Search results for: gradient descent
528 Efficiently Silicon Metasurfaces at Visible Light
Authors: Juntao Li
Abstract:
The metasurfaces for beam deflecting with gradient silicon posts in the square lattices were fabricated on the thin film crystal silicon with quartz substrate. By using the crystals silicon with high refractive index and high transmission to control the phase over 2π coverage, we demonstrated the polarization independent beam deflecting at wavelength of 532nm with 45% transmission in experiment and 70% in simulation into the desired angle. This simulation efficiency is almost close to the TiO2 metasurfaces but has higher refractive index and lower aspect ratio to reduce fabrication complexity. The result can extend the application of silicon metalsurfaces from 700 nm to 500 nm hence open a new way to use metasurfaces efficiently in visible light regime.Keywords: metasurfaces, crystal silicon, light deflection, visible light
Procedia PDF Downloads 283527 Optimization Based Design of Decelerating Duct for Pumpjets
Authors: Mustafa Sengul, Enes Sahin, Sertac Arslan
Abstract:
Pumpjets are one of the marine propulsion systems frequently used in underwater vehicles nowadays. The reasons for frequent use of pumpjet as a propulsion system are that it has higher relative efficiency at high speeds, better cavitation, and acoustic performance than its rivals. Pumpjets are composed of rotor, stator, and duct, and there are two different types of pumpjet configurations depending on the desired hydrodynamic characteristic, which are with accelerating and decelerating duct. Pumpjet with an accelerating channel is used at cargo ships where it works at low speeds and high loading conditions. The working principle of this type of pumpjet is to maximize the thrust by reducing the pressure of the fluid through the channel and throwing the fluid out from the channel with high momentum. On the other hand, for decelerating ducted pumpjets, the main consideration is to prevent the occurrence of the cavitation phenomenon by increasing the pressure of the fluid about the rotor region. By postponing the cavitation, acoustic noise naturally falls down, so decelerating ducted systems are used at noise-sensitive vehicle systems where acoustic performance is vital. Therefore, duct design becomes a crucial step during pumpjet design. This study, it is aimed to optimize the duct geometry of a decelerating ducted pumpjet for a highly speed underwater vehicle by using proper optimization tools. The target output of this optimization process is to obtain a duct design that maximizes fluid pressure around the rotor region to prevent from cavitation and minimizes drag force. There are two main optimization techniques that could be utilized for this process which are parameter-based optimization and gradient-based optimization. While parameter-based algorithm offers more major changes in interested geometry, which makes user to get close desired geometry, gradient-based algorithm deals with minor local changes in geometry. In parameter-based optimization, the geometry should be parameterized first. Then, by defining upper and lower limits for these parameters, design space is created. Finally, by proper optimization code and analysis, optimum geometry is obtained from this design space. For this duct optimization study, a commercial codedparameter-based optimization algorithm is used. To parameterize the geometry, duct is represented with b-spline curves and control points. These control points have x and y coordinates limits. By regarding these limits, design space is generated.Keywords: pumpjet, decelerating duct design, optimization, underwater vehicles, cavitation, drag minimization
Procedia PDF Downloads 209526 Fracture Behaviour of Functionally Graded Materials Using Graded Finite Elements
Authors: Mohamad Molavi Nojumi, Xiaodong Wang
Abstract:
In this research fracture behaviour of linear elastic isotropic functionally graded materials (FGMs) are investigated using modified finite element method (FEM). FGMs are advantageous because they enhance the bonding strength of two incompatible materials, and reduce the residual stress and thermal stress. Ceramic/metals are a main type of FGMs. Ceramic materials are brittle. So, there is high possibility of crack existence during fabrication or in-service loading. In addition, damage analysis is necessary for a safe and efficient design. FEM is a strong numerical tool for analyzing complicated problems. Thus, FEM is used to investigate the fracture behaviour of FGMs. Here an accurate 9-node biquadratic quadrilateral graded element is proposed in which the influence of the variation of material properties is considered at the element level. The stiffness matrix of graded elements is obtained using the principle of minimum potential energy. The implementation of graded elements prevents the forced sudden jump of material properties in traditional finite elements for modelling FGMs. Numerical results are verified with