seasonal Assessment of Snow Cover Dynamics Based on Aerospace Multispectral Data on Livingston Island, South Shetland Islands in Antarctica and on Svalbard in Arctic
Authors: Temenuzhka Spasova, Nadya Yanakieva
Abstract:
Snow modulates the hydrological cycle and influences the functioning of ecosystems and is a significant resource for many populations whose water is harvested from cold regions. Snow observations are important for validating climate models. The accumulation and rapid melt of snow are two of the most dynamical seasonal environmental changes on the Earth’s surface. The actuality of this research is related to the modern tendencies of the remote sensing application in the solution of problems of different nature in the ecological monitoring of the environment. The subject of the study is the dynamic during the different seasons on Livingstone Island, South Shetland Islands in Antarctica and on Svalbard in Arctic. The objects were analyzed and mapped according to the Еuropean Space Agency data (ESA), acquired by sensors Sentinel-1 SAR (Synthetic Aperture Radar), Sentinel 2 MSI and GIS. Results have been obtained for changes in snow coverage during the summer-winter transition and its dynamics in the two hemispheres. The data used is of high time-spatial resolution, which is an advantage when looking at the snow cover. The MSI images are with different spatial resolution at the Earth surface range. The changes of the environmental objects are shown with the SAR images and different processing approaches. The results clearly show that snow and snow melting can be best registered by using SAR data via hh- horizontal polarization. The effect of the researcher on aerospace data and technology enables us to obtain different digital models, structuring and analyzing results excluding the subjective factor. Because of the large extent of terrestrial snow coverage and the difficulties in obtaining ground measurements over cold regions, remote sensing and GIS represent an important tool for studying snow areas and properties from regional to global scales.Keywords: climate changes, GIS, remote sensing, SAR images, snow coverage
Procedia PDF Downloads 22223041 Disclosure of Financial Risk on Sharia Banks in Indonesia
Authors: Renny Wulandari
Abstract:
This study aims to determine how the influence of Non Performing Financing, Financing Deposit Ratio, Operating Expenses and Operating Revenue and Net Income Margin on the disclosure of financial risk in Sharia banks. To achieve these objectives conducted associative research method with data source in the form of secondary data that is annual report data with period 2013-2016. The population in this study is the sharia banking industry in Indonesia and who issued the annual financial statements. A method of sampling use probability sampling. Analysis in this research is with SEM-PLS. The result is Net Income Margin has a significant effect on financial risk disclosure while Non Performing Financing (NPF) Financing to Deposit Ratio (FDR), Operating Expenses and Operating Revenue (OEOR) have no effect on the disclosure of financial risk in sharia bank.Keywords: Sharia banks, disclosure of risk financial, non performing financing, financing deposit ratio, operating expenses and operating revenue, net income margin
Procedia PDF Downloads 23723040 Enhancement of Morphogenetic Potential to Obtain Elite Varities of Sauropus androgynous (L.) Merr. through Somatic Embryogenesis
Authors: S. Padma, D. H. Tejavathi
Abstract:
Somatic embryogenesis is a remarkable illustration of the dictum of plant totipotency where developmental reconstruction of somatic cells takes place towards the embryogenic pathway. It recapitulates the morphological and developmental process that occurs in zygotic embryogenesis. S. androgynous commonly called as multivitamin plant. The leaves are consumed as green leafy vegetable by the Southeast Asian communities due to their rich nutritional profile. Despite being a good nutritional vegetable with proteins, vitamins, minerals, amino acids, it is warned for excessive intake due to the presence of alkoloid called papaverine. Papaverine at higher concentrations is toxic and leads to a syndrome called Bronchiolitis Obliterans. In the present study, morphogenetic potential of shoot tip, leaf and nodal explants of Sauropus androgynous was investigated to develop and enhance the reliable plant regeneration protocol via somatic embryogenesis. Somatic embryos were derived directly from the embryogenic callus derived from shoot tip, node and leaf cultures on Phillips and Collins (L2) medium supplemented with NAA at various concentrations ranging from 5.3 µM/l to 26.85 µM/l within two months of inoculation. Thus obtained embryos were sub cultured to modified L2 media supplemented with increased vitamin level for the further growth. Somatic embryos with well-developed