Search results for: human concept learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17924

Search results for: human concept learning

14654 Trafficking of Women in Assam: The Untold Violation of Women's Human Rights

Authors: Mridula Devi

Abstract:

Trafficking of women is a slur on human dignity and a shameful act to human civilization and development. Trafficking of women is one of worst brazen abuses which violate the women’s human rights. In India, more particularly in Assam, human trafficking and infringement of human rights of individual includes mainly the women and girl child of the State. Trafficking in North East region of India, more particularly in Assam occurs in two different ways – one is the internal trafficking of women and girl child from conflict affected rural areas of Assam for domestic work and prostitution. Secondly, there is trafficking of women to other south-East Asiatic countries like Bangladesh, Bhutan, Bangkok, Myanmar (Burma) for various purposes such as drug trafficking, labor, bar girl and prostitution.Historically, trafficking in human beings is associated with slavery and bonded or forced labor. Since the period of Roman Civilization, there was the practice of traffic in persons in the form of slave trade among the nations. With the rise of new imperialism, slavery had become an integral part of the colonial system of European Countries. With time, it almost became synonymous with prostitution or commercial sexual exploitation. Finally, the United Nation adopted the Convention for the Suppression of the Traffic in Persons and of the Prostitution of others, 1949 by the G.A.Res.No.-317(iv). The Convention totally denounces the traffic in persons for the purpose of prostitution. However, it is important to note that, now a days trafficking is not confined to commercial sexual exploitation of women and children alone. It has myriad forms and the number of victims has been steadily on the rise over the past few decades. In Assam, it takes place through and for marriage, sexual exploitation, begging, organ trading, militancy conflicts, drug padding and smuggling, labour, adoption, entertainment, and sports. In this paper, empirical methodology has been used. The study is based on primary and secondary sources. Data’s are collected from different books, publications, newspaper, journals etc. For empirical analysis, some random samples are collected and systematized for better result. India suffers from the ignominy of being one of the biggest hubs of women trafficking in the world. Over the years, Assam: the north east part of India has been bearing the brunt of the rapidly rising evil of trafficking of women which threaten the life, dignity and human rights of women. Though different laws are adopted at international and national level to restore trafficking, still the menace of trafficking of women in Assam is not decreased, rather it increased. This causes a serious violation of women’s human right in Assam. Human trafficking or women’s trafficking is a serious crime against society. To curb this in Assam it is required to take some effective and dedicated measure at state level as well as national and international level.

Keywords: Assam, human trafficking, sexual exploitation, India

Procedia PDF Downloads 518
14653 A System Dynamic Based DSS for Ecological Urban Management in Alexandria, Egypt

Authors: Mona M. Salem, Khaled S. Al-Hagla, Hany M. Ayad

Abstract:

The concept of urban metabolism has increasingly been employed in a diverse range of disciplines as a mean to analyze and theorize the city. Urban ecology has a particular focus on the implications of applying the metabolism concept to the urban realm. This approach has been developed by a few researchers, though it has rarely if ever been used in policy development for city planning. The aim of this research is to use ecologically informed urban planning interventions to increase the sustainability of urban metabolism; with special focus on land stock as a most important city resource by developing a system dynamic based DSS. This model identifies two critical management strategy variables for the Strategic Urban Plan Alexandria SUP 2032. As a result, this comprehensive and precise quantitative approach is needed to monitor, measure, evaluate and observe dynamic urban changes working as a decision support system (DSS) for policy making.

Keywords: ecology, land resource, LULCC, management, metabolism, model, scenarios, system dynamics, urban development

Procedia PDF Downloads 381
14652 Dynamic Measurement System Modeling with Machine Learning Algorithms

Authors: Changqiao Wu, Guoqing Ding, Xin Chen

Abstract:

In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.

Keywords: dynamic system modeling, neural network, normal equation, second order gradient descent

Procedia PDF Downloads 130
14651 Solving Mean Field Problems: A Survey of Numerical Methods and Applications

Authors: Amal Machtalay

Abstract:

In this survey, we aim to review the rapidly growing literature on numerical methods to solve different forms of mean field problems, namely mean field games (MFG), mean field controls (MFC), potential MFGs, and master equations, as well as their corresponding recent applications. Here, we distinguish two families of numerical methods: iterative methods based on mesh generation and those called mesh-free, normally related to neural networking and learning frameworks.

