Search results for: martensite morphology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1502

Search results for: martensite morphology

1202 Application of RayMan Model in Quantifying the Impacts of the Built Environment and Surface Properties on Surrounding Temperature

Authors: Maryam Karimi, Rouzbeh Nazari

Abstract:

Introduction: Understanding thermal distribution in the micro-urban climate has now been necessary for urban planners or designers due to the impact of complex micro-scale features of Urban Heat Island (UHI) on the built environment and public health. Hence, understanding the interrelation between urban components and thermal pattern can assist planners in the proper addition of vegetation to build-environment, which can minimize the UHI impact. To characterize the need for urban green infrastructure (UGI) through better urban planning, this study proposes the use of RayMan model to measure the impact of air quality and increased temperature based on urban morphology in the selected metropolitan cities. This project will measure the impact of build environment for urban and regional planning using human biometeorological evaluations (Tmrt). Methods: We utilized the RayMan model to estimate the Tmrt in an urban environment incorporating location and height of buildings and trees as a supplemental tool in urban planning and street design. The estimated Tmrt value will be compared with existing surface and air temperature data to find the actual temperature felt by pedestrians. Results: Our current results suggest a strong relationship between sky-view factor (SVF) and increased surface temperature in megacities based on current urban morphology. Conclusion: This study will help with Quantifying the impacts of the built environment and surface properties on surrounding temperature, identifying priority urban neighborhoods by analyzing Tmrt and air quality data at the pedestrian level, and characterizing the need for urban green infrastructure cooling potential.

Keywords: built environment, urban planning, urban cooling, extreme heat

Procedia PDF Downloads 124
1201 Infused Mesenchymal Stem Cells Ameliorate Organs Morphology in Cerebral Malaria Infection

Authors: Reva Sharan Thakur, Mrinalini Tiwari, Jyoti das

Abstract:

Cerebral malaria-associated over expression of pro-inflammatory cytokines and chemokines ultimately results in the up-regulation of adhesion molecules in the brain endothelium leading to sequestration of mature parasitized RBCs in the brain. The high-parasitic load subsequently results in increased mortality or development of neurological symptoms within a week of infection. Studies in the human and experimental cerebral malaria have implicated the breakdown of the integrity of blood-brain barrier during the lethal course of infection, cerebral dysfunction, and fatal organ pathologies that result in multi-organ failure. In the present study, using Plasmodium berghei Anka as a mouse model and in vitro conditions, we have investigated the effect of MSCs to attenuate cerebral malaria pathogenesis by diminishing the effect of inflammation altered organ morphology, reduced parasitemia, and increased survival of the mice. MSCs are also validated for their role in preventing BBB dysfunction and reducing malarial toxins. It was observed that administration of MSCs significantly reduced parasitemia and increased survival in Pb A infected mice. It was further demonstrated that MSCs play a significant role in reversing neurological complexities associated with cerebral malaria. Infusion of MSCs in infected mice decreased hemozoin deposition; oedema, and haemorrhagic lesions in vascular organs. MSCs administration also preserved the integrity of the blood-brain barrier and reduced neural inflammation. Taken together, our results demonstrate the potential of MSCs as an emerging anti-malarial candidate.

Keywords: cerebral malaria, mesenchymal stem cells, erythropoesis, cell death

Procedia PDF Downloads 105
1200 Early Age Microstructural Analysis of Cement-Polymer Composite Paste Cured at High Temperature

Authors: Bertilia L. Bartley, Ledjane S. Barreto

Abstract:

As a preliminary investigation on the control of microcracking in composite cement pastes, this study explores and compares the compatibility of Tetraethyl Orthosilicate (TEOS), Ethylene Glycol (EG) and Silicone Resin (SIL) in cement pastes cured at high temperature. Pastes were prepared by incorporating ordinary Portland cement (OPC) into an additive solution, using a solution/cement ratio of 0.45. Specimens were molded for 24h at 21 ± 2°C, then cured in deionized water for another 24h at 74 ± 1°C. TEOS and EG influence on fresh paste properties were similar to the reference OPC paste yet disintegration was observed in EG and SIL specimens after the first 12h of curing. X-Ray Diffraction analysis (XRD) coupled with thermogravimetric analysis (TGA/DTG) verified that SIL addition impedes portlandite formation significantly. Backscatter Scanning Electron Microscopy (SEM) techniques were therefore performed on selected areas of each sample to investigate the morphology of the hydration products detected. Various morphologies of portlandite crystals were observed in pastes with EG and TEOS addition, as well as dense morphologies of calcium silicate hydrate (C-S-H) gel and fibers, and ettringite needles. However, the formation of portlandite aggregate and clusters of C-S-H was highly favored by TEOS addition. Furthermore, the microstructural details of composite pastes were clearly visible at low magnifications i.e. 500x, as compared to the OPC paste. The results demonstrate accelerated hydration within composite pastes, a uniform distribution of hydration products, as well as an adhesive interaction with the products and polymer additive. Overall, TEOS demonstrated the most favorable influence, which indicates the potential of TEOS as a compatible polymer additive within the cement system at high temperature.

Keywords: accelerated curing, cement/polymer composite, hydration, microstructural properties, morphology, portlandite, scanning electron microscopy (sem)

Procedia PDF Downloads 183
1199 Epididymis in the Agouti (Dasyprocta azarae): Light Microscope Study

Authors: Bruno C. Schimming, Leandro L. Martins, PatríCia F. F. Pinheiro, Raquel F. Domeniconi, FabríCio S. Oliveira

Abstract:

The agouti is a wildlife rodent that can be used as an alternative source of animal protein and this species has been raised in captivity in Brazil with the aim of providing meat. Thus, the knowledge of their reproductive biology and morphology of the reproductive organs is important. The objective of this study was to describe the morphology of epididymis in the Azara’s agouti, by light microscopy. Samples of epididymis were obtained from five adult Azara’s agouti (Dasyprocta azarae) during castration surgery performed at the Municipal Zoo of Catanduva, Brazil. Fragments of the epididymal regions (initial segment, caput, corpus and cauda) were collected. The biological samples were immediately fixed in paraformaldehyde for 24 hours, followed by histologic procedures comprising embedding in ParaplastTM (Sigma, St. Louis, MO, USA), sections of 5 µm, and staining with HE and Masson’s trichrome. The epididymis was a highly convoluted tubule that links the testis to the vas deferens. The epithelium lining was pseudostratified columnar surrounded by a periductal stroma. The epithelium contains several cell types: principal, basal, apical, clear, and hallo cells. Principal cells were the most abundant cell type. There were observed also migratory cells named halo cells. The caput epididymis was divided into two different regions: initial segment and caput. The initial segment has a very wide lumen, a high epithelium with conspicuous microvilli and the lumen was wide with exfoliated material. The other region of the caput epididymis, showed a lower epithelium when compared with the initial segment, large amounts of spermatozoa in the lumen, and a cytoplasmic vacuolization. This region presented many narrows cells. Many spermatozoa appeared in the lumen of corpus epididymis. The cauda region had a lower epithelium than the other epididymal regions in the agouti. The cauda epithelium presented plicae protruding into the lumen. Large amounts of spermatozoa are also present in the lumen. Small microvilli uniformly arranged so as to form a kind of “brush border” are observed on the apical surface of the cauda epithelium. The pattern of the epithelium lining the duct of the agouti epididymis does not differ greatly from that reported to other mammals, such as domestic and wildlife animals. These findings can cooperate with future investigations especially those related to rational exploration of these animals. All experimental procedures were approved by the institutional ethics committee (CEUA 796/2015). This study was supported by FAPESP (Grants 2015/23822-1).