cotyledons were transferred to normal and modified L2 basal medium for conversion. The plantlets thus obtained were subjected to brief acclimatization before transferring them to land. About 95% of survival rate was recorded. The augmentation process of culturing various explants through somatic embryogenesis using synthetic medium with various plant growth regulators under controlled conditions have aggrandized the commercial production of Sauropus making it easily available over the conventional propagation methods. In addition, regeneration process through somatic embryogenesis has ameliorated the development of desired character in Sauropus with low papaverine content thereby providing a valuable resource to the food and pharmaceutical industry. Based on this research, plant tissue culture techniques have shown promise for economical and convenient application in Sauropus androgynous breeding.Keywords: L2 medium, multivitamin plant, NAA, papaverine
Procedia PDF Downloads 21323039 Model Observability – A Monitoring Solution for Machine Learning Models
Authors: Amreth Chandrasehar
Abstract:
Machine Learning (ML) Models are developed and run in production to solve various use cases that help organizations to be more efficient and help drive the business. But this comes at a massive development cost and lost business opportunities. According to the Gartner report, 85% of data science projects fail, and one of the factors impacting this is not paying attention to Model Observability. Model Observability helps the developers and operators to pinpoint the model performance issues data drift and help identify root cause of issues. This paper focuses on providing insights into incorporating model observability in model development and operationalizing it in production.Keywords: model observability, monitoring, drift detection, ML observability platform
Procedia PDF Downloads 11723038 The Contribution of Sanitation Practices to Marine Pollution and the Prevalence of Water-Borne Diseases in Prampram Coastal Area, Greater Accra-Ghana
Authors: Precious Roselyn Obuobi
Abstract:
Background: In Ghana, water-borne diseases remain a public health concern due to its impact. While marine pollution has been linked to outbreak of diseases especially in communities along the coast, associated risks such as oil spillage, marine debris, erosion, improper waste disposal and management practices persist. Objective: The study seeks to investigate sanitation practices that contribute to marine pollution in Prampram and the prevalence of selected water-borne diseases (diarrhea and typhoid fever). Method: This study used a descriptive cross-sectional design, employing the mix-method (qualitative and quantitative) approach. Twenty-two (22) participants were selected and semistructured questionnaire were administered to them. Additionally, interviews were conducted to collect more information. Further, an observation check-list was used to aid the data collection process. Secondary data comprising information on water-borne diseases in the district was acquired from the district health directorate to determine the prevalence of selected water-borne diseases in the community. Data Analysis: The qualitative data was analyzed using NVIVO® software by adapting the six steps thematic analysis by Braun and Clarke whiles STATA® version 16 was used to analyze the secondary data collected from the district health directorate. A descriptive statistic employed using mean, standard deviation, frequencies and proportions were used to summarize the results. Results: The results showed that open defecation and indiscriminate waste disposal were the main practices contributing to marine pollution in Prampram and its effect on public health. Conclusion: These findings have implications on public health and the environment, thus effort needs to be stepped up in educating the community on best sanitation practices.Keywords: environment, sanitation, marine pollution, water-borne diseases
Procedia PDF Downloads 8123037 A Study on Vulnerability of Alahsa Governorate to Generate Urban Heat Islands
Authors: Ilham S. M. Elsayed
Abstract:
The purpose of this study is to investigate Alahsa Governorate status and its vulnerability to generate urban heat islands. Alahsa Governorate is a famous oasis in the Arabic Peninsula including several oil centers. Extensive literature review was done to collect previous relative data on the urban heat island of Alahsa Governorate. Data used for the purpose of this research were collected from authorized bodies who control weather station networks over Alahsa Governorate, Eastern Province, Saudi Arabia. Although, the number of weather station networks within the region is very limited and the analysis using GIS software and its techniques is difficult and limited, the data analyzed confirm an increase in temperature for more than 2 °C from 2004 to 2014. Such increase is considerable whenever human health and comfort are the concern. The increase of temperature within one decade confirms the availability of urban heat islands. The study concludes that, Alahsa Governorate is vulnerable to create urban heat islands and more attention should be drawn to strategic planning of the governorate that is developing with a high pace and considerable increasing levels of urbanization.Keywords: Alahsa Governorate, population density, Urban Heat Island, weather station