existing solutions. Different numerical simulations are carried out to model stationary crack problems in nonhomogeneous plates. In these simulations, material variation is supposed to happen in directions perpendicular and parallel to the crack line. Two special linear and exponential functions have been utilized to model the material gradient as they are mostly discussed in literature. Also, various sizes of the crack length are considered. A major difference in the fracture behaviour of FGMs and homogeneous materials is related to the break of material symmetry. For example, when the material gradation direction is normal to the crack line, even under applying the mode I loading there exists coupled modes I and II of fracture which originates from the induced shear in the model. Therefore, the necessity of the proper modelling of the material variation should be considered in capturing the fracture behaviour of FGMs specially, when the material gradient index is high. Fracture properties such as mode I and mode II stress intensity factors (SIFs), energy release rates, and field variables near the crack tip are investigated and compared with results obtained using conventional homogeneous elements. It is revealed that graded elements provide higher accuracy with less effort in comparison with conventional homogeneous elements.Keywords: finite element, fracture mechanics, functionally graded materials, graded element
Procedia PDF Downloads 175525 Isolation, Structure Elucidation, and Biological Evaluation of Acetylated Flavonoid Glycosides from Centaurium spicatum
Authors: Abdelaaty A. Shahat, Mansour S. Alsaid
Abstract:
Four Acetylated flavonol glycosides were isolated from Centaurium spicatum (L.) Fritsch (Gentianaceae). Structure elucidation, especially the localization of the acetyl groups, and complete 1H and 13C NMR assignments of these biologically active compounds were carried out using one- and two-dimensional NMR methods, including CNMR, DEPT-135 and DEPT-90 and gradient-assisted experiments such as DQF-COSY, TOCSY, HSQC and HMBC experiments. The antioxidant activities of the new acetylated flavonoid glycosides using DPPH• assay were determined. The compounds tested showed a good DPPH• activity compared with control, but their activity was lower than that of their corresponding aglycone, quercetin.Keywords: Centaurium spicatum, flavonoids, biological activity, isolation, glycosides
Procedia PDF Downloads 408524 Flow Field Optimization for Proton Exchange Membrane Fuel Cells
Authors: Xiao-Dong Wang, Wei-Mon Yan
Abstract:
The flow field design in the bipolar plates affects the performance of the proton exchange membrane (PEM) fuel cell. This work adopted a combined optimization procedure, including a simplified conjugate-gradient method and a completely three-dimensional, two-phase, non-isothermal fuel cell model, to look for optimal flow field design for a single serpentine fuel cell of size 9×9 mm with five channels. For the direct solution, the two-fluid method was adopted to incorporate the heat effects using energy equations for entire cells. The model assumes that the system is steady; the inlet reactants are ideal gases; the flow is laminar; and the porous layers such as the diffusion layer, catalyst layer and PEM are isotropic. The model includes continuity, momentum and species equations for gaseous species, liquid water transport equations in the channels, gas diffusion layers, and catalyst layers, water transport equation in the membrane, electron and proton transport equations. The Bulter-Volumer equation was used to describe electrochemical reactions in the catalyst layers. The cell output power density Pcell is maximized subjected to an optimal set of channel heights, H1-H5, and channel widths, W2-W5. The basic case with all channel heights and widths set at 1 mm yields a Pcell=7260 Wm-2. The optimal design displays a tapered characteristic for channels 1, 3 and 4, and a diverging characteristic in height for channels 2 and 5, producing a Pcell=8894 Wm-2, about 22.5% increment. The reduced channel heights of channels 2-4 significantly increase the sub-rib convection and widths for effectively removing liquid water and oxygen transport in gas diffusion layer. The final diverging channel minimizes the leakage of fuel to outlet via sub-rib convection from channel 4 to channel 5. Near-optimal design without huge loss in cell performance but is easily manufactured is tested. The use of a straight, final channel of 0.1 mm height has led to 7.37% power loss, while the design with all channel widths to be 1 mm with optimal channel heights obtained above yields only 1.68% loss of current density. The presence of a final, diverging channel has greater impact on cell performance than the fine adjustment of channel width at the simulation conditions set herein studied.Keywords: optimization, flow field design, simplified conjugate-gradient method, serpentine flow field, sub-rib convection