Keywords: mean-field games, numerical schemes, partial differential equations, complex systems, machine learning

Procedia PDF Downloads 118
14650 Implementation of Cord- Blood Derived Stem Cells in the Regeneration of Two Experimental Models: Carbon Tetrachloride and S. Mansoni Induced Liver Fibrosis

Authors: Manal M. Kame, Zeinab A. Demerdash, Hanan G. El-Baz, Salwa M. Hassan, Faten M. Salah, Wafaa Mansour, Olfat Hammam

Abstract:

Cord blood (CB) derived Unrestricted Somatic Stem Cells (USSCs) with their multipotentiality hold great promise in liver regeneration. This work aims at evaluation of the therapeutic potentiality of USSCs in two experimental models of chronic liver injury induced either by S. mansoni infection in balb/c mice or CCL4 injection in hamsters. Isolation, propagation, and characterization of USSCs from CB samples were performed. USSCs were induced to differentiate into osteoblasts, adipocytes and hepatocyte-like cells. Cells of the third passage were transplanted in two models of liver fibrosis: (1) Twenty hamsters were induced to liver fibrosis by repeated i. p. injection of 100 μl CCl4 /hamster for 8 weeks. This model was designed as; 10 hamsters with liver fibrosis and treated with i.h. injection of 3x106 USSCs (USSCs transplanted group), 10 hamsters with liver fibrosis (pathological control group), and 10 hamsters with healthy livers (normal control group). (2) Murine chronics S.mansoni model: twenty mice were induced to liver fibrosis with S. mansoni ceracariae (60 cercariae/ mouse) using the tail immersion method and left for 12 weeks. This model was designed as; 10 mice with liver fibrosis were transplanted with i. v. injection of 1×106 USCCs (USSCs transplanted group). Other 2 groups were designed as in hamsters model. Animals were sacrificed 12 weeks after USSCs transplantation, and their liver sections were examined for detection of human hepatocyte-like cells by immunohistochemistry staining. Moreover, liver sections were examined for fibrosis level, and fibrotic indices were calculated. Sera of sacrificed animals were tested for liver functions. CB USSCs, with fibroblast-like morphology, expressed high levels of CD44, CD90, CD73 and CD105 and were negative for CD34, CD45, and HLA-DR. USSCs showed high expression of transcripts for Oct4 and Sox2 and were in vitro differentiated into osteoblasts, adipocytes. In both animal models, in vitro induced hepatocyte-like cells were confirmed by cytoplasmic expression of glycogen, alpha-fetoprotein, and cytokeratin18. Livers of USSCs transplanted group showed engraftment with human hepatocyte-like cells as proved by cytoplasmic expression of human alpha-fetoprotein, cytokeratin18, and OV6. In addition, livers of this group showed less fibrosis than the pathological control group. Liver functions in the form of serum AST & ALT level and serum total bilirubin level were significantly lowered in USSCs transplanted group than pathological control group (p < 0.001). Moreover, the fibrotic index was significantly lower (p< 0.001) in USSCs transplanted group than pathological control group. In addition liver sections, of i. v. injection of 1×106 USCCs of mice, stained with either H&E or sirius red showed diminished granuloma size and a relative decrease in hepatic fibrosis. Our experimental liver fibrosis models transplanted with CB-USSCs showed liver engraftment with human hepatocyte-like cells as well as signs of liver regeneration in the form of improvement in liver function assays and fibrosis level. These data provide hope that human CB- derived USSCs are introduced as multipotent stem cells with great potentiality in regenerative medicine & strengthens the concept of cellular therapy for the treatment of liver fibrosis.

Keywords: cord blood, liver fibrosis, stem cells, transplantation

Procedia PDF Downloads 311
14649 A Case for Q-Methodology: Teachers as Policymakers

Authors: Thiru Vandeyar

Abstract:

The present study set out to determine how Q methodology may be used as an inclusive education policy development process. Utilising Q-methodology as a strategy of inquiry, this qualitative instrumental case study set out to explore how teachers, as a crucial but often neglected human resource, may be included in developing policy. A social constructivist lens and the theoretical moorings of Proudford’s emancipatory approach to educational change anchored in teachers’ ‘writerly’ interpretation of policy text was employed. Findings suggest that Q-method is a unique research approach to include teachers’ voices in policy development. Second, that beliefs, attitudes, and professionalism of teachers to improve teaching and learning using ICT are integral to policy formulation. The study indicates that teachers have unique beliefs about what statements should constitute a school’s information and communication (ICT) policy. Teachers’ experiences are an extremely valuable resource in and should not be ignored in the policy formulation process.

Keywords: teachers, q-methodology, education policy, ICT

Procedia PDF Downloads 92
14648 Expanding the Atelier: Design Lead Academic Project Using Immersive User-Generated Mobile Images and Augmented Reality

Authors: David Sinfield, Thomas Cochrane, Marcos Steagall

Abstract:

While there is much hype around the potential and development of mobile virtual reality (VR), the two key critical success factors are the ease of user experience and the development of a simple user-generated content ecosystem. Educational technology history is littered with the debris of over-hyped revolutionary new technologies that failed to gain mainstream adoption or were quickly superseded. Examples include 3D television, interactive CDROMs, Second Life, and Google Glasses. However, we argue that this is the result of curriculum design that substitutes new technologies into pre-existing pedagogical strategies that are focused upon teacher-delivered content rather than exploring new pedagogical strategies that enable student-determined learning or heutagogy. Visual Communication design based learning such as Graphic Design, Illustration, Photography and Design process is heavily based on the traditional forms of the classroom environment whereby student interaction takes place both at peer level and indeed teacher based feedback. In doing so, this makes for a healthy creative learning environment, but does raise other issue in terms of student to teacher learning ratios and reduced contact time. Such issues arise when students are away from the classroom and cannot interact with their peers and teachers and thus we see a decline in creative work from the student. Using AR and VR as a means of stimulating the students and to think beyond the limitation of the studio based classroom this paper will discuss the outcomes of a student project considering the virtual classroom and the techniques involved. The Atelier learning environment is especially suited to the Visual Communication model as it deals with the creative processing of ideas that needs to be shared in a collaborative manner. This has proven to have been a successful model over the years, in the traditional form of design education, but has more recently seen a shift in thinking as we move into a more digital model of learning and indeed away from the classical classroom structure. This study focuses on the outcomes of a student design project that employed Augmented Reality and Virtual Reality technologies in order to expand the dimensions of the classroom beyond its physical limits. Augmented Reality when integrated into the learning experience can improve the learning motivation and engagement of students. This paper will outline some of the processes used and the findings from the semester-long project that took place.

Keywords: augmented reality, blogging, design in community, enhanced learning and teaching, graphic design, new technologies, virtual reality, visual communications

Procedia PDF Downloads 241
14647 Green Thumb Engineering - Explainable Artificial Intelligence for Managing IoT Enabled Houseplants

Authors: Antti Nurminen, Avleen Malhi

Abstract:

Significant progress in intelligent systems in combination with exceedingly wide application domains having machine learning as the core technology are usually opaque, non-intuitive, and commonly complex for human users. We use innovative IoT technology which monitors and analyzes moisture, humidity, luminosity and temperature levels to assist end users for optimization of environmental conditions for their houseplants. For plant health monitoring, we construct a system yielding the Normalized Difference Vegetation Index (NDVI), supported by visual validation by users. We run the system for a selected plant, basil, in varying environmental conditions to cater for typical home conditions, and bootstrap our AI with the acquired data. For end users, we implement a web based user interface which provides both instructions and explanations.

Keywords: explainable artificial intelligence, intelligent agent, IoT, NDVI

Procedia PDF Downloads 167
14646 Revolutionizing Healthcare Communication: The Transformative Role of Natural Language Processing and Artificial Intelligence

Authors: Halimat M. Ajose-Adeogun, Zaynab A. Bello

Abstract:

Artificial Intelligence (AI) and Natural Language Processing (NLP) have transformed computer language comprehension, allowing computers to comprehend spoken and written language with human-like cognition. NLP, a multidisciplinary area that combines rule-based linguistics, machine learning, and deep learning, enables computers to analyze and comprehend human language. NLP applications in medicine range from tackling issues in electronic health records (EHR) and psychiatry to improving diagnostic precision in orthopedic surgery and optimizing clinical procedures with novel technologies like chatbots. The technology shows promise in a variety of medical sectors, including quicker access to medical records, faster decision-making for healthcare personnel, diagnosing dysplasia in Barrett's esophagus, boosting radiology report quality, and so on. However, successful adoption requires training for healthcare workers, fostering a deep understanding of NLP components, and highlighting the significance of validation before actual application. Despite prevailing challenges, continuous multidisciplinary research and collaboration are critical for overcoming restrictions and paving the way for the revolutionary integration of NLP into medical practice. This integration has the potential to improve patient care, research outcomes, and administrative efficiency. The research methodology includes using NLP techniques for Sentiment Analysis and Emotion Recognition, such as evaluating text or audio data to determine the sentiment and emotional nuances communicated by users, which is essential for designing a responsive and sympathetic chatbot. Furthermore, the project includes the adoption of a Personalized Intervention strategy, in which chatbots are designed to personalize responses by merging NLP algorithms with specific user profiles, treatment history, and emotional states. The synergy between NLP and personalized medicine principles is critical for tailoring chatbot interactions to each user's demands and conditions, hence increasing the efficacy of mental health care. A detailed survey corroborated this synergy, revealing a remarkable 20% increase in patient satisfaction levels and a 30% reduction in workloads for healthcare practitioners. The poll, which focused on health outcomes and was administered to both patients and healthcare professionals, highlights the improved efficiency and favorable influence on the broader healthcare ecosystem.