Procedia PDF Downloads 25623036 Shaped Crystal Growth of Fe-Ga and Fe-Al Alloy Plates by the Micro Pulling down Method
Authors: Kei Kamada, Rikito Murakami, Masahiko Ito, Mototaka Arakawa, Yasuhiro Shoji, Toshiyuki Ueno, Masao Yoshino, Akihiro Yamaji, Shunsuke Kurosawa, Yuui Yokota, Yuji Ohashi, Akira Yoshikawa
Abstract:
Techniques of energy harvesting y have been widely developed in recent years, due to high demand on the power supply for ‘Internet of things’ devices such as wireless sensor nodes. In these applications, conversion technique of mechanical vibration energy into electrical energy using magnetostrictive materials n have been brought to attention. Among the magnetostrictive materials, Fe-Ga and Fe-Al alloys are attractive materials due to the figure of merits such price, mechanical strength, high magnetostrictive constant. Up to now, bulk crystals of these alloys are produced by the Bridgman–Stockbarger method or the Czochralski method. Using these method big bulk crystal up to 2~3 inch diameter can be grown. However, non-uniformity of chemical composition along to the crystal growth direction cannot be avoid, which results in non-uniformity of magnetostriction constant and reduction of the production yield. The micro-pulling down (μ-PD) method has been developed as a shaped crystal growth technique. Our group have reported shaped crystal growth of oxide, fluoride single crystals with different shape such rod, plate tube, thin fiber, etc. Advantages of this method is low segregation due to high growth rate and small diffusion of melt at the solid-liquid interface, and small kerf loss due to near net shape crystal. In this presentation, we report the shaped long plate crystal growth of Fe-Ga and Fe-Al alloys using the μ-PD method. Alloy crystals were grown by the μ-PD method using calcium oxide crucible and induction heating system under the nitrogen atmosphere. The bottom hole of crucibles was 5 x 1mm² size. A <100> oriented iron-based alloy was used as a seed crystal. 5 x 1 x 320 mm³ alloy crystal plates were successfully grown. The results of crystal growth, chemical composition analysis, magnetostrictive properties and a prototype vibration energy harvester are reported. Furthermore, continuous crystal growth using powder supply system will be reported to minimize the chemical composition non-uniformity along the growth direction.Keywords: crystal growth, micro-pulling-down method, Fe-Ga, Fe-Al
Procedia PDF Downloads 33723035 The Impact of Agricultural Product Export on Income and Employment in Thai Economy
Authors: Anucha Wittayakorn-Puripunpinyoo
Abstract:
The research objectives were 1) to study the situation and its trend of agricultural product export of Thailand 2) to study the impact of agricultural product export on income of Thai economy 3) the impact of agricultural product export on employment of Thai economy and 4) to find out the recommendations of agricultural product export policy of Thailand. In this research, secondary data were collected as yearly time series data from 1990 to 2016 accounted for 27 years. Data were collected from the Bank of Thailand database. Primary data were collected from the steakholders of agricultural product export policy of Thailand. Data analysis was applied descriptive statistics such as arithmetic mean, standard deviation. The forecasting of agricultural product was applied Mote Carlo Simulation technique as well as time trend analysis. In addition, the impact of agricultural product export on income and employment by applying econometric model while the estimated parameters were utilized the ordinary least square technique. The research results revealed that 1) agricultural product export value of Thailand from 1990 to 2016 was 338,959.5 Million Thai baht with its growth rate of 4.984 percent yearly, in addition, the forecasting of agricultural product export value of Thailand has increased but its growth rate has been declined 2) the impact of agricultural product export has positive impact on income in Thai economy, increasing in agricultural product export of Thailand by 1 percent would lead income increased by 0.0051 percent 3) the impact of agricultural product export has positive impact on employment in Thai economy, increasing in agricultural product export of Thailand by 1 percent would lead income increased by 0.079 percent and 4) in the future, agricultural product export policy would focused on finished or semi-finished agricultural product instead of raw material by applying technology and innovation in to make value added of agricultural product export. The public agricultural product export policy would support exporters in private sector in order to encourage them as agricultural exporters in Thailand.Keywords: agricultural product export, income, employment, Thai economy
