Search results for: heavy metal ion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3578

Search results for: heavy metal ion

3278 Towards a Complete Automation Feature Recognition System for Sheet Metal Manufacturing

Authors: Bahaa Eltahawy, Mikko Ylihärsilä, Reino Virrankoski, Esko Petäjä

Abstract:

Sheet metal processing is automated, but the step from product models to the production machine control still requires human intervention. This may cause time consuming bottlenecks in the production process and increase the risk of human errors. In this paper we present a system, which automatically recognizes features from the CAD-model of the sheet metal product. By using these features, the system produces a complete model of the particular sheet metal product. Then the model is used as an input for the sheet metal processing machine. Currently the system is implemented, capable to recognize more than 11 of the most common sheet metal structural features, and the procedure is fully automated. This provides remarkable savings in the production time, and protects against the human errors. This paper presents the developed system architecture, applied algorithms and system software implementation and testing.

Keywords: feature recognition, automation, sheet metal manufacturing, CAD, CAM

Procedia PDF Downloads 356
3277 Heavy Metals in Selected Infant Milk Formula

Authors: Suad M. Abuzariba, M. Gazette

Abstract:

To test for the presence of toxic heavy metals, specifically Arsenic, Lead, and Mercury in formula milk available in Misrata city north of Libya for infants aged 6-12 months through Atomic Absorption Spectrophotometer,30 samples of imported milk formula in Libyan markets subjected to test to accurate their pollution with heavy metals, We get concentration of Hg, Ar, Pb in milk formula samples was between 0.002-1.37, 1.62-0.04–2.16, 0.15–0.65 respectively, when compared the results with Libyan &WHO standards ,they were within standards of toxic heavy metals. The presence or absence of toxic heavy metals (Lead, Arsenic, and Mercury) in selected infant formula milk and their levels within or beyond standards set by the WHO. The three infant formulas tested, all were negative for Arsenic and Lead, while two out of the three infant formulas tested positive for Mercury with levels of 0.6333ppm and 0.8333ppm. The levels of Mercury obtained, expressed in parts per million (ppm), from the two infant formulas tested were above the Provisional Tolerable Weekly Intake of total Mercury, which is 0.005ppm, as set by the FAO, WHO, and JECFA.

Keywords: heavy metals, milk formula, Libya, toxic

Procedia PDF Downloads 510
3276 Use of Large Eddy Simulations Model to Simulate the Flow of Heavy Oil-Water-Air through Pipe

Authors: Salim Al Jadidi, Shian Gao, Shivananda Moolya

Abstract:

Computational Fluid Dynamic (CFD) technique coupled with Sub-Grid-Scale (SGS) model is used to study the flow behavior of heavy oil-water-air flow in a horizontal pipe by adapting ANSYS Fluent CFD software. The technique suitable for the transport of water-lubricated heavy viscous oil in a horizontal pipe is the Core Annular flow (CAF) technique. The present study focuses on the numerical study of CAF adapting Large Eddy Simulations (LES). The basic objective of the present study is to gain a basic knowledge of the flow behavior of heavy oil using turbulent CAF through a conventional horizontal pipe. This work also focuses on the success and applicability of LES. The simulation of heavy oil-water-air three-phase flow and two-phase flow of heavy oil–water in a conventional horizontal pipe is performed using ANSYS Fluent 16.2 software. The influence of three-phase heavy oil-water air flow in a selected pipe is affected by gravity. It is also observed from the result that the air phase and the variation in the temperature impact the behavior of the annular stream and pressure drop. Some results obtained during the study are validated with the results gained from part of the literature experiments and simulations, and the results show reasonably good agreement between the studies.

Keywords: computational fluid dynamics, gravity, heavy viscous oil, three-phase flow

Procedia PDF Downloads 77
3275 Induction Heating and Electromagnetic Stirring of Bi-Phasic Metal/Glass Molten Bath for Mixed Nuclear Waste Treatment

Authors: P. Charvin, R. Bourrou, F. Lemont, C. Lafon, A. Russello

Abstract:

For nuclear waste treatment and confinement, a specific IN-CAN melting module based on low-frequency induction heating have been designed. The frequency of 50Hz has been chosen to improve penetration length through metal. In this design, the liquid metal, strongly stirred by electromagnetic effects, presents shape of a dome caused by strong Laplace forces developing in the bulk of bath. Because of a lower density, the glass phase is located above the metal phase and is heated and stirred by metal through interface. Electric parameters (Intensity, frequency) give precious information about metal load and composition (resistivity of alloy) through impedance modification. Then, power supply can be adapted to energy transfer efficiency for suitable process supervision. Modeling of this system allows prediction of metal dome shape (in agreement with experimental measurement with a specific device), glass and metal velocity, heat and motion transfer through interface. MHD modeling is achieved with COMSOL and Fluent. First, a simplified model is used to obtain the shape of the metal dome. Then the shape is fixed to calculate the fluid flow and the thermal part.