Keywords: wildlife, testis excurrent ducts, epididymis, morphology

Procedia PDF Downloads 238
1198 Electrochemical Growth and Properties of Cu2O Nanostructures

Authors: A. Azizi, S. Laidoudi, G. Schmerber, A. Dinia

Abstract:

Cuprous oxide (Cu2O) is a well-known oxide semiconductor with a band gap of 2.1 eV and a natural p-type conductivity, which is an attractive material for device applications because of its abundant availability, non toxicity, and low production cost. It has a higher absorption coefficient in the visible region and the minority carrier diffusion length is also suitable for use as a solar cell absorber layer and it has been explored in junction with n type ZnO for photovoltaic applications. Cu2O nanostructures have been made by a variety of techniques; the electrodeposition method has emerged as one of the most promising processing routes as it is particularly provides advantages such as a low-cost, low temperature and a high level of purity in the products. In this work, Cu2O nanostructures prepared by electrodeposition from aqueous cupric sulfate solution with citric acid at 65°C onto a fluorine doped tin oxide (FTO) coated glass substrates were investigated. The effects of deposition potential on the electrochemical, surface morphology, structural and optical properties of Cu2O thin films were investigated. During cyclic voltammetry experiences, the potential interval where the electrodeposition of Cu2O is carried out was established. The Mott–Schottky (M-S) plot demonstrates that all the films are p-type semiconductors, the flat-band potential and the acceptor density for the Cu2O thin films are determined. AFM images reveal that the applied potential has a very significant influence on the surface morphology and size of the crystallites of thin Cu2O. The XRD measurements indicated that all the obtained films display a Cu2O cubic structure with a strong preferential orientation of the (111) direction. The optical transmission spectra in the UV-Visible domains revealed the highest transmission (75 %), and their calculated gap values increased from 1.93 to 2.24 eV, with increasing potentials.

Keywords: Cu2O, electrodeposition, Mott–Schottky plot, nanostructure, optical properties, XRD

Procedia PDF Downloads 356
1197 Effect of Electromagnetic Radiation on Reproductive System of Male Rat

Authors: Rohit Gautam, Kumari Vandana Singh, Jayprakash Nirala, Nina Nancy Murmu, Ramovatar Meena, Paulraj Rajamani

Abstract:

Mobile phones have become a vital part of everyone’s life. Mobile phone and mobile phone towers emit RF-EMR (Radiofrequency Electromagnetic Radiation), which becomes a cause of concern to the general public. The study was designed to evaluate the effect of 3G (RF-EMR) on the reproductive system of male Wistar rats. Adult male Wistar rats were used for the study. Animals were divided into two groups, RF-exposed, and sham-exposed (control). RF-exposed rats were exposed to radio frequency radiation (2100 MHz) for 2 hours/day for 45 days. Emitted power density and specific absorption rate (SAR) values were measured during exposure. At the end of the exposure, testis and epididymis were excised out, and their weights were recorded. Sperm cell count, morphology, viability, and reactive oxygen species (ROS) levels were checked. Lipid peroxidation and sperm mitochondrial activity were measured. Histopathology of testis and ultrastructure analysis of sperm were also checked. Result showed a decrease in organ weight and sperm count with alteration in the sperm morphology in exposed group rats. A significant decrease in sperm viability, membrane integrity, and mitochondrial activity was found. Also, an increase in lipid peroxidation and ROS level were found in exposed group animals as compared to control. It may be concluded that exposure to radiofrequency radiation emits from mobile phones leads to oxidative stress-mediated changes in reproductive parameters.

Keywords: electromagnetic radiation, oxidative stress, reactive oxygen species, sperm

Procedia PDF Downloads 181
1196 The Effect of Super-Plasticizer and Ultra-sonic Process on the Carbon Nano Tubes Dispersion in Combination with Nano Silica in Cement Composites to Enhance Its Mechanical Properties

Authors: M.S. El-Feky, Passant Youssef, Mohamed I. Serag

Abstract:

nowadays, nanotechnology is the main trend of research in different areas due to the new potential of using nanometer materials sized less than 100nm. Nanomaterials are needed in cement composites to act as bridging for Nano and micro-cracks to increase tensile strength, reduce the permeability of gases and water in concrete to solve corrosion problem, react with excess Calcium Hydroxide, produce additional C-S-H, act as filler materials to densify the cement matrix and increase its mechanical properties. The present study focuses on the effectiveness of super-plasticizers and ultrasonic processing on the dispersion of Carbon Nanotube at first in water and then in cement composites in combination with Nano silica to enhance the mechanical properties of cement composites. A qualitative analysis using a compressive strength test is conducted with a view to investigate the influence of different dispersion techniques on the mechanical properties of cement composites containing Carbon Nanotube (CNT) and Nano Silica (NS) particles with different percentages. In addition, micro-structural analysis was carried out to understand the surface morphology and microstructure of cement composites with different dosages of NS addition. The investigational study results showed that the combination of NS with a low amount of CNT had a positive effect on the hydration reaction; on the other hand, the combination of CNT and a high amount of NS had a negative effect on the hydration reaction. The compressive strength can be improved by optimum combination 0.02% CNT and 1% NS with gain in strength by 72% and 35% after 7 and 28 days compared to control samples; these results were with an agreement with the morphology structure of composites using microstructure analysis.

