Search results for: sequential causal inference
823 Optimization of Tundish Geometry for Minimizing Dead Volume Using OpenFOAM
Authors: Prateek Singh, Dilshad Ahmad
Abstract:
Growing demand for high-quality steel products has inspired researchers to investigate the unit operations involved in the manufacturing of these products (slabs, rods, sheets, etc.). One such operation is tundish operation, in which a vessel (tundish) acts as a buffer of molten steel for the solidification operation in mold. It is observed that tundish also plays a crucial role in the quality and cleanliness of the steel produced, besides merely acting as a reservoir for the mold. It facilitates removal of dissolved oxygen (inclusions) from the molten steel thus improving its cleanliness. Inclusion removal can be enhanced by increasing the residence time of molten steel in the tundish by incorporation of flow modifiers like dams, weirs, turbo-pad, etc. These flow modifiers also help in reducing the dead or short circuit zones within the tundish which is significant for maintaining thermal and chemical homogeneity of molten steel. Thus, it becomes important to analyze the flow of molten steel in the tundish for different configuration of flow modifiers. In the present work, effect of varying positions and heights/depths of dam and weir on the dead volume in tundish is studied. Steady state thermal and flow profiles of molten steel within the tundish are obtained using OpenFOAM. Subsequently, Residence Time Distribution analysis is performed to obtain the percentage of dead volume in the tundish. Design of Experiment method is then used to configure different tundish geometries for varying positions and heights/depths of dam and weir, and dead volume for each tundish design is obtained. A second-degree polynomial with two-term interactions of independent variables to predict the dead volume in the tundish with positions and heights/depths of dam and weir as variables are computed using Multiple Linear Regression model. This polynomial is then used in an optimization framework to obtain the optimal tundish geometry for minimizing dead volume using Sequential Quadratic Programming optimization.Keywords: design of experiments, multiple linear regression, OpenFOAM, residence time distribution, sequential quadratic programming optimization, steel, tundish
Procedia PDF Downloads 208822 Assessment the Quality of Telecommunication Services by Fuzzy Inferences System
Authors: Oktay Nusratov, Ramin Rzaev, Aydin Goyushov
Abstract:
Fuzzy inference method based approach to the forming of modular intellectual system of assessment the quality of communication services is proposed. Developed under this approach the basic fuzzy estimation model takes into account the recommendations of the International Telecommunication Union in respect of the operation of packet switching networks based on IP-protocol. To implement the main features and functions of the fuzzy control system of quality telecommunication services it is used multilayer feedforward neural network.Keywords: quality of communication, IP-telephony, fuzzy set, fuzzy implication, neural network
Procedia PDF Downloads 468821 Real-Time Radiological Monitoring of the Atmosphere Using an Autonomous Aerosol Sampler
Authors: Miroslav Hyza, Petr Rulik, Vojtech Bednar, Jan Sury
Abstract:
An early and reliable detection of an increased radioactivity level in the atmosphere is one of the key aspects of atmospheric radiological monitoring. Although the standard laboratory procedures provide detection limits as low as few µBq/m³, their major drawback is the delayed result reporting: typically a few days. This issue is the main objective of the HAMRAD project, which gave rise to a prototype of an autonomous monitoring device. It is based on the idea of sequential aerosol sampling using a carrousel sample changer combined with a gamma-ray spectrometer. In our hardware configuration, the air is drawn through a filter positioned on the carrousel so that it could be rotated into the measuring position after a preset sampling interval. Filter analysis is performed via a 50% HPGe detector inside an 8.5cm lead shielding. The spectrometer output signal is then analyzed using DSP electronics and Gamwin software with preset nuclide libraries and other analysis parameters. After the counting, the filter is placed into a storage bin with a capacity of 250 filters so that the device can run autonomously for several months depending on the preset sampling frequency. The device is connected to a central server via GPRS/GSM where the user can view monitoring data including raw spectra and technological data describing the state of the device. All operating parameters can be remotely adjusted through a simple GUI. The flow rate is continuously adjustable up to 10 m³/h. The main challenge in spectrum analysis is the natural background subtraction. As detection limits are heavily influenced by the deposited activity of radon decay products and the measurement time is fixed, there must exist an optimal sample decay time (delayed spectrum acquisition). To solve this problem, we adopted a simple procedure based on sequential spectrum acquisition and optimal partial spectral sum with respect to the detection limits for a particular radionuclide. The prototyped device proved to be able to detect atmospheric contamination at the level of mBq/m³ per an 8h sampling.Keywords: aerosols, atmosphere, atmospheric radioactivity monitoring, autonomous sampler
Procedia PDF Downloads 148820 Development of a Model for the Redesign of Plant Structures