Procedia PDF Downloads 297523 Deep Reinforcement Learning Approach for Trading Automation in The Stock Market
Authors: Taylan Kabbani, Ekrem Duman
Abstract:
The design of adaptive systems that take advantage of financial markets while reducing the risk can bring more stagnant wealth into the global market. However, most efforts made to generate successful deals in trading financial assets rely on Supervised Learning (SL), which suffered from various limitations. Deep Reinforcement Learning (DRL) offers to solve these drawbacks of SL approaches by combining the financial assets price "prediction" step and the "allocation" step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. In this paper, a continuous action space approach is adopted to give the trading agent the ability to gradually adjust the portfolio's positions with each time step (dynamically re-allocate investments), resulting in better agent-environment interaction and faster convergence of the learning process. In addition, the approach supports the managing of a portfolio with several assets instead of a single one. This work represents a novel DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem, or what is referred to as The Agent Environment as Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. More specifically, we design an environment that simulates the real-world trading process by augmenting the state representation with ten different technical indicators and sentiment analysis of news articles for each stock. We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, which can learn policies in high-dimensional and continuous action spaces like those typically found in the stock market environment. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of deep reinforcement learning in financial markets over other types of machine learning such as supervised learning and proves its credibility and advantages of strategic decision-making.Keywords: the stock market, deep reinforcement learning, MDP, twin delayed deep deterministic policy gradient, sentiment analysis, technical indicators, autonomous agent
Procedia PDF Downloads 178522 Unveiling Comorbidities in Irritable Bowel Syndrome: A UK BioBank Study utilizing Supervised Machine Learning
Authors: Uswah Ahmad Khan, Muhammad Moazam Fraz, Humayoon Shafique Satti, Qasim Aziz
Abstract:
Approximately 10-14% of the global population experiences a functional disorder known as irritable bowel syndrome (IBS). The disorder is defined by persistent abdominal pain and an irregular bowel pattern. IBS significantly impairs work productivity and disrupts patients' daily lives and activities. Although IBS is widespread, there is still an incomplete understanding of its underlying pathophysiology. This study aims to help characterize the phenotype of IBS patients by differentiating the comorbidities found in IBS patients from those in non-IBS patients using machine learning algorithms. In this study, we extracted samples coding for IBS from the UK BioBank cohort and randomly selected patients without a code for IBS to create a total sample size of 18,000. We selected the codes for comorbidities of these cases from 2 years before and after their IBS diagnosis and compared them to the comorbidities in the non-IBS cohort. Machine learning models, including Decision Trees, Gradient Boosting, Support Vector Machine (SVM), AdaBoost, Logistic Regression, and XGBoost, were employed to assess their accuracy in predicting IBS. The most accurate model was then chosen to identify the features associated with IBS. In our case, we used XGBoost feature importance as a feature selection method. We applied different models to the top 10% of features, which numbered 50. Gradient Boosting, Logistic Regression and XGBoost algorithms yielded a diagnosis of IBS with an optimal accuracy of 71.08%, 71.427%, and 71.53%, respectively. Among the comorbidities most closely associated with IBS included gut diseases (Haemorrhoids, diverticular diseases), atopic conditions(asthma), and psychiatric comorbidities (depressive episodes or disorder, anxiety). This finding emphasizes the need for a comprehensive approach when evaluating the phenotype of IBS, suggesting the possibility of identifying new subsets of IBS rather than relying solely on the conventional classification based on stool type. Additionally, our study demonstrates the potential of machine learning algorithms in predicting the development of IBS based on comorbidities, which may enhance diagnosis and facilitate better management of modifiable risk factors for IBS. Further research is necessary to confirm our findings and establish cause and effect. Alternative feature selection methods and even larger and more diverse datasets may lead to more accurate classification models. Despite these limitations, our findings highlight the effectiveness of Logistic Regression and XGBoost in predicting IBS diagnosis.Keywords: comorbidities, disease association, irritable bowel syndrome (IBS), predictive analytics