Keywords: nano silica, dispersion, sonication, carbon nano tubes

Procedia PDF Downloads 147
1195 Anthropometric Measurements of Facial Proportions in Azerbaijan Population

Authors: Nigar Sultanova

Abstract:

Facial morphology is a constant topic of concern for clinicians. When anthropometric methods were introduced into clinical practice to quantify changes in the craniofacial framework, features distinguishing various ethnic group were discovered. Normative data of facial measurements are indispensable to precise determination of the degree of deviations from normal. Establish the reference range of facial proportions in Azerbaijan population by anthropometric measurements of craniofacial complex. The study group consisted of 350 healthy young subjects, 175 males and 175 females, 18 to 25 years of age, from 7 different regions of Azerbaijan. The anthropometric examination was performed according to L.Farkas's method with our modification. In order to determine the morphologic characteristics of seven regions of the craniofacial complex 42 anthropometric measurements were selected. The anthropometric examination. Included the usage of 33 anthropometric landmarks. The 80 indices of the facial proportions, suggested by Farkas and Munro, were calculated: head -10, face - 23, nose - 23, lips - 9, orbits - 11, ears - 4. The date base of the North American white population was used as a reference group. Anthropometric measurements of facial proportions in Azerbaijan population revealed a significant difference between mеn and womеn, according to sexual dimorphism. In comparison with North American whites, considerable differences of facial proportions were observed in the head, face, orbits, labio-oral, nose and ear region. However, in women of the Azerbaijani population, 29 out of 80 proportion indices were similar to the proportions of NAW women. In the men of the Azerbaijani population, 27 out of 80 proportion indices did not reveal a statistically significant difference from the proportions of NAW men. Estimation of the reference range of facial proportions in Azerbaijan population migth be helpful to formulate surgical plan in treatment of congenital or post-traumatic facial deformities successfully.

Keywords: facial morphology, anthropometry, indices of proportion, measurement

Procedia PDF Downloads 117
1194 Application of Ultrasonic Assisted Machining Technique for Glass-Ceramic Milling

Authors: S. Y. Lin, C. H. Kuan, C. H. She, W. T. Wang

Abstract:

In this study, ultrasonic assisted machining (UAM) technique is applied in side-surface milling experiment for glass-ceramic workpiece material. The tungsten carbide cutting-tool with diamond coating is used in conjunction with two kinds of cooling/lubrication mediums such as water-soluble (WS) cutting fluid and minimum quantity lubricant (MQL). Full factorial process parameter combinations on the milling experiments are planned to investigate the effect of process parameters on cutting performance. From the experimental results, it tries to search for the better process parameter combination which the edge-indentation and the surface roughness are acceptable. In the machining experiments, ultrasonic oscillator was used to excite a cutting-tool along the radial direction producing a very small amplitude of vibration frequency of 20KHz to assist the machining process. After processing, toolmaker microscope was used to detect the side-surface morphology, edge-indentation and cutting tool wear under different combination of cutting parameters, and analysis and discussion were also conducted for experimental results. The results show that the main leading parameters to edge-indentation of glass ceramic are cutting depth and feed rate. In order to reduce edge-indentation, it needs to use lower cutting depth and feed rate. Water-soluble cutting fluid provides a better cooling effect in the primary cutting area; it may effectively reduce the edge-indentation and improve the surface morphology of the glass ceramic. The use of ultrasonic assisted technique can effectively enhance the surface finish cleanness and reduce cutting tool wear and edge-indentation.

Keywords: glass-ceramic, ultrasonic assisted machining, cutting performance, edge-indentation

Procedia PDF Downloads 285
1193 Mechanical Properties of Diamond Reinforced Ni Nanocomposite Coatings Made by Co-Electrodeposition with Glycine as Additive

Authors: Yanheng Zhang, Lu Feng, Yilan Kang, Donghui Fu, Qian Zhang, Qiu Li, Wei Qiu

Abstract:

Diamond-reinforced Ni matrix composite has been widely applied in engineering for coating large-area structural parts owing to its high hardness, good wear resistance and corrosion resistance compared with those features of pure nickel. The mechanical properties of Ni-diamond composite coating can be promoted by the high incorporation and uniform distribution of diamond particles in the nickel matrix, while the distribution features of particles are affected by electrodeposition process parameters, especially the additives in the plating bath. Glycine has been utilized as an organic additive during the preparation of pure nickel coating, which can effectively increase the coating hardness. Nevertheless, to author’s best knowledge, no research about the effects of glycine on the Ni-diamond co-deposition has been reported. In this work, the diamond reinforced Ni nanocomposite coatings were fabricated by a co-electrodeposition technique from a modified Watt’s type bath in the presence of glycine. After preparation, the SEM morphology of the composite coatings was observed combined with energy dispersive X-ray spectrometer, and the diamond incorporation was analyzed. The surface morphology and roughness were obtained by a three-dimensional profile instrument. 3D-Debye rings formed by XRD were analyzed to characterize the nickel grain size and orientation in the coatings. The average coating thickness was measured by a digital micrometer to deduce the deposition rate. The microhardness was tested by automatic microhardness tester. The friction coefficient and wear volume were measured by reciprocating wear tester to characterize the coating wear resistance and cutting performance. The experimental results confirmed that the presence of glycine effectively improved the surface morphology and roughness of the composite coatings. By optimizing the glycine concentration, the incorporation of diamond particles was increased, while the nickel grain size decreased with increasing glycine. The hardness of the composite coatings was increased as the glycine concentration increased. The friction and wear properties were evaluated as the glycine concentration was optimized, showing a decrease in the wear volume. The wear resistance of the composite coatings increased as the glycine content was increased to an optimum value, beyond which the wear resistance decreased. Glycine complexation contributed to the nickel grain refinement and improved the diamond dispersion in the coatings, both of which made a positive contribution to the amount and uniformity of embedded diamond particles, thus enhancing the microhardness, reducing the friction coefficient, and hence increasing the wear resistance of the composite coatings. Therefore, additive glycine can be used during the co-deposition process to improve the mechanical properties of protective coatings.

Keywords: co-electrodeposition, glycine, mechanical properties, Ni-diamond nanocomposite coatings

Procedia PDF Downloads 126
1192 Morphemic Analysis Awareness: A Boon or Bane on ESL Students’ Vocabulary Learning Strategy

Authors: Chandrakala Varatharajoo, Adelina Binti Asmawi, Nabeel Abdallah Mohammad Abedalaziz

Abstract:

This study investigated the impact of inflectional and derivational morphemic analysis awareness on ESL secondary school students’ vocabulary learning strategy. The quasi-experimental study was conducted with 106 low proficiency secondary school students in two experimental groups (inflectional and derivational) and one control group. The students’ vocabulary acquisition was assessed through two measures: Morphemic Analysis Test and Vocabulary- Morphemic Test in the pretest and posttest before and after an intervention programme. Results of ANCOVA revealed that both the experimental groups achieved a significant score in Morphemic Analysis Test and Vocabulary-Morphemic Test. However, the inflectional group obtained a fairly higher score than the derivational group. Thus, the results indicated that ESL low proficiency secondary school students performed better on inflectional morphemic awareness as compared to derivatives. The results also showed that the awareness of inflectional morphology contributed more on the vocabulary acquisition. Importantly, learning inflectional morphology can help ESL low proficiency secondary school students to develop both morphemic awareness and vocabulary gain. Theoretically, these findings show that not all morphemes are equally useful to students for their language development. Practically, these findings indicate that morphological instruction should at least be included in remediation and instructional efforts with struggling learners across all grade levels, allowing them to focus on meaning within the word before they attempt the text in large for better comprehension. Also, by methodologically, by conducting individualized intervention and assessment this study provided fresh empirical evidence to support the existing literature on morphemic analysis awareness and vocabulary learning strategy. Thus, a major pedagogical implication of the study is that morphemic analysis awareness strategy is a definite boon for ESL secondary school students in learning English vocabulary.