Procedia PDF Downloads 31723034 Seafloor and Sea Surface Modelling in the East Coast Region of North America
Authors: Magdalena Idzikowska, Katarzyna Pająk, Kamil Kowalczyk
Abstract:
Seafloor topography is a fundamental issue in geological, geophysical, and oceanographic studies. Single-beam or multibeam sonars attached to the hulls of ships are used to emit a hydroacoustic signal from transducers and reproduce the topography of the seabed. This solution provides relevant accuracy and spatial resolution. Bathymetric data from ships surveys provides National Centers for Environmental Information – National Oceanic and Atmospheric Administration. Unfortunately, most of the seabed is still unidentified, as there are still many gaps to be explored between ship survey tracks. Moreover, such measurements are very expensive and time-consuming. The solution is raster bathymetric models shared by The General Bathymetric Chart of the Oceans. The offered products are a compilation of different sets of data - raw or processed. Indirect data for the development of bathymetric models are also measurements of gravity anomalies. Some forms of seafloor relief (e.g. seamounts) increase the force of the Earth's pull, leading to changes in the sea surface. Based on satellite altimetry data, Sea Surface Height and marine gravity anomalies can be estimated, and based on the anomalies, it’s possible to infer the structure of the seabed. The main goal of the work is to create regional bathymetric models and models of the sea surface in the area of the east coast of North America – a region of seamounts and undulating seafloor. The research includes an analysis of the methods and techniques used, an evaluation of the interpolation algorithms used, model thickening, and the creation of grid models. Obtained data are raster bathymetric models in NetCDF format, survey data from multibeam soundings in MB-System format, and satellite altimetry data from Copernicus Marine Environment Monitoring Service. The methodology includes data extraction, processing, mapping, and spatial analysis. Visualization of the obtained results was carried out with Geographic Information System tools. The result is an extension of the state of the knowledge of the quality and usefulness of the data used for seabed and sea surface modeling and knowledge of the accuracy of the generated models. Sea level is averaged over time and space (excluding waves, tides, etc.). Its changes, along with knowledge of the topography of the ocean floor - inform us indirectly about the volume of the entire water ocean. The true shape of the ocean surface is further varied by such phenomena as tides, differences in atmospheric pressure, wind systems, thermal expansion of water, or phases of ocean circulation. Depending on the location of the point, the higher the depth, the lower the trend of sea level change. Studies show that combining data sets, from different sources, with different accuracies can affect the quality of sea surface and seafloor topography models.Keywords: seafloor, sea surface height, bathymetry, satellite altimetry
Procedia PDF Downloads 8423033 Mobi-DiQ: A Pervasive Sensing System for Delirium Risk Assessment in Intensive Care Unit
Authors: Subhash Nerella, Ziyuan Guan, Azra Bihorac, Parisa Rashidi
Abstract:
Intensive care units (ICUs) provide care to critically ill patients in severe and life-threatening conditions. However, patient monitoring in the ICU is limited by the time and resource constraints imposed on healthcare providers. Many critical care indices such as mobility are still manually assessed, which can be subjective, prone to human errors, and lack granularity. Other important aspects, such as environmental factors, are not monitored at all. For example, critically ill patients often experience circadian disruptions due to the absence of effective environmental “timekeepers” such as the light/dark cycle and the systemic effect of acute illness on chronobiologic markers. Although the occurrence of delirium is associated with circadian disruption risk factors, these factors are not routinely monitored in the ICU. Hence, there is a critical unmet need to develop systems for precise and real-time assessment through novel enabling technologies. We have developed the mobility and circadian disruption quantification system (Mobi-DiQ) by augmenting biomarker and clinical data with pervasive sensing data to generate mobility and