Keywords: electromagnetic stirring, induction heating, interface modeling, metal load

Procedia PDF Downloads 269
3274 Dietary Exposure of Heavy Metals through Cereals Commonly Consumed by Dhaka City Residents

Authors: A. Md. Bayejid Hosen, B. M Zakir Hossain Howlader, C. Yearul Kabir

Abstract:

Contamination of soil and agricultural products by heavy metals resulting from rapid industrial development has caused major concern. Dietary exposure to heavy metals has been associated with toxic and adverse health effects. The main threats to human health from heavy metals are associated with exposure to Pb, Cd and Hg. The aim of this study was to monitor the presence of heavy metals in cereals collected from different wholesale markets of Dhaka City. One hundred and sixty cereal samples were collected and analyzed for determination of heavy metals. Heavy metals were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). A total of six heavy metals– lead, chromium, cadmium, mercury, arsenic and antimony were estimated. The average concentrations of heavy metals in cereals fall within the safe limit established by regulatory organizations except for Pb (152.4 μg/100g) and Hg (15.13 μg/100g) which exceeded the safe limits. BARI gom-26 was the highest source of Pb (304.1 μg/100g) whereas Haski-29 rice variety contained the highest amount of Hg (60.85 μg/100g). Though all the cereal varieties contained approximately same amount of Cr the naizer sail varieties contained huge amount of Cr (171.8 μg/100g). Among all the cereal samples miniket rice varieties contained the least amount of heavy metals. The concentration of Cr (63.24 μg/100g), Cd (5.54 μg/100g) and As (3.26 μg/100g) in all cereals were below the safe limits. The daily intake of heavy metals was determined using the total weight of cereals consumed each day multiplied by the concentrations of heavy metals in cereals. The daily intake was compared with provisional maximum tolerable daily intake set by different regulatory organizations. The daily intake of Cd (23.0 μg), Hg (63.0 μg) and as (13.6 μg) through cereals were below the risk level except for Pb (634.0 μg) and Cr (263.1 μg). As the main meal of average Bangladeshi people is boiled rice served with some sorts of vegetables, our findings indicate that the residents of Dhaka City are at risk from Pb and Cr contamination. Potential health risks from exposure to heavy metals in self-planted cereals need more attention.

Keywords: contamination, dietary exposure, heavy metals, human health, ICP-MS

Procedia PDF Downloads 450
3273 Antioxidant Capacity of Maize Corn under Drought Stress from the Different Zones of Growing

Authors: Astghik R. Sukiasyan

Abstract:

The semidental sweet maize of Armenian population under drought stress and pollution by some heavy metals (HMs) in sites along the river Debet was studied. Accordingly, the objective of this work was to investigate the antioxidant status of maize plant in order to identify simple and reliable criteria for assessing the degree of adaptation of plants to abiotic stress of drought and HMs. It was found that in the case of removal from the mainstream of the river, the antioxidant status of the plant varies. As parameters, the antioxidant status of the plant has been determined by the activity of malondialdehyde (MDA) and Ferric Reducing Ability of Plasma (FRAP), taking into account the characteristics of natural drought of this region. The possibility of using some indicators which characterized the antioxidant status of the plant was concluded. The criteria for assessing the extent of environmental pollution could be HMs. This fact can be used for the early diagnosis of diseases in the population who lives in these areas and uses corn as the main food.

Keywords: antioxidant status, maize corn, drought stress, heavy metal

Procedia PDF Downloads 270
3272 Soil Quality State and Trends in New Zealand’s Largest City after Fifteen Years

Authors: Fiona Curran-Cournane

Abstract:

Soil quality monitoring is a science-based soil management tool that assesses soil ecosystem health. A soil monitoring program in Auckland, New Zealand’s largest city, extends from 1995 to the present. The objective of this study was to firstly determine changes in soil parameters (basic soil properties and heavy metals) that were assessed from rural land in 1995-2000 and repeated in 2008-2012. The second objective was to determine differences in soil parameters across various land uses including native bush, rural (horticulture, pasture and plantation forestry) and urban land uses using soil data collected in more recent years (2009-2013). Across rural land, mean concentrations of Olsen P had significantly increased in the second sampling period and was identified as the indicator of most concern, followed by soil macroporosity, particularly for horticultural and pastoral land. Mean concentrations of Cd were also greatest for pastoral and horticultural land and a positive correlation existed between these two parameters, which highlights the importance of analysing basic soil parameters in conjunction with heavy metals. In contrast, mean concentrations of As, Cr, Pb, Ni and Zn were greatest for urban sites. Native bush sites had the lowest concentrations of heavy metals and were used to calculate a ‘pollution index’ (PI). The mean PI was classified as high (PI > 3) for Cd and Ni and moderate for Pb, Zn, Cr, Cu, As, and Hg, indicating high levels of heavy metal pollution across both rural and urban soils. From a land use perspective, the mean ‘integrated pollution index’ was highest for urban sites at 2.9 followed by pasture, horticulture and plantation forests at 2.7, 2.6, and 0.9, respectively. It is recommended that soil sampling continues over time because a longer spanning record will allow further identification of where soil problems exist and where resources need to be targeted in the future. Findings from this study will also inform policy and science direction in regional councils.

Keywords: heavy metals, pollution index, rural and urban land use, soil quality

Procedia PDF Downloads 378
3271 Detection of Pollution in the Catchment Area of Baha Region by Using Some Common Plants as a Bioindicators

Authors: Saad M. Howladar

Abstract:

Although, there are a little data on the use of littoral plants as heavy metals bioaccumulators over large areas of the wetlands environment. So, soil samples and biomass of the five plant species: Pluchea dioscroides, Pulicaria crispa, Lavandula pubescens, Tarchononthus comporatus and Argemone ochroleuca were collected from two different sites (basin and mouth) of four dams at Baha province, KSA. Nutrients and heavy metals were extracted from plant samples (leaves and stems) for analyzing elements (Na, K, Ca, P and N) and heavy metals (Pb, Cu and Ni). The soils of the mouth of the dam had the highest concentrations of all elements, while that of basin had the highest ones of most heavy metals except Pb. The soil elements in relation to the two sites arranged as: Ca > K > P > Na > N; and the heavy metals as: Cu > Ni > Pb. The present study indicated that Pluchea dioscroides had the highest values of most elements and heavy metals, while Lavandula pubescens had the lowest. In general, leaves attain the highest concentrations of all nutrients and heavy metals in most studied species as compared with stem. It was indicated that Pluchea dioscroides showed a high transfer factor for almost elements and heavy metals such as K, Na, Cu, Ni and Pb, while Pulicaria crispa showed the highest translocation factor of N, P, Ca-Na ratio and Cu. All studied species growing in the basin had almost the highest concentrations of elements and heavy metals as compared with that in the mouth of dam except K in Pluchea dioscroides, Tarchononthus comporatus and Argemone ochroleuca tissues. Otherwise tissues of Tarchononthus comporatus growing in the basin had the lowest concentrations of K and Ni, while that growing in the mouth had the highest of P and N.