Keywords: natural language processing, artificial intelligence, healthcare communication, electronic health records, patient care

Procedia PDF Downloads 79
14645 A Method to Ease the Military Certification Process by Taking Advantage of Civil Standards in the Scope of Human Factors

Authors: Burcu Uçan

Abstract:

The certification approach differs in civil and military projects in aviation. Sets of criteria and standards created by airworthiness authorities for the determination of certification basis are distinct. While the civil standards are more understandable and clear because of not only include detailed specifications but also the help of guidance materials such as Advisory Circular, military criteria do not provide this level of guidance. Therefore, specifications that are more negotiable and sometimes more difficult to reconcile arise for the certification basis of a military aircraft. This study investigates a method of how to develop a military specification set by taking advantage of civil standards, regarding the European Military Airworthiness Criteria (EMACC) that establishes the airworthiness criteria for aircraft systems. Airworthiness Certification Criteria (MIL-HDBK-516C) is a handbook published for guidance that contains qualitative evaluation for military aircrafts meanwhile Certification Specifications (CS-29) is published for civil aircrafts by European Union Aviation Safety Agency (EASA). This method intends to compare and contrast specifications that MIL-HDBK-516C and CS-29 contain within the scope of Human Factors. Human Factors supports human performance and aims to improve system performance by encompassing knowledge from a range of scientific disciplines. Human Factors focuses on how people perform their tasks and reduce the risk of an accident occurring due to human physical and cognitive limitations. Hence, regardless of whether the project is civil or military, the specifications must be guided at a certain level by taking into account human limits. This study presents an advisory method for this purpose. The method in this study develops a solution for the military certification process by identifying the CS requirement corresponding to the criteria in the MIL-HDBK-516C by means of EMACC. Thus, it eases understanding the expectations of the criteria and establishing derived requirements. As a result of this method, it may not always be preferred to derive new requirements. Instead, it is possible to add remarks to make the expectancy of the criteria and required verification methods more comprehensible for all stakeholders. This study contributes to creating a certification basis for military aircraft, which is difficult and takes plenty of time for stakeholders to agree due to gray areas in the certification process for military aircrafts.

Keywords: human factors, certification, aerospace, requirement

Procedia PDF Downloads 81
14644 Slow pace towards Teaching Mathematical Science in Nepal: A Historical Perspective

Authors: Dammar Bahadur Adhikari

Abstract:

Mathematics teaching begins with human civilization. The rular used to choose mathematician as prime adviser in many tribes and country. Mathematics was powerful tool for understanding economial situation and strength of rular. In ancient Nepal teaching of mathematics starts with informal education provided by religious leaders there after in modern education system seems to follow the world’s educational system. The aim of this paper is to present a brief historical background of the Nepalese mathematicians up to nineteenth century and highlight the transformation in mathematical science in the line with modern world. Secondary data and formal papers and informal publications were studied to explore the present situation of education. The study concluded that there is remarcable change in quality of education and there are sufficient human powers in the mathematical sciences in Nepal.

Keywords: human development, mathematics, Nepal, science, traditional

Procedia PDF Downloads 392
14643 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder

Authors: Dua Hişam, Serhat İkizoğlu

Abstract:

Identifying the problem behind balance disorder is one of the most interesting topics in the medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three machine learning (ML) models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest Classifier (RF) was the most accurate model.

Keywords: vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting

Procedia PDF Downloads 74
14642 On the Perceived Awareness of Physical Education Teachers on Adoptable ICTs for PE

Authors: Tholokuhle T. Ntshakala, Seraphin D. Eyono Obono

Abstract:

Nations are still finding it quite difficult to win mega sport competitions despite the major contribution of sport to society in terms of social and economic development, personal health, and in education. Even though the world of sports has been transformed into a huge global economy, it is important to note that the first step of sport is usually its introduction to children at school through physical education or PE. In other words, nations who do not win mega sport competitions also suffer from a weak and neglected PE system. This problem of the neglect of PE systems is the main motivation of this research aimed at examining the factors affecting the perceived awareness of physical education teachers on the ICT's that are adoptable for the teaching and learning of physical education. Two types of research objectives will materialize this aim: relevant theories will be identified in relation to the analysis of the perceived ICT awareness of PE teachers and subsequent models will be compiled and designed from existing literature; the empirical testing of such theories and models will also be achieved through the survey of PE teachers from the Camperdown magisterial district of the KwaZulu-Natal province of South Africa. The main hypothesis at the heart of this study is the relationship between the demographics of PE teachers, their behavior both as individuals and as social entities, and their perceived awareness of the ICTs that are adoptable for PE, as postulated by existing literature; except that this study categorizes human behavior under performance expectancy, computer attitude, and social influence. This hypothesis was partially confirmed by the survey conducted by this research in the sense that performance expectancy and teachers’ age, gender, computer usage, and class size were found to be the only factors affecting their awareness of ICT's for physical education.

Keywords: human behavior, ICT Awareness, physical education, teachers

Procedia PDF Downloads 267
14641 Motherhood in the Poetry of Rosario Castellanos: Other Face of Womanhood

Authors: Dovile Kuzminskaite

Abstract:

Rosario Castellanos is one of the most important Mexican writers; in her poetry and essays, she demythologizes social stereotypes about womanhood that were deeply present in Mexican society of the XXth century. In her extent poetic work, Rosario Castellanos demythologizes such concepts as romance, marriage, and motherhood, showing them in a way which did not agree with the norms of the catholic based society of her times. The aim of this research is to analyze the poetry of Rosario Castellanos working on sematic and structural levels and to investigate closely how she represents motherhood, what is the role of mother and the relationship of mother and child in her poems. Also, it is of interest to observe what are the elements used in the process of creating a different concept of motherhood. In order to reflect on this subject, this research will be based on semiotics, queer studies, and the philosophy of Michel Foucault, who introduces the concept of power when reflecting on gender and society. Rosario Castellanos turned into an example of disobedience and otherness for a generation of intellectuals in Spanish speaking countries, and because of this reason, it is of great importance to understand the politic and social statements that are represented by her poetry.

Keywords: motherhood, women, poetry, Mexico

Procedia PDF Downloads 204
14640 Education, Learning and Management: Empowering Individuals for the Future

Authors: Ngong Eugene Ekia

Abstract:

Education is the foundation for the success of any society as its impact transcends across all sectors, including economics, politics, and social welfare. It is through education that individuals acquire the necessary knowledge and skills to succeed in life and contribute meaningfully to society. However, the world is changing rapidly, and it is vital for education systems to adapt to these changes to remain relevant. In this paper, we will discuss the current trends and challenges in education and management and propose solutions that can enable individuals to thrive in an ever-evolving world.

Keywords: access to education, effective teaching and learning, strong management practices, and empowering and personal development

Procedia PDF Downloads 146
14639 Robust and Dedicated Hybrid Cloud Approach for Secure Authorized Deduplication

Authors: Aishwarya Shekhar, Himanshu Sharma

Abstract:

Data deduplication is one of important data compression techniques for eliminating duplicate copies of repeating data, and has been widely used in cloud storage to reduce the amount of storage space and save bandwidth. In this process, duplicate data is expunged, leaving only one copy means single instance of the data to be accumulated. Though, indexing of each and every data is still maintained. Data deduplication is an approach for minimizing the part of storage space an organization required to retain its data. In most of the company, the storage systems carry identical copies of numerous pieces of data. Deduplication terminates these additional copies by saving just one copy of the data and exchanging the other copies with pointers that assist back to the primary copy. To ignore this duplication of the data and to preserve the confidentiality in the cloud here we are applying the concept of hybrid nature of cloud. A hybrid cloud is a fusion of minimally one public and private cloud. As a proof of concept, we implement a java code which provides security as well as removes all types of duplicated data from the cloud.

Keywords: confidentiality, deduplication, data compression, hybridity of cloud

Procedia PDF Downloads 386
14638 Application of Federated Learning in the Health Care Sector for Malware Detection and Mitigation Using Software-Defined Networking Approach

Authors: A. Dinelka Panagoda, Bathiya Bandara, Chamod Wijetunga, Chathura Malinda, Lakmal Rupasinghe, Chethana Liyanapathirana

Abstract:

This research takes us forward with the concepts of Federated Learning and Software-Defined Networking (SDN) to introduce an efficient malware detection technique and provide a mitigation mechanism to give birth to a resilient and automated healthcare sector network system by also adding the feature of extended privacy preservation. Due to the daily transformation of new malware attacks on hospital Integrated Clinical Environment (ICEs), the healthcare industry is at an undefinable peak of never knowing its continuity direction. The state of blindness by the array of indispensable opportunities that new medical device inventions and their connected coordination offer daily, a factor that should be focused driven is not yet entirely understood by most healthcare operators and patients. This solution has the involvement of four clients in the form of hospital networks to build up the federated learning experimentation architectural structure with different geographical participation to reach the most reasonable accuracy rate with privacy preservation. While the logistic regression with cross-entropy conveys the detection, SDN comes in handy in the second half of the research to stack up the initial development phases of the system with malware mitigation based on policy implementation. The overall evaluation sums up with a system that proves the accuracy with the added privacy. It is no longer needed to continue with traditional centralized systems that offer almost everything but not privacy.

Keywords: software-defined network, federated learning, privacy, integrated clinical environment, decentralized learning, malware detection, malware mitigation

Procedia PDF Downloads 192
14637 Creation and Management of Knowledge for Organization Sustainability and Learning

Authors: Deepa Kapoor, Rajshree Singh

Abstract:

This paper appreciates the emergence and growing importance as a new production factor makes the development of technologies, methodologies and strategies for measurement, creation, and diffusion into one of the main priorities of the organizations in the knowledge society. There are many models for creation and management of knowledge and diverse and varied perspectives for study, analysis, and understanding. In this article, we will conduct a theoretical approach to the type of models for the creation and management of knowledge; we will discuss some of them and see some of the difficulties and the key factors that determine the success of the processes for the creation and management of knowledge.

Keywords: knowledge creation, knowledge management, organizational development, organization learning

Procedia PDF Downloads 349
14636 Praxis-Oriented Pedagogies for Pre-Service Teachers: Teaching About and For Social Justice Through Equity Literature Circles

Authors: Joanne Robertson, Awneet Sivia

Abstract:

Preparing aspiring teachers to become advocates for social justice reflects a fundamental commitment for teacher education programs in Canada to create systemic educational change. The goal is ultimately to address inequities in K-12 education for students from multiple identity groups that have historically been marginalized and oppressed in schools. Social justice is described as an often undertheorized and vague concept in the literature, which increases the risk that teaching for social justice remains a lofty goal. Another concern is that the social justice agenda in teacher education in North America ignores pedagogies related to subject-matter knowledge and discipline-based teaching methods. The question surrounding how teacher education programs can address these issues forms the basis for the research undertaken in this study. The paper focuses on a qualitative research project that examines how an Equity Literature Circles (ELC) framework within a language arts methods course in a Bachelor of Education program may help pre-service teachers better understand the inherent relationship between literacy instructional practices and teaching about and for social justice. Grounded in the Freireian (2018) principle of praxis, this study specifically seeks to understand the impact of Equity Literature Circles on pre-service teachers’ understanding of current social justice issues (reflection), their development of professional competencies in literacy instruction (practice), and their identity as advocates of social justice (action) who address issues related to student diversity, equity, and human rights within the English Language Arts program. In this paper presentation, participants will be provided with an overview of the Equity Literature Circle framework, a summary of key findings and recommendations from the qualitative study, an annotated bibliography of suggested Young Adult novels, and opportunities for questions and dialogue.

Keywords: literacy, language, equity, social justice, diversity, human rights

Procedia PDF Downloads 74
14635 Analyzing the Performance of Machine Learning Models to Predict Alzheimer's Disease and its Stages Addressing Missing Value Problem

Authors: Carlos Theran, Yohn Parra Bautista, Victor Adankai, Richard Alo, Jimwi Liu, Clement G. Yedjou

Abstract:

Alzheimer's disease (AD) is a neurodegenerative disorder primarily characterized by deteriorating cognitive functions. AD has gained relevant attention in the last decade. An estimated 24 million people worldwide suffered from this disease by 2011. In 2016 an estimated 40 million were diagnosed with AD, and for 2050 is expected to reach 131 million people affected by AD. Therefore, detecting and confirming AD at its different stages is a priority for medical practices to provide adequate and accurate treatments. Recently, Machine Learning (ML) models have been used to study AD's stages handling missing values in multiclass, focusing on the delineation of Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and normal cognitive (CN). But, to our best knowledge, robust performance information of these models and the missing data analysis has not been presented in the literature. In this paper, we propose studying the performance of five different machine learning models for AD's stages multiclass prediction in terms of accuracy, precision, and F1-score. Also, the analysis of three imputation methods to handle the missing value problem is presented. A framework that integrates ML model for AD's stages multiclass prediction is proposed, performing an average accuracy of 84%.

Keywords: alzheimer's disease, missing value, machine learning, performance evaluation

Procedia PDF Downloads 258
14634 Visual Analytics in K 12 Education: Emerging Dimensions of Complexity

Authors: Linnea Stenliden

Abstract:

The aim of this paper is to understand emerging learning conditions, when a visual analytics is implemented and used in K 12 (education). To date, little attention has been paid to the role visual analytics (digital media and technology that highlight visual data communication in order to support analytical tasks) can play in education, and to the extent to which these tools can process actionable data for young students. This study was conducted in three public K 12 schools, in four social science classes with students aged 10 to 13 years, over a period of two to four weeks at each school. Empirical data were generated using video observations and analyzed with help of metaphors by Latour. The learning conditions are found to be distinguished by broad complexity characterized by four dimensions. These emerge from the actors’ deeply intertwined relations in the activities. The paper argues in relation to the found dimensions that novel approaches to teaching and learning could benefit students’ knowledge building as they work with visual analytics, analyzing visualized data.

Keywords: analytical reasoning, complexity, data use, problem space, visual analytics, visual storytelling, translation

Procedia PDF Downloads 380
14633 Proposal for a Mobile Application with Augmented Reality to Improve School Interest

Authors: Mamani Acurio Alex, Aguilar Alonso Igor

Abstract:

The lack of interest and the lack of motivation are related. The lack of both in school generates serious problems such as school dropout or a low level of learning. Augmented reality has been very useful in different areas, and in this research, it was implemented in the area of education. Information necessary for the correct development of this mobile application with augmented reality was searched using six different research repositories. It was concluded that the application must be immersive, attractive, and fun for students, and the necessary technologies for its construction were defined.

Keywords: augmented reality, Vuforia, school interest, learning

Procedia PDF Downloads 95
14632 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain

Authors: Zachary Blanks, Solomon Sonya

Abstract:

Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.

Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection

Procedia PDF Downloads 295
14631 Innovation in Lean Thinking to Achieve Rapid Construction

Authors: Muhamad Azani Yahya, Vikneswaran Munikanan, Mohammed Alias Yusof

Abstract:

Lean thinking holds the potential for improving the construction sector, and therefore, it is a concept that should be adopted by construction sector players and academicians in the real industry. Bridging from that, a learning process for construction sector players regarding this matter should be the agenda in gaining the knowledge in preparation for their career. Lean principles offer opportunities for reducing lead times, eliminating non-value adding activities, reducing variability, and are facilitated by methods such as pull scheduling, simplified operations and buffer reduction. Thus, the drive for rapid construction, which is a systematic approach in enhancing efficiency to deliver a project using time reduction, while lean is the continuous process of eliminating waste, meeting or exceeding all customer requirements, focusing on the entire value stream and pursuing perfection in the execution of a constructed project. The methodology presented is shown to be valid through literature, interviews and questionnaire. The results show that the majority of construction sector players unfamiliar with lean thinking and they agreed that it can improve the construction process flow. With this background knowledge established and identified, best practices and recommended action are drawn.

Keywords: construction improvement, rapid construction, time reduction, lean construction

Procedia PDF Downloads 374
14630 Potassium-Phosphorus-Nitrogen Detection and Spectral Segmentation Analysis Using Polarized Hyperspectral Imagery and Machine Learning

Authors: Nicholas V. Scott, Jack McCarthy

Abstract:

Military, law enforcement, and counter terrorism organizations are often tasked with target detection and image characterization of scenes containing explosive materials in various types of environments where light scattering intensity is high. Mitigation of this photonic noise using classical digital filtration and signal processing can be difficult. This is partially due to the lack of robust image processing methods for photonic noise removal, which strongly influence high resolution target detection and machine learning-based pattern recognition. Such analysis is crucial to the delivery of reliable intelligence. Polarization filters are a possible method for ambient glare reduction by allowing only certain modes of the electromagnetic field to be captured, providing strong scene contrast. An experiment was carried out utilizing a polarization lens attached to a hyperspectral imagery camera for the purpose of exploring the degree to which an imaged polarized scene of potassium, phosphorus, and nitrogen mixture allows for improved target detection and image segmentation. Preliminary imagery results based on the application of machine learning algorithms, including competitive leaky learning and distance metric analysis, to polarized hyperspectral imagery, suggest that polarization filters provide a slight advantage in image segmentation. The results of this work have implications for understanding the presence of explosive material in dry, desert areas where reflective glare is a significant impediment to scene characterization.

Keywords: explosive material, hyperspectral imagery, image segmentation, machine learning, polarization

Procedia PDF Downloads 146
14629 Justyna Skrzyńska, Zdzisław Kobos, Zbigniew Wochyński

Authors: Vahid Bairami Rad

Abstract:

Due to the tremendous progress in computer technology in the last decades, the capabilities of computers increased enormously and working with a computer became a normal activity for nearly everybody. With all the possibilities a computer can offer, humans and their interaction with computers are now a limiting factor. This gave rise to a lot of research in the field of HCI (human computer interaction) aiming to make interaction easier, more intuitive, and more efficient. To research eye gaze based interfaces it is necessary to understand both sides of the interaction–the human eye and the eye tracker. The first section gives an overview on the anatomy of the eye. The second section accuracy and calibration issue. The subsequent section presents data from a user study where eye movements have been recorded while watching a video and while surfing the Internet. Statistics on the eye movement during these tasks for several individuals provide typical values and ranges for fixation times and saccade lengths and are the foundation for discussions in later chapters. The data also reveal typical limitations of eye trackers.

Keywords: human computer interaction, gaze tracking, calibration, eye movement

Procedia PDF Downloads 543
14628 Multisensory Science, Technology, Engineering and Mathematics Learning: Combined Hands-on and Virtual Science for Distance Learners of Food Chemistry

Authors: Paulomi Polly Burey, Mark Lynch

Abstract:

It has been shown that laboratory activities can help cement understanding of theoretical concepts, but it is difficult to deliver such an activity to an online cohort and issues such as occupational health and safety in the students’ learning environment need to be considered. Chemistry, in particular, is one of the sciences where practical experience is beneficial for learning, however typical university experiments may not be suitable for the learning environment of a distance learner. Food provides an ideal medium for demonstrating chemical concepts, and along with a few simple physical and virtual tools provided by educators, analytical chemistry can be experienced by distance learners. Food chemistry experiments were designed to be carried out in a home-based environment that 1) Had sufficient scientific rigour and skill-building to reinforce theoretical concepts; 2) Were safe for use at home by university students and 3) Had the potential to enhance student learning by linking simple hands-on laboratory activities with high-level virtual science. Two main components of the resources were developed, a home laboratory experiment component, and a virtual laboratory component. For the home laboratory component, students were provided with laboratory kits, as well as a list of supplementary inexpensive chemical items that they could purchase from hardware stores and supermarkets. The experiments used were typical proximate analyses of food, as well as experiments focused on techniques such as spectrophotometry and chromatography. Written instructions for each experiment coupled with video laboratory demonstrations were used to train students on appropriate laboratory technique. Data that students collected in their home laboratory environment was collated across the class through shared documents, so that the group could carry out statistical analysis and experience a full laboratory experience from their own home. For the virtual laboratory component, students were able to view a laboratory safety induction and advised on good characteristics of a home laboratory space prior to carrying out their experiments. Following on from this activity, students observed laboratory demonstrations of the experimental series they would carry out in their learning environment. Finally, students were embedded in a virtual laboratory environment to experience complex chemical analyses with equipment that would be too costly and sensitive to be housed in their learning environment. To investigate the impact of the intervention, students were surveyed before and after the laboratory series to evaluate engagement and satisfaction with the course. Students were also assessed on their understanding of theoretical chemical concepts before and after the laboratory series to determine the impact on their learning. At the end of the intervention, focus groups were run to determine which aspects helped and hindered learning. It was found that the physical experiments helped students to understand laboratory technique, as well as methodology interpretation, particularly if they had not been in such a laboratory environment before. The virtual learning environment aided learning as it could be utilized for longer than a typical physical laboratory class, thus allowing further time on understanding techniques.

Keywords: chemistry, food science, future pedagogy, STEM education

Procedia PDF Downloads 172
14627 The Effectiveness of ICT-Assisted PBL on College-Level Nano Knowledge and Learning Skills

Authors: Ya-Ting Carolyn Yang, Ping-Han Cheng, Shi-Hui Gilbert Chang, Terry Yuan-Fang Chen, Chih-Chieh Li

Abstract:

Nanotechnology is widely applied in various areas so professionals in the related fields have to know more than nano knowledge. In the study, we focus on adopting ICT-assisted PBL in college general education to foster professionals who possess multiple abilities. The research adopted a pretest and posttest quasi-experimental design. The control group received traditional instruction, and the experimental group received ICT-assisted PBL instruction. Descriptive statistics will be used to describe the means, standard deviations, and adjusted means for the tests between the two groups. Next, analysis of covariance (ANCOVA) will be used to compare the final results of the two research groups after 6 weeks of instruction. Statistics gathered in the end of the research can be used to make contrasts. Therefore, we will see how different teaching strategies can improve students’ understanding about nanotechnology and learning skills.

Keywords: nanotechnology, science education, project-based learning, information and communication technology

Procedia PDF Downloads 378
14626 The Effects of Knowledge Management on Human Capital towards Organizational Innovation

Authors: Wan Norhayate Wan Daud, Fakhrul Anwar Zainol, Maslina Mansor

Abstract:

The study was conducted to produce case studies from the Malaysian public universities stands point East Coast of Malaysia. The aim of this study is to analyze the effects of knowledge management on human capital toward organizational innovation. The focus point of this study is on the management member in the faculties of these three Malaysian Public Universities in the East Coast state of Peninsular Malaysia. In this case, respondents who agreed to further participate in the research will be invited to a one-hour face-to-face semi-structured, in-depth interview. As a result, the sample size for this study was 3 deans of Faculty of Management. Lastly, this study tries to recommend the framework of organizational innovation in Malaysian Public Universities.

Keywords: human capital, knowledge management, organizational innovation, public university

Procedia PDF Downloads 452
14625 Variable Refrigerant Flow (VRF) Zonal Load Prediction Using a Transfer Learning-Based Framework

Authors: Junyu Chen, Peng Xu

Abstract:

In the context of global efforts to enhance building energy efficiency, accurate thermal load forecasting is crucial for both device sizing and predictive control. Variable Refrigerant Flow (VRF) systems are widely used in buildings around the world, yet VRF zonal load prediction has received limited attention. Due to differences between VRF zones in building-level prediction methods, zone-level load forecasting could significantly enhance accuracy. Given that modern VRF systems generate high-quality data, this paper introduces transfer learning to leverage this data and further improve prediction performance. This framework also addresses the challenge of predicting load for building zones with no historical data, offering greater accuracy and usability compared to pure white-box models. The study first establishes an initial variable set of VRF zonal building loads and generates a foundational white-box database using EnergyPlus. Key variables for VRF zonal loads are identified using methods including SRRC, PRCC, and Random Forest. XGBoost and LSTM are employed to generate pre-trained black-box models based on the white-box database. Finally, real-world data is incorporated into the pre-trained model using transfer learning to enhance its performance in operational buildings. In this paper, zone-level load prediction was integrated with transfer learning, and a framework was proposed to improve the accuracy and applicability of VRF zonal load prediction.

Keywords: zonal load prediction, variable refrigerant flow (VRF) system, transfer learning, energyplus

Procedia PDF Downloads 33