circadian cues related to mobility, nightly disruptions, and light and noise exposure. We hypothesize that Mobi-DiQ can provide accurate mobility and circadian cues that correlate with bedside clinical mobility assessments and circadian biomarkers, ultimately important for delirium risk assessment and prevention. The collected multimodal dataset consists of depth images, Electromyography (EMG) data, patient extremity movement captured by accelerometers, ambient light levels, Sound Pressure Level (SPL), and indoor air quality measured by volatile organic compounds, and the equivalent CO₂ concentration. For delirium risk assessment, the system recognizes mobility cues (axial body movement features and body key points) and circadian cues, including nightly disruptions, ambient SPL, and light intensity, as well as other environmental factors such as indoor air quality. The Mobi-DiQ system consists of three major components: the pervasive sensing system, a data storage and analysis server, and a data annotation system. For data collection, six local pervasive sensing systems were deployed, including a local computer and sensors. A video recording tool with graphical user interface (GUI) developed in python was used to capture depth image frames for analyzing patient mobility. All sensor data is encrypted, then automatically uploaded to the Mobi-DiQ server through a secured VPN connection. Several data pipelines are developed to automate the data transfer, curation, and data preparation for annotation and model training. The data curation and post-processing are performed on the server. A custom secure annotation tool with GUI was developed to annotate depth activity data. The annotation tool is linked to the MongoDB database to record the data annotation and to provide summarization. Docker containers are also utilized to manage services and pipelines running on the server in an isolated manner. The processed clinical data and annotations are used to train and develop real-time pervasive sensing systems to augment clinical decision-making and promote targeted interventions. In the future, we intend to evaluate our system as a clinical implementation trial, as well as to refine and validate it by using other data sources, including neurological data obtained through continuous electroencephalography (EEG).Keywords: deep learning, delirium, healthcare, pervasive sensing
Procedia PDF Downloads 9823032 Delineation of the Geoelectric and Geovelocity Parameters in the Basement Complex of Northwestern Nigeria
Authors: M. D. Dogara, G. C. Afuwai, O. O. Esther, A. M. Dawai
Abstract:
The geology of Northern Nigeria is under intense investigation particularly that of the northwest believed to be of the basement complex. The variability of the lithology is consistently inconsistent. Hence, the need for a close range study, it is, in view of the above that, two geophysical techniques, the vertical electrical sounding employing the Schlumberger array and seismic refraction methods, were used to delineate the geoelectric and geovelocity parameters of the basement complex of northwestern Nigeria. A total area of 400,000 m² was covered with sixty geoelectric stations established and sixty sets of seismic refraction data collected using the forward and reverse method. From the interpretation of the resistivity data, it is suggestive that the area is underlain by not more than five geoelectric layers of varying thicknesses and resistivities when a maximum half electrode spread of 100m was used. The result of the interpreted seismic data revealed two geovelocity layers, with velocities ranging between 478m/s to 1666m/s for the first layer and 1166m/s to 7141m/s for the second layer. The results of the two techniques, suggests that the area of study has an undulating bedrock topography with geoeletric and geovelocity layers composed of weathered rock materials.Keywords: basement complex, delineation, geoelectric, geovelocity, Nigeria
Procedia PDF Downloads 15523031 The Thinking of Dynamic Formulation of Rock Aging Agent Driven by Data
Authors: Longlong Zhang, Xiaohua Zhu, Ping Zhao, Yu Wang
Abstract:
The construction of mines, railways, highways, water conservancy projects, etc., have formed a large number of high steep slope wounds in China. Under the premise of slope stability and safety, the minimum cost, green and close to natural wound space repair, has become a new problem. Nowadays, in situ element testing and analysis, monitoring, field quantitative factor classification, and assignment evaluation will produce vast amounts of data. Data processing and analysis will inevitably differentiate the morphology, mineral composition, physicochemical properties between rock wounds, by which to dynamically match the appropriate techniques and materials for restoration. In the present research, based on the grid partition of the slope surface, tested