Search results for: machine and plant engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9029

Search results for: machine and plant engineering

8729 Prediction of Disability-Adjustment Mental Illness Using Machine Learning

Authors: S. R. M. Krishna, R. Santosh Kumar, V. Kamakshi Prasad

Abstract:

Machine learning techniques are applied for the analysis of the impact of mental illness on the burden of disease. It is calculated using the disability-adjusted life year (DALY). DALYs for a disease is the sum of years of life lost due to premature mortality (YLLs) + No of years of healthy life lost due to disability (YLDs). The critical analysis is done based on the Data sources, machine learning techniques and feature extraction method. The reviewing is done based on major databases. The extracted data is examined using statistical analysis and machine learning techniques were applied. The prediction of the impact of mental illness on the population using machine learning techniques is an alternative approach to the old traditional strategies, which are time-consuming and may not be reliable. The approach makes it necessary for a comprehensive adoption, innovative algorithms, and an understanding of the limitations and challenges. The obtained prediction is a way of understanding the underlying impact of mental illness on the health of the people and it enables us to get a healthy life expectancy. The growing impact of mental illness and the challenges associated with the detection and treatment of mental disorders make it necessary for us to understand the complete effect of it on the majority of the population.

Keywords: ML, DAL, YLD, YLL

Procedia PDF Downloads 36
8728 Prediction Study of a Corroded Pressure Vessel Using Evaluation Measurements and Finite Element Analysis

Authors: Ganbat Danaa, Chuluundorj Puntsag

Abstract:

The steel structures of the Oyu-Tolgoi mining Concentrator plant are corroded during operation, which raises doubts about the continued use of some important structures of the plant, which is one of the problems facing the plant's regular operation. As a part of the main operation of the plant, the bottom part of the pressure vessel, which plays an important role in the reliable operation of the concentrate filter-drying unit, was heavily corroded, so it was necessary to study by engineering calculations, modeling, and simulation using modern advanced engineering programs and methods. The purpose of this research is to investigate whether the corroded part of the pressure vessel can be used normally in the future using advanced engineering software and to predetermine the remaining life of the time of the pressure vessel based on engineering calculations. When the thickness of the bottom part of the pressure vessel was thinned by 0.5mm due to corrosion detected by non-destructive testing, finite element analysis using ANSYS WorkBench software was used to determine the mechanical stress, strain and safety factor in the wall and bottom of the pressure vessel operating under 2.2 MPa working pressure, made conclusions on whether it can be used in the future. According to the recommendations, by using sand-blast cleaning and anti-corrosion paint, the normal, continuous and reliable operation of the Concentrator plant can be ensured, such as ordering new pressure vessels and reducing the installation period. By completing this research work, it will be used as a benchmark for assessing the corrosion condition of steel parts of pressure vessels and other metallic and non-metallic structures operating under severe conditions of corrosion, static and dynamic loads, and other deformed steels to make analysis of the structures and make it possible to evaluate and control the integrity and reliable operation of the structures.

Keywords: corrosion, non-destructive testing, finite element analysis, safety factor, structural reliability

Procedia PDF Downloads 67
8727 Functional Relevance of Flavanones and Other Plant Products in the Remedy of Parkinson's Disease

Authors: Himanshi Allahabadi

Abstract:

Plants have found a widespread use in medicine traditionally, including the treatment of cognitive disorders, especially, neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. In terms of indigenous medicine, it has been found that many potential drugs can be isolated from plant products, including those for dementia. Plant product is widely distributed in plant kingdom and forms a major antioxidant source in the human diet, is Polyphenols. There are four important groups of polyphenols: phenolic acids, flavonoids, stilbenes, and lignans. Due to their high antioxidant capacity, interest in their study has greatly increased. There are several methods for discovering and characterizing active compounds isolated from plant sources, now available. The results obtained so far seem fulfilling, but additionally, mechanism of functioning of polyphenols at the molecular level, as well as their application in human health need to be researched upon. Also, even though the neuroprotective effects of flavonoids have been much talked about, much of the data in support of this statement has come from animal studies rather than human studies. This review is based on a multi-faceted study of medicinal plants, i.e. phytochemicals, with special focus on flavanones and their relevance in remedy of Parkinson's disease.

Keywords: dementia, parkinson's disease, flavanones, polyphenols, substantia nigra

Procedia PDF Downloads 307
8726 Extraction and Characterization of Ethiopian Hibiscus macranthus Bast Fiber

Authors: Solomon Tilahun Desisa, Muktar Seid Hussen

Abstract:

Hibiscus macranthus is one of family Malvaceae and genus Hibiscus plant which grows mainly in western part of Ethiopia. Hibiscus macranthus is the most adaptable and abundant plant in the nation, which are used as an ornamental plant often a hedge or fence plant, and used as a firewood after harvesting the stem together with the bark, and used also as a fiber for trying different kinds of things by forming the rope. However, Hibiscus macranthus plant fibre has not been commercially exploited and extracted properly. This study of work describes the possibility of mechanical and retting methods of Hibiscus macranthus fibre extraction and characterization. Hibiscus macranthus fibre is a bast fibre which obtained naturally from the stem or stalks of the dicotyledonous plant since it is a natural cellulose plant fiber. And the fibre characterized by studying its physical and chemical properties. The physical characteristics were investigated as follows, including the length of 100-190mm, fineness of 1.0-1.2Tex, diameter under X100 microscopic view 16-21 microns, the moisture content of 12.46% and dry tenacity of 48-57cN/Tex along with breaking extension of 0.9-1.6%. Hibiscus macranthus fiber productivity was observed that 12-18% of the stem out of which more than 65% is primary long fibers. The fiber separation methods prove to decrease of non-cellulose ingredients in the order of mechanical, water and chemical methods. The color measurement also shows the raw Hibiscus macranthus fiber has a natural golden color according to YID1925 and paler look under both retting methods than mechanical separation. Finally, it is suggested that Hibiscus macranthus fibre can be used for manufacturing of natural and organic crop and coffee packages as well as super absorbent, fine and high tenacity textile products.

Keywords: Hibiscus macranthus, bast fiber, extraction, characterization

Procedia PDF Downloads 210
8725 The Impact of Different Rhizobium leguminosarum Strains on the Protein Content of Peas and Broad Beans

Authors: Alise Senberga, Laila Dubova, Liene Strauta, Ina Alsina, Ieva Erdberga

Abstract:

Legume symbiotic relationship with nitrogen fixating bacteria Rhizobim leguminosarum is an important factor used to improve the productivity of legumes, due to the fact that rhizobia can supply plant with the necessary amount of nitrogen. R. leguminosarum strains have shown different activity in fixing nitrogen. Depending on the chosen R. leguminosarum strain, host plant biochemical content can be altered. In this study we focused particularly on the changes in protein content in beans (using two different varieties) and peas (five different varieties) due to the use of several different R. leguminosarum strains (four strains for both beans and peas). Overall, the protein content increase was observed after seed inoculation with R. leguminosarum. Strain and plant cultivar interaction specification was observed. The effect of R. leguminosarum inoculation on the content of protein was dependent on the R. leguminosarum strain used. Plant cultivar also appeared to have a decisive role in protein content formation with the help of R. leguminosaru.

Keywords: legumes, protein content, rhizobia strains, soil

Procedia PDF Downloads 521
8724 Normalized Difference Vegetation Index and Hyperspectral: Plant Health Assessment

Authors: Srushti R. Joshi, Ujjwal Rakesh, Spoorthi Sripad

Abstract:

The rapid advancement of remote sensing technologies has revolutionized plant health monitoring, offering valuable insights for precision agriculture and environmental management. This paper presents a comprehensive comparative analysis between the widely employed normalized difference vegetation index (NDVI) and state-of-the-art hyperspectral sensors in the context of plant health assessment. The study aims to elucidate the weigh ups of spectral resolution. Employing a diverse range of vegetative environments, the research utilizes simulated datasets to evaluate the performance of NDVI and hyperspectral sensors in detecting subtle variations indicative of plant stress, disease, and overall vitality. Through meticulous data analysis and statistical validation, this study highlights the superior performance of hyperspectral sensors across the parameters used.

Keywords: normalized difference vegetation index, hyperspectral sensor, spectral resolution, infrared

Procedia PDF Downloads 65
8723 The Mental Workload of Intensive Care Unit Nurses in Performing Human-Machine Tasks: A Cross-Sectional Survey

Authors: Yan Yan, Erhong Sun, Lin Peng, Xuchun Ye

Abstract:

Aims: The present study aimed to explore Intensive Care Unit (ICU) nurses’ mental workload (MWL) and associated factors with it in performing human-machine tasks. Background: A wide range of emerging technologies have penetrated widely in the field of health care, and ICU nurses are facing a dramatic increase in nursing human-machine tasks. However, there is still a paucity of literature reporting on the general MWL of ICU nurses performing human-machine tasks and the associated influencing factors. Methods: A cross-sectional survey was employed. The data was collected from January to February 2021 from 9 tertiary hospitals in 6 provinces (Shanghai, Gansu, Guangdong, Liaoning, Shandong, and Hubei). Two-stage sampling was used to recruit eligible ICU nurses (n=427). The data were collected with an electronic questionnaire comprising sociodemographic characteristics and the measures of MWL, self-efficacy, system usability, and task difficulty. The univariate analysis, two-way analysis of variance (ANOVA), and a linear mixed model were used for data analysis. Results: Overall, the mental workload of ICU nurses in performing human-machine tasks was medium (score 52.04 on a 0-100 scale). Among the typical nursing human-machine tasks selected, the MWL of ICU nurses in completing first aid and life support tasks (‘Using a defibrillator to defibrillate’ and ‘Use of ventilator’) was significantly higher than others (p < .001). And ICU nurses’ MWL in performing human-machine tasks was also associated with age (p = .001), professional title (p = .002), years of working in ICU (p < .001), willingness to study emerging technology actively (p = .006), task difficulty (p < .001), and system usability (p < .001). Conclusion: The MWL of ICU nurses is at a moderate level in the context of a rapid increase in nursing human-machine tasks. However, there are significant differences in MWL when performing different types of human-machine tasks, and MWL can be influenced by a combination of factors. Nursing managers need to develop intervention strategies in multiple ways. Implications for practice: Multidimensional approaches are required to perform human-machine tasks better, including enhancing nurses' willingness to learn emerging technologies actively, developing training strategies that vary with tasks, and identifying obstacles in the process of human-machine system interaction.

Keywords: mental workload, nurse, ICU, human-machine, tasks, cross-sectional study, linear mixed model, China

Procedia PDF Downloads 69
8722 MLProxy: SLA-Aware Reverse Proxy for Machine Learning Inference Serving on Serverless Computing Platforms

Authors: Nima Mahmoudi, Hamzeh Khazaei

Abstract:

Serving machine learning inference workloads on the cloud is still a challenging task at the production level. The optimal configuration of the inference workload to meet SLA requirements while optimizing the infrastructure costs is highly complicated due to the complex interaction between batch configuration, resource configurations, and variable arrival process. Serverless computing has emerged in recent years to automate most infrastructure management tasks. Workload batching has revealed the potential to improve the response time and cost-effectiveness of machine learning serving workloads. However, it has not yet been supported out of the box by serverless computing platforms. Our experiments have shown that for various machine learning workloads, batching can hugely improve the system’s efficiency by reducing the processing overhead per request. In this work, we present MLProxy, an adaptive reverse proxy to support efficient machine learning serving workloads on serverless computing systems. MLProxy supports adaptive batching to ensure SLA compliance while optimizing serverless costs. We performed rigorous experiments on Knative to demonstrate the effectiveness of MLProxy. We showed that MLProxy could reduce the cost of serverless deployment by up to 92% while reducing SLA violations by up to 99% that can be generalized across state-of-the-art model serving frameworks.

Keywords: serverless computing, machine learning, inference serving, Knative, google cloud run, optimization

Procedia PDF Downloads 179
8721 Effect of Nitrogen and Gibberellic Acid at Different Level and their Interaction on Calendula

Authors: Pragnyashree Mishra, Shradhanjali Mohapatra

Abstract:

The present investigation is carried out to know the effect of foliar feeding of nitrogen and gibberellic acid on vegetative growth, flowering behaviour and yield of calendula variety ‘Golden Emporer’. The experiment was laid out in RBD in rabi season of 2013-14. There are 16 treatments are taken at different level such as nitrogen (at 0%,1%,2%,3%) and GA3 (at 50 ppm,100ppm,150 ppm). Among them maximum height at bud initiation stage was obtained at 3% nitrogen (27.00 cm) and at 150 ppm GA3 (26.5 cm), fist flowering was obtained at 3% nitrogen(60.00 days) and at 150 ppm GA3 (63.75 days), maximum flower stalk length was obtained at 3% nitrogen(3.50 cm) and at 150 ppm GA3 (5.42 cm),maximum duration of flowering was obtained at 3% nitrogen(46.00 days) and at 150 ppm GA3 (46.50days), maximum number of flower was obtained at 3% nitrogen (89.00per plant) and at 150 ppm GA3 (83.50 per plant), maximum flower weight was obtained at 3% nitrogen(1.25 gm per flower) and at 150 ppm GA3 (1.50 gm per flower), maximum yield was was obtained at 3% nitrogen (110.00 gm per plant) and at 150 ppm GA3 (105.00gm per plant) and minimum of all character was obtained when 0% nitrogen0 ppm GA3. All interaction between nitrogen and GA3 was found in significant except the yield .

Keywords: calendula, golden emporer, GA3, nitrogen and gibberellic acid

Procedia PDF Downloads 464
8720 A Leaf-Patchable Reflectance Meter for in situ Continuous Monitoring of Chlorophyll Content

Authors: Kaiyi Zhang, Wenlong Li, Haicheng Li, Yifei Luo, Zheng Li, Xiaoshi Wang, Xiaodong Chen

Abstract:

Plant wearable sensors facilitate the real-time monitoring of plant physiological status. In situ monitoring of the plant chlorophyll content over days could provide valuable information on the photosynthetic capacity, nitrogen content, and general plant health. However, it cannot be achieved by current chlorophyll measuring methods. Here, a miniaturized and plant-wearable chlorophyll meter was developed for rapid, non-destructive, in situ, and long-term chlorophyll monitoring. This reflectance-based chlorophyll sensor with 1.5 mm thickness and 0.2 g weight (1000 times lighter than the commercial chlorophyll meter), includes a light emitting diode (LED) and two symmetric photodetectors (PDs) on a flexible substrate and is patched onto the leaf upper epidermis with a conformal light guiding layer. A chlorophyll content index (CCI) calculated based on this sensor shows a better linear relationship with the leaf chlorophyll content (r² > 0.9) than the traditional chlorophyll meter. This meter can wirelessly communicate with a smartphone to monitor the leaf chlorophyll change under various stresses and indicate the unhealthy status of plants for long-term application of plants under various stresses earlier than chlorophyll meter and naked-eye observation. This wearable chlorophyll sensing patch is promising in smart and precision agriculture.

Keywords: plant wearable sensors, reflectance-based measurements, chlorophyll content monitoring, smart agriculture

Procedia PDF Downloads 115
8719 Pose-Dependency of Machine Tool Structures: Appearance, Consequences, and Challenges for Lightweight Large-Scale Machines

Authors: S. Apprich, F. Wulle, A. Lechler, A. Pott, A. Verl

Abstract:

Large-scale machine tools for the manufacturing of large work pieces, e.g. blades, casings or gears for wind turbines, feature pose-dependent dynamic behavior. Small structural damping coefficients lead to long decay times for structural vibrations that have negative impacts on the production process. Typically, these vibrations are handled by increasing the stiffness of the structure by adding mass. That is counterproductive to the needs of sustainable manufacturing as it leads to higher resource consumption both in material and in energy. Recent research activities have led to higher resource efficiency by radical mass reduction that rely on control-integrated active vibration avoidance and damping methods. These control methods depend on information describing the dynamic behavior of the controlled machine tools in order to tune the avoidance or reduction method parameters according to the current state of the machine. The paper presents the appearance, consequences and challenges of the pose-dependent dynamic behavior of lightweight large-scale machine tool structures in production. The paper starts with the theoretical introduction of the challenges of lightweight machine tool structures resulting from reduced stiffness. The statement of the pose-dependent dynamic behavior is corroborated by the results of the experimental modal analysis of a lightweight test structure. Afterwards, the consequences of the pose-dependent dynamic behavior of lightweight machine tool structures for the use of active control and vibration reduction methods are explained. Based on the state of the art on pose-dependent dynamic machine tool models and the modal investigation of an FE-model of the lightweight test structure, the criteria for a pose-dependent model for use in vibration reduction are derived. The description of the approach for a general pose-dependent model of the dynamic behavior of large lightweight machine tools that provides the necessary input to the aforementioned vibration avoidance and reduction methods to properly tackle machine vibrations is the outlook of the paper.

Keywords: dynamic behavior, lightweight, machine tool, pose-dependency

Procedia PDF Downloads 459
8718 Diagnosis of Induction Machine Faults by DWT

Authors: Hamidreza Akbari

Abstract:

In this paper, for detection of inclined eccentricity in an induction motor, time–frequency analysis of the stator startup current is carried out. For this purpose, the discrete wavelet transform is used. Data are obtained from simulations, using winding function approach. The results show the validity of the approach for detecting the fault and discriminating with respect to other faults.

Keywords: induction machine, fault, DWT, electric

Procedia PDF Downloads 350
8717 Current-Based Multiple Faults Detection in Electrical Motors

Authors: Moftah BinHasan

Abstract:

Induction motors (IM) are vital components in industrial processes whose failure may yield to an unexpected interruption at the industrial plant, with highly incurred consequences in costs, product quality, and safety. Among different detection approaches proposed in the literature, that based on stator current monitoring termed as Motor Current Signature Analysis (MCSA) is the most preferred. MCSA is advantageous due to its non-invasive properties. The popularity of motor current signature analysis comes from being that the current consists of motor harmonics, around the supply frequency, which show some properties related to different situations of healthy and faulty conditions. One of the techniques used with machine line current resorts to spectrum analysis. Besides discussing the fundamentals of MCSA and its applications in the condition monitoring arena, this paper shows a summary of the most frequent faults and their consequence signatures on the stator current spectrum of an induction motor. In addition, this article presents different case studies of induction motor fault diagnosis. These faults were seeded in the machine which was run for more than an hour for each test before the results were recorded for the faulty situations. These results are then compared with those for the healthy cases that were recorded earlier.

Keywords: induction motor, condition monitoring, fault diagnosis, MCSA, rotor, stator, bearing, eccentricity

Procedia PDF Downloads 458
8716 Virtual Process Hazard Analysis (Pha) Of a Nuclear Power Plant (Npp) Using Failure Mode and Effects Analysis (Fmea) Technique

Authors: Lormaine Anne A. Branzuela, Elysa V. Largo, Monet Concepcion M. Detras, Neil C. Concibido

Abstract:

The electricity demand is still increasing, and currently, the Philippine government is investigating the feasibility of operating the Bataan Nuclear Power Plant (BNPP) to address the country’s energy problem. However, the lack of process safety studies on BNPP focused on the effects of hazardous substances on the integrity of the structure, equipment, and other components, have made the plant operationalization questionable to the public. The three major nuclear power plant incidents – TMI-2, Chernobyl, and Fukushima – have made many people hesitant to include nuclear energy in the energy matrix. This study focused on the safety evaluation of possible operations of a nuclear power plant installed with a Pressurized Water Reactor (PWR), which is similar to BNPP. Failure Mode and Effects Analysis (FMEA) is one of the Process Hazard Analysis (PHA) techniques used for the identification of equipment failure modes and minimizing its consequences. Using the FMEA technique, this study was able to recognize 116 different failure modes in total. Upon computation and ranking of the risk priority number (RPN) and criticality rating (CR), it showed that failure of the reactor coolant pump due to earthquakes is the most critical failure mode. This hazard scenario could lead to a nuclear meltdown and radioactive release, as identified by the FMEA team. Safeguards and recommended risk reduction strategies to lower the RPN and CR were identified such that the effects are minimized, the likelihood of occurrence is reduced, and failure detection is improved.

Keywords: PHA, FMEA, nuclear power plant, bataan nuclear power plant

Procedia PDF Downloads 131
8715 Optimizing Perennial Plants Image Classification by Fine-Tuning Deep Neural Networks

Authors: Khairani Binti Supyan, Fatimah Khalid, Mas Rina Mustaffa, Azreen Bin Azman, Amirul Azuani Romle

Abstract:

Perennial plant classification plays a significant role in various agricultural and environmental applications, assisting in plant identification, disease detection, and biodiversity monitoring. Nevertheless, attaining high accuracy in perennial plant image classification remains challenging due to the complex variations in plant appearance, the diverse range of environmental conditions under which images are captured, and the inherent variability in image quality stemming from various factors such as lighting conditions, camera settings, and focus. This paper proposes an adaptation approach to optimize perennial plant image classification by fine-tuning the pre-trained DNNs model. This paper explores the efficacy of fine-tuning prevalent architectures, namely VGG16, ResNet50, and InceptionV3, leveraging transfer learning to tailor the models to the specific characteristics of perennial plant datasets. A subset of the MYLPHerbs dataset consisted of 6 perennial plant species of 13481 images under various environmental conditions that were used in the experiments. Different strategies for fine-tuning, including adjusting learning rates, training set sizes, data augmentation, and architectural modifications, were investigated. The experimental outcomes underscore the effectiveness of fine-tuning deep neural networks for perennial plant image classification, with ResNet50 showcasing the highest accuracy of 99.78%. Despite ResNet50's superior performance, both VGG16 and InceptionV3 achieved commendable accuracy of 99.67% and 99.37%, respectively. The overall outcomes reaffirm the robustness of the fine-tuning approach across different deep neural network architectures, offering insights into strategies for optimizing model performance in the domain of perennial plant image classification.

Keywords: perennial plants, image classification, deep neural networks, fine-tuning, transfer learning, VGG16, ResNet50, InceptionV3

Procedia PDF Downloads 64
8714 Plant Species Composition and Frequency Distribution Along a Disturbance Gradient in Kano Metropolis Nigeria

Authors: Hamisu Jibril

Abstract:

The study explores changes in plant species composition along disturbance gradient in urban areas in Nigeria at Bayero University Kano campuses. The aim is to assess changes in plant species composition and distribution within a degraded dryland environment in Kano Metropolis, Nigeria. Vegetation sampling was conducted using plots quadrat and transect methods, and different plant species were identified in the three study sites. Data were analyzed using ANOVA, t-tests and conventional indices to compare species richness, evenness and diversity. The study found no significant differences in species frequency among sites or sampling methods but observed higher species richness, evenness and diversity values in grasses species compared to trees. The study addressed changes in plant species composition along a disturbance gradient in an urban environment, focusing on species richness, evenness, and diversity. The study contributes to understanding the vegetation dynamics in degraded urban environments and highlights the need for conservation efforts. The research also adds to the existing literature by confirming previous findings and suggesting re-planting efforts. The study suggests similarities in plant species composition between old and new campus areas and emphasizes the importance of further investigating factors leading to vegetation loss for conservation purposes.

Keywords: species diversity, urban kano, dryland environment, vegetation sampling

Procedia PDF Downloads 59
8713 Sentiment Analysis: Comparative Analysis of Multilingual Sentiment and Opinion Classification Techniques

Authors: Sannikumar Patel, Brian Nolan, Markus Hofmann, Philip Owende, Kunjan Patel

Abstract:

Sentiment analysis and opinion mining have become emerging topics of research in recent years but most of the work is focused on data in the English language. A comprehensive research and analysis are essential which considers multiple languages, machine translation techniques, and different classifiers. This paper presents, a comparative analysis of different approaches for multilingual sentiment analysis. These approaches are divided into two parts: one using classification of text without language translation and second using the translation of testing data to a target language, such as English, before classification. The presented research and results are useful for understanding whether machine translation should be used for multilingual sentiment analysis or building language specific sentiment classification systems is a better approach. The effects of language translation techniques, features, and accuracy of various classifiers for multilingual sentiment analysis is also discussed in this study.

Keywords: cross-language analysis, machine learning, machine translation, sentiment analysis

Procedia PDF Downloads 713
8712 Optimizing Quantum Machine Learning with Amplitude and Phase Encoding Techniques

Authors: Om Viroje

Abstract:

Quantum machine learning represents a frontier in computational technology, promising significant advancements in data processing capabilities. This study explores the significance of data encoding techniques, specifically amplitude and phase encoding, in this emerging field. By employing a comparative analysis methodology, the research evaluates how these encoding techniques affect the accuracy, efficiency, and noise resilience of quantum algorithms. Our findings reveal that amplitude encoding enhances algorithmic accuracy and noise tolerance, whereas phase encoding significantly boosts computational efficiency. These insights are crucial for developing robust quantum frameworks that can be effectively applied in real-world scenarios. In conclusion, optimizing encoding strategies is essential for advancing quantum machine learning, potentially transforming various industries through improved data processing and analysis.

Keywords: quantum machine learning, data encoding, amplitude encoding, phase encoding, noise resilience

Procedia PDF Downloads 13
8711 Prototype Development of ARM-7 Based Embedded Controller for Packaging Machine

Authors: Jeelka Ray

Abstract:

Survey of the papers revealed that there is no practical design available for packaging machine based on Embedded system, so the need arose for the development of the prototype model. In this paper, author has worked on the development of an ARM7 based Embedded Controller for controlling the sequence of packaging machine. The unit is made user friendly with TFT and Touch Screen implementing human machine interface (HMI). The different system components are briefly discussed, followed by a description of the overall design. The major functions which involve bag forming, sealing temperature control, fault detection, alarm, animated view on the home screen when the machine is working as per different parameters set makes the machine performance more successful. LPC2478 ARM 7 Embedded Microcontroller controls the coordination of individual control function modules. In back gone days, these machines were manufactured with mechanical fittings. Later on, the electronic system replaced them. With the help of ongoing technologies, these mechanical systems were controlled electronically using Microprocessors. These became the backbone of the system which became a cause for the updating technologies in which the control was handed over to the Microcontrollers with Servo drives for accurate positioning of the material. This helped to maintain the quality of the products. Including all, RS 485 MODBUS Communication technology is used for synchronizing AC Drive & Servo Drive. These all concepts are operated either manually or through a Graphical User Interface. Automatic tuning of heaters, sealers and their temperature is controlled using Proportional, Integral and Derivation loops. In the upcoming latest technological world, the practical implementation of the above mentioned concepts is really important to be in the user friendly environment. Real time model is implemented and tested on the actual machine and received fruitful results.

Keywords: packaging machine, embedded system, ARM 7, micro controller, HMI, TFT, touch screen, PID

Procedia PDF Downloads 275
8710 Reclamation of Fly Ash Dykes Using Naturally Growing Plant Species

Authors: Neelima Meravi, Santosh Prajapati

Abstract:

The present study was conducted over a period of three years on fly ash dyke. The physicochemical analysis of fly ash (pH, WHC, BD, porosity, EC% OC & available P, heavy metal content etc.) was performed before and after the growth of plant species. Fly ash was analyzed after concentrated nitric acid digestion by atomic absorption spectrophotometer AAS-7000b(Shimadzu) for heavy metals. The dyke was colonized by the propagules of native species over a period of time, and it was observed that fly ash was contaminated by heavy metals and plants were able to ameliorate the metal concentration of dyke. The growth of plant species also improved the condition of fly ash so that it can be used for agricultural purposes. Phytosociological studies of the fly ash dyke were performed so that these plants may be used for reclamation of fly ash for subsequent use in agriculture.

Keywords: fly ash, heavy metals, IVI, phytosociology, reclamation

Procedia PDF Downloads 218
8709 Parkinson’s Disease Detection Analysis through Machine Learning Approaches

Authors: Muhtasim Shafi Kader, Fizar Ahmed, Annesha Acharjee

Abstract:

Machine learning and data mining are crucial in health care, as well as medical information and detection. Machine learning approaches are now being utilized to improve awareness of a variety of critical health issues, including diabetes detection, neuron cell tumor diagnosis, COVID 19 identification, and so on. Parkinson’s disease is basically a disease for our senior citizens in Bangladesh. Parkinson's Disease indications often seem progressive and get worst with time. People got affected trouble walking and communicating with the condition advances. Patients can also have psychological and social vagaries, nap problems, hopelessness, reminiscence loss, and weariness. Parkinson's disease can happen in both men and women. Though men are affected by the illness at a proportion that is around partial of them are women. In this research, we have to get out the accurate ML algorithm to find out the disease with a predictable dataset and the model of the following machine learning classifiers. Therefore, nine ML classifiers are secondhand to portion study to use machine learning approaches like as follows, Naive Bayes, Adaptive Boosting, Bagging Classifier, Decision Tree Classifier, Random Forest classifier, XBG Classifier, K Nearest Neighbor Classifier, Support Vector Machine Classifier, and Gradient Boosting Classifier are used.

Keywords: naive bayes, adaptive boosting, bagging classifier, decision tree classifier, random forest classifier, XBG classifier, k nearest neighbor classifier, support vector classifier, gradient boosting classifier

Procedia PDF Downloads 129
8708 Estimating Leaf Area and Biomass of Wheat Using UAS Multispectral Remote Sensing

Authors: Jackson Parker Galvan, Wenxuan Guo

Abstract:

Unmanned aerial vehicle (UAV) technology is being increasingly adopted in high-throughput plant phenotyping for applications in plant breeding and precision agriculture. Winter wheat is an important cover crop for reducing soil erosion and protecting the environment in the Southern High Plains. Efficiently quantifying plant leaf area and biomass provides critical information for producers to practice site-specific management of crop inputs, such as water and fertilizers. The objective of this study was to estimate wheat biomass and leaf area index using UAV images. This study was conducted in an irrigated field in Garza County, Texas. High-resolution images were acquired on three dates (February 18, March 25, and May 15th ) using a multispectral sensor onboard a Matrice 600 UAV. On each data of image acquisition, 10 random plant samples were collected and measured for biomass and leaf area. Images were stitched using Pix4D, and ArcGIS was applied to overlay sampling locations and derive data for sampling locations.