Procedia PDF Downloads 119521 Factors Associated With Poor Glycaemic Control Among Patients With Type 2 Diabetes at Gatundu Level 5 Hospital. Kiambu County, Kenya: Key Lessons and Way Forward
Authors: Carolyne Ndungu, Wesley Too, Diana Kassaman
Abstract:
Diabetes is a global public health problem with an increasing morbidity and mortality rate across the globe. It is reported that 422 million people worldwide have diabetes with type 2 diabetes more common in people of African descent. Whilst prevalence of diabetes is four times more than it was in the last three decades, making it the world's ninth greatest cause of mortality, treatment of complications resulting from poor glycemic control is still high, contributing to poverty level in sub-Saharan. Poor treatment adherence has also been identified as a major contributing factor poor glycemic control among diabetic patients and still remains a significant challenge especially among patients living in rural Kenya. This study therefore seeks to identify gaps, barriers and challenges towards medication non-adherence among diabetic patients on follow-up at Kiambu County Referral Hospital, Kenya. Methods: A cross- sectional descriptive study was carried out at Gatundu Level five Hospital in Kiambu County. The study population consisted of adult patients with type two diabetes mellitus (T2DM) on follow up, at the Diabetes clinic between the month of June to July 2022. Systematic sampling of 200 participants was carried out. Ethical approvals from relevant authorities were done and ethical aspects of the study were also observed. Data analysis is ongoing using logistic regression analysis. Results, recommendations -contribution of this study will be highlighted within the next one month.Keywords: adherence, diabetes, medication, Kenya
Procedia PDF Downloads 134520 Reliability Based Topology Optimization: An Efficient Method for Material Uncertainty
Authors: Mehdi Jalalpour, Mazdak Tootkaboni
Abstract:
We present a computationally efficient method for reliability-based topology optimization under material properties uncertainty, which is assumed to be lognormally distributed and correlated within the domain. Computational efficiency is achieved through estimating the response statistics with stochastic perturbation of second order, using these statistics to fit an appropriate distribution that follows the empirical distribution of the response, and employing an efficient gradient-based optimizer. The proposed algorithm is utilized for design of new structures and the changes in the optimized topology is discussed for various levels of target reliability and correlation strength. Predictions were verified thorough comparison with results obtained using Monte Carlo simulation.Keywords: material uncertainty, stochastic perturbation, structural reliability, topology optimization
Procedia PDF Downloads 606519 Automatic Differentiation of Ultrasonic Images of Cystic and Solid Breast Lesions
Authors: Dmitry V. Pasynkov, Ivan A. Egoshin, Alexey A. Kolchev, Ivan V. Kliouchkin
Abstract:
In most cases, typical cysts are easily recognized at ultrasonography. The specificity of this method for typical cysts reaches 98%, and it is usually considered as gold standard for typical cyst diagnosis. However, it is necessary to have all the following features to conclude the typical cyst: clear margin, the absence of internal echoes and dorsal acoustic enhancement. At the same time, not every breast cyst is typical. It is especially characteristic for protein-contained cysts that may have significant internal echoes. On the other hand, some solid lesions (predominantly malignant) may have cystic appearance and may be falsely accepted as cysts. Therefore we tried to develop the automatic method of cystic and solid breast lesions differentiation. Materials and methods. The input data were the ultrasonography digital images with the 256-gradations of gray color (Medison SA8000SE, Siemens X150, Esaote MyLab C). Identification of the lesion on these images was performed in two steps. On the first one, the region of interest (or contour of lesion) was searched and selected. Selection of such region is carried out using the sigmoid filter where the threshold is calculated according to the empirical distribution function of the image brightness and, if necessary, it was corrected according to the average brightness of the image points which have the highest gradient of brightness. At the second step, the identification of the selected region to one of lesion groups by its statistical characteristics of brightness distribution was made. The following characteristics were used: entropy, coefficients of the linear and polynomial regression, quantiles of different orders, an average gradient of brightness, etc. For determination of decisive criterion of belonging to one of lesion groups (cystic or solid) the training set of these characteristics of brightness distribution separately for benign and malignant lesions were received. To test our approach we used a set of 217 ultrasonic