the content of the combined oxide of rock mineral (SiO₂, CaO, MgO, Al₂O₃, Fe₃O₄, etc.), and classified and assigned values to the hardness and breakage of rock texture. The data of essential factors are interpolated and normalized in GIS, which formed the differential zoning map of slope space. According to the physical and chemical properties and spatial morphology of rocks in different zones, organic acids (plant waste fruit, fruit residue, etc.), natural mineral powder (zeolite, apatite, kaolin, etc.), water-retaining agent, and plant gum (melon powder) were mixed in different proportions to form rock aging agents. To spray the aging agent with different formulas on the slopes in different sections can affectively age the fresh rock wound, providing convenience for seed implantation, and reducing the transformation of heavy metals in the rocks. Through many practical engineering practices, a dynamic data platform of rock aging agent formula system is formed, which provides materials for the restoration of different slopes. It will also provide a guideline for the mixed-use of various natural materials to solve the complex, non-uniformity ecological restoration problem.Keywords: data-driven, dynamic state, high steep slope, rock aging agent, wounds
Procedia PDF Downloads 12023030 Adult Language Learning in the Institute of Technology Sector in the Republic of Ireland
Authors: Una Carthy
Abstract:
A recent study of third level institutions in Ireland reveals that both age and aptitude can be overcome by teaching methodologies to motivate second language learners. This PhD investigation gathered quantitative and qualitative data from 14 Institutes of Technology over a three years period from 2011 to 2014. The fundamental research question was to establish the impact of institutional language policy on attitudes towards language learning. However, other related issues around second language acquisition arose in the course of the investigation. Data were collected from both lectures and students, allowing interesting points of comparison to emerge from both datasets. Negative perceptions among lecturers regarding language provision were often associated with the view that language learning belongs to primary and secondary level and has no place in third level education. This perception was offset by substantial data showing positive attitudes towards adult language learning. Lenneberg’s Critical Age Theory postulated that the optimum age for learning a second language is before puberty. More recently, scholars have challenged this theory in their studies, revealing that mature learners can and do succeed at learning languages. With regard to aptitude, a preoccupation among lecturers regarding poor literacy skills among students emerged and was often associated with resistance to second language acquisition. This was offset by a preponderance of qualitative data from students highlighting the crucial role which teaching approaches play in the learning process. Interestingly, the data collected regarding learning disabilities reveals that, given the appropriate learning environments, individuals can be motivated to acquire second languages, and indeed succeed at learning them. These findings are in keeping with other recent studies regarding attitudes towards second language learning among students with learning disabilities. Both sets of findings reinforce the case for language policies in the Institute of Technology (IoTs). Supportive and positive learning environments can be created in third level institutions to motivate adult learners, thereby overcoming perceived obstacles relating to age and aptitude.Keywords: age, aptitude, second language acquisition, teaching methodologies
Procedia PDF Downloads 12723029 Integrating Deep Learning For Improved State Of Charge Estimation In Electric Bus
Authors: Ms. Hema Ramachandran, Dr. N. Vasudevan
Abstract:
Accurate estimation of the battery State of Charge (SOC) is essential for optimizing the range and performance of modern electric vehicles. This paper focuses on analysing historical driving data from electric buses, with an emphasis on feature extraction and data preprocessing of driving conditions. By selecting relevant parameters, a set of characteristic variables tailored to specific driving scenarios is established. A battery SOC prediction model based on a combination a bidirectional long short-term memory (LSTM) architecture and a standard fully connected neural network (FCNN) is then proposed, where various hyperparameters are identified and fine-tuned to enhance prediction accuracy. The results indicate that with optimized hyperparameters, the prediction achieves a Root Mean Square Error (RMSE) of 1.98% and a Mean Absolute Error (MAE) of 1.72%. This approach is expected to improve the efficiency of battery management systems and battery utilization in electric vehicles.Keywords: long short-term memory (lstm), battery health monitoring, data-driven models, battery charge-discharge cycles, adaptive soc estimation, voltage and current sensing