Keywords: ESL, instruction, morphemic analysis, vocabulary

Procedia PDF Downloads 402
1191 Low Temperature PVP Capping Agent Synthesis of ZnO Nanoparticles by a Simple Chemical Precipitation Method and Their Properties

Authors: V. P. Muhamed Shajudheen, K. Viswanathan, K. Anitha Rani, A. Uma Maheswari, S. Saravana Kumar

Abstract:

We are reporting a simple and low-cost chemical precipitation method adopted to prepare zinc oxide nanoparticles (ZnO) using polyvinyl pyrrolidone (PVP) as a capping agent. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) was applied on the dried gel sample to record the phase transformation temperature of zinc hydroxide Zn(OH)2 to zinc oxide (ZnO) to obtain the annealing temperature of 800C. The thermal, structure, morphology and optical properties have been employed by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM). X-ray diffraction results confirmed the wurtzite hexagonal structure of ZnO nanoparticles. The two intensive peaks at 160 and 432 cm-1 in the Raman Spectrum are mainly attributed to the first order modes of the wurtzite ZnO nanoparticles. The energy band gap obtained from the UV-Vis absorption spectra, shows a blue shift, which is attributed to increase in carrier concentration (Burstein Moss Effect). Photoluminescence studies of the single crystalline ZnO nanoparticles, show a strong peak centered at 385 nm, corresponding to the near band edge emission in ultraviolet range. The mixed shape of grapes, sphere, hexagonal and rock like structure has been noticed in FESEM. The results showed that PVP is a suitable capping agent for the preparation of ZnO nanoparticles by simple chemical precipitation method.

Keywords: ZnO nanoparticles, simple chemical precipitation route, mixed shape morphology, UV-visible absorption, photoluminescence, Fourier transform infra-Red spectroscopy

Procedia PDF Downloads 443
1190 Re-Differentiation Effect of Sesquiterpene Farnesol on De-Differentiated Rabbit Chondrocytes

Authors: Chun Hsien Wu, Guan Xuan Wu, Hsia Ying Cheng, Shyh Ming Kuo

Abstract:

Articular cartilage is composed of chondrocytes and extracellular matrix, such as collagen fibers, glycosaminoglycans, etc., which play an important role in lubricating and cushion joint activities. The phenotypic expression and metabolic activity of chondrocytes are extremely important in maintaining the functions of articular cartilage. In in vitro passaged culture of chondrocytes, chondrocytes gradually lose their original cell phenotype and morphology, which is called dedifferentiation. After continuous passaged culture of chondrocytes or induction by inflammatory factor IL-1, chondrocytes changed their phenotype and morphology. Also, the extracellular matrix type II collagen and GAG secretion were significantly reduced, while type I and X collagen were synthesized. Farnesol is an anti-inflammatory and antioxidant sesquiterpene compound that has the specific property of promoting collagen production. The purpose of this study was to investigate whether farnesol could restore the original type II collagen synthesis and, furthermore, the mechanisms of farnesol on the synthesis of type II collagen from the de-differentiated chondrocytes. The obtained results showed that the de-differentiated chondrocytes significantly restored to secret type II collagen and GAG (2.5-folds increases), and the secretion of collagen I and X and PGE2 synthesis were also significantly reduced after being treated with farnesol, indicating that farnesol had a restoration/re-differentiation effect on de-differentiated chondrocytes. The de-differentiated chondrocytes exhibited decreased expression of PPAR-γ and upregulated TGF-β expression to increase the MMP-13 expression. Higher expression of MMP-13 caused chondrocytes to secret type X collagen. On the contrary, increasing the expression of PPAR-γ would benefit the production of type II collagen. As shown, the PPAR-γ expression increased, and MMP-13 expression decreased after being treated with farnesol, indicating a possible signal pathway of farnesol to restore the production of type II collagen. However, more detailed mechanisms still need to evaluate.

Keywords: chondrocytes, de-differentiation, farnesol, re-differentiation

Procedia PDF Downloads 126
1189 Surface and Subsurface Characterization of a Fault along Boso-Boso River, Rizal

Authors: Marco Jan Rafael C. Sicam, Maria Daniella C. Yambao

Abstract:

The Philippines is a tectonically active archipelagic country situated near the Circum-Pacific Belt. Hence, seismic hazard assessments are important in the nation-building. In 2014, the Philippines Institute of Volcanology and Seismology (PHIVOLCS) mapped a 12-km NW-trending unnamed active fault near Boso-Boso River, Rizal. Given the limited nature of their technical report, they would like to further consolidate relevant data about this fault. As such, this study aims to characterize the surface and subsurface expression of the fault along Boso-Boso River using rangefront morphology, structural criteria, and ground penetrating radar. This fault is subdivided into two segments: the first segment located in the city of Antipolo is mainly manifested in the upper Kinabuan Formation and terminating near Mt. Qutago, and the second segment in Baras, Pinugay, Rizal cuts through recent fluvial deposits and to the Guadalupe Formation. IfSAR-derived DTM data reveals the morphological expression of the fault defined by offset streams and ridges, linear sidehill valleys, and linear valleys. Fault gouges, fault breccia, transtentional flower structures, slickensides, and other shear sense markers observed in the units of the upper Cretaceous Kinabuan Formation indicate a sinistral sense of displacement. GPR radargram profiles revealed the presence of displacement in reflectors at 3-5 meters below the surface which may be suggestive of the fault within the area. Finally, the fault in Boso-Boso river may be a segment of the larger sinistral Montalban Fault in the north or largely affected by the movement from the Marikina Valley Fault System.

Keywords: NW unnamed fault, range-front morphology, shear sense markers, ground penetrating radar, boso-boso river, antipolo

Procedia PDF Downloads 62
1188 An Analysis of Transition in Building Form from Abolition of Diagonal Plane Control by Street Width: Focusing on Site Plan and Urban Block

Authors: Joohyun Park, Jin Baek

Abstract:

The purpose of this study is to Analyze the role and effect arise from Diagonal Plane Control by Street Width (DPCSW) in Architecture in Seoul, and to predict the aspect of transition about the relationship among buildings and Urban morphology After the abolition. To find the tendency of building shape regulation, This study review Building Acts concerned with form making (the building to land Ratio, building designated line, wall designated line, building height limit (DPCSW) and etc.) and simulate the shape of urban blocks made by Acts in drawings. The review results show DPCSW is not only limitation about height, but also making the building setback from road and make the Road broader. And it makes the typical shape of the urban block that buildings are moving away from surrounding road After the Abolition of DPCSW; it is expected by the legislature that domestic real estate’s market would be promoted by increased total floor areas in each building. Some substitution from the legislature is announced, but it just deals with Building Maximum unit by Block unit except the regulation about arrangement in urban Figure and Ground. In conclusion, refrain from the uncontrolled development of city, It is important to make regulation about not only height factors but limitation line in land. Furthermore, through revising District Unit Plan, It is positively necessary to reset the relationship between buildings for the making the city space better.

Keywords: diagonal plane control by street width, building maximum height, district unit plan, building acts, urban block type, morphology, building shape

Procedia PDF Downloads 313
1187 The Effect of Reaction Time on the Morphology and Phase of Quaternary Ferrite Nanoparticles (FeCoCrO₄) Synthesised from a Single Source Precursor

Authors: Khadijat Olabisi Abdulwahab, Mohammad Azad Malik, Paul O'Brien, Grigore Timco, Floriana Tuna

Abstract:

The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe₂O₄ (M = Fe, Co, Mn, Ni, Zn e.t.c) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Here in, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O₂CᵗBu)₆(HO₂CᵗBu)₃] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO₄) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at 260 °C. The effect of reaction time on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained after one hour was pure phase of cubic iron cobalt chromium ferrite (FeCoCrO₄). TEM showed that a more monodispersed spherical ferrite nanoparticles were obtained after one hour. Magnetic measurements revealed that the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).

Keywords: cobalt chromium ferrite, colloidal, hot injection thermolysis, monodisperse, reaction time, single source precursor, quaternary ferrite nanoparticles

Procedia PDF Downloads 317
1186 Effects of Sn and Al on Phase Stability and Mechanical Properties of Metastable Beta Ti Alloys

Authors: Yonosuke Murayama

Abstract:

We have developed and studied a metastable beta Ti alloy, which shows super-elasticity and low Young’s modulus according to the phase stability of its beta phase. The super-elasticity and low Young’s modulus are required in a wide range of applications in various industrial fields. For example, the metallic implant with low Young’s modulus and non-toxicity is desirable because the large difference of Young’s modulus between the human bone and the implant material may cause a stress-shielding phenomenon. We have investigated the role of Sn and Al in metastable beta Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys. The metastable beta Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys form during quenching from the beta field at high temperature. While Cr and V act as beta stabilizers, Sn and Al are considered as elements to suppress the athermal omega phase produced during quenching. The athermal omega phase degrades the properties of super-elasticity and Young’s modulus. Although Al and Sn as single elements are considered as an alpha stabilizer and neutral, respectively, Sn and Al acted also as beta stabilizers when added simultaneously with beta stabilized element of Cr or V in this experiment. The quenched microstructure of Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys shifts from martensitic structure to beta single-phase structure with increasing Cr or V. The Young’s modulus of Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys decreased and then increased with increasing Cr or V, each showing its own minimum value of Young's modulus respectively. The composition of the alloy with the minimum Young’s modulus is a near border composition where the quenched microstructure shifts from martensite to beta. The border composition of Ti-Cr-Sn and Ti-V-Sn alloys required only less amount of each beta stabilizer, Cr or V, than Ti-Cr-Al and Ti-V-Al alloys. This indicates that the effect of Sn as a beta stabilizer is stronger than Al. Sn and Al influenced the competitive relation between stress-induced martensitic transformation and slip deformation. Thus, super-elastic properties of metastable beta Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys varied depending on the alloyed element, Sn or Al.

Keywords: metastable beta Ti alloy, super-elasticity, low Young’s modulus, stress-induced martensitic transformation, beta stabilized element

Procedia PDF Downloads 146
1185 Highly Efficient Ca-Doped CuS Counter Electrodes for Quantum Dot Sensitized Solar Cells

Authors: Mohammed Panthakkal Abdul Muthalif, Shanmugasundaram Kanagaraj, Jumi Park, Hangyu Park, Youngson Choe

Abstract:

The present study reports the incorporation of calcium ions into the CuS counter electrodes (CEs) in order to modify the photovoltaic performance of quantum dot-sensitized solar cells (QDSSCs). Metal ion-doped CuS thin film was prepared by the chemical bath deposition (CBD) method on FTO substrate and used directly as counter electrodes for TiO₂/CdS/CdSe/ZnS photoanodes based QDSSCs. For the Ca-doped CuS thin films, copper nitrate and thioacetamide were used as anionic and cationic precursors. Calcium nitrate tetrahydrate was used as doping material. The surface morphology of Ca-doped CuS CEs indicates that the fragments are uniformly distributed, and the structure is densely packed with high crystallinity. The changes observed in the diffraction patterns suggest that Ca dopant can introduce increased disorder into CuS material structure. EDX analysis was employed to determine the elemental identification, and the results confirmed the presence of Cu, S, and Ca on the FTO glass substrate. The photovoltaic current density – voltage characteristics of Ca-doped CuS CEs shows the specific improvements in open circuit voltage decay (Voc) and short-circuit current density (Jsc). Electrochemical impedance spectroscopy results display that Ca-doped CuS CEs have greater electrocatalytic activity and charge transport capacity than bare CuS. All the experimental results indicate that 20% Ca-doped CuS CE based QDSSCs exhibit high power conversion efficiency (η) of 4.92%, short circuit current density of 15.47 mA cm⁻², open circuit photovoltage of 0.611 V, and fill factor (FF) of 0.521 under illumination of one sun.

Keywords: Ca-doped CuS counter electrodes, surface morphology, chemical bath deposition method, electrocatalytic activity

Procedia PDF Downloads 165
1184 Study on the Electrochemical Performance of Graphene Effect on Cadmium Oxide in Lithium Battery

Authors: Atef Y. Shenouda, Anton A. Momchilov

Abstract:

Graphene and CdO with different stoichiometric ratios of Cd(CH₃COO)₂ and graphene samples were prepared by hydrothermal reaction. The crystalline phases of pure CdO and 3CdO:1graphene were identified by X-ray diffraction (XRD). The particle morphology was studied with SEM. Furthermore, impedance measurements were applied. Galvanostatic measurements for the cells were carried out using potential limits between 0.01 and 3 V vs. Li/Li⁺. The current cycling intensity was 10⁻⁴ A. The specific discharge capacity of 3CdO-1G cell was about 450 Ah.Kg⁻¹ up to more than 100 cycles.