Authors: L. Richter, J. Lübkemann, P. Nyhuis
Abstract:
In order to remain competitive in what is a turbulent environment; businesses must be able to react rapidly to change. The past response to volatile market conditions was to introduce an element of flexibility to production. Nowadays, what is often required is a redesign of factory structures in order to cope with the state of constant flux. The Institute of Production Systems and Logistics is currently developing a descriptive and causal model for the redesign of plant structures as part of an ongoing research project. This article presents the first research findings attained in devising this model.Keywords: change driven factory redesign, factory planning, plant structure, flexibility
Procedia PDF Downloads 270819 Estimating CO₂ Storage Capacity under Geological Uncertainty Using 3D Geological Modeling of Unconventional Reservoir Rocks in Block nv32, Shenvsi Oilfield, China
Authors: Ayman Mutahar Alrassas, Shaoran Ren, Renyuan Ren, Hung Vo Thanh, Mohammed Hail Hakimi, Zhenliang Guan
Abstract:
The significant effect of CO₂ on global climate and the environment has gained more concern worldwide. Enhance oil recovery (EOR) associated with sequestration of CO₂ particularly into the depleted oil reservoir is considered the viable approach under financial limitations since it improves the oil recovery from the existing oil reservoir and boosts the relation between global-scale of CO₂ capture and geological sequestration. Consequently, practical measurements are required to attain large-scale CO₂ emission reduction. This paper presents an integrated modeling workflow to construct an accurate 3D reservoir geological model to estimate the storage capacity of CO₂ under geological uncertainty in an unconventional oil reservoir of the Paleogene Shahejie Formation (Es1) in the block Nv32, Shenvsi oilfield, China. In this regard, geophysical data, including well logs of twenty-two well locations and seismic data, were combined with geological and engineering data and used to construct a 3D reservoir geological modeling. The geological modeling focused on four tight reservoir units of the Shahejie Formation (Es1-x1, Es1-x2, Es1-x3, and Es1-x4). The validated 3D reservoir models were subsequently used to calculate the theoretical CO₂ storage capacity in the block Nv32, Shenvsi oilfield. Well logs were utilized to predict petrophysical properties such as porosity and permeability, and lithofacies and indicate that the Es1 reservoir units are mainly sandstone, shale, and limestone with a proportion of 38.09%, 32.42%, and 29.49, respectively. Well log-based petrophysical results also show that the Es1 reservoir units generally exhibit 2–36% porosity, 0.017 mD to 974.8 mD permeability, and moderate to good net to gross ratios. These estimated values of porosity, permeability, lithofacies, and net to gross were up-scaled and distributed laterally using Sequential Gaussian Simulation (SGS) and Simulation Sequential Indicator (SIS) methods to generate 3D reservoir geological models. The reservoir geological models show there are lateral heterogeneities of the reservoir properties and lithofacies, and the best reservoir rocks exist in the Es1-x4, Es1-x3, and Es1-x2 units, respectively. In addition, the reservoir volumetric of the Es1 units in block Nv32 was also estimated based on the petrophysical property models and fund to be between 0.554368Keywords: CO₂ storage capacity, 3D geological model, geological uncertainty, unconventional oil reservoir, block Nv32
Procedia PDF Downloads 178818 Yield, Economics and ICBR of Different IPM Modules in Bt Cotton in Maharashtra
Authors: N. K. Bhute, B. B. Bhosle, D. G. More, B. V. Bhede
Abstract:
The field experiments were conducted during kharif season of the year 2007-08 at the experimental farm of the Department of Agricultural Entomology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Studies on evaluation of different IPM modules for Bt cotton in relation to yield economics and ICBR revealed that MAU and CICR IPM modules proved superior. It was, however, on par with chemical control. Considering the ICBR and safety to natural enemies, an inference can be drawn that Bt cotton with IPM module is the most ideal combination. Besides reduction in insecticide use, it is also expected to ensure favourable ecological and economic returns in contrast to the adverse effects due to conventional insecticides. The IPM approach, which takes care of varying pest situation, appears to be essential for gaining higher advantage from Bt cotton.Keywords: yield, economics, ICBR, IPM Modules, Bt cotton
Procedia PDF Downloads 268817 Leveraging Deep Q Networks in Portfolio Optimization
Authors: Peng Liu
Abstract:
Deep Q networks (DQNs) represent a significant advancement in reinforcement learning, utilizing neural networks to approximate the optimal Q-value for guiding sequential decision processes. This paper presents a comprehensive introduction to reinforcement learning principles, delves into the mechanics of DQNs, and explores its application in portfolio optimization. By evaluating the performance of DQNs against traditional benchmark portfolios, we demonstrate its potential to enhance investment strategies. Our results underscore the advantages of DQNs in dynamically adjusting asset allocations, offering a robust portfolio management framework.Keywords: deep reinforcement learning, deep Q networks, portfolio optimization, multi-period optimization
Procedia PDF Downloads 32816 Understanding Natural Resources Governance in Canada: The Role of Institutions, Interests, and Ideas in Alberta's Oil Sands Policy
Authors: Justine Salam
Abstract:
As a federal state, Canada’s constitutional arrangements regarding the management of natural resources is unique because it gives complete ownership and control of natural resources to the provinces (subnational level). However, the province of Alberta—home to the third largest oil reserves in the world—lags behind comparable jurisdictions in levying royalties on oil corporations, especially oil sands royalties. While Albertans own the oil sands, scholars have argued that natural resource exploitation in Alberta benefits corporations and industry more than it does Albertans. This study provides a systematic understanding of the causal factors affecting royalties in Alberta to map dynamics of power and how they manifest themselves during policy-making. Mounting domestic and global public pressure led Alberta to review its oil sands royalties twice in less than a decade through public-commissioned Royalty Review Panels, first in 2007 and again in 2015. The Panels’ task was to research best practices and to provide policy recommendations to the Government through public consultations with Albertans, industry, non-governmental organizations, and First Nations peoples. Both times, the Panels recommended a relative increase to oil sands royalties. However, irrespective of the Reviews’ recommendations, neither the right-wing 2007 Progressive Conservative Party (PC) nor the left-wing 2015 New Democratic Party (NDP) government—both committed to increase oil sands royalties—increased royalty intake. Why did two consecutive political parties at opposite ends of the political spectrum fail to account for the recommendations put forward by the Panel? Through a qualitative case-study analysis, this study assesses domestic and global causal factors for Alberta’s inability to raise oil sands royalties significantly after the two Reviews through an institutions, interests, and ideas framework. Indeed, causal factors can be global (e.g. market and price fluctuation) or domestic (e.g. oil companies’ influence on the Alberta government). The institutions, interests, and ideas framework is at the intersection of public policy, comparative studies, and political economy literatures, and therefore draws multi-faceted insights into the analysis. To account for institutions, the study proposes to review international trade agreements documents such as the North American Free Trade Agreement (NAFTA) because they have embedded Alberta’s oil sands into American energy security policy and tied Canadian and Albertan oil policy in legal international nods. To account for interests, such as how the oil lobby or the environment lobby can penetrate governmental decision-making spheres, the study draws on the Oil Sands Oral History project, a database of interviews from government officials and oil industry leaders at a pivotal time in Alberta’s oil industry, 2011-2013. Finally, to account for ideas, such as how narratives of Canada as a global ‘energy superpower’ and the importance of ‘energy security’ have dominated and polarized public discourse, the study relies on content analysis of Alberta-based pro-industry newspapers to trace the prevalence of these narratives. By mapping systematically the nods and dynamics of power at play in Alberta, the study sheds light on the factors that influence royalty policy-making in one of the largest industries in Canada.Keywords: Alberta Canada, natural resources governance, oil sands, political economy
Procedia PDF Downloads 132815 The Accuracy of Small Firms at Predicting Their Employment
Authors: Javad Nosratabadi
Abstract:
This paper investigates the difference between firms' actual and expected employment along with the amount of loans invested by them. In addition, it examines the relationship between the amount of loans received by firms and wages. Empirically, using a causal effect estimation and firm-level data from a province in Iran between 2004 and 2011, the results show that there is a range of the loan amount for which firms' expected employment meets their actual one. In contrast, there is a gap between firms' actual and expected employment for any other loan amount. Furthermore, the result shows that there is a positive and significant relationship between the amount of loan invested by firms and wages.Keywords: expected employment, actual employment, wage, loan
Procedia PDF Downloads 161814 Optimized Deep Learning-Based Facial Emotion Recognition System
Authors: Erick C. Valverde, Wansu Lim
Abstract:
Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.Keywords: deep learning, face detection, facial emotion recognition, network optimization methods
Procedia PDF Downloads 118813 The Impact of Task Type and Group Size on Dialogue Argumentation between Students
Authors: Nadia Soledad Peralta
Abstract:
Within the framework of socio-cognitive interaction, argumentation is understood as a psychological process that supports and induces reasoning and learning. Most authors emphasize the great potential of argumentation to negotiate with contradictions and complex decisions. So argumentation is a target for researchers who highlight the importance of social and cognitive processes in learning. In the context of social interaction among university students, different types of arguments are analyzed according to group size (dyads and triads) and the type of task (reading of frequency tables, causal explanation of physical phenomena, the decision regarding moral dilemma situations, and causal explanation of social phenomena). Eighty-nine first-year social sciences students of the National University of Rosario participated. Two groups were formed from the results of a pre-test that ensured the heterogeneity of points of view between participants. Group 1 consisted of 56 participants (performance in dyads, total: 28), and group 2 was formed of 33 participants (performance in triads, total: 11). A quasi-experimental design was performed in which effects of the two variables (group size and type of task) on the argumentation were analyzed. Three types of argumentation are described: authentic dialogical argumentative resolutions, individualistic argumentative resolutions, and non-argumentative resolutions. The results indicate that individualistic arguments prevail in dyads. That is, although people express their own arguments, there is no authentic argumentative interaction. Given that, there are few reciprocal evaluations and counter-arguments in dyads. By contrast, the authentically dialogical argument prevails in triads, showing constant feedback between participants’ points of view. It was observed that, in general, the type of task generates specific types of argumentative interactions. However, it is possible to emphasize that the authentically dialogic arguments predominate in the logical tasks, whereas the individualists or pseudo-dialogical are more frequent in opinion tasks. Nerveless, these relationships between task type and argumentative mode are best clarified in an interactive analysis based on group size. Finally, it is important to stress the value of dialogical argumentation in educational domains. Argumentative function not only allows a metacognitive reflection about their own point of view but also allows people to benefit from exchanging points of view in interactive contexts.Keywords: sociocognitive interaction, argumentation, university students, size of the grup
Procedia PDF Downloads 83812 Numerical Simulation of the Fractional Flow Reserve in the Coronary Artery with Serial Stenoses of Varying Configuration
Authors: Mariia Timofeeva, Andrew Ooi, Eric K. W. Poon, Peter Barlis
Abstract:
Atherosclerotic plaque build-up, commonly known as stenosis, limits blood flow and hence oxygen and nutrient supplies to the heart muscle. Thus, assessment of its severity is of great interest to health professionals. Numerical simulation of the fractional flow reserve (FFR) has proved to be well correlated with invasively measured FFR used for physiological assessment of the severity of coronary stenosis in arteries. Atherosclerosis may impact the diseased artery in several locations causing serial stenoses, which is a complicated subset of coronary artery disease that requires careful treatment planning. However, hemodynamic of the serial sequential stenoses in coronary arteries has not been extensively studied. The hemodynamics of the serial stenoses is complex because the stenoses in the series interact and affect the flow through each other. To address this, serial stenoses in a 3.4 mm left anterior descending (LAD) artery are examined in this study. Two diameter stenoses (DS) are considered, 30 and 50 percent of the reference diameter. Serial stenoses configurations are divided into three groups based on the order of the stenoses in the series, spacing between them, and deviation of the stenoses’ symmetry (eccentricity). A patient-specific pulsatile waveform is used in the simulations. Blood flow within the stenotic artery is assumed to be laminar, Newtonian, and incompressible. Results for the FFR are reported. Based on the simulation results, it can be deduced that the larger drop in pressure (smaller value of the FFR) is expected when the percentage of the second stenosis in the series is bigger. Varying the distance between the stenoses affects the location of the maximum drop in the pressure, while the minimal FFR in the artery remains unchanged. Eccentric serial stenoses are characterized by a noticeably larger decrease in pressure through the stenoses and by the development of the chaotic flow downstream of the stenoses. The largest drop in the pressure (about 4% difference compared to the axisymmetric case) is obtained for the serial stenoses, where both the stenoses are highly eccentric with the centerlines deflected to the different sides of the LAD. In conclusion, varying configuration of the sequential serial stenoses results in a different distribution of FFR through the LAD. Results presented in this study provide insight into the clinical assessment of the severity of the coronary serial stenoses, which is proved to depend on the relative position of the stenoses and the deviation of the stenoses’ symmetry.Keywords: computational fluid dynamics, coronary artery, fractional flow reserve, serial stenoses
Procedia PDF Downloads 182811 Transition of Nutrition Style and Obesity: A Kuwaiti Case Study
Authors: Othman Saleh Al-Razgan
Abstract:
Obesity establishes an epidemic along with an array of comorbidities and this call for careful clinical assessment, to identify causal factors and comprehensive management. In Kuwait, this epidemic reflects the progressive, socio-economic and age-related issues, along with the shift of nutrition from traditional to modern-style. The current research attempts to narrate the obesity and related health issues in Kuwait, with a special emphasis on the magnitude of the issue in Kuwait, nutrition transition over the past three decades, change in life-style, and possible solution for this issue.Keywords: clinical assessment, comorbidities, obesity, socio-economic
Procedia PDF Downloads 442810 Fuzzy Inference Based Modelling of Perception Reaction Time of Drivers
Authors: U. Chattaraj, K. Dhusiya, M. Raviteja
Abstract:
Perception reaction time of drivers is an outcome of human thought process, which is vague and approximate in nature and also varies from driver to driver. So, in this study a fuzzy logic based model for prediction of the same has been presented, which seems suitable. The control factors, like, age, experience, intensity of driving of the driver, speed of the vehicle and distance of stimulus have been considered as premise variables in the model, in which the perception reaction time is the consequence variable. Results show that the model is able to explain the impacts of the control factors on perception reaction time properly.Keywords: driver, fuzzy logic, perception reaction time, premise variable
Procedia PDF Downloads 304809 Transformation of Periodic Fuzzy Membership Function to Discrete Polygon on Circular Polar Coordinates
Authors: Takashi Mitsuishi
Abstract:
Fuzzy logic has gained acceptance in the recent years in the fields of social sciences and humanities such as psychology and linguistics because it can manage the fuzziness of words and human subjectivity in a logical manner. However, the major field of application of the fuzzy logic is control engineering as it is a part of the set theory and mathematical logic. Mamdani method, which is the most popular technique for approximate reasoning in the field of fuzzy control, is one of the ways to numerically represent the control afforded by human language and sensitivity and has been applied in various practical control plants. Fuzzy logic has been gradually developing as an artificial intelligence in different applications such as neural networks, expert systems, and operations research. The objects of inference vary for different application fields. Some of these include time, angle, color, symptom and medical condition whose fuzzy membership function is a periodic function. In the defuzzification stage, the domain of the membership function should be unique to obtain uniqueness its defuzzified value. However, if the domain of the periodic membership function is determined as unique, an unintuitive defuzzified value may be obtained as the inference result using the center of gravity method. Therefore, the authors propose a method of circular-polar-coordinates transformation and defuzzification of the periodic membership functions in this study. The transformation to circular polar coordinates simplifies the domain of the periodic membership function. Defuzzified value in circular polar coordinates is an argument. Furthermore, it is required that the argument is calculated from a closed plane figure which is a periodic membership function on the circular polar coordinates. If the closed plane figure is continuous with the continuity of the membership function, a significant amount of computation is required. Therefore, to simplify the practice example and significantly reduce the computational complexity, we have discretized the continuous interval and the membership function in this study. In this study, the following three methods are proposed to decide the argument from the discrete polygon which the continuous plane figure is transformed into. The first method provides an argument of a straight line passing through the origin and through the coordinate of the arithmetic mean of each coordinate of the polygon (physical center of gravity). The second one provides an argument of a straight line passing through the origin and the coordinate of the geometric center of gravity of the polygon. The third one provides an argument of a straight line passing through the origin bisecting the perimeter of the polygon (or the closed continuous plane figure).Keywords: defuzzification, fuzzy membership function, periodic function, polar coordinates transformation
Procedia PDF Downloads 363808 Reductions of Control Flow Graphs
Authors: Robert Gold
Abstract:
Control flow graphs are a well-known representation of the sequential control flow structure of programs with a multitude of applications. Not only single functions but also sets of functions or complete programs can be modelled by control flow graphs. In this case the size of the graphs can grow considerably and thus makes it difficult for software engineers to analyse the control flow. Graph reductions are helpful in this situation. In this paper we define reductions to subsets of nodes. Since executions of programs are represented by paths through the control flow graphs, paths should be preserved. Furthermore, the composition of reductions makes a stepwise analysis approach possible.Keywords: control flow graph, graph reduction, software engineering, software applications
Procedia PDF Downloads 552807 Relational Attention Shift on Images Using Bu-Td Architecture and Sequential Structure Revealing
Authors: Alona Faktor
Abstract:
In this work, we present a NN-based computational model that can perform attention shifts according to high-level instruction. The instruction specifies the type of attentional shift using explicit geometrical relation. The instruction also can be of cognitive nature, specifying more complex human-human interaction or human-object interaction, or object-object interaction. Applying this approach sequentially allows obtaining a structural description of an image. A novel data-set of interacting humans and objects is constructed using a computer graphics engine. Using this data, we perform systematic research of relational segmentation shifts.Keywords: cognitive science, attentin, deep learning, generalization
Procedia PDF Downloads 198806 Ethnic Xenophobia as Symbolic Politics: An Explanation of Anti-Migrant Activity from Brussels to Beirut
Authors: Annamarie Rannou, Horace Bartilow
Abstract:
Global concerns about xenophobic activity are on the rise across developed and developing countries. And yet, social science scholarship has almost exclusively examined xenophobia as a prejudice of advanced western nations. This research argues that the fields of study related to xenophobia must be re-conceptualized within a framework of ethnicity in order to level the playing field for cross-regional inquiry. This study develops a new concept of ethnic xenophobia and integrates existing explanations of anti-migrant expression into theories of ethnic threat. We argue specifically that political elites convert economic, political, and social threats at the national level into ethnic xenophobic activity in order to gain or maintain political advantage among their native selectorate. We expand on Stuart Kaufman’s theory of symbolic politics to underscore the methods of mobilization used against migrants and the power of elite discourse in moments of national crises. An original dataset is used to examine over 35,000 cases of ethnic xenophobic activity targeting refugees. Wordscores software is used to develop a unique measure of anti-migrant elite rhetoric which captures the symbolic discourse of elites in their mobilization of ethnic xenophobic activism. We use a Structural Equation Model (SEM) to test the causal pathways of the theory across seventy-two developed and developing countries from 1990 to 2016. A framework of Most Different Systems Design (MDSD) is also applied to two pairs of developed-developing country cases, including Kenya and the Netherlands and Lebanon and the United States. This study sheds tremendous light on an underrepresented area of comparative research in migration studies. It shows that the causal elements of anti-migrant activity are far more similar than existing research suggests which has major implications for policy makers, practitioners, and academics in fields of migration protection and advocacy. It speaks directly to the mobilization of myths surrounding refugees, in particular, and the nationalization of narratives of migration that may be neutralized by the development of deeper associational relationships between natives and migrants.Keywords: refugees, ethnicity, symbolic politics, elites, migration, comparative politics
Procedia PDF Downloads 145805 Mining Diagnostic Investigation Process
Authors: Sohail Imran, Tariq Mahmood
Abstract:
In complex healthcare diagnostic investigation process, medical practitioners have to focus on ways to standardize their processes to perform high quality care and optimize the time and costs. Process mining techniques can be applied to extract process related knowledge from data without considering causal and dynamic dependencies in business domain and processes. The application of process mining is effective in diagnostic investigation. It is very helpful where a treatment gives no dispositive evidence favoring it. In this paper, we applied process mining to discover important process flow of diagnostic investigation for hepatitis patients. This approach has some benefits which can enhance the quality and efficiency of diagnostic investigation processes.Keywords: process mining, healthcare, diagnostic investigation process, process flow
Procedia PDF Downloads 522804 Anaerobic Co-digestion in Two-Phase TPAD System of Sewage Sludge and Fish Waste
Authors: Rocio López, Miriam Tena, Montserrat Pérez, Rosario Solera
Abstract:
Biotransformation of organic waste into biogas is considered an interesting alternative for the production of clean energy from renewable sources by reducing the volume and organic content of waste Anaerobic digestion is considered one of the most efficient technologies to transform waste into fertilizer and biogas in order to obtain electrical energy or biofuel within the concept of the circular economy. Currently, three types of anaerobic processes have been developed on a commercial scale: (1) single-stage process where sludge bioconversion is completed in a single chamber, (2) two-stage process where the acidogenic and methanogenic stages are separated into two chambers and, finally, (3) temperature-phase sequencing (TPAD) process that combines a thermophilic pretreatment unit prior to mesophilic anaerobic digestion. Two-stage processes can provide hydrogen and methane with easier control of the first and second stage conditions producing higher total energy recovery and substrate degradation than single-stage processes. On the other hand, co-digestion is the simultaneous anaerobic digestion of a mixture of two or more substrates. The technology is similar to anaerobic digestion but is a more attractive option as it produces increased methane yields due to the positive synergism of the mixtures in the digestion medium thus increasing the economic viability of biogas plants. The present study focuses on the energy recovery by anaerobic co-digestion of sewage sludge and waste from the aquaculture-fishing sector. The valorization is approached through the application of a temperature sequential phase process or TPAD technology (Temperature - Phased Anaerobic Digestion). Moreover, two-phase of microorganisms is considered. Thus, the selected process allows the development of a thermophilic acidogenic phase followed by a mesophilic methanogenic phase to obtain hydrogen (H₂) in the first stage and methane (CH₄) in the second stage. The combination of these technologies makes it possible to unify all the advantages of these anaerobic digestion processes individually. To achieve these objectives, a sequential study has been carried out in which the biochemical potential of hydrogen (BHP) is tested followed by a BMP test, which will allow checking the feasibility of the two-stage process. The best results obtained were high total and soluble COD yields (59.8% and 82.67%, respectively) as well as H₂ production rates of 12LH₂/kg SVadded and methane of 28.76 L CH₄/kg SVadded for TPAD.Keywords: anaerobic co-digestion, TPAD, two-phase, BHP, BMP, sewage sludge, fish waste
Procedia PDF Downloads 156803 Neural Networks Underlying the Generation of Neural Sequences in the HVC
Authors: Zeina Bou Diab, Arij Daou
Abstract:
The neural mechanisms of sequential behaviors are intensively studied, with songbirds a focus for learned vocal production. We are studying the premotor nucleus HVC at a nexus of multiple pathways contributing to song learning and production. The HVC consists of multiple classes of neuronal populations, each has its own cellular, electrophysiological and functional properties. During singing, a large subset of motor cortex analog-projecting HVCRA neurons emit a single 6-10 ms burst of spikes at the same time during each rendition of song, a large subset of basal ganglia-projecting HVCX neurons fire 1 to 4 bursts that are similarly time locked to vocalizations, while HVCINT neurons fire tonically at average high frequency throughout song with prominent modulations whose timing in relation to song remains unresolved. This opens the opportunity to define models relating explicit HVC circuitry to how these neurons work cooperatively to control learning and singing. We developed conductance-based Hodgkin-Huxley models for the three classes of HVC neurons (based on the ion channels previously identified from in vitro recordings) and connected them in several physiologically realistic networks (based on the known synaptic connectivity and specific glutaminergic and gabaergic pharmacology) via different architecture patterning scenarios with the aim to replicate the in vivo firing patterning behaviors. We are able, through these networks, to reproduce the in vivo behavior of each class of HVC neurons, as shown by the experimental recordings. The different network architectures developed highlight different mechanisms that might be contributing to the propagation of sequential neural activity (continuous or punctate) in the HVC and to the distinctive firing patterns that each class exhibits during singing. Examples of such possible mechanisms include: 1) post-inhibitory rebound in HVCX and their population patterns during singing, 2) different subclasses of HVCINT interacting via inhibitory-inhibitory loops, 3) mono-synaptic HVCX to HVCRA excitatory connectivity, and 4) structured many-to-one inhibitory synapses from interneurons to projection neurons, and others. Replication is only a preliminary step that must be followed by model prediction and testing.Keywords: computational modeling, neural networks, temporal neural sequences, ionic currents, songbird
Procedia PDF Downloads 70802 Using Vulnerability to Reduce False Positive Rate in Intrusion Detection Systems
Authors: Nadjah Chergui, Narhimene Boustia
Abstract:
Intrusion Detection Systems are an essential tool for network security infrastructure. However, IDSs have a serious problem which is the generating of massive number of alerts, most of them are false positive ones which can hide true alerts and make the analyst confused to analyze the right alerts for report the true attacks. The purpose behind this paper is to present a formalism model to perform correlation engine by the reduction of false positive alerts basing on vulnerability contextual information. For that, we propose a formalism model based on non-monotonic JClassicδє description logic augmented with a default (δ) and an exception (є) operator that allows a dynamic inference according to contextual information.Keywords: context, default, exception, vulnerability
Procedia PDF Downloads 259801 Compensatory Neuro-Fuzzy Inference (CNFI) Controller for Bilateral Teleoperation
Abstract:
This paper presents a new adaptive neuro-fuzzy controller equipped with compensatory fuzzy control (CNFI) in order to not only adjusts membership functions but also to optimize the adaptive reasoning by using a compensatory learning algorithm. The proposed control structure includes both CNFI controllers for which one is used to control in force the master robot and the second one for controlling in position the slave robot. The experimental results obtained, show a fairly high accuracy in terms of position and force tracking under free space motion and hard contact motion, what highlights the effectiveness of the proposed controllers.Keywords: compensatory fuzzy, neuro-fuzzy, control adaptive, teleoperation
Procedia PDF Downloads 324800 Monte Carlo Methods and Statistical Inference of Multitype Branching Processes
Authors: Ana Staneva, Vessela Stoimenova
Abstract:
A parametric estimation of the MBP with Power Series offspring distribution family is considered in this paper. The MLE for the parameters is obtained in the case when the observable data are incomplete and consist only with the generation sizes of the family tree of MBP. The parameter estimation is calculated by using the Monte Carlo EM algorithm. The estimation for the posterior distribution and for the offspring distribution parameters are calculated by using the Bayesian approach and the Gibbs sampler. The article proposes various examples with bivariate branching processes together with computational results, simulation and an implementation using R.Keywords: Bayesian, branching processes, EM algorithm, Gibbs sampler, Monte Carlo methods, statistical estimation
Procedia PDF Downloads 419799 Detecting the Edge of Multiple Images in Parallel
Authors: Prakash K. Aithal, U. Dinesh Acharya, Rajesh Gopakumar
Abstract:
Edge is variation of brightness in an image. Edge detection is useful in many application areas such as finding forests, rivers from a satellite image, detecting broken bone in a medical image etc. The paper discusses about finding edge of multiple aerial images in parallel .The proposed work tested on 38 images 37 colored and one monochrome image. The time taken to process N images in parallel is equivalent to time taken to process 1 image in sequential. The proposed method achieves pixel level parallelism as well as image level parallelism.Keywords: edge detection, multicore, gpu, opencl, mpi
Procedia PDF Downloads 477798 Bayesian Analysis of Change Point Problems Using Conditionally Specified Priors
Authors: Golnaz Shahtahmassebi, Jose Maria Sarabia
Abstract:
In this talk, we introduce a new class of conjugate prior distributions obtained from conditional specification methodology. We illustrate the application of such distribution in Bayesian change point detection in Poisson processes. We obtain the posterior distribution of model parameters using a general bivariate distribution with gamma conditionals. Simulation from the posterior is readily implemented using a Gibbs sampling algorithm. The Gibbs sampling is implemented even when using conditional densities that are incompatible or only compatible with an improper joint density. The application of such methods will be demonstrated using examples of simulated and real data.Keywords: change point, bayesian inference, Gibbs sampler, conditional specification, gamma conditional distributions
Procedia PDF Downloads 189797 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network
Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman
Abstract:
We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.Keywords: autonomous surveillance, Bayesian reasoning, decision support, interventions, patterns of life, predictive analytics, predictive insights
Procedia PDF Downloads 115796 The Effectiveness of Foreign Aid in Different Political Regimes of Pakistan
Authors: Umar Hayat, Shahid Ali, Lala Rukh
Abstract:
Foreign aid is one of the critical variables that promote economic growth. This paper is an attempt to examine the long-run relationship between foreign aid and economic growth for Pakistan over the period of 1972 to 2021. This study uses Johnson's co-integration technique to investigate the long-run relationship among the variables in the model. For short-run dynamics, we utilized the Error Correction Mechanism (ECM). The results strongly support the conventional view about aid-led growth. The analysis of the impact of aid on growth both at the micro and the macro levels generally gives different results. The result shows that in the short run inference of foreign aid under the nondemocratic form of government is significant negatively, while foreign aid does not affect economic growth in the case of democratic government.Keywords: foreign aid, economic growth, political regimes, developing economy
Procedia PDF Downloads 44795 On the Approximate Solution of Continuous Coefficients for Solving Third Order Ordinary Differential Equations
Authors: A. M. Sagir
Abstract:
This paper derived four newly schemes which are combined in order to form an accurate and efficient block method for parallel or sequential solution of third order ordinary differential equations of the form y^'''= f(x,y,y^',y^'' ), y(α)=y_0,〖y〗^' (α)=β,y^('' ) (α)=μ with associated initial or boundary conditions. The implementation strategies of the derived method have shown that the block method is found to be consistent, zero stable and hence convergent. The derived schemes were tested on stiff and non-stiff ordinary differential equations, and the numerical results obtained compared favorably with the exact solution.Keywords: block method, hybrid, linear multistep, self-starting, third order ordinary differential equations
Procedia PDF Downloads 271794 Stoner Impurity Model in Nickel Hydride
Authors: Andrea Leon, J. M. Florez, P. Vargas
Abstract:
The effect of hydrogen adsorption on the magnetic properties of fcc Ni has been calculated using the linear-muffin-tin-orbital formalism and using the local-density approximation for the exchange y correlation. The calculations for the ground state show that the sequential addition of hydrogen atoms is found to monotonically reduce the total magnetic moment of the Ni fcc structure, as a result of changes in the exchange-splitting parameter and in the Fermi energy. In order to physically explain the effect of magnetization reduction as the Hydrogen concentration increases, we propose a Stoner impurity model to describe the influence of H impurity on the magnetic properties of Nickel.Keywords: electronic structure, magnetic properties, Nickel hydride, stoner model
Procedia PDF Downloads 459