Keywords: precision agriculture, UAV plant phenotyping, biomass, leaf area index, winter wheat, southern high plains

Procedia PDF Downloads 95
8707 Common Caper (Capparis Spinosa L.) From Oblivion and Neglect to the Interface of Medicinal Plants

Authors: Ahmad Alsheikh Kaddour

Abstract:

Herbal medicine has been a long-standing phenomenon in Arab countries since ancient times because of its breadth and moderate temperament. Therefore, it possesses a vast natural and economic wealth of medicinal and aromatic herbs. This prompted ancient Egyptians and Arabs to discover and exploit them. The economic importance of the plant is not only from medicinal uses; it is a plant of high economic value for its various uses, especially in food, cosmetic and aromatic industries. It is also an ornamental plant and soil stabilization. The main objective of this research is to study the chemical changes that occur in the plant during the growth period, as well as the production of plant buds, which were previously considered unwanted plants. The research was carried out in the period 2021-2022 in the valley of Al-Shaflah (common caper), located in Qumhana village, 7 km north of Hama Governorate, Syria. The results of the research showed a change in the percentage of chemical components in the plant parts. The ratio of protein content and the percentage of fatty substances in fruits and the ratio of oil in the seeds until the period of harvesting of these plant parts improved, but the percentage of essential oils decreased with the progress of the plant growth, while the Glycosides content where improved with the plant aging. The production of buds is small, with dimensions as 0.5×0.5 cm, which is preferred for commercial markets, harvested every 2-3 days in quantities ranging from 0.4 to 0.5 kg in one cut/shrubs with 3 years’ age as average for the years 2021-2022. The monthly production of a shrub is between 4-5 kg per month. The productive period is 4 months approximately. This means that the seasonal production of one plant is 16-20 kg and the production of 16-20 tons per year with a plant density of 1,000 shrubs per hectare, which is the optimum rate of cultivation in the unit of mass, given the price of a kg of these buds is equivalent to 1 US $; however, this means that the annual output value of the locally produced hectare ranges from 16,000 US $ to 20,000 US $ for farmers. The results showed that it is possible to transform the cultivation of this plant from traditional random to typical areas cultivation, with a plant density of 1,000-1,100 plants per hectare according to the type of soil to obtain production of medicinal and nutritious buds, as well as, the need to pay attention to this national wealth and invest in the optimal manner, which leads to the acquisition of hard currency through export to support the national income.

Keywords: common caper, medicinal plants, propagation, medical, economic importance

Procedia PDF Downloads 72
8706 Snapchat’s Scanning Feature

Authors: Reham Banwair, Lana Alshehri, Sara Hadrawi

Abstract:

The purpose of this project is to identify user satisfaction with the AI functions on Snapchat, in order to generate improvement proposals that allow its development within the app. To achieve this, a qualitative analysis was carried out through interviews to people who usually use the application, revealing their satisfaction or dissatisfaction with the usefulness of the AI. In addition, the background of the company and its introduction in these algorithms were analyzed. Furthermore, the characteristics of the three main functions of AI were explained: identify songs, solve mathematical problems, and recognize plants. As a result, it was obtained that 50% still do not know the characteristics of AI, 50% still believe song recognition is not always correct, 41.7% believe that math problems are usually accurate and 91.7% believes the plant detection tool is working properly.

Keywords: artificial intelligence, scanning, Snapchat, machine learning

Procedia PDF Downloads 134
8705 AI-Based Autonomous Plant Health Monitoring and Control System with Visual Health-Scoring Models

Authors: Uvais Qidwai, Amor Moursi, Mohamed Tahar, Malek Hamad, Hamad Alansi

Abstract:

This paper focuses on the development and implementation of an advanced plant health monitoring system with an AI backbone and IoT sensory network. Our approach involves addressing the critical environmental factors essential for preserving a plant’s well-being, including air temperature, soil moisture, soil temperature, soil conductivity, pH, water levels, and humidity, as well as the presence of essential nutrients like nitrogen, phosphorus, and potassium. Central to our methodology is the utilization of computer vision technology, particularly a night vision camera. The captured data is then compared against a reference database containing different health statuses. This comparative analysis is implemented using an AI deep learning model, which enables us to generate accurate assessments of plant health status. By combining the AI-based decision-making approach, our system aims to provide precise and timely insights into the overall health and well-being of plants, offering a valuable tool for effective plant care and management.

Keywords: deep learning image model, IoT sensing, cloud-based analysis, remote monitoring app, computer vision, fuzzy control

Procedia PDF Downloads 54
8704 Design Consideration of a Plastic Shredder in Recycling Processes

Authors: Tolulope A. Olukunle

Abstract:

Plastic waste management has emerged as one of the greatest challenges facing developing countries. This paper describes the design of various components of a plastic shredder. This machine is widely used in industries and recycling plants. The introduction of plastic shredder machine will promote reduction of post-consumer plastic waste accumulation and serves as a system for wealth creation and empowerment through conversion of waste into economically viable products. In this design research, a 10 kW electric motor with a rotational speed of 500 rpm was chosen to drive the shredder. A pulley size of 400 mm is mounted on the electric motor at a distance of 1000 mm away from the shredder pulley. The shredder rotational speed is 300 rpm.

Keywords: design, machine, plastic waste, recycling

Procedia PDF Downloads 320
8703 Diagnosis of Static Eccentricity in 400 kW Induction Machine Based on the Analysis of Stator Currents

Authors: Saleh Elawgali

Abstract:

Current spectrums of a four pole-pair, 400 kW induction machine were calculated for the cases of full symmetry and static eccentricity. The calculations involve integration of 93 electrical plus four mechanical ordinary differential equations. Electrical equations account for variable inductances affected by slotting and eccentricities. The calculations were followed by Fourier analysis of the stator currents in steady state operation. Zooms of the current spectrums, around the 50 Hz fundamental harmonic as well as of the main slot harmonic zone, were included. The spectrums included refer to both calculated and measured currents.

Keywords: diagnostic, harmonic, induction machine, spectrum

Procedia PDF Downloads 522
8702 Factory Virtual Environment Development for Augmented and Virtual Reality

Authors: Michal Gregor, Jiri Polcar, Petr Horejsi, Michal Simon

Abstract:

Machine visualization is an area of interest with fast and progressive development. We present a method of machine visualization which will be applicable in real industrial conditions according to current needs and demands. Real factory data were obtained in a newly built research plant. Methods described in this paper were validated on a case study. Input data were processed and the virtual environment was created. The environment contains information about dimensions, structure, disposition, and function. Hardware was enhanced by modular machines, prototypes, and accessories. We added new functionalities and machines into the virtual environment. The user is able to interact with objects such as testing and cutting machines, he/she can operate and move them. Proposed design consists of an environment with two degrees of freedom of movement. Users are in touch with items in the virtual world which are embedded into the real surroundings. This paper describes the development of the virtual environment. We compared and tested various options of factory layout virtualization and visualization. We analyzed possibilities of using a 3D scanner in the layout obtaining process and we also analyzed various virtual reality hardware visualization methods such as Stereoscopic (CAVE) projection, Head Mounted Display (HMD), and augmented reality (AR) projection provided by see-through glasses.

Keywords: augmented reality, spatial scanner, virtual environment, virtual reality

Procedia PDF Downloads 407
8701 Design Approach for the Development of Format-Flexible Packaging Machines

Authors: G. Götz, P. Stich, J. Backhaus, G. Reinhart

Abstract:

The rising demand for format-flexible packaging machines is caused by current market changes. Increasing the formatflexibility is a new goal for the packaging machine manufacturers’ product development process. There are no methodical or designorientated tools for a comprehensive consideration of this target. This paper defines the term format-flexibility in the context of packaging machines and shows the state-of-the-art for improving the changeover of production machines. The requirements for a new approach and the concept itself will be introduced, and the method elements will be explained. Finally, the use of the concept and the result of the development of a format-flexible packaging machine will be shown.

Keywords: packaging machine, format-flexibility, changeover, design method

Procedia PDF Downloads 434
8700 Antifungal Potential of the Plant Growth-Promoting Rhizobacteria Infecting Kidney Beans

Authors: Zhazira Shemsheyeva, Zhanara Suleimenova, Olga Shemshura, Gulnaz Mombekova, Zhanar Rakhmetova

Abstract:

Bacteria that colonize plant roots and promote plant growth are referred to as plant growth-promoting rhizobacteria (PGPR). They not only provide nutrients to the plants (direct plant growth promotion) and protect plants against the phytopathogens (indirect plant growth promotion) but also increase the soil fertility. Indirectly PGPRs improve the plant growth by becoming a biocontrol agent for a fungal pathogen. The antifungal activities of the PGPrhizobacteria were assayed against different species of phytopathogenic fungi such as Fusarium tricinctum, Fusarium oxysporum, Sclerotiniasclerotiorum, and Botrytis cinerea. Pseudomonas putidaSM-1, Azotobacter sp., and Bacillus thuringiensis AKS/16 strains have been used in experimental tests on growth inhibition of phytopathogenic fungi infecting Kidney beans. Agar well diffusion method was used in this study. Diameters of the zones of inhibition were measured in millimeters. It was found that Bacillus thuringiensis AKS/16 strain showed the lowest antifungal activity against all fungal pathogens tested. Zones of inhibition were 15-18 mm. In contrast, Pseudomonas putida SM-1 exhibited good antifungal activity against Fusarium oxysporum and Fusarium tricinctum by producing 29-30 mm clear zones of inhibition. The moderate inhibitory effect was shown by Azotobacter sp. against all fungal pathogens tested with zones of inhibition from24 to 26 mm. In summary, Pseudomonas putida SM-1 strain demonstrated the potential of controlling root rot diseases in kidney beans.

Keywords: PGPR, pseudomonas putida, kindey beans, antifungal activity

Procedia PDF Downloads 154