Keywords: CdO, graphene, negative electrode, lithium battery

Procedia PDF Downloads 163
1183 Synthesis of PVA/γ-Fe2O3 Used in Cancer Treatment by Hyperthermia

Authors: Sajjad Seifi Mofarah, S. K. Sadrnezhaad, Shokooh Moghadam, Javad Tavakoli

Abstract:

In recent years a new method of combination treatment for cancer has been developed and studied that has led to significant advancements in the field of cancer therapy. Hyperthermia is a traditional therapy that, along with a creation of a medically approved level of heat with the help of an alternating magnetic AC current, results in the destruction of cancer cells by heat. This paper gives details regarding the production of the spherical nanocomposite PVA/γ-Fe2O3 in order to be used for medical purposes such as tumor treatment by hyperthermia. To reach a suitable and evenly distributed temperature, the nanocomposite with core-shell morphology and spherical form within a 100 to 200 nanometer size was created using phase separation emulsion, in which the magnetic nano-particles γ-Fe2O3 with an average particle size of 20 nano-meters and with different percentages of 0.2, 0.4, 0.5, and 0.6 were covered by polyvinyl alcohol. The main concern in hyperthermia and heat treatment is achieving desirable specific absorption rate (SAR) and one of the most critical factors in SAR is particle size. In this project all attempts has been done to reach minimal size and consequently maximum SAR. The morphological analysis of the spherical structure of the nanocomposite PVA/γ-Fe2O3 was achieved by SEM analyses and the study of the chemical bonds created was made possible by FTIR analysis. To investigate the manner of magnetic nanocomposite particle size distribution a DLS experiment was conducted. Moreover, to determine the magnetic behavior of the γ-Fe2O3 particle and the nanocomposite PVA/γ-Fe2O3 in different concentrations a VSM test was conducted. To sum up, creating magnetic nanocomposites with a spherical morphology that would be employed for drug loading opens doors to new approaches in developing nanocomposites that provide efficient heat and a controlled release of drug simultaneously inside the magnetic field, which are among their positive characteristics that could significantly improve the recovery process in patients.

Keywords: nanocomposite, hyperthermia, cancer therapy, drug releasing

Procedia PDF Downloads 305
1182 Dynamic Thin Film Morphology near the Contact Line of a Condensing Droplet: Nanoscale Resolution

Authors: Abbasali Abouei Mehrizi, Hao Wang

Abstract:

The thin film region is so important in heat transfer process due to its low thermal resistance. On the other hand, the dynamic contact angle is crucial boundary condition in numerical simulations. While different modeling contains different assumption of the microscopic contact angle, none of them has experimental evidence for their assumption, and the contact line movement mechanism still remains vague. The experimental investigation in complete wetting is more popular than partial wetting, especially in nanoscale resolution when there is sharp variation in thin film profile in partial wetting. In the present study, an experimental investigation of water film morphology near the triple phase contact line during the condensation is performed. The state-of-the-art tapping-mode atomic force microscopy (TM-AFM) was used to get the high-resolution film profile goes down to 2 nm from the contact line. The droplet was put in saturated chamber. The pristine silicon wafer was used as a smooth substrate. The substrate was heated by PI film heater. So the chamber would be over saturated by droplet evaporation. By turning off the heater, water vapor gradually started condensing on the droplet and the droplet advanced. The advancing speed was less than 20 nm/s. The dominant results indicate that in contrast to nonvolatile liquid, the film profile goes down straightly to the surface till 2 nm from the substrate. However, small bending has been observed below 20 nm, occasionally. So, it can be claimed that for the low condensation rate the microscopic contact angle equals to the optically detectable macroscopic contact angle. This result can be used to simplify the heat transfer modeling in partial wetting. The experimental result of the equality of microscopic and macroscopic contact angle can be used as a solid evidence for using this boundary condition in numerical simulation.

Keywords: advancing, condensation, microscopic contact angle, partial wetting

Procedia PDF Downloads 297
1181 Chitosan-Aluminum Monostearate Dispersion as Fabricating Liquid for Constructing Controlled Drug Release Matrix

Authors: Kotchamon Yodkhum, Thawatchai Phaechamud

Abstract:

Hydrophobic chitosan-based materials have been developed as controlled drug delivery system. This study was aimed to prepare and evaluate chitosan-aluminum monostearate composite dispersion (CLA) as fabricating liquid for construct a hydrophobic, controlled-release solid drug delivery matrix. This work was attempted to blend hydrophobic substance, aluminum monostearate (AMS), with chitosan in acidic aqueous medium without using any surfactants or grafting reaction, and high temperature during mixing that are normally performed when preparing hydrophobic chitosan system. Lactic acid solution (2%w/v) was employed as chitosan solvent. CLA dispersion was prepared by dispersing different amounts of AMS (1-20% w/w) in chitosan solution (4% w/w) with continuous agitation using magnetic stirrer for 24 h. Effect of AMS amount on physicochemical properties of the dispersion such as viscosity, rheology and particle size was evaluated. Morphology of chitosan-AMS complex (dispersant) was observed under inverted microscope and atomic force microscope. Stability of CLA dispersions was evaluated after preparation within 48 h. CLA dispersions containing AMS less than 5 % w/w exhibited rheological behavior as Newtonian while that containing higher AMS amount exhibited as pseudoplastic. Particle size of the dispersant was significantly smaller when AMS amount was increased up to 5% w/w and was not different between the higher AMS amount system. Morphology of the dispersant under inverted microscope displayed irregular shape and their size exhibited the same trend with particle size measurement. Observation of the dispersion stability revealed that phase separation occurred faster in the system containing higher AMS amount which indicated lower stability of the system. However, the dispersions were homogeneous and stable more than 12 hours after preparation that enough for fabrication process. The prepared dispersions had ability to be fabricated as a porous matrix via lyophilization technique.

Keywords: chitosan, aluminum monostearate, dispersion, controlled-release

Procedia PDF Downloads 394
1180 Fabrication of Durable and Renegerable Superhydrophobic Coatings on Metallic Surfaces for Potential Industrial Applications

Authors: Priya Varshney, Soumya S. Mohapatra

Abstract:

Fabrication of anti-corrosion and self-cleaning superhydrophobic coatings for metallic surfaces which are regenerable and durable in the aggressive conditions has shown tremendous interest in materials science. In this work, the superhydrophobic coatings on metallic surfaces (aluminum, steel, copper) were prepared by two-step and one-step chemical etching process. In two-step process, roughness on surface was created by chemical etching and then passivation of roughened surface with low surface energy materials whereas, in one-step process, roughness on surface by chemical etching and passivation of surface with low surface energy materials were done in a single step. Beside this, the effect of etchant concentration and etching time on wettability and morphology was also studied. Thermal, mechanical, ultra-violet stability of these coatings were also tested. Along with this, regeneration of coatings and self-cleaning, corrosion resistance and water repelling characteristics were also studied. The surface morphology shows the presence of a rough microstuctures on the treated surfaces and the contact angle measurements confirms the superhydrophobic nature. It is experimentally observed that the surface roughness and contact angle increases with increase in etching time as well as with concentration of etchant. Superhydrophobic surfaces show the excellent self-cleaning behaviour. Coatings are found to be stable and maintain their superhydrophobicity in acidic and alkaline solutions. Water jet impact, floatation on water surface, and low temperature condensation tests prove the water-repellent nature of the coatings. These coatings are found to be thermal, mechanical and ultra-violet stable. These durable superhydrophobic metallic surfaces have potential industrial applications.

Keywords: superhydrophobic, water-repellent, anti-corrosion, self-cleaning

Procedia PDF Downloads 280
1179 Influence of Preparation, Characterisation and Application of Carbon Nano Tube

Authors: Dhaivat S. Soni, Snehal Thakor, Afroz Bhatti

Abstract:

The prepare CNTs in bulk quantity by as easiest as possible method with highly pure and small diameter. Prepared CNTs first charactered its structural parameter for the conformation of CNTs and purity. Surface morphology of CNTs stured by using various instruments finally study application of prepared CNTs in various field. Carbon nanotubes (CNTs) were synthesized in large scale by pyrolyzing activated carbon in sealed autoclaves.

Keywords: nanostructures, nanotubes, carbon, pyrolysis

Procedia PDF Downloads 401
1178 Systematic Analysis of Immune Response to Biomaterial Surface Characteristics

Authors: Florian Billing, Soren Segan, Meike Jakobi, Elsa Arefaine, Aliki Jerch, Xin Xiong, Matthias Becker, Thomas Joos, Burkhard Schlosshauer, Ulrich Rothbauer, Nicole Schneiderhan-Marra, Hanna Hartmann, Christopher Shipp

Abstract:

The immune response plays a major role in implant biocompatibility, but an understanding of how to design biomaterials for specific immune responses is yet to be achieved. We aimed to better understand how changing certain material properties can drive immune responses. To this end, we tested immune response to experimental implant coatings that vary in specific characteristics. A layer-by-layer approach was employed to vary surface charge and wettability. Human-based in vitro models (THP-1 macrophages and primary peripheral blood mononuclear cells (PBMCS)) were used to assess immune responses using multiplex cytokine analysis, flow cytometry (CD molecule expression) and microscopy (cell morphology). We observed dramatic differences in immune response due to specific alterations in coating properties. For example altering the surface charge of coating A from anionic to cationic resulted in the substantial elevation of the pro-inflammatory molecules IL-1beta, IL-6, TNF-alpha and MIP-1beta, while the pro-wound healing factor VEGF was significantly down-regulated. We also observed changes in cell surface marker expression in relation to altered coating properties, such as CD16 on NK Cells and HLA-DR on monocytes. We furthermore observed changes in the morphology of THP-1 macrophages following cultivation on different coatings. A correlation between these morphological changes and the cytokine expression profile is ongoing. Targeted changes in biomaterial properties can produce vast differences in immune response. The properties of the coatings examined here may, therefore, be a method to direct specific biological responses in order to improve implant biocompatibility.

Keywords: biomaterials, coatings, immune system, implants

Procedia PDF Downloads 190
1177 Synthesis of Highly Active Octahedral NaInS₂ for Enhanced H₂ Evolution

Authors: C. K. Ngaw

Abstract:

Crystal facet engineering, which involves tuning and controlling a crystal surface and morphology, is a commonly employed strategy to optimize the performance of crystalline nanocrystals. The principle behind this strategy is that surface atomic rearrangement and coordination, which inherently determines their catalytic activity, can be easily tuned by morphological control. Because of this, the catalytic properties of a nanocrystal are closely related to the surface of an exposed facet, and it has provided great motivation for researchers to synthesize photocatalysts with high catalytic activity by maximizing reactive facets exposed through morphological control. In this contribution, octahedral NaInS₂ crystals have been successfully developed via solvothermal method. The formation of the octahedral NaInS₂ crystals was investigated using field emission scanning electron microscope (FESEM) and X-Ray diffraction (XRD), and results have shown that the concentration of sulphur precursor plays an important role in the growth process, leading to the formation of other NaInS₂ crystal structures in the form of hexagonal nanosheets and microspheres. Structural modeling analysis suggests that the octahedral NaInS₂ crystals were enclosed with {012} and {001} facets, while the nanosheets and microspheres are bounded with {001} facets only and without any specific facets, respectively. Visible-light photocatalytic H₂ evolution results revealed that the octahedral NaInS₂ crystals (~67 μmol/g/hr) exhibit ~6.1 and ~2.3 times enhancement as compared to the conventional NaInS₂ microspheres (~11 μmol/g/hr) and nanosheets (~29 μmol/g/hr), respectively. The H₂ enhancement of the NaInS₂ octahedral crystal is attributed to the presence of {012} facets on the surface. Detailed analysis of the octahedron model revealed obvious differences in the atomic arrangement between the {001} and {012} facets and this can affect the interaction between the water molecules and the surface facets before reducing into H₂ gas. These results highlight the importance of tailoring crystal morphology with highly reactive facets in improving photocatalytic properties.

Keywords: H₂ evolution, photocatalysis, octahedral, reactive facets

Procedia PDF Downloads 66
1176 Electroactive Fluorene-Based Polymer Films Obtained by Electropolymerization

Authors: Mariana-Dana Damaceanu

Abstract:

Electrochemical oxidation is one of the most convenient ways to obtain conjugated polymer films as polypyrrole, polyaniline, polythiophene or polycarbazole. The research in the field has been mainly directed to the study of electrical conduction properties of the materials obtained by electropolymerization, often the main reason being their use as electroconducting electrodes, and very little attention has been paid to the morphological and optical quality of the films electrodeposited on flat surfaces. Electropolymerization of the monomer solution was scarcely used in the past to manufacture polymer-based light-emitting diodes (PLED), most probably due to the difficulty of obtaining defectless polymer films with good mechanical and optical properties, or conductive polymers with well controlled molecular weights. Here we report our attempts in using electrochemical deposition as appropriate method for preparing ultrathin films of fluorene-based polymers for PLED applications. The properties of these films were evaluated in terms of structural morphology, optical properties, and electrochemical conduction. Thus, electropolymerization of 4,4'-(9-fluorenylidene)-dianiline was performed in dichloromethane solution, at a concentration of 10-2 M, using 0.1 M tetrabutylammonium tetrafluoroborate as electrolyte salt. The potential was scanned between 0 and 1.3 V on the one hand, and 0 - 2 V on the other hand, when polymer films with different structures and properties were obtained. Indium tin oxide-coated glass substrate of different size was used as working electrode, platinum wire as counter electrode and calomel electrode as reference. For each potential range 100 cycles were recorded at a scan rate of 100 mV/s. The film obtained in the potential range from 0 to 1.3 V, namely poly(FDA-NH), is visible to the naked eye, being light brown, transparent and fluorescent, and displays an amorphous morphology. Instead, the electrogrowth poly(FDA) film in the potential range of 0 - 2 V is yellowish-brown and opaque, presenting a self-assembled structure in aggregates of irregular shape and size. The polymers structure was identified by FTIR spectroscopy, which shows the presence of broad bands specific to a polymer, the band centered at approx. 3443 cm-1 being ascribed to the secondary amine. The two polymer films display two absorption maxima, at 434-436 nm assigned to π-π* transitions of polymers, and another at 832 and 880 nm assigned to polaron transitions. The fluorescence spectra indicated the presence of emission bands in the blue domain, with two peaks at 422 and 488 nm for poly (FDA-NH), and four narrow peaks at 422, 447, 460 and 484 nm for poly(FDA), peaks originating from fluorene-containing segments of varying degrees of conjugation. Poly(FDA-NH) exhibited two oxidation peaks in the anodic region and the HOMO energy value of 5.41 eV, whereas poly(FDA) showed only one oxidation peak and the HOMO level localized at 5.29 eV. The electrochemical data are discussed in close correlation with the proposed chemical structure of the electrogrowth films. Further research will be carried out to study their use and performance in light-emitting devices.

Keywords: electrogrowth polymer films, fluorene, morphology, optical properties

Procedia PDF Downloads 345
1175 The Genesis of the Anomalous Sernio Fan (Valtellina, Northern Italy)

Authors: Erika De Finis, Paola Gattinoni, Laura Scesi

Abstract:

Massive rock avalanches formed some of the largest landslide deposits on Earth and they represent one of the major geohazards in high-relief mountains. This paper interprets a very large sedimentary fan (the Sernio fan, Valtellina, Northern Italy), located 20 Km SW from Val Pola Rock avalanche (1987), as the deposit of a partial collapse of a Deep Seated Gravitational Slope Deformation (DSGSD), afterwards eroded and buried by debris flows. The proposed emplacement sequence has been reconstructed based on geomorphological, structural and mechanical evidences. The Sernio fan is actually considered anomalous with reference to the very high ratio between the fan area (about 4.5km2) and the basin area (about 3km2). The morphology of the fan area is characterised by steep slopes (dip about 20%) and the fan apex is extended for 1.8 km inside the small catchment basin. This sedimentary fan was originated by a landslide that interested a part of a large deep-seated gravitational slope deformation, involving a wide area of about 55 km². The main controlling factor is tectonic and it is related to the proximity to regional fault systems and the consequent occurrence of fault weak rocks (GSI locally lower than 10 with compressive stress lower than 20MPa). Moreover, the fan deposit shows sedimentary evidences of recent debris flow events. The best current explanation of the Sernio fan involves an initial failure of some hundreds of Mm3. The run-out was quite limited because of the morphology of Valtellina’s valley floor, and the deposit filled the main valley forming a landslide dam, as confirmed by the lacustrine deposits detected upstream the fan. Nowadays the debris flow events represent the main hazard in the study area.

Keywords: anomalous sedimentary fans, deep seated gravitational slope deformation, Italy, rock avalanche

Procedia PDF Downloads 477
1174 Structural and Morphological Characterization of Inorganic Deposits in Spinal Ligaments

Authors: Sylwia Orzechowska, Andrzej Wróbel, Eugeniusz Rokita

Abstract:

The mineralization is a curious problem of connective tissues. Factors which may play a decisive role in the regulation of the yellow ligaments (YL) mineralization are still open questions. The aim of the studies was a detailed description of the chemical composition and morphology of mineral deposits in the human yellow ligaments. Investigations of the structural features of deposits were used to explain the impact of various factors on mineralization process. The studies were carried out on 24 YL samples, surgically removed from patients suffer from spinal canal stenosis and the patients who sustained a trauma. The micro-computed tomography was used to describe the morphology of mineral deposits. The X-ray fluorescence method and Fourier transform infrared spectroscopy were applied to determine the chemical composition of the samples. In order to eliminate the effect of blur in microtomographic images, the correction method of partial volume effect was used. The mineral deposits appear in 60% of YL samples, both in patients with a stenosis and following injury. The mineral deposits have a heterogeneous structure and they are a mixture of the tissue and mineral grains. The volume of mineral grains amounts to (1.9 ± 3.4)*10-3 mm3 while the density distribution of grains occurs in two distinct ranges (1.75 - 2.15 and 2.15-2.5) g/cm3. Application of the partial volume effect correction allows accurate calculations by eliminating the averaging effect of gray levels in tomographic images. The B-type carbonate-containing hydroxyapatite constitutes the mineral phase of majority YLs. The main phase of two samples was calcium pyrophosphate dihydrate (CPPD). The elemental composition of minerals in all samples is almost identical. This pathology may be independent on the spine diseases and it does not evoke canal stenosis. The two ranges of grains density indicate two stages of grains growth and the degree of maturity. The presence of CPPD crystals may coexist with other pathologies.

Keywords: FTIR, micro-tomography, mineralization, spinal ligaments

Procedia PDF Downloads 377
1173 Role of Calcination Treatment on the Structural Properties and Photocatalytic Activity of Nanorice N-Doped TiO₂ Catalyst

Authors: Totsaporn Suwannaruang, Kitirote Wantala

Abstract:

The purposes of this research were to synthesize titanium dioxide photocatalyst doped with nitrogen (N-doped TiO₂) by hydrothermal method and to test the photocatalytic degradation of paraquat under UV and visible light illumination. The effect of calcination treatment temperature on their physical and chemical properties and photocatalytic efficiencies were also investigated. The characterizations of calcined N-doped TiO₂ photocatalysts such as specific surface area, textural properties, bandgap energy, surface morphology, crystallinity, phase structure, elements and state of charges were investigated by Brunauer, Emmett, Teller (BET) and Barrett, Joyner, Halenda (BJH) equations, UV-Visible diffuse reflectance spectroscopy (UV-Vis-DRS) by using the Kubelka-Munk theory, Wide-angle X-ray scattering (WAXS), Focussed ion beam scanning electron microscopy (FIB-SEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS), respectively. The results showed that the effect of calcination temperature was significant on surface morphology, crystallinity, specific surface area, pore size diameter, bandgap energy and nitrogen content level, but insignificant on phase structure and oxidation state of titanium (Ti) atom. The N-doped TiO₂ samples illustrated only anatase crystalline phase due to nitrogen dopant in TiO₂ restrained the phase transformation from anatase to rutile. The samples presented the nanorice-like morphology. The expansion on the particle was found at 650 and 700°C of calcination temperature, resulting in increased pore size diameter. The bandgap energy was determined by Kubelka-Munk theory to be in the range 3.07-3.18 eV, which appeared slightly lower than anatase standard (3.20 eV), resulting in the nitrogen dopant could modify the optical absorption edge of TiO₂ from UV to visible light region. The nitrogen content was observed at 100, 300 and 400°C only. Also, the nitrogen element disappeared at 500°C onwards. The nitrogen (N) atom can be incorporated in TiO₂ structure with the interstitial site. The uncalcined (100°C) sample displayed the highest percent paraquat degradation under UV and visible light irradiation due to this sample revealed both the highest specific surface area and nitrogen content level. Moreover, percent paraquat removal significantly decreased with increasing calcination treatment temperature. The nitrogen content level in TiO₂ accelerated the rate of reaction with combining the effect of the specific surface area that generated the electrons and holes during illuminated with light. Therefore, the specific surface area and nitrogen content level demonstrated the important roles in the photocatalytic activity of paraquat under UV and visible light illumination.

Keywords: restraining phase transformation, interstitial site, chemical charge state, photocatalysis, paraquat degradation

Procedia PDF Downloads 158