Procedia PDF Downloads 1323028 Cloud Monitoring and Performance Optimization Ensuring High Availability
Authors: Inayat Ur Rehman, Georgia Sakellari
Abstract:
Cloud computing has evolved into a vital technology for businesses, offering scalability, flexibility, and cost-effectiveness. However, maintaining high availability and optimal performance in the cloud is crucial for reliable services. This paper explores the significance of cloud monitoring and performance optimization in sustaining the high availability of cloud-based systems. It discusses diverse monitoring tools, techniques, and best practices for continually assessing the health and performance of cloud resources. The paper also delves into performance optimization strategies, including resource allocation, load balancing, and auto-scaling, to ensure efficient resource utilization and responsiveness. Addressing potential challenges in cloud monitoring and optimization, the paper offers insights into data security and privacy considerations. Through this thorough analysis, the paper aims to underscore the importance of cloud monitoring and performance optimization for ensuring a seamless and highly available cloud computing environment.Keywords: cloud computing, cloud monitoring, performance optimization, high availability, scalability, resource allocation, load balancing, auto-scaling, data security, data privacy
Procedia PDF Downloads 6323027 The Use of Artificial Intelligence to Curb Corruption in Brazil
Authors: Camila Penido Gomes
Abstract:
Over the past decade, an emerging body of research has been pointing to artificial intelligence´s great potential to improve the use of open data, increase transparency and curb corruption in the public sector. Nonetheless, studies on this subject are scant and usually lack evidence to validate AI-based technologies´ effectiveness in addressing corruption, especially in developing countries. Aiming to fill this void in the literature, this paper sets out to examine how AI has been deployed by civil society to improve the use of open data and prevent congresspeople from misusing public resources in Brazil. Building on the current debates and carrying out a systematic literature review and extensive document analyses, this research reveals that AI should not be deployed as one silver bullet to fight corruption. Instead, this technology is more powerful when adopted by a multidisciplinary team as a civic tool in conjunction with other strategies. This study makes considerable contributions, bringing to the forefront discussion a more accurate understanding of the factors that play a decisive role in the successful implementation of AI-based technologies in anti-corruption efforts.Keywords: artificial intelligence, civil society organization, corruption, open data, transparency
Procedia PDF Downloads 20823026 Performance Study of Classification Algorithms for Consumer Online Shopping Attitudes and Behavior Using Data Mining
Authors: Rana Alaa El-Deen Ahmed, M. Elemam Shehab, Shereen Morsy, Nermeen Mekawie
Abstract:
With the growing popularity and acceptance of e-commerce platforms, users face an ever increasing burden in actually choosing the right product from the large number of online offers. Thus, techniques for personalization and shopping guides are needed by users. For a pleasant and successful shopping experience, users need to know easily which products to buy with high confidence. Since selling a wide variety of products has become easier due to the popularity of online stores, online retailers are able to sell more products than a physical store. The disadvantage is that the customers might not find products they need. In this research the customer will be able to find the products he is searching for, because recommender systems are used in some ecommerce web sites. Recommender system learns from the information about customers and products and provides appropriate personalized recommendations to customers to find the needed product. In this paper eleven classification algorithms are comparatively tested to find the best classifier fit for consumer online shopping attitudes and behavior in the experimented dataset. The WEKA knowledge analysis tool, which is an open source data mining workbench software used in comparing conventional classifiers to get the best classifier was used in this research. In this research by using the data mining tool (WEKA) with the experimented classifiers the results show that decision table and filtered classifier gives the highest accuracy and the lowest accuracy classification via clustering and simple cart.Keywords: classification, data mining, machine learning, online shopping, WEKA
Procedia PDF Downloads 355