images of 107 cystic (including 53 atypical, difficult for bare eye differentiation) and 110 solid lesions. All lesions were cytologically and/or histologically confirmed. Visual identification was performed by trained specialist in breast ultrasonography. Results. Our system correctly distinguished all (107, 100%) typical cysts, 107 of 110 (97.3%) solid lesions and 50 of 53 (94.3%) atypical cysts. On the contrary, with the bare eye it was possible to identify correctly all (107, 100%) typical cysts, 96 of 110 (87.3%) solid lesions and 32 of 53 (60.4%) atypical cysts. Conclusion. Automatic approach significantly surpasses the visual assessment performed by trained specialist. The difference is especially large for atypical cysts and hypoechoic solid lesions with the clear margin. This data may have a clinical significance.Keywords: breast cyst, breast solid lesion, differentiation, ultrasonography
Procedia PDF Downloads 272518 Safety and Feasibility of Distal Radial Balloon Aortic Valvuloplasty - The DR-BAV Study
Authors: Alexandru Achim, Tamás Szűcsborus, Viktor Sasi, Ferenc Nagy, Zoltán Jambrik, Attila Nemes, Albert Varga, Călin Homorodean, Olivier F. Bertrand, Zoltán Ruzsa
Abstract:
Aim: Our study aimed to establish the safety and the technical success of distal radial access for balloon aortic valvuloplasty (DR-BAV). The secondary objective was to determine the effectiveness and appropriate role of DR-BAV within half year follow-up. Methods: Clinical and angiographic data from 32 consecutive patients with symptomatic aortic stenosis were evaluated in a prospective pilot single-center study. Between 2020 and 2021, the patients were treated utilizing dual distal radial access with 6-10F compatible balloons. The efficacy endpoint was divided into technical success (successful valvuloplasty balloon inflation at the aortic valve and absence of intra- or periprocedural major complications), hemodynamic success (a reduction of the mean invasive gradient >30%), and clinical success (an improvement of at least one clinical category in the NYHA classification). The safety endpoints were vascular complications (major and minor Valve Academic Research Consortium (VARC)-2 bleeding, diminished or lost arterial pulse or the presence of any pseudo-aneurysm or arteriovenous fistula during the clinical follow-up) and major adverse events, MAEs (the composite of death, stroke, myocardial infarction, and urgent major aortic valve replacement or implantation during the hospital stay and or at one-month follow-up). Results: 32 patients (40 % male, mean age 80 ± 8,5) with severe aortic valve stenosis were included in the study and 4 patients were excluded. Technical success was achieved in all patients (100%). Hemodynamic success was achieved in 30 patients (93,75%). Invasive max and mean gradients were reduced from 73±22 mm Hg and 49±22 mm Hg to 49±19 mm Hg and 20±13 mm Hg, respectively (p = <.001). Clinical success was achieved in 29 patients (90,6%). In total, no major adverse cardiac or cerebrovascular event nor vascular complications (according to VARC 2 criteria) occurred during the intervention. All-cause death at 6 months was 12%. Conclusion: According to our study, dual distal radial artery access is a safe and effective option for balloon aortic valvuloplasty in patients with severe aortic valve stenosis and can be performed in all patients with sufficient lumen diameter. Future randomized studies are warranted to investigate whether this technique is superior to other approaches.Keywords: mean invasive gradient, distal radial access for balloon aortic valvuloplasty (DR-BAV), aortic valve stenosis, pseudo-aneurysm, arteriovenous fistula, valve academic research consortium (VARC)-2
Procedia PDF Downloads 94517 An Evolutionary Approach for QAOA for Max-Cut
Authors: Francesca Schiavello
Abstract:
This work aims to create a hybrid algorithm, combining Quantum Approximate Optimization Algorithm (QAOA) with an Evolutionary Algorithm (EA) in the place of traditional gradient based optimization processes. QAOA’s were first introduced in 2014, where, at the time, their algorithm performed better than the traditional best known classical algorithm for Max-cut graphs. Whilst classical algorithms have improved since then and have returned to being faster and more efficient, this was a huge milestone for quantum computing, and their work is often used as a benchmarking tool and a foundational tool to explore variants of QAOA’s. This, alongside with other famous algorithms like Grover’s or Shor’s, highlights to the world the potential that quantum computing holds. It also presents the reality of a real quantum advantage where, if the hardware continues to improve, this could constitute a revolutionary era. Given that the hardware is not there yet, many scientists are working on the software side of things in the hopes of future progress. Some of the major limitations holding back quantum computing are the quality of qubits and the noisy interference they generate in