Keywords: Baha Region, bioindicators, plant, pollution, dams, heavy metals

Procedia PDF Downloads 467
3270 Cadmium Separation from Aqueous Solutions by Natural Biosorbents

Authors: Z. V. P. Murthy, Preeti Arunachalam, Sangeeta Balram

Abstract:

Removal of metal ions from different wastewaters has become important due to their effects on living beings. Cadmium is one of the heavy metals found in different industrial wastewaters. There are many conventional methods available to remove heavy metals from wastewaters like adsorption, membrane separations, precipitation, electrolytic methods, etc. and all of them have their own advantages and disadvantages. The present work deals with the use of natural biosorbents (chitin and chitosan) to separate cadmium ions from aqueous solutions. The adsorption data were fitted with different isotherms and kinetics models. Amongst different adsorption isotherms used to fit the adsorption data, the Freundlich isotherm showed better fits for both the biosorbents. The kinetics data of adsorption of cadmium showed better fit with pseudo-second order model for both the biosorbents. Chitosan, the derivative from chitin, showed better performance than chitin. The separation results are encouraging.

Keywords: chitin, chitosan, cadmium, isotherm, kinetics

Procedia PDF Downloads 411
3269 The Effect of Additive Acid on the Phytoremediation Efficiency

Authors: G. Hosseini, A. Sadighzadeh, M. Rahimnejad, N. Hosseini, Z. Jamalzadeh

Abstract:

Metal pollutants, especially heavy metals from anthropogenic sources such as metallurgical industries’ waste including mining, smelting, casting or production of nuclear fuel, including mining, concentrate production and uranium processing ends in the environment contamination (water and soil) and risk to human health around the facilities of this type of industrial activity. There are different methods that can be used to remove these contaminants from water and soil. These are very expensive and time-consuming. In this case, the people have been forced to leave the area and the decontamination is not done. For example, in the case of Chernobyl accident, an area of 30 km around the plant was emptied of human life. A very efficient and cost-effective method for decontamination of the soil and the water is phytoremediation. In this method, the plants preferentially native plants which are more adaptive to the regional climate are well used. In this study, three types of plants including Alfalfa, Sunflower and wheat were used to Barium decontamination. Alfalfa and Sunflower were not grown good enough in Saghand mine’s soil sample. This can be due to non-native origin of these plants. But, Wheat rise in Saghand Uranium Mine soil sample was satisfactory. In this study, we have investigated the effect of 4 types of acids inclusive nitric acid, oxalic acid, acetic acid and citric acid on the removal efficiency of Barium by Wheat. Our results indicate the increase of Barium absorption in the presence of citric acid in the soil. In this paper, we will present our research and laboratory results.

Keywords: phytoremediation, heavy metal, wheat, soil

Procedia PDF Downloads 338
3268 Removal of Nickel and Vanadium from Crude Oil by Using Solvent Extraction and Electrochemical Process

Authors: Aliya Kurbanova, Nurlan Akhmetov, Abilmansur Yeshmuratov, Yerzhigit Sugurbekov, Ramiz Zulkharnay, Gulzat Demeuova, Murat Baisariyev, Gulnar Sugurbekova

Abstract:

Last decades crude oils have tended to become more challenge to process due to increasing amounts of sour and heavy crude oils. Some crude oils contain high vanadium and nickel content, for example Pavlodar LLP crude oil, which contains more than 23.09 g/t nickel and 58.59 g/t vanadium. In this study, we used two types of metal removing methods such as solvent extraction and electrochemical. The present research is conducted for comparative analysis of the deasphalting with organic solvents (cyclohexane, carbon tetrachloride, chloroform) and electrochemical method. Applying the cyclic voltametric analysis (CVA) and Inductively coupled plasma mass spectrometry (ICP MS), these mentioned types of metal extraction methods were compared in this paper. Maximum efficiency of deasphalting, with cyclohexane as the solvent, in Soxhlet extractor was 66.4% for nickel and 51.2% for vanadium content from crude oil. Percentage of Ni extraction reached maximum of approximately 55% by using the electrochemical method in electrolysis cell, which was developed for this research and consists of three sections: oil and protonating agent (EtOH) solution between two conducting membranes which divides it from two capsules of 10% sulfuric acid and two graphite electrodes which cover all three parts in electrical circuit. Ions of metals pass through membranes and remain in acid solutions. The best result was obtained in 60 minutes with ethanol to oil ratio 25% to 75% respectively, current fits into the range from 0.3A to 0.4A, voltage changed from 12.8V to 17.3V.

Keywords: demetallization, deasphalting, electrochemical removal, heavy metals, petroleum engineering, solvent extraction

Procedia PDF Downloads 331
3267 Phytoextraction of Some Heavy Metals from Artificially Polluted soil

Authors: Kareem Kalo Qassim, Hassan A. M. Mezori

Abstract:

The bioaccumulation of heavy metals in the environment has become a matter of public interest because it persists in the soil longer than other components of the biosphere. Bioremediation has emerged as the ideal alternative environmentally friendly and ecological sound technology for removing pollutants from polluted sites. Phytoremediation is an attractive remediation technology that makes use of plants to remove contaminants from the environment. A pot experiment was conducted under lath house conditions to evaluate the ability of plants (H. Annuus, S. Bicolor, and Z. Mays) to phytoextract heavy metals from artificially polluted soils by different concentrations of Cadmium, Lead, and Copper (0, 100, 200, 200 + EDTA). The Seed germination was influenced by the presence of heavy metals and inhibition increased by increasing the heavy metals concentration. A significant difference was observed in the effect of lead and copper. Generally, the length of root, shoot, and intact plant was reduced by all the concentrations used in the experiments. The root system was affected more than the shoot system of the same plants. All heavy metals concentrations caused a reduction in the dry weight and chlorophyll content of all tested plant species; the reduction was increased by increasing the concentration of all heavy metals, especially when EDTA was added. The Bioaccumulation of heavy metals concentration of all the tested plants increased by increasing the concentration. The highest accumulation of cadmium was (81.77mg kg⁻¹), and copper was ( 65.07 mg kg⁻¹) in S. bicolor, while lead-in H. annuus was (60.74 mg kg⁻¹). The order of accumulation of heavy metals in all the tested plant species in the root system and the intact plant was as follows: H. annuus ˃ S. bicolor ˃ Z. mays and shoot system was: H. annuus ˃ Z. mays ˃ S. bicolor. The highest TF of cadmium was (0.41) in H. annuus; lead was (0.72) in Z. mays and S. bicolor, and copper was (0.44) in Z. mays. The tested plant species varied in their response to the heavy metals and the inhibition was concentration depended. In general, the roots system was more affected by heavy metals toxicity than the shoots system; the roots system accumulated more heavy metals in the roots than the shoots system. The addition of EDTA to the last concentration of heavy metals facilitated the availably and absorption of heavy metals from the polluted soil by all tested plant species.

Keywords: phytoextyraction, phytoremediation, translocation, heavy metals, soil pollution

Procedia PDF Downloads 149
3266 Modeling the Road Pavement Dynamic Response Due to Heavy Vehicles Loadings and Kinematic Excitations General Asymmetries

Authors: Josua K. Junias, Fillemon N. Nangolo, Petrina T. Johaness

Abstract:

The deterioration of pavement can lead to the formation of potholes, which cause the wheels of a vehicle to experience unusual and uneven movement. In addition, improper loading practices of heavy vehicles can result in dynamic loading of the pavement due to the vehicle's response to the irregular movement caused by the potholes. Previous studies have only focused on the effects of either the road's uneven surface or the asymmetrical loading of the vehicle, but not both. This study aimed to model the pavement's dynamic response to heavy vehicles under different loading configurations and wheel movements. A sample of 225 cases with symmetrical and asymmetrical loading and kinematic movements was used, and 27 validated 3D pavement-vehicle interactive models were developed using SIMWISE 4D. The study found that the type of kinematic movement experienced by the heavy vehicle affects the pavement's dynamic loading, with eccentrically loaded, asymmetrically kinematic heavy vehicles having a statistically significant impact. The study also suggests that the mass of the vehicle's suspension system plays a role in the pavement's dynamic loading.

Keywords: eccentricities, pavement dynamic loading, vertical displacement dynamic response, heavy vehicles

Procedia PDF Downloads 73
3265 The Effect of Soil Treatment on Micro Metal Contents in Soil at UB Forest in Malang District, East Java, Indonesia

Authors: Adam Wiryawan

Abstract:

The levels of micro metal elements in the soil are influenced by soil management. In this research, the influence of soil management on the content of micro metal elements in the soil in the UB forest was studied. The metals studied include Zn, Mn, Cu, Fe, Cd, and Pb. Soil samples were taken from five sampling points on soil in the UB forest, both soils tilled and untilled. Before analysis, soil samples were digested with HNO₃ solution, and metal levels in soil samples were measured using atomic absorption spectrometry (AAS). The results of the analysis of metal content in the soil at the UB forest show that tilled land has consistently lower levels of metals like Zn, Mn, Cu, and Fe compared to untilled land. Meanwhile, Pb and Cd metals were not detected in all soil samples.

Keywords: soil treatment, metal content, forest soil, Malang District

Procedia PDF Downloads 16
3264 An Evaluation of Edible Plants for Remediation of Contaminated Soil- Can Edible Plants Be Used to Remove Heavy Metals on Soil?

Authors: Celia Marilia Martins, Sonia I. V. Guilundo, Iris M. Victorino, Antonio O. Quilambo

Abstract:

In Mozambique rapid industrialization (mining, aluminium and cement activities) and urbanization processes has led to the incorporation of heavy metals on soil, thus degrading not only the quality of the environment, but also affecting plants, animals and human healthy. Several methods have been used to remediate contaminated soils, but most of them are costly and difficult to get optimum results. Currently, phytoremediation is an effective and affordable technological solution used to extract or remove inactive metals from contaminated soil. Phytoremediation is the use of plants to clean up a contamination from soils, sediments, and water. This technology is environmental friendly and potentially cost effective. The present investigation summarised the potential of edible vegetable to grow under the high level of heavy metals such as lead and zinc. The plants used in these studies include Tomatoes, lettuce and Soya beans. The studies have shown that edible plants can be grown under the high level of heavy metals on the soil. Further investigations are identifying mechanisms used by plants to ensure a safe and sustainable use for remediation of contaminated soils by heavy metals.

Keywords: contaminated soil, edible plants, heavy metals, phytoremediation

Procedia PDF Downloads 377
3263 The Adsorption of Zinc Metal in Waste Water Using ZnCl2 Activated Pomegranate Peel

Authors: S. N. Turkmen, A. S. Kipcak, N. Tugrul, E. M. Derun, S. Piskin

Abstract:

Activated carbon is an amorphous carbon chain which has extremely extended surface area. High surface area of activated carbon is due to the porous structure. Activated carbon, using a variety of materials such as coal and cellulosic materials; can be obtained by both physical and chemical methods. The prepared activated carbon can be used for decolorize, deodorize and also can be used for removal of organic and non-organic pollution. In this study, pomegranate peel was subjected to 800W microwave power for 1 to 4 minutes. Also fresh pomegranate peel was used for the reference material. Then ZnCl2 was used for the chemical activation purpose. After the activation process, activated pomegranate peels were used for the adsorption of Zn metal (40 ppm) in the waste water. As a result of the adsorption experiments, removal of heavy metals ranged from 89% to 85%.

Keywords: activated carbon, adsorption, chemical activation, microwave, pomegranate peel

Procedia PDF Downloads 548
3262 Heavy Metals in the Water of Lakes in the 'Bory Tucholskie' National Park of Biosphere Reserve

Authors: Krzysztof Gwozdzinski, Janusz Mazur

Abstract:

Bory Tucholskie (Tucholskie Forest) is one of the largest pine forest complexes in Poland. It occupies approx. 3,000 square kilometers of Sandr in the Brda and Wda basin and the Tuchola Plain and the Charzykowskie Plain. Since 2010 it has transformed into The Bory Tucholskie Biosphere Reserve, according to the UNESCO decision. The area of the Bory Tucholskie National Park (BTNP), the park area, has been designated in 1996. There is little data on the presence of heavy metals in the Park's lakes. Concentration of heavy metals in the water of 19 lakes in the BTNP was examined. The lakes were divided into two groups: subglacial channel lakes of Struga Siedmiu Jezior (the Seven Lakes Stream) and other lakes. Heavy metals (transition metals) belong to d-block of elements. The part of these metals plays an important role in the function of living organisms as metalloproteins (enzymes, hemoproteins, vitamins, etc.). However, heavy metals are also typical; heavy metals are typical anthropogenic pollutants. Water samples were collected at the deepest points of lakes during spring and during summer stagnation. The analysis of metals was performed in an atomic absorption spectrophotometer Varian Spectra A300/400 in electric atomizer (GTA 96) in graphite cuvette. In the waters of the Seven Lakes Stream (Ostrowite, Zielone, Jelen, Belczak, Glowka, Plesno, Skrzynka, Mielnica) the increase in the concentration of the manganese and iron from outflow to inflow of Charzykowskie lake was found, while the concentration of copper (approx. 4 μg dm⁻³) and cadmium ( < 0.5 μg dm⁻³) was similar in all lakes. The concentration of the lead also varied within 2.1-3.6 μg dm⁻³. The concentration of nickel was approx. 3-fold higher in Ostrowite lake than other lakes of Struga. In turn the waters of the lakes Ostrowite, Jelen and Belczak were rich in zinc. The lowest level of heavy metals was observed in Zielone lake. In the second group of lakes, i.e., Krzywce Wielkie and Krzywce Male the heavy metal concentrations were lower than in the waters of Struga but higher than in oligotrophic lakes, i.e., Nierybno, Gluche, Kociol, Gacno Wielkie, Gacno Mae, Dlugie, Zabionek, and Sosnowek. The concentration of cadmium was below 0.5 μg dm⁻³ in all the studied lakes from this group. In the group of oligotrophic lakes the highest concentrations of metals such as manganese, iron, zinc and nickel in Gacno Male and Gacno Wielkie were observed. The high level of manganese in Sosnowek and Gacno Wielkie lakes was found. The lead level was also high in Nierybno lake and nickel in Gacno Wielkie lake. The lower level of heavy metals was in oligotrophic lakes such as Kociol, Dlugie, Zabionek and α-mesotrophic lake, Krzywce Wielkie. Generally, the level of heavy metals in studied lakes situated in Bory Tucholskie National Park was lower than in other lakes of Bory Tucholskie Biosphere Reserve.

Keywords: Bory Tucholskie Biosphere Reserve, Bory Tucholskie National Park, heavy metals, lakes

Procedia PDF Downloads 123
3261 Bacteriological and Mineral Analyses of Leachate Samples from Erifun Dumpsite, Ado-Ekiti, Ekiti State, Nigeria

Authors: Adebowale T. Odeyemi, Oluwafemi A. Ajenifuja

Abstract:

The leachate samples collected from Erifun dumpsite along Federal Polythenic road, Ado-Ekiti, Ekiti State, were subjected to bacteriological and mineral analyses. The bacteriological estimation and isolation were done using serial dilution and pour plating techniques. Antibiotic susceptibility test was done using agar disc diffusion technique. Atomic Absorption Spectophotometry method was used to analyze the heavy metal contents in the leachate samples. The bacterial and coliform counts ranged from 4.2 × 105 CFU/ml to 2.97 × 106 CFU/ml and 5.0 × 104 CFU/ml to 2.45 x 106 CFU/ml, respectively. The isolated bacteria and percentage of occurrence include Bacillus cereus (22%), Enterobacter aerogenes (18%), Staphylococcus aureus (16%), Proteus vulgaris (14%), Escherichia coli (14%), Bacillus licheniformis (12%) and Klebsiella aerogenes (4%). The mineral value ranged as follow; iron (21.30mg/L - 25.60mg/L), zinc (1.80mg/L - 5.60mg/L), copper (1.00mg/L - 2.60mg/L), chromium (0.50mg/L - 1.30mg/L), candium (0.20mg/L - 1.30mg/L), nickel (0.20mg/L - 0.80mg/L), lead (0.05mg/L-0.30mg/L), cobalt (0.03mg/L - 0.30mg/L) and in all samples manganese was not detected. The entire organisms isolated exhibited a high level of resistance to most of the antibiotics used. There is an urgent need for awareness to be created about the present situation of the leachate in Erifun, on the need for treatment of the nearby stream and other water sources before they can be used for drinking and other domestic use. In conclusion, a good method of waste disposal is required in those communities to prevent leachate formation, percolation, and runoff into water bodies during the raining season.

Keywords: antibiotic susceptibility, dumpsite, bacteriological analysis, heavy metal

Procedia PDF Downloads 142
3260 Optimization of Three-Layer Corrugated Metal Gasket by Using Finite Element Method

Authors: I Made Gatot Karohika, Shigeyuki Haruyama, Ken Kaminishi

Abstract:

In this study, we proposed a three-layer metal gasket with Al, Cu, and SUS304 as the material, respectively. A finite element method was employed to develop simulation solution and design of experiment (DOE). Taguchi method was used to analysis the effect of each parameter design and predicts optimal design of new 25A-size three layer corrugated metal gasket. The L18 orthogonal array of Taguchi method was applied to design experiment matrix for eight factors with three levels. Based on elastic mode and plastic mode, optimum design gasket is gasket with core metal SUS304, surface layer aluminum, p1 = 4.5 mm, p2 = 4.5 mm, p3 = 4 mm, Tg = 1.2 mm, R = 3.5 mm, h = 0.4 mm and Ts = 0.3 mm.

Keywords: contact width, contact stress, layer, metal gasket, corrugated, simulation

Procedia PDF Downloads 317
3259 Removal of Lead Ions from Aqueous Medium Using Devised Column Filters Packed with Chitosan from Trash Crab Shells: A Characterization Study

Authors: Charles Klein O. Gorit, Mark Tristan J. Quimque Jr., M. Cecilia V. Almeda, Concepcion M. Salvana

Abstract:

Chitosan is a promising biopolymer commonly found in crustacean shells that has plausible effects in water purification and wastewater treatment. It is a primary derivative of chitin and considered second of the most abundant biopolymer prior to cellulose. Morphological analysis had been done using Scanning Electron Microscopy with Energy Dispersive Microscopy (SEM/EDS), and due to its porous nature, it showcases a certain degree of porosity, hence, larger adsorption site of heavy metal. The Energy Dispersive Spectroscopy of the chitosan and ‘lead-bound’ chitosan, shows a relative increase of percent abundance of lead cation from 1.44% to 2.08% hence, adsorption occurs. Chitosan, as a nitrogenous polysaccharide, subjected to Fourier transform infrared spectroscopy (FTIR) analysis shows amide bands ranging from 1635.36 cm⁻¹ for amide 1 band and 1558.40 cm-1 for amide 2 band with NH stretching. For ‘lead-bound’ chitosan, the FT-IR analysis shows a change in peaks upon adsorption of Pb(II) cation. The spectrum shows broadening of OH and NH stretching band. Such observation can be attributed to the probability that the attachment of Pb(II) ions is in these functional groups. A column filter was devised with lead-bound chitosan to determine the zero point charge (pHzpc) of the biopolymer. The results show that at pH 8.34, below than the zpc level of literatures cited for lead which ranges from pH 4 to 7, favors the adsorption site of chitosan and its capability to adsorb traces amount of aqueous lead.

Keywords: chitosan, biopolymer, FT-IR, SEM, zero-point charge, heavy metal, lead ions

Procedia PDF Downloads 151
3258 Latest Finding about Copper Sulfide Biomineralization and General Features of Metal Sulfide Biominerals

Authors: Yeseul Park

Abstract:

Biopolymers produced by organisms highly contribute to the production of metal sulfides, both in extracellular and intracellular biomineralization. We discovered a new type of intracellular biomineral composed of copper sulfide in the periplasm of a sulfate-reducing bacterium. We suggest that the structural features of biomineral composed of 1-2 nm subgrains are based on biopolymer-based capping agents and an organic compartment. We further compare with other types of metal sulfide biominerals.

Keywords: biomineralization, copper sulfide, metal sulfide, biopolymer, capping agent

Procedia PDF Downloads 112
3257 Heavy Minerals Distribution in the Recent Stream Sediments of Diyala River Basin, Northeastern Iraq

Authors: Abbas R. Ali, Daroon Hasan Khorsheed

Abstract:

Twenty one samples of stream sediments were collected from the Diyala River Basin (DRB), which represent one of three major tributaries of the Tigris River at northeastern Iraq. This study is concerned with the heavy minerals (HM) analysis in the + 63μ m fraction of the Diyala River sediments, distribution pattern in the various river basin sectors, as well as comparing the present results with previous works.The metastable heavy minerals (epidote, staurolite, garnet) represent more than (30%) Whereas the ultrastable heavy minerals (pyroxene and amphibole) make only about (19 %). Opaques are present in high proportions reaching about (29%) as an average. The ultrastable (zircon, tourmaline, rutile) heavy minerals are the miner constituents (7%) in the sediments.According to the laboratory analytical data of heavy mineral distributions the studied sediments are derived from mafic and ultramafic rocks are found in northeastern Iraq that represent Walash – Nawpordan Series and Mawat complexes in Zagros zones. The presence of zircon and tourmaline in trace amounts may give an indication for the weak role of acidic rocks in the source area whereas the epidote group minerals give an indication for the role of metamorphic rocks.

Keywords: heavy minerals, mineral distribution, recent stream sediment, Diyala river, northeastern Iraq

Procedia PDF Downloads 519
3256 Study on the Heavy Oil Degradation Performance and Kinetics of Immobilized Bacteria on Modified Zeolite

Authors: Xiao L Dai, Wen X Wei, Shuo Wang, Jia B Li, Yan Wei

Abstract:

Heavy oil pollution generated from both natural and anthropogenic sources could cause significant damages to the ecological environment, due to the toxicity of some of its constituents. Nowadays, microbial remediation is becoming a promising technology to treat oil pollution owing to its low cost and prevention of secondary pollution; microorganisms are key players in the process. Compared to the free microorganisms, immobilized microorganisms possess several advantages, including high metabolic activity rates, strong resistance to toxic chemicals and natural competition with the indigenous microorganisms, and effective resistance to washing away (in open water system). Many immobilized microorganisms have been successfully used for bioremediation of heavy oil pollution. Considering the broad choices, low cost, simple process, large specific surface area and less impact on microbial activity, modified zeolite were selected as a bio-carrier for bacteria immobilization. Three strains of heavy oil-degrading bacteria Bacillus sp. DL-13, Brevibacillus sp. DL-1 and Acinetobacter sp. DL-34 were immobilized on the modified zeolite under mild conditions, and the bacterial load (bacteria /modified zeolite) was 1.12 mg/g, 1.11 mg/g, and 1.13 mg/g, respectively. SEM results showed that the bacteria mainly adsorbed on the surface or punctured in the void of modified zeolite. The heavy oil degradation efficiency of immobilized bacteria was 62.96%, higher than that of the free bacteria (59.83%). The heavy oil degradation process of immobilized bacteria accords with the first-order reaction equation, and the reaction rate constant is 0.1483 d⁻¹, which was significantly higher than the free bacteria (0.1123 d⁻¹), suggesting that the immobilized bacteria can rapidly start up the heavy oil degradation and has a high activity of heavy oil degradation. The results suggested that immobilized bacteria are promising technology for bioremediation of oil pollution.

Keywords: heavy oil pollution, microbial remediation, modified zeolite, immobilized bacteria

Procedia PDF Downloads 150
3255 Comparison of Concentration of Heavy Metals in PM2.5 Analyzed in Three Different Global Research Institutions Using X-Ray Fluorescence

Authors: Sungroul Kim, Yeonjin Kim

Abstract:

This study was conducted by comparing the concentrations of heavy metals analyzed from the same samples with three X-Ray fluorescence (XRF) spectrometer in three different global research institutions, including PAN (A Branch of Malvern Panalytical, Seoul, South Korea), RTI (Research Triangle Institute, NC, U.S.A), and aerosol laboratory in Harvard University, Boston, U.S.A. To achieve our research objectives, the indoor air filter samples were collected at homes (n=24) of adults or child asthmatics then analyzed in PAN followed by Harvard University and RTI consecutively. Descriptive statistics were conducted for data comparison as well as correlation and simple regression analysis using R version 4.0.3. As a result, detection rates of most heavy metals analyzed in three institutions were about 90%. Of the 25 elements commonly analyzed among those institutions, 16 elements showed an R² (coefficient of determination) of 0.7 or higher (10 components were 0.9 or higher). The findings of this study demonstrated that XRF was a useful device ensuring reproducibility and compatibility for measuring heavy metals in PM2.5 collected from indoor air of asthmatics’ home.

Keywords: heavy metals, indoor air quality, PM2.5, X-ray fluorescence

Procedia PDF Downloads 200
3254 Design of Orientation-Free Handler and Fuzzy Controller for Wire-Driven Heavy Object Lifting System

Authors: Bo-Wei Song, Yun-Jung Lee

Abstract:

This paper presents an intention interface and controller for a wire-driven heavy object lifting system that assists the operator with moving a heavy object. The handler is designed to allow a comfortable working posture for the operator. Plus, as a human assistive system, the operator is involved in the control loop, where a fuzzy control system is used to consider the human control characteristics. The effectiveness and performance of the proposed system are proved by experiments.

Keywords: fuzzy controller, handler design, heavy object lifting system, human-assistive device, human-in-the-loop system

Procedia PDF Downloads 515
3253 Analyzing the Water Quality of Settling Pond after Revegetation at Ex-Mining Area

Authors: Iis Diatin, Yani Hadiroseyani, Muhammad Mujahid, Ahmad Teduh, Juang R. Matangaran

Abstract:

One of silica quarry managed by a mining company is located at Sukabumi District of West Java Province Indonesia with an area of approximately 70 hectares. Since 2013 this company stopped the mining activities. The company tries to restore the ecosystem post-mining with rehabilitation activities such as reclamation and revegetation of their ex-mining area. After three years planting the area the trees grown well. Not only planting some tree species but also some cover crop has covered the soil surface. There are two settling ponds located in the middle of the ex-mining area. Those settling pond were built in order to prevent the effect of acid mine drainage. Acid mine drainage (AMD) or the acidic water is created when sulphide minerals are exposed to air and water and through a natural chemical reaction produce sulphuric acid. AMD is the main pollutant at the open pit mining. The objective of the research was to analyze the effect of revegetation on water quality change at the settling pond. The physical and chemical of water quality parameter were measured and analysed at site and at the laboratory. Physical parameter such as temperature, turbidity and total organic matter were analyse. Also heavy metal and some other chemical parameter such as dissolved oxygen, alkalinity, pH, total ammonia nitrogen, nitrate and nitrite were analysed. The result showed that the acidity of first settling pond was higher than that of the second settling pond. Both settling pond water’s contained heavy metal. The turbidity and total organic matter were the parameter of water quality which become better after revegetation.

Keywords: acid mine drainage, ex-mining area, revegetation, settling pond, water quality

Procedia PDF Downloads 304
3252 Impact on Soil Irrigated with Municipal and Industrial Wastewater from Korangi Drain near IoBM, Karachi

Authors: Farhan Ali

Abstract:

Use of wastewater for growing vegetables has become a common practice around big cities. Wastewater contains organic material and inorganic elements essential for plant growth but also contain heavy metals, which may be lethal for animals and humans if their concentration increases than permissible limit. To monitor this situation, a survey was conducted to ascertain the addition of heavy metals into agricultural fields through wastewater irrigation and their translocation in to the edible parts of the vegetables. The study highlighted that there is a large accumulation of heavy metals in the soil, which is irrigated with industrial wastewater Laden and people consume vegetables grown in soil irrigated with sewage water to absorb a large amount of these metals. This accumulation of heavy metals in food cause possible health risks for the consumer. Regular monitoring of the levels of pathogens and heavy metals from the waste water drain which effluent are used for growing vegetables and other foodstuffs is essential to monitor excessive accumulation of these metals in the food chain.

Keywords: pathogens, wastewater, concentration, effluent

Procedia PDF Downloads 298
3251 Variability of Metal Composition and Concentrations in Road Dust in the Urban Environment

Authors: Sandya Mummullage, Prasanna Egodawatta, Ashantha Goonetilleke, Godwin A. Ayoko

Abstract:

Urban road dust comprises of a range of potentially toxic metal elements and plays a critical role in degrading urban receiving water quality. Hence, assessing the metal composition and concentration in urban road dust is a high priority. This study investigated the variability of metal composition and concentrations in road dust in four different urban land uses in Gold Coast, Australia. Samples from 16 road sites were collected and tested for selected 12 metal species. The data set was analyzed using both univariate and multivariate techniques. Outcomes of the data analysis revealed that the metal concentrations inroad dust differs considerably within and between different land uses. Iron, aluminum, magnesium and zinc are the most abundant in urban land uses. It was also noted that metal species such as titanium, nickel, copper, and zinc have the highest concentrations in industrial land use. The study outcomes revealed that soil and traffic related sources as key sources of metals deposited on road surfaces.

Keywords: metals build-up, pollutant accumulation, stormwater quality, urban road dust

Procedia PDF Downloads 293
3250 Biosorption of Ni (II) Using Alkaline-Treated Rice Husk

Authors: Khanom Simarani

Abstract:

Rice husk has been widely reported as a good sorbent for heavy metals. Pre treatment of rice husk minimizes cellulose crystallinity and increases the surface area thus ensuring better adsorption capacity. Commercial base and natural base-treated rice husk were used to investigate the potential of Ni(II) adsorption from synthetic solutions and waste water in batch systems. Effects of process variables such as pH, contact time, adsorbent dose, initial Ni (II) concentration were studied. Optimum Ni (II) adsorption was observed at pH 6 within 60 min of contact time. Experimental data showed increased amount of adsorbed Ni(II) with increasing adsorbent dose and decreased percent of adsorption with increasing initial Ni(II) concentration. Kinetic isotherms (Langmuir, Freundlich) were also applied. Biosorption mechanism of rice husk was analyzed using SEM/EDS, FT-IR, and XRD. The results revealed that natural base produced from agroindustrial waste could be used as efficient as commercial bases during pre treatment rice husk in removing Ni(II) from waste waters within 15 min.

Keywords: Nickel removal, adsorbent, heavy metal, biomass

Procedia PDF Downloads 296
3249 Application of Recycled Paper Mill Sludge on the Growth of Khaya Senegalensis and Its Effect on Soil Properties, Nutrients and Heavy Metals

Authors: A. Rosazlin Abdullah, I. Che Fauziah, K. Wan Rasidah, A. B. Rosenani

Abstract:

The paper industry performs an essential role in the global economy of the world. A study was conducted on the paper mill sludge that is applied on the Khaya senegalensis for 1 year planning period at University Agriculture Park, Puchong, Selangor, Malaysia to determine the growth of Khaya senegalensis, soil properties, nutrients concentrations and effects on the status of heavy metals. Paper Mill Sludge (PMS) and composted Recycled Paper Mill Sludge (RPMS) were used with different rates of nitrogen (0, 150, 300 and 600 kg ha-1) at the ratio of 1:1 (Recycled Paper Mill Sludge (RPMS) : Empty Fruit Brunch (EFB). The growth parameters were measured twice a month for 1 year. Plant nutrients and heavy metal uptake were determined. The paper mill sludge has the potential to be a supplementary N fertilizer as well as a soil amendment. The application of RPMS with N, significantly contributed to the improvement in plant growth parameters such as plant height (4.24 m), basal diameter (10.30 cm), total plant biomass and improved soil physical and chemical properties. The pH, EC, available P and total C in soil were varied among the treatments during the planting period. The treatments with raw and RPM compost had higher pH values than those applied with inorganic fertilizer and control. Nevertheless, there was no salinity problem recorded during the planting period and available P in soil treated with raw and RPMS compost was higher than the control plots that reflects the mineralization of organic P from the decomposition of pulp sludge. The weight of the free and occluded light fractions of carbon concentration was significantly higher in the soils treated with raw and RPMS compost. The application of raw and composted RPMS gave significantly higher concentration of the heavy metals, but the total concentrations of heavy metals in the soils were below the critical values. Hence, the paper mill sludge can be successfully used as soil amendment in acidic soil without any serious threat. The use of paper mill sludge for the soil fertility, shows improvement in land application signifies a unique opportunity to recycle sludge back to the land to alleviate the potential waste management problem.

Keywords: growth, heavy metals, nutrients uptake, production, waste management

Procedia PDF Downloads 368