Search results for: thin-walled pressure vessel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4292

Search results for: thin-walled pressure vessel

3992 Condensation Heat Transfer and Pressure Drop of R-134a Flowing inside Dimpled Tubes

Authors: Kanit Aroonrat, Somchai Wongwises

Abstract:

A heat exchanger is one of the vital parts in a wide variety of applications. The tube with surface modification is generally referred to as an enhanced tube. With this, the thermal performance of the heat exchanger is improved. A dimpled tube is one of many kinds of enhanced tube. The heat transfer and pressure drop of two-phase flow inside dimpled tubes have received little attention in the literature, despite of having an important role in the development of refrigeration and air conditioning systems. As a result, the main aim of this study is to investigate the condensation heat transfer and pressure drop of refrigerant-134a flowing inside dimpled tubes. The test section is a counter-flow double-tube heat exchanger, which the refrigerant flows in the inner tube and water flows in the annulus. The inner tubes are one smooth tube and three dimpled tubes with different helical pitches. All test tubes are made from copper with an inside diameter of 8.1 mm and length of 1500 mm. The experiments are conducted over mass fluxes ranging from 300 to 500 kg/m²s, heat flux ranging from 10 to 20 kW/m², and condensing temperature ranging from 40 to 50 ˚C. The results show that all dimpled tubes provide higher heat transfer coefficient and frictional pressure drop compared to the smooth tube. In addition, the heat transfer coefficient and frictional pressure drop increase with decreasing of helical pitch. It can be observed that the dimpled tube with lowest helical pitch yields the heat transfer enhancement in the range of 60-89% with the frictional pressure drop increase of 289-674% in comparison to the smooth tube.

Keywords: condensation, dimpled tube, heat transfer, pressure drop

Procedia PDF Downloads 215
3991 Effect of Adverse Pressure Gradient on a Fluctuating Velocity over the Co-Flow Jet Airfoil

Authors: Morteza Mirhosseini, Amir B. Khoshnevis

Abstract:

The boundary layer separation and new active flow control of a NACA 0025 airfoil were studied experimentally. This new flow control is sometimes known as a co-flow jet (cfj) airfoil. This paper presents the fluctuating velocity in a wall jet over the co-flow jet airfoil subjected to an adverse pressure gradient and a curved surface. In these results, the fluctuating velocity at the inner part increasing by increased the angle of attack up to 12o and this has due to the jet energized, while the angle of attack 20o has different. The airfoil cord based Reynolds number has 105.

Keywords: adverse pressure gradient, fluctuating velocity, wall jet, co-flow jet airfoil

Procedia PDF Downloads 492
3990 Power Recovery in Egyptian Natural Gas Pressure Reduction Stations Using Turboexpander Systems

Authors: Kamel A. Elshorbagy, Mohamed A. Hussein, Rola S. Afify

Abstract:

Natural gas pressure reduction is typically achieved using pressure reducing valves, where isenthalpic expansion takes place with considerable amount of wasted energy in an irreversible throttling process of the gas. Replacing gas-throttling process by an expansion process in a turbo expander (TE) converts the pressure of natural gas into mechanical energy transmitted to a loading device (i.e. an electric generator). This paper investigates the performance of a turboexpander system for power recovery at natural gas pressure reduction stations. There is a considerable temperature drop associated with the turboexpander process. Essential preheating is required, using gas fired boilers, to avoid undesirable effects of a low outlet temperature. Various system configurations were simulated by the general flow sheet simulator HYSYS and factors affecting the overall performance of the systems were investigated. Power outputs and fuel requirements were found using typical gas flow variation data. The simulation was performed for two case studies in which real input data are used. These case studies involve a domestic (commercial) and an industrial natural gas pressure reduction stations in Egypt. Economic studies of using the turboexpander system in both of the two natural gas pressure reduction stations are conducted using precise data obtained through communication with several companies working in this field. The results of economic analysis, for the two case studies, prove that using turboexpander systems in Egyptian natural gas reduction stations can be a successful project for energy conservation.

Keywords: natural gas, power recovery, reduction stations, turboexpander systems

Procedia PDF Downloads 323
3989 Experimental Study of Heat Transfer and Pressure Drop in Serpentine Channel Water Cooler Heat Sink

Authors: Hao Xiaohong, Wu Zongxiang, Chen Xuefeng

Abstract:

With the high power density and high integration of electronic devices, their heat flux has been increasing rapidly. Therefore, an effective cooling technology is essential for the reliability and efficient operation of electronic devices. Liquid cooling is studied increasingly widely for its higher heat transfer efficiency. Serpentine channels are superior in the augmentation of single-phase convective heat transfer because of their better channel velocity distribution. In this paper, eight different frame sizes water-cooled serpentine channel heat sinks are designed to study the heat transfer and pressure drop characteristics. With water as the working fluid, experiment setup is established and the results showed the effect of different channel width, fin thickness and number of channels on thermal resistance and pressure drop.

Keywords: heat transfer, experiment, serpentine heat sink, pressure drop

Procedia PDF Downloads 455
3988 Corporate Voluntary Greenhouse Gas Emission Reporting in United Kingdom: Insights from Institutional and Upper Echelons Theories

Authors: Lyton Chithambo

Abstract:

This paper reports the results of an investigation into the extent to which various stakeholder pressures influence voluntary disclosure of greenhouse-gas (GHG) emissions in the United Kingdom (UK). The study, which is grounded on institutional theory, also borrows from the insights of upper echelons theory and examines whether specific managerial (chief executive officer) characteristics explain and moderates various stakeholder pressures in explaining GHG voluntary disclosure. Data were obtained from the 2011 annual and sustainability reports of a sample of 216 UK companies on the FTSE350 index listed on the London Stock Exchange. Generally the results suggest that there is no substantial shareholder and employee pressure on a firm to disclose GHG information but there is significant positive pressure from the market status of a firm with those firms with more market share disclosing more GHG information. Consistent with the predictions of institutional theory, we found evidence that coercive pressure i.e. regulatory pressure and mimetic pressures emanating in some industries notably industrials and consumer services have a significant positive influence on firms’ GHG disclosure decisions. Besides, creditor pressure also had a significant negative relationship with GHG disclosure. While CEO age had a direct negative effect on GHG voluntary disclosure, its moderation effect on stakeholder pressure influence on GHG disclosure was only significant on regulatory pressure. The results have important implications for both policy makers and company boards strategizing to reign in their GHG emissions.

Keywords: greenhouse gases, voluntary disclosure, upper echelons theory, institution theory

Procedia PDF Downloads 233
3987 Analysis of Pressure Drop in a Concentrated Solar Collector with Direct Steam Production

Authors: Sara Sallam, Mohamed Taqi, Naoual Belouaggadia

Abstract:

Solar thermal power plants using parabolic trough collectors (PTC) are currently a powerful technology for generating electricity. Most of these solar power plants use thermal oils as heat transfer fluid. The latter is heated in the solar field and transfers the heat absorbed in an oil-water heat exchanger for the production of steam driving the turbines of the power plant. Currently, we are seeking to develop PTCs with direct steam generation (DSG). This process consists of circulating water under pressure in the receiver tube to generate steam directly into the solar loop. This makes it possible to reduce the investment and maintenance costs of the PTCs (the oil-water exchangers are removed) and to avoid the environmental risks associated with the use of thermal oils. The pressure drops in these systems are an important parameter to ensure their proper operation. The determination of these losses is complex because of the presence of the two phases, and most often we limit ourselves to describing them by models using empirical correlations. A comparison of these models with experimental data was performed. Our calculations focused on the evolution of the pressure of the liquid-vapor mixture along the receiver tube of a PTC-DSG for pressure values and inlet flow rates ranging respectively from 3 to 10 MPa, and from 0.4 to 0.6 kg/s. The comparison of the numerical results with experience allows us to demonstrate the validity of some models according to the pressures and the flow rates of entry in the PTC-DSG receiver tube. The analysis of these two parameters’ effects on the evolution of the pressure along the receiving tub, shows that the increase of the inlet pressure and the decrease of the flow rate lead to minimal pressure losses.

Keywords: direct steam generation, parabolic trough collectors, Ppressure drop, empirical models

Procedia PDF Downloads 140
3986 Process Safety Evaluation of a Nuclear Power Plant through Virtual Process Hazard Analysis Using Hazard and Operability Technique

Authors: Elysa V. Largo, Lormaine Anne A. Branzuela, Julie Marisol D. Pagalilauan, Neil C. Concibido, Monet Concepcion M. Detras

Abstract:

The energy demand in the country is increasing; thus, nuclear energy is recently mandated to add to the energy mix. The Philippines has the Bataan Nuclear Power Plant (BNPP), which can be a source of nuclear energy; however, it has not been operated since the completion of its construction. Thus, evaluating the safety of BNPP is vital. This study explored the possible deviations that may occur in the operation of a nuclear power plant with a pressurized water reactor, which is similar to BNPP, through a virtual process hazard analysis (PHA) using the hazard and operability (HAZOP) technique. Temperature, pressure, and flow were used as parameters. A total of 86 causes of various deviations were identified, wherein the primary system and line from reactor coolant pump to reactor vessel are the most critical system and node, respectively. A total of 348 scenarios were determined. The critical events are radioactive leaks due to nuclear meltdown and sump overflow that could lead to multiple worker fatalities, one or more public fatalities, and environmental remediation. There were existing safeguards identified; however, further recommendations were provided to have additional and supplemental barriers to reduce the risk.

Keywords: PSM, PHA, HAZOP, nuclear power plant

Procedia PDF Downloads 154
3985 A Review of the Relation between Thermofludic Properties of the Fluid in Micro Channel Based Cooling Solutions and the Shape of Microchannel

Authors: Gurjit Singh, Gurmail Singh

Abstract:

The shape of microchannels in microchannel heat sinks can have a significant impact on both heat transfer and fluid flow properties. Heat Transfer, pressure drop, and Some effects of microchannel shape on these properties. The shape of microchannels can affect the heat transfer performance of microchannel heat sinks. Channels with rectangular or square cross-sections typically have higher heat transfer coefficients compared to circular channels. This is because rectangular or square channels have a larger wetted perimeter per unit cross-sectional area, which enhances the heat transfer from the fluid to the channel walls. The shape of microchannels can also affect the pressure drop across the heat sink. Channels with a rectangular cross-section usually have higher pressure drop than circular channels. This is because the corners of rectangular channels create additional flow resistance, which leads to a higher pressure drop. Overall, the shape of microchannels in microchannel heat sinks can have a significant impact on the heat transfer and fluid flow properties of the heat sink. The optimal shape of microchannels depends on the specific application and the desired balance between heat transfer performance and pressure drop.

Keywords: heat transfer, microchannel heat sink, pressure drop, chape of microchannel

Procedia PDF Downloads 90
3984 Development of DEMO-FNS Hybrid Facility and Its Integration in Russian Nuclear Fuel Cycle

Authors: Yury S. Shpanskiy, Boris V. Kuteev

Abstract:

Development of a fusion-fission hybrid facility based on superconducting conventional tokamak DEMO-FNS runs in Russia since 2013. The main design goal is to reach the technical feasibility and outline prospects of industrial hybrid technologies providing the production of neutrons, fuel nuclides, tritium, high-temperature heat, electricity and subcritical transmutation in Fusion-Fission Hybrid Systems. The facility should operate in a steady-state mode at the fusion power of 40 MW and fission reactions of 400 MW. Major tokamak parameters are the following: major radius R=3.2 m, minor radius a=1.0 m, elongation 2.1, triangularity 0.5. The design provides the neutron wall loading of ~0.2 MW/m², the lifetime neutron fluence of ~2 MWa/m², with the surface area of the active cores and tritium breeding blanket ~100 m². Core plasma modelling showed that the neutron yield ~10¹⁹ n/s is maximal if the tritium/deuterium density ratio is 1.5-2.3. The design of the electromagnetic system (EMS) defined its basic parameters, accounting for the coils strength and stability, and identified the most problematic nodes in the toroidal field coils and the central solenoid. The EMS generates toroidal, poloidal and correcting magnetic fields necessary for the plasma shaping and confinement inside the vacuum vessel. EMC consists of eighteen superconducting toroidal field coils, eight poloidal field coils, five sections of a central solenoid, correction coils, in-vessel coils for vertical plasma control. Supporting structures, the thermal shield, and the cryostat maintain its operation. EMS operates with the pulse duration of up to 5000 hours at the plasma current up to 5 MA. The vacuum vessel (VV) is an all-welded two-layer toroidal shell placed inside the EMS. The free space between the vessel shells is filled with water and boron steel plates, which form the neutron protection of the EMS. The VV-volume is 265 m³, its mass with manifolds is 1800 tons. The nuclear blanket of DEMO-FNS facility was designed to provide functions of minor actinides transmutation, tritium production and enrichment of spent nuclear fuel. The vertical overloading of the subcritical active cores with MA was chosen as prospective. Analysis of the device neutronics and the hybrid blanket thermal-hydraulic characteristics has been performed for the system with functions covering transmutation of minor actinides, production of tritium and enrichment of spent nuclear fuel. A study of FNS facilities role in the Russian closed nuclear fuel cycle was performed. It showed that during ~100 years of operation three FNS facilities with fission power of 3 GW controlled by fusion neutron source with power of 40 MW can burn 98 tons of minor actinides and 198 tons of Pu-239 can be produced for startup loading of 20 fast reactors. Instead of Pu-239, up to 25 kg of tritium per year may be produced for startup of fusion reactors using blocks with lithium orthosilicate instead of fissile breeder blankets.

Keywords: fusion-fission hybrid system, conventional tokamak, superconducting electromagnetic system, two-layer vacuum vessel, subcritical active cores, nuclear fuel cycle

Procedia PDF Downloads 147
3983 Multi-Scale Modelling of the Cerebral Lymphatic System and Its Failure

Authors: Alexandra K. Diem, Giles Richardson, Roxana O. Carare, Neil W. Bressloff

Abstract:

Alzheimer's disease (AD) is the most common form of dementia and although it has been researched for over 100 years, there is still no cure or preventive medication. Its onset and progression is closely related to the accumulation of the neuronal metabolite Aβ. This raises the question of how metabolites and waste products are eliminated from the brain as the brain does not have a traditional lymphatic system. In recent years the rapid uptake of Aβ into cerebral artery walls and its clearance along those arteries towards the lymph nodes in the neck has been suggested and confirmed in mice studies, which has led to the hypothesis that interstitial fluid (ISF), in the basement membranes in the walls of cerebral arteries, provides the pathways for the lymphatic drainage of Aβ. This mechanism, however, requires a net reverse flow of ISF inside the blood vessel wall compared to the blood flow and the driving forces for such a mechanism remain unknown. While possible driving mechanisms have been studied using mathematical models in the past, a mechanism for net reverse flow has not been discovered yet. Here, we aim to address the question of the driving force of this reverse lymphatic drainage of Aβ (also called perivascular drainage) by using multi-scale numerical and analytical modelling. The numerical simulation software COMSOL Multiphysics 4.4 is used to develop a fluid-structure interaction model of a cerebral artery, which models blood flow and displacements in the artery wall due to blood pressure changes. An analytical model of a layer of basement membrane inside the wall governs the flow of ISF and, therefore, solute drainage based on the pressure changes and wall displacements obtained from the cerebral artery model. The findings suggest that an active role in facilitating a reverse flow is played by the components of the basement membrane and that stiffening of the artery wall during age is a major risk factor for the impairment of brain lymphatics. Additionally, our model supports the hypothesis of a close association between cerebrovascular diseases and the failure of perivascular drainage.

Keywords: Alzheimer's disease, artery wall mechanics, cerebral blood flow, cerebral lymphatics

Procedia PDF Downloads 526
3982 Pattern of Blood Vessels Development at First Seven Days of Incubation of the Wild Helmeted Guinea Fowl (Numida meleagris galeata). Gross Approach

Authors: Nathaniel Wanmi, O. M. Samuel, N. Plang, P. O. Brenda

Abstract:

The wild helmeted guinea fowl has in recent time been used for research in the field of anatomy because of its peculiarity from other domesticated species of avian. Eggs of the wild helmeted guinea fowl are considered to be nutritious and has been used for medicinal purposes in some rural settlements in Nigeria. Eggs of the wild helmeted guinea fowl were purchased from hunters and taken to the National Veterinary Research Institution (NVRI) for incubation. Immediately fresh eggs were purchased, it was kindle using high powered light because of its thick egg shell and only eggs which have not started developing will be incubated and that marks the first day of incubation. On day 3 of incubation, large patches of appears redden on the surface of the egg yolk. These congested sites, develop around portion were future embryo will formed. Blood vessel were first, observed on day 4 of incubation and as days on, as embryo increases in size, blood vessels increase as well. The point of embryo implantation is evident first; by formation of congested areas and most importantly, a single zone of circular red rim. This mark the point of implantation. Blood vessels of the wild helmeted guinea fowl develops from the surface of the egg yolk, which appears initially as small strips of line. Blood vessels connects to the site of embryo implantation on day 3 of incubation. Blood vessel is the first structure to be form prior to the manifestation of the embryo.

Keywords: brain, development, helmeted, incubation

Procedia PDF Downloads 97
3981 Prevalence, Awareness and Control of Hypertension among the University of Venda Academic Staff, South Africa

Authors: Thizwilondi Madzaga, Jabu Tsakani Mabunda, Takalani Tshitangano

Abstract:

Hypertension is a global public health problem. In most cases, hypertension individuals are not aware of their condition, and they only detected it accidentally during public awareness programmes. The aim of the study was to determine the prevalence, awareness and control of hypertension among University of Venda academic staff. UNIVEN is situated in Thohoyandou, South Africa. A cross-sectional study was conducted to determine the prevalence, awareness and control of hypertension among University of Venda academic staff. Slovin’s formula was used to randomly select 179 academic staff (male=104 and female=75). WHO stepwise Questionnaire version 23.0 was used to get information on demographic information. Blood pressure was measured twice after five minutes rest using electronic blood pressure monitor. In this study, hypertension referred to self-reported to be on hypertension medication or having blood pressure equal or exceeding 140 over 90 mmHg. Statistical Package of Social Sciences version 23.0 was used to analyse data. Prevalence of hypertension was 20% and 46% prehypertension. Only 34% had a normal blood pressure. About 34% were not sure of their current blood pressure status (within 12 months). About 10% of the total respondents had been previously diagnosed with hypertension and half of them who were hypertensive were not aware that they had it. Among those who were aware that they are hypertensive, about 90% were on treatment whereas 10% had stopped taking treatment. About 13% of those who were on treatment had controlled blood pressure. There is a need for health education programmes to increase hypertension awareness.

Keywords: academic staff, awareness, control, hypertension, prevalence

Procedia PDF Downloads 336
3980 Outstanding Lubricant Using Fluorographene as an Extreme Pressure Additive

Authors: Adriana Hernandez-Martinez, Edgar D. Ramon-Raygoza

Abstract:

Currently, there has been a great interest, during the last years, on graphene due to its lubricant properties on friction and antiwear processes. Likewise, fluorographene has also been gaining renown due to its excellent chemical and physical properties which have been mostly applied in the electronics industry. Nevertheless, its tribological properties haven’t been analyzed thoroughly. In this paper, fluorographene was examined as an extreme pressure additive and the nano lubricant made with a cutting fluid and fluorographene in the range of 0.01-0.5% wt, which proved to withstand 53.78% more pounds than the conventional product and 7.12% more than the nano lubricant with graphene in a range between 0.01-0.5% wt. Said extreme pressure test was carried out with a Pin and Vee Block Tribometer following an ASTM D3233A test. The fluorographene used has a low C/F ratio, which reflects a greater presence of atomic fluorine and its low oxygen percentage, supports the substitution of oxygen-containing groups by fluorine. XPS Spectra shows high atomic fluorine content of 56.12%, and SEM analysis details the formation of long and clear crystalline structures, in the fluorographene used.

Keywords: extreme pressure additive, fluorographene, nanofluids, nanolubricant

Procedia PDF Downloads 125
3979 Prediction of Trailing-Edge Noise under Adverse-Pressure Gradient Effect

Authors: Li Chen

Abstract:

For an aerofoil or hydrofoil in high Reynolds number flows, broadband noise is generated efficiently as the result of the turbulence convecting over the trailing edge. This noise can be related to the surface pressure fluctuations, which can be predicted by either CFD or empirical models. However, in reality, the aerofoil or hydrofoil often operates at an angle of attack. Under this situation, the flow is subjected to an Adverse-Pressure-Gradient (APG), and as a result, a flow separation may occur. This study is to assess trailing-edge noise models for such flows. In the present work, the trailing-edge noise from a 2D airfoil at 6 degree of angle of attach is investigated. Under this condition, the flow is experiencing a strong APG, and the flow separation occurs. The flow over the airfoil with a chord of 300 mm, equivalent to a Reynold Number 4x10⁵, is simulated using RANS with the SST k-ɛ turbulent model. The predicted surface pressure fluctuations are compared with the published experimental data and empirical models, and show a good agreement with the experimental data. The effect of the APG on the trailing edge noise is discussed, and the associated trailing edge noise is calculated.

Keywords: aero-acoustics, adverse-pressure gradient, computational fluid dynamics, trailing-edge noise

Procedia PDF Downloads 336
3978 Strength Parameters and the Rate Process Theory Applied to Compacted Fadama Soils

Authors: Samuel Akinlabi Ola, Emeka Segun Nnochiri, Stephen Kayode Aderomose, Paul Ayesemhe Edoh

Abstract:

Fadama soils of Northern Nigeria are generally a problem soil for highway and geotechnical engineers. There has been no consistent conclusion on the effect of the strain rate on the shear strength of soils, thus necessitating the need to clarify this issue with various types of soil. Consolidated undrained tests with pore pressure measurements were conducted at optimum moisture content and maximum dry density using standard proctor compaction. Back pressures were applied to saturate the soil. The shear strength parameters were determined. Analyzing the results and model studies using the Rate Process Theory, functional relationships between the deviator stress and strain rate were determined and expressed mathematically as deviator stress = β0+ β1 log(strain rate) at each cell pressure where β0 and β1 are constants. Also, functional relationships between the pore pressure coefficient Āf and the time to failure were determined and expressed mathematically as pore pressure coefficient, Āf = ψ0+ѱ1log (time to failure) where ψ0 and ѱ1 are constants. For cell pressure between 69 – 310 kN/m2 (10 - 45psi) the constants found for Fadama soil in this study are ψ0=0.17 and ѱ1=0.18. The study also shows the dependence of the angle of friction (ø’) on the rate of strain as it increases from 22o to 25o for an increase in the rate of strain from 0.08%/min to 1.0%/min. Conclusively, the study also shows that within the strain rate utilized in the research, the deviator strength increased with the strain rate while the excess pore water pressure decreased with an increase in the rate of strain.

Keywords: deviator stress, Fadama soils, pore pressure coefficient, rate process

Procedia PDF Downloads 76
3977 An Integrated Approach to Handle Sour Gas Transportation Problems and Pipeline Failures

Authors: Venkata Madhusudana Rao Kapavarapu

Abstract:

The Intermediate Slug Catcher (ISC) facility was built to process nominally 234 MSCFD of export gas from the booster station on a day-to-day basis and to receive liquid slugs up to 1600 m³ (10,000 BBLS) in volume when the incoming 24” gas pipelines are pigged following upsets or production of non-dew-pointed gas from gathering centers. The maximum slug sizes expected are 812 m³ (5100 BBLS) in winter and 542 m³ (3400 BBLS) in summer after operating for a month or more at 100 MMSCFD of wet gas, being 60 MMSCFD of treated gas from the booster station, combined with 40 MMSCFD of untreated gas from gathering center. The water content is approximately 60% but may be higher if the line is not pigged for an extended period, owing to the relative volatility of the condensate compared to water. In addition to its primary function as a slug catcher, the ISC facility will receive pigged liquids from the upstream and downstream segments of the 14” condensate pipeline, returned liquids from the AGRP, pigged through the 8” pipeline, and blown-down fluids from the 14” condensate pipeline prior to maintenance. These fluids will be received in the condensate flash vessel or the condensate separator, depending on the specific operation, for the separation of water and condensate and settlement of solids scraped from the pipelines. Condensate meeting the colour and 200 ppm water specifications will be dispatched to the AGRP through the 14” pipeline, while off-spec material will be returned to BS-171 via the existing 10” condensate pipeline. When they are not in operation, the existing 24” export gas pipeline and the 10” condensate pipeline will be maintained under export gas pressure, ready for operation. The gas manifold area contains the interconnecting piping and valves needed to align the slug catcher with either of the 24” export gas pipelines from the booster station and to direct the gas to the downstream segment of either of these pipelines. The manifold enables the slug catcher to be bypassed if it needs to be maintained or if through-pigging of the gas pipelines is to be performed. All gas, whether bypassing the slug catcher or returning to the gas pipelines from it, passes through black powder filters to reduce the level of particulates in the stream. These items are connected to the closed drain vessel to drain the liquid collected. Condensate from the booster station is transported to AGRP through 14” condensate pipeline. The existing 10” condensate pipeline will be used as a standby and for utility functions such as returning condensate from AGRP to the ISC or booster station or for transporting off-spec fluids from the ISC back to booster station. The manifold contains block valves that allow the two condensate export lines to be segmented at the ISC, thus facilitating bi-directional flow independently in the upstream and downstream segments, which ensures complete pipeline integrity and facility integrity. Pipeline failures will be attended to with the latest technologies by remote techno plug techniques, and repair activities will be carried out as needed. Pipeline integrity will be evaluated with ili pigging to estimate the pipeline conditions.

Keywords: integrity, oil & gas, innovation, new technology

Procedia PDF Downloads 72
3976 Effect of Whole Body Vibration on Posture Stability and Planter Pressure in Patients with Diabetic Neuropathy

Authors: Azza M. Atya, Mahmoud M. Nasser

Abstract:

Background/ /Significance: Peripheral neuropathy is one of the long term serious complications of diabetes, which may attribute to postural instability and alteration of planter pressure. Whole body vibration (WBV) is a somatosensory stimulation type of exercise that has been emerged in sport training and rehabilitation of neuromuscular disorders. Purpose: The aim of this study was to investigate the effect of whole Body Vibration on antroposterior (AP), mediolateral (ML) posture stability and planter foot pressure in patients with diabetic neuropathy. Subjects: forty diabetic patients with moderate peripheral neuropathy aged from 35 to 50 years, were randomly assigned to WBV group (n=20) and control group (n=20). Methods and Materials: the WBV intervention consisted of three session weekly for 8 weeks (frequency 20 Hz, peak-to peak displacement 4mm, acceleration 3.5 g). Biodex balance system was used for postural stability assessment and the foot scan plate was used to measure the mean peak pressure under the first and lesser metatarsals. The main Outcome measures were antroposterior stability index (APSI), mediolateral stability index (MLSI), overall stability index (OSI),and mean peak foot pressure. Analyses: Statistical analysis was performed using the SPSS software package (SPSS for Windows Release 18.0). T-test was used to compare between the pre- and post-treatment values between and within groups. Results: For the 40 study participants (18male and 22 females) there were no between-group differences at baseline. At the end of 8 weeks, Subjects in WBV group experienced significant increase in postural stability with a reduction of mean peak of planter foot pressure (P<0.05) compared with the control group. Conclusion: The result suggests that WBV is an effective therapeutic modality for increasing postural stability and reducing planter pressure in patients with diabetic neuropathy.

Keywords: whole body vibration, diabetic neuropathy, posture stability, foot pressure

Procedia PDF Downloads 383
3975 Effects of Injector Nozzle Geometry on Spray Atomization Characteristics

Authors: Arya Pirooz

Abstract:

Air and fuel must be mixed correctly so that there is perfect combustion, which calls for fuel atomization by injection. In this study, the effects of different parameters such as number of orifices, length and diameter of orifices, diameter of nozzle sac and the angle of needle seat in injectors were investigated with the use of rate of injection and sac pressure. The unit pump of the OM-457 diesel engine was modelled on Avl-Hydsim. The results illustrate that the sac pressure decreased by 46% when the number of holes were doubled, although the rate of injection had an immense change. Also, the sac pressure increased up to 60% when the diameter of orifices decreased by 40% in spite of the semi-constant injection rate.

Keywords: injection, OM-457 engine, nozzle geometry, atomization

Procedia PDF Downloads 502
3974 Effect of Different Contact Rollers on the Surface Texture during the Belt Grinding Process

Authors: Amine Hamdi, Sidi Mohammed Merghache, Brahim Fernini

Abstract:

During abrasive machining of hard steels by belt grinding, the finished surface texture is influenced by the pressure between the abrasive belt and the workpiece; this pressure is the force applied by the contact roller on the workpiece. Therefore, the contact roller has an important role and has a direct impact on process efficiency. The objective of this article is to study and compare the influence of different contact rollers on the belt ground surface texture. The quality of the surface texture is characterized by eight roughness parameters (Ra, Rz, Rp, Rv, Rsk, Rku, Rsm, and Rdq) and five parameters of the bearing area curve (Rpk, Rk, Rvk, Mr1, and Mr2). The results of the experimental tests indicate a better surface texture obtained by the PA 6 polyamide roller (hardness 60 Shore D) compared to that obtained with other rollers of the same hardness or of different hardness. Simultaneously, optimum medium pressure between the belt and the workpiece allows chip removal without fracturing the abrasive grains. This generates a good surface texture.

Keywords: belt grinding, contact roller, pressure, abrasive belt, surface texture

Procedia PDF Downloads 184
3973 Thermomechanical Simulation of Equipment Subjected to an Oxygen Pressure and Heated Locally by the Ignition of Small Particles

Authors: Khaled Ayfi

Abstract:

In industrial oxygen systems at high temperature and high pressure, contamination by solid particles is one of the principal causes of ignition hazards. Indeed, gas can sweep away particles, generated by corrosion inside the pipes or during maintenance operations (welding residues, careless disassembly, etc.) and produce accumulations at places where the gas velocity decrease. Moreover, in such an environment rich in oxygen (oxidant), particles are highly reactive and can ignite system walls more actively and at higher temperatures. Oxidation based thermal effects are responsible for mechanical properties lost, leading to the destruction of the pressure equipment wall. To deal with this problem, a numerical analysis is done regarding a sample representative of a wall subjected to pressure and temperature. The validation and analysis are done comparing the numerical simulations results to experimental measurements. More precisely, in this work, we propose a numerical model that describes the thermomechanical behavior of thin metal disks under pressure and subjected to laser heating. This model takes into account the geometric and material nonlinearity and has been validated by the comparison of simulation results with experimental measurements.

Keywords: ignition, oxygen, numerical simulation, thermomechanical behavior

Procedia PDF Downloads 105
3972 Comparison of Catalyst Support for High Pressure Reductive Amination

Authors: Tz-Bang Du, Cheng-Han Hsieh, Li-Ping Ju, Hung-Jie Liou

Abstract:

Polyether amines synthesize by secondary hydroxyl polyether diol play an important role in epoxy hardener. The low molecular weight product is used in low viscosity and high transparent polyamine product for the logo, ground cover, especially for wind turbine blade, while the high molecular weight products are used in advanced agricultures such as a high-speed railway. High-pressure reductive amination process is required for producing these amines. In the condition of higher than 150 atm pressure and 200 degrees Celsius temperature, supercritical ammonia is used as a reactant and also a solvent. It would be a great challenge to select a catalyst support for such high-temperature alkaline circumstance. In this study, we have established a six-autoclave-type (SAT) high-pressure reactor for amination catalyst screening, which six experiment conditions with different temperature and pressure could be examined at the same time. We synthesized copper-nickel catalyst on different shaped alumina catalyst support and evaluated the catalyst activity for high-pressure reductive amination of polypropylene glycol (PPG) by SAT reactor. Ball type gamma alumina, ball type activated alumina and pellet type gamma alumina catalyst supports are evaluated in this study. Gamma alumina supports have shown better activity on PPG reductive amination than activated alumina support. In addition, the catalysts are evaluated in fixed bed reactor. The diamine product was successfully synthesized via this catalyst and the strength of the catalysts is measured. The crush strength of blank supports is about 13.5 lb for both gamma alumina and activated alumina. The strength increases to 20.3 lb after synthesized to be copper-nickel catalyst. After test in the fixed bed high-pressure reductive amination process for 100 hours, the crush strength of the used catalyst is 3.7 lb for activated alumina support, 12.0 lb for gamma alumina support. The gamma alumina is better than activated alumina to use as catalyst support in high-pressure reductive amination process.

Keywords: high pressure reductive amination, copper nickel catalyst, polyether amine, alumina

Procedia PDF Downloads 229
3971 Relationship Salt Sensitivity and с825т Polymorphism of gnb3 Gene in Patients with Essential Hypertension

Authors: Aleksandr Nagay, Gulnoz Khamidullayeva

Abstract:

It is known that an unbalanced intake of salt (NaCI), lifestyle and genetic predisposition to pathology is a key component of the risk and the development of essential hypertension (EH). Purpose: To study the relationship between salt-sensitivity and blood pressure (BP) on systolic (SBP) and diastolic (DBP) blood pressure, depending on the C825T polymorphism of GNB3 in individuals of Uzbek nationality with EH. Method: studied 148 healthy and 148 patients with EH with I-II degree (WHO/ISH, 2003) with disease duration 6,5±1,3 years. Investigation of the gene GNB3 was produced by PCR-RFLP method. Determination of salt-sensitivity was performed by the method of R. Henkin. Results: For a comparative analysis of BP, the groups with carriage of CТ and TT genotypes were combined. The analysis showed that carriers of CC genotype and low salt-sensitivity were determined by higher levels of SBP compared with carriers of CT and TT genotypes, and low salt-sensitivity of SBP: 166,2±4,3 against 158,2±9,1 mm Hg (p=0,000). A similar analysis on the values of DBP also showed significantly higher values of blood pressure in carriers of CC genotype DBP: 105,8±10,6 vs. 100,5±7,2 mm Hg, respectively (p=0,001). The average values of SBP and DBP in groups with carriers of CC genotype at medium or high salt-sensitivity in comparison with carriers of CT or TT genotype did not differ statistically SBP: 165,0±0,1 vs. 160,0±8,6 mm Hg (p=0,275) and DBP: 100,1±0,1 vs. 101,6±7,6 mm Hg (p=0,687), respectively. Conclusion: It is revealed that in patients with EH CC genotype of the gene GNB3 given salt-sensitivity has a negative effect on blood pressure profile. Since patients with EH with the CC genotype of GNB3 gene with low-salt taste sensitivity is determined by a higher level of blood pressure, both on SBP and DBP.

Keywords: salt sensitivity, essential hypertension EH, blood pressure BP, genetic predisposition

Procedia PDF Downloads 276
3970 Influence of High Hydrostatic Pressure Application (HHP) and Osmotic Dehydration (DO) as a Pretreatment to Hot –Air Drying of Abalone (Haliotis Rufescens) Cubes

Authors: Teresa Roco, Mario Perez Won, Roberto Lemus-Mondaca, Sebastian Pizarro

Abstract:

This research presents the simultaneous application of high hydrostatic pressure application (HHP) and osmotic dehydration (DO) as a pretreatment to hot –air drying of abalone cubes. The drying time was reduced to 6 hours at 60ºC as compared to the abalone drying by only a 15% NaCl osmotic pretreatment and at an atmospheric pressure that took 10 hours to dry at the same temperature. This was due to the salt and HHP saturation since osmotic pressure increases as water loss increases, thus needing a more reduced time in a convective drying, so water effective diffusion in drying plays an important role in this research. Different working conditions as pressure (350-550 MPa), pressure time ( 5-10 min), salt concentration, NaCl 15% and drying temperature (40-60ºC) will be optimized according to kinetic parameters of each mathematical model (Table 1). The models used for drying experimental curves were those corresponding to Weibull, Logarithmic and Midilli-Kucuk, but the latest one was the best fitted to the experimental data (Figure 1). The values for water effective diffusivity varied from 4.54 – to 9.95x10-9 m2/s for the 8 curves (DO+HHP) whereas the control samples (neither DO nor HHP) varied among 4.35 and 5.60x10-9 m2/s, for 40 and 60°C, respectively and as to drying by osmotic pretreatment at 15% NaCl from 3.804 to 4.36x10-9 m2/s at the same temperatures. Finally as to energy and efficiency consumption values for drying process (control and pretreated samples) it was found that they would be within a range of 777-1815 KJ/Kg and 8.22–19.20% respectively. Therefore, a knowledge concerning the drying kinetic as well as the consumption energy, in addition to knowledge about the quality of abalones subjected to an osmotic pretreatment (DO) and a high hydrostatic pressure (HHP) are extremely important to an industrial level so that the drying process can be successful at different pretreatment conditions and/or variable processes.

Keywords: abalone, convective drying, high pressure hydrostatic, pretreatments, diffusion coefficient

Procedia PDF Downloads 665
3969 Seismic Active Earth Pressure on Retaining Walls with Reinforced Backfill

Authors: Jagdish Prasad Sahoo

Abstract:

The increase in active earth pressure during the event of an earthquake results sliding, overturning and tilting of earth retaining structures. In order to improve upon the stability of structures, the soil mass is often reinforced with various types of reinforcements such as metal strips, geotextiles, and geogrids etc. The stresses generated in the soil mass are transferred to the reinforcements through the interface friction between the earth and the reinforcement, which in turn reduces the lateral earth pressure on the retaining walls. Hence, the evaluation of earth pressure in the presence of seismic forces with an inclusion of reinforcements is important for the design retaining walls in the seismically active zones. In the present analysis, the effect of reinforcing horizontal layers of reinforcements in the form of sheets (Geotextiles and Geogrids) in sand used as backfill, on reducing the active earth pressure due to earthquake body forces has been studied. For carrying out the analysis, pseudo-static approach has been adopted by employing upper bound theorem of limit analysis in combination with finite elements and linear optimization. The computations have been performed with and out reinforcements for different internal friction angle of sand varying from 30 ° to 45 °. The effectiveness of the reinforcement in reducing the active earth pressure on the retaining walls is examined in terms of active earth pressure coefficient for presenting the solutions in a non-dimensional form. The active earth pressure coefficient is expressed as functions of internal friction angle of sand, interface friction angle between sand and reinforcement, soil-wall interface roughness conditions, and coefficient of horizontal seismic acceleration. It has been found that (i) there always exists a certain optimum depth of the reinforcement layers corresponding to which the value of active earth pressure coefficient becomes always the minimum, and (ii) the active earth pressure coefficient decreases significantly with an increase in length of reinforcements only up to a certain length beyond which a further increase in length hardly causes any reduction in the values active earth pressure. The optimum depth of the reinforcement layers and the required length of reinforcements corresponding to the optimum depth of reinforcements have been established. The numerical results developed in this analysis are expected to be useful for purpose of design of retaining walls.

Keywords: active, finite elements, limit analysis, presudo-static, reinforcement

Procedia PDF Downloads 365
3968 Pressure Angle and Profile Shift Factor Effects on the Natural Frequency of Spur Tooth Design

Authors: Ali Raad Hassan

Abstract:

In this paper, an (irregular) case relating to base circle, root circle, and pressure angle has been discussed and a computer programme has been developed to simulate and plot spur gear tooth profile, including involute and trochoid curves based on the formulation of rack cutter using different values of pressure angle and profile shift factor and it gave the values of all important geometric parameters. The results showed the flexibility of this approach and versatility of the programme to draw many different cases of spur gear teeth of any module, pressure angle, profile shift factor, number of teeth and rack cutter tip radius. The procedure developed can be extended to produce finite element models of heretofore intractable geometrical forms, to exploring fabrication of nonstandard tooth forms also. Finite elements model of these irregular cases have been built using above programme, and modal analysis has been done using ANSYS software, and natural frequencies of these selected cases have been obtained and discussed.

Keywords: involute, trochoid, pressure angle, profile shift factor, natural frequency

Procedia PDF Downloads 272
3967 Numerical Simulation of the Kurtosis Effect on the EHL Problem

Authors: S. Gao, S. Srirattayawong

Abstract:

In this study, a computational fluid dynamics (CFD) model has been developed for studying the effect of surface roughness profile on the EHL problem. The cylinders contact geometry, meshing and calculation of the conservation of mass and momentum equations are carried out by using the commercial software packages ICEMCFD and ANSYS Fluent. The user defined functions (UDFs) for density, viscosity and elastic deformation of the cylinders as the functions of pressure and temperature have been defined for the CFD model. Three different surface roughness profiles are created and incorporated into the CFD model. It is found that the developed CFD model can predict the characteristics of fluid flow and heat transfer in the EHL problem, including the leading parameters such as the pressure distribution, minimal film thickness, viscosity, and density changes. The obtained results show that the pressure profile at the center of the contact area directly relates to the roughness amplitude. The rough surface with kurtosis value over 3 influences the fluctuated shape of pressure distribution higher than other cases.

Keywords: CFD, EHL, kurtosis, surface roughness

Procedia PDF Downloads 320
3966 Impact of Diabetes Mellitus Type 2 on Clinical In-Stent Restenosis in First Elective Percutaneous Coronary Intervention Patients

Authors: Leonard Simoni, Ilir Alimehmeti, Ervina Shirka, Endri Hasimi, Ndricim Kallashi, Verona Beka, Suerta Kabili, Artan Goda

Abstract:

Background: Diabetes Mellitus type 2, small vessel calibre, stented length of vessel, complex lesion morphology, and prior bypass surgery have resulted risk factors for In-Stent Restenosis (ISR). However, there are some contradictory results about body mass index (BMI) as a risk factor for ISR. Purpose: We want to identify clinical, lesional and procedural factors that can predict clinical ISR in our patients. Methods: Were enrolled 759 patients who underwent first-time elective PCI with Bare Metal Stents (BMS) from September 2011 to December 2013 in our Department of Cardiology and followed them for at least 1.5 years with a median of 862 days (2 years and 4 months). Only the patients re-admitted with ischemic heart disease underwent control coronary angiography but no routine angiographic control was performed. Patients were categorized in ISR and non-ISR groups and compared between them. Multivariate analysis - Binary Logistic Regression: Forward Conditional Method was used to identify independent predictive risk factors. P was considered statistically significant when <0.05. Results: ISR compared to non-ISR individuals had a significantly lower BMI (25.7±3.3 vs. 26.9±3.7, p=0.004), higher risk anatomy (LM + 3-vessel CAD) (23% vs. 14%, p=0.03), higher number of stents/person used (2.1±1.1 vs. 1.75±0.96, p=0.004), greater length of stents/person used (39.3±21.6 vs. 33.3±18.5, p=0.01), and a lower use of clopidogrel and ASA (together) (95% vs. 99%, p=0.012). They also had a higher, although not statistically significant, prevalence of Diabetes Mellitus (42% vs. 32%, p=0.072) and a greater number of treated vessels (1.36±0.5 vs. 1.26±0.5, p=0.08). In the multivariate analysis, Diabetes Mellitus type 2 and multiple stents used were independent predictors risk factors for In-Stent Restenosis, OR 1.66 [1.03-2.68], p=0.039, and OR 1.44 [1.16-1.78,] p=0.001, respectively. On the other side higher BMI and use of clopidogrel and ASA together resulted protective factors OR 0.88 [0.81-0.95], p=0.001 and OR 0.2 [0.06-0.72] p=0.013, respectively. Conclusion: Diabetes Mellitus and multiple stents are strong predictive risk factors, whereas the use of clopidogrel and ASA together are protective factors for clinical In-Stent Restenosis. Paradoxically High BMI is a protective factor for In-stent Restenosis, probably related to a larger diameter of vessels and consequently a larger diameter of stents implanted in these patients. Further studies are needed to clarify this finding.

Keywords: body mass index, diabetes mellitus, in-stent restenosis, percutaneous coronary intervention

Procedia PDF Downloads 210
3965 Generalized Correlation for the Condensation and Evaporation Heat Transfer Coefficients of Propane (R290), Butane (R600), R134a, and R407c in Porous Horizontal Tubes: Experimental Investigation

Authors: M. Tarawneh

Abstract:

This work is an experimental study on the heat transfer characteristics and pressure drop of different refrigerants during the condensation and evaporation processes in porous media. Four different refrigerants (R134a, R407C, 600a, R290), with different porosities were used to reach a real understanding of the actual heat transfer characteristics and pressure drop when using porous material inside the condenser and evaporator. Steel balls were used as porous media with different porosities (38%, 43%, 48%). The main goal of this project is to enhance the heat transfer coefficient during the condensation and evaporation processes when using different refrigerants and different porosities. Different correlations for the heat transfer coefficient and the pressure drop of the different refrigerants were developed. Also a generalized empirical correlation was developed for the different refrigerants. The experimental and predicted heat transfer coefficients and pressure drops were compared. It was found that, the Absolute standard deviation for the heat transfer coefficient and the pressure drop not exceeded values of 15% and 20%, respectively.

Keywords: condensation, evaporation, porous media, horizontal tubes, heat transfer coefficient, propane, butane

Procedia PDF Downloads 538
3964 Correlation and Prediction of Biodiesel Density

Authors: Nieves M. C. Talavera-Prieto, Abel G. M. Ferreira, António T. G. Portugal, Rui J. Moreira, Jaime B. Santos

Abstract:

The knowledge of biodiesel density over large ranges of temperature and pressure is important for predicting the behavior of fuel injection and combustion systems in diesel engines, and for the optimization of such systems. In this study, cottonseed oil was transesterified into biodiesel and its density was measured at temperatures between 288 K and 358 K and pressures between 0.1 MPa and 30 MPa, with expanded uncertainty estimated as ±1.6 kg.m^-3. Experimental pressure-volume-temperature (pVT) cottonseed data was used along with literature data relative to other 18 biodiesels, in order to build a database used to test the correlation of density with temperarure and pressure using the Goharshadi–Morsali–Abbaspour equation of state (GMA EoS). To our knowledge, this is the first that density measurements are presented for cottonseed biodiesel under such high pressures, and the GMA EoS used to model biodiesel density. The new tested EoS allowed correlations within 0.2 kg•m-3 corresponding to average relative deviations within 0.02%. The built database was used to develop and test a new full predictive model derived from the observed linear relation between density and degree of unsaturation (DU), which depended from biodiesel FAMEs profile. The average density deviation of this method was only about 3 kg.m-3 within the temperature and pressure limits of application. These results represent appreciable improvements in the context of density prediction at high pressure when compared with other equations of state.

Keywords: biodiesel density, correlation, equation of state, prediction

Procedia PDF Downloads 615
3963 Atmospheric Pressure Microwave Plasma System and Its Applications

Authors: Waqas A. Toor, Anis U. Baig, Nuaman Shafqat, Raafia Irfan, Muhammad Ashraf

Abstract:

A 2.45GHz microwave plasma system and its few applications have been developed. Argon and helium plasma is produced by metallic nozzle and also in a quartz tube at atmospheric pressure, using WR-340 waveguide and its tapered version. The waveguide applicator is also simulated in HFSS and field patterns are analyzed for maximum power absorption in the load. The system is tuned to operate at less than 10% reflected power. Various experimental techniques are used to initiate and sustain the plasma at atmospheric pressure. Plasma of atmospheric air is also produced without using any other shielding gas. The plasma flame is also characterized by its spectrum. Spectral analyses of plasma flame can be used for online analysis of combustion gases produced in industry. The applications of the system include glass and quartz processing, vitrification, emission spectroscopy, plasma coating. Low pressure plasma applications of the system include intense UV light for water purification and ozone generation.

Keywords: HFSS high frequency structure simulator, Microwave plasma, UV ultraviolet, WR rectangular waveguide

Procedia PDF Downloads 271