creating solutions, the barren plateaus that effectively hinder the optimization search in the latent space, and the availability of number of qubits limiting the scale of the problem that can be solved. These three issues are intertwined and are part of the motivation for using EAs in this work. Firstly, EAs are not based on gradient or linear optimization methods for the search in the latent space, and because of their freedom from gradients, they should suffer less from barren plateaus. Secondly, given that this algorithm performs a search in the solution space through a population of solutions, it can also be parallelized to speed up the search and optimization problem. The evaluation of the cost function, like in many other algorithms, is notoriously slow, and the ability to parallelize it can drastically improve the competitiveness of QAOA’s with respect to purely classical algorithms. Thirdly, because of the nature and structure of EA’s, solutions can be carried forward in time, making them more robust to noise and uncertainty. Preliminary results show that the EA algorithm attached to QAOA can perform on par with the traditional QAOA with a Cobyla optimizer, which is a linear based method, and in some instances, it can even create a better Max-Cut. Whilst the final objective of the work is to create an algorithm that can consistently beat the original QAOA, or its variants, due to either speedups or quality of the solution, this initial result is promising and show the potential of EAs in this field. Further tests need to be performed on an array of different graphs with the parallelization aspect of the work commencing in October 2023 and tests on real hardware scheduled for early 2024.Keywords: evolutionary algorithm, max cut, parallel simulation, quantum optimization
Procedia PDF Downloads 60516 Prismatic Bifurcation Study of a Functionally Graded Dielectric Elastomeric Tube Using Linearized Incremental Theory of Deformations
Authors: Sanjeet Patra, Soham Roychowdhury
Abstract:
In recent times, functionally graded dielectric elastomer (FGDE) has gained significant attention within the realm of soft actuation due to its dual capacity to exert highly localized stresses while maintaining its compliant characteristics on application of electro-mechanical loading. Nevertheless, the full potential of dielectric elastomer (DE) has not been fully explored due to their susceptibility to instabilities when subjected to electro-mechanical loads. As a result, study and analysis of such instabilities becomes crucial for the design and realization of dielectric actuators. Prismatic bifurcation is a type of instability that has been recognized in a DE tube. Though several studies have reported on the analysis for prismatic bifurcation in an isotropic DE tube, there is an insufficiency in studies related to prismatic bifurcation of FGDE tubes. Therefore, this paper aims to determine the onset of prismatic bifurcations on an incompressible FGDE tube when subjected to electrical loading across the thickness of the tube and internal pressurization. The analysis has been conducted by imposing two axial boundary conditions on the tube, specifically axially free ends and axially clamped ends. Additionally, the rigidity modulus of the tube has been linearly graded in the direction of thickness where the inner surface of the tube has a lower stiffness than the outer surface. The static equilibrium equations for deformation of the axisymmetric tube are derived and solved using numerical technique. The condition for prismatic bifurcation of the axisymmetric static equilibrium solutions has been obtained by using the linearized incremental constitutive equations. Two modes of bifurcations, corresponding to two different non-circular cross-sectional geometries, have been explored in this study. The outcomes reveal that the FGDE tubes experiences prismatic bifurcation before the Hessian criterion of failure is satisfied. It is observed that the lower mode of bifurcation can be triggered at a lower critical voltage as compared to the higher mode of bifurcation. Furthermore, the tubes with larger stiffness gradient require higher critical voltages for triggering the bifurcation. Moreover, with the increase in stiffness gradient, a linear variation of the critical voltage is observed with the thickness of the tube. It has been found that on applying internal pressure to a tube with low thickness, the tube becomes less susceptible to bifurcations. A thicker tube with axially free end is found to be more stable than the axially clamped end tube at higher mode of bifurcation.Keywords: critical voltage, functionally graded dielectric elastomer, linearized incremental approach, modulus of rigidity, prismatic bifurcation
Procedia PDF Downloads 80515 Elastic and Thermal Behaviour of LaX (X= Cd, Hg) Intermetallics: A DFT Study
Authors: Gitanjali Pagare, Hansa Devi, S. P. Sanyal
Abstract:
Full-potential linearized augmented plane wave (FLAPW) method has been employed within the generalized gradient approximation (GGA) and local spin density approximation (LSDA) as the exchange correlation potential to investigate elastic properties of LaX (X = Cd and Hg) in their B2-type (CsCl) crystal structure. The calculated ground state properties such as lattice constant (a0), bulk modulus (B) and pressure derivative of bulk modulus (B') agree well with the available experimental results. The second order elastic constants (C11, C12 and C44) have been calculated. The ductility or brittleness of these intermetallic compounds is predicted by using Pugh’s rule B/GH and Cauchy’s pressure (C12-C44). The calculated results indicate that LaHg is the ductile whereas LaCd is brittle in nature.Keywords: ductility/brittleness, elastic constants, equation of states, FP-LAPW method, intermetallics
Procedia PDF Downloads 446514 Analysis Thermal of Composite Material in Cold Systems
Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale, Rubens Maribondo do Nascimento, José Ubiragi de Lima Mendes
Abstract:
Given the unquestionable need of environmental preservation of discarded industrial residues, The scrape of tires have been seen as a salutary alternative for addictive in concrete, asphalt production and of other composites materials. In this work, grew a composite the base of scrape of tire as reinforcement and latex as matrix, to be used as insulating thermal in "cold" systems (0º). Analyzed the acting of the material was what plays the thermal conservation when submitted the flow of heat. Verified the temperature profiles in the internal surfaces and it expresses of the composite as well as the temperature gradient in the same. As a consequence, in function of the answers of the system, conclusions were reached.Keywords: cold system, latex, flow of heat, asphalt production
Procedia PDF Downloads 462513 Bioconversion of Orange Wastes for Pectinase Production Using Aspergillus niger under Solid State Fermentation
Authors: N. Hachemi, A. Nouani, A. Benchabane
Abstract:
The influence of cultivation factors such as content of ammonium sulfate, glucose and water in the culture medium and particle size of dry orange waste, on their bioconversion for pectinase production was studied using complete factorial design. a polygalacturonase (PG) was isolated using ion exchange chromatography under gradient elution 0-0,5 m/l NaCl (column equilibrate with acetate buffer pH 4,5), subsequently by sephadex G75 column chromatography was applied and the molecular weight was obtained about 51,28 KDa . Purified PG enzyme exhibits a pH and temperature optima of activity at 5 and 35°C respectively. Treatment of apple juice by purified enzyme extract yielded a clear juice, which was competitive with juice yielded by pure Sigma Aldrich Aspergillus niger enzyme.Keywords: bioconversion, orange wastes, optimization, pectinase
Procedia PDF Downloads 384512 Heat and Mass Transfer Study of Supercooled Large Droplet Icing
Authors: Du Yanxia, Stephan E. Bansmer, Gui Yewei, Xiao Guangming, Yang Xiaofeng
Abstract:
The heat and mass transfer characteristics of icing coupled with film flow is studied and the coupled model of the thermal behavior with the flow simulation by single-step method is developed. The behavior of ice and water was analyzed. The results show that under supercooled large droplet (SLD) icing conditions, the film flow is an important phonomena in icing accretion process. The pressure gradient, gravity and shear stress are the main factors affecting the film flow on icing surface, which has important influence on the shape and rate of icing. To predict SLD ice accretion accurately, the heat and mass transfer of ice and film flow should be taken into account.Keywords: SLD, aircraft, icing, heat and mass transfer
Procedia PDF Downloads 634511 Ab Initio Study of Hexahalometallate Single Crystals K₂XBr₆ (X=Se, Pt)
Authors: M. Fatmi, B. Gueridi, Z. Zerrougui
Abstract:
Some physical properties of hexahalometallate K₂XBr₆(X=Se, Pt) were computed in the zinc blend structure using generalized gradient approximation. The cell constant of K₂SeBr₆ and K₂PtBr₆ is consistent with the experiment value quoted in the literature, where the error is 0.95 % and 1 %. K₂SeBr₆ and K₂PtBr₆ present covalent bonding, high anisotropy and are ductile. The elastic constants of K₂SeBr₆ and K₂PtBr₆ are significantly smaller due to their larger reticular distances and lower Colombian forces, and then they are soft and damage tolerant. The interatomic separation is greater in K₂SeBr₆ than in K₂PtBr₆; hence the Colombian interaction in K₂PtBr₆ is greater than that of K2SeBr₆. The internal coordinate of the Br atom in K₂PtBr₆ is lower than that of the same atom in K2SeBr₆, and this can be explained by the fact that it is inversely proportional to the atom radius of Se and Pt. There are two major plasmonic processes, with intensities of 3.7 and 1.35, located around 53.5 nm and 72.8 nm for K₂SeBr₆ and K₂PtBr₆.Keywords: hexahalometallate, band structure, morphology, absorption, band gap, absorber
Procedia PDF Downloads 96510 Development of Non-Intrusive Speech Evaluation Measure Using S-Transform and Light-Gbm
Authors: Tusar Kanti Dash, Ganapati Panda
Abstract:
The evaluation of speech quality and intelligence is critical to the overall effectiveness of the Speech Enhancement Algorithms. Several intrusive and non-intrusive measures are employed to calculate these parameters. Non-Intrusive Evaluation is most challenging as, very often, the reference clean speech data is not available. In this paper, a novel non-intrusive speech evaluation measure is proposed using audio features derived from the Stockwell transform. These features are used with the Light Gradient Boosting Machine for the effective prediction of speech quality and intelligibility. The proposed model is analyzed using noisy and reverberant speech from four databases, and the results are compared with the standard Intrusive Evaluation Measures. It is observed from the comparative analysis that the proposed model is performing better than the standard Non-Intrusive models.Keywords: non-Intrusive speech evaluation, S-transform, light GBM, speech quality, and intelligibility
Procedia PDF Downloads 260509 Design of an Augmented Automatic Choosing Control with Constrained Input by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions
Authors: Toshinori Nawata
Abstract:
In this paper a nonlinear feedback control called augmented automatic choosing control (AACC) for a class of nonlinear systems with constrained input is presented. When designing the control, a constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.Keywords: augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics
Procedia PDF Downloads 479508 Entomological Origin of Honey Discriminated by NMR Chloroform Extracts in Ecuadorian Honey
Authors: P. Vit, J. Uddin, V. Zuccato, F. Maza, E. Schievano
Abstract:
In Ecuador honeys are produced by Apis mellifera and stingless bees (Meliponini). We studied honey produced in beeswax combs by Apis mellifera, and honey produced in pots by Geotrigona and Scaptotrigona bees. Chloroform extracts of honey were obtained for fast NMR spectra. The 1D spectra were acquired at 298 K, with a 600 MHz NMR Bruker instrument, using a modified double pulsed field gradient spin echoes (DPFGSE) sequence. Signals of 1H NMR spectra were integrated and used as inputs for PCA, PLS-DA analysis, and labelled sets of classes were successfully identified, enhancing the separation between the three groups of honey according to the entomological origin: A. mellifera, Geotrigona and Scaptotrigona. This procedure is therefore recommended for authenticity test of honey in Ecuador.Keywords: Apis mellifera, honey, 1H NMR, entomological origin, meliponini
Procedia PDF Downloads 402507 Understanding Space, Citizenship and Assimilation in the Context of Migration in North-Eastern Region of India
Authors: Mukunda Upadhyay, Rakesh Mishra, Rajni Singh
Abstract:
This paper is an attempt to understand the abstract concept of space, citizenship and migration in the north-eastern region. In the twentieth century, researchers and thinkers related citizenship and migration on national models. The national models of jus sulis and jus sangunis provide scope of space and rights to only those who are either born in the territory or either share the common descent. Space ensures rights and citizenship ensures space and for many migrants, citizenship is the ultimate goal in the host country. Migrants with the intention of settling down in the destination region, begin to adapt and assimilate in their new homes. In many cases, migrants may also retain the culture and values of the place of origin. In such cases the difference in the degree of retention and assimilation may determine the chances of conflict between the host society and migrants. Such conflicts are fueled by political aspirations of few individuals on both the sides. The North-Eastern part of India is a mixed community with many linguistic and religious groups sharing a common Geo-political space. Every community has its own unique history, culture and identity. Since the last half of the nineteenth century, this region has been experiencing both internal migration from other states and immigration from the neighboring countries which has resulted in the interactions of various cultures and ethnicities. With the span of time, migration has taken bitter form with problems concentrated around acquiring rights through space and citizenship. Political tensions resulted by host hostility and migrants resistance has ruined the social order in few areas. In order to resolve these issues in this area proper intervention has to be carried out by the involvement of the National and International community.Keywords: space, citizenship, assimilation, migration, rights
Procedia PDF Downloads 419506 First Principle Calculations of Magnetic and Electronic Properties of Double Perovskite Ba2MnMoO6
Authors: B. Bouadjemi, S. Bentata, W. Benstaali, A. Souidi, A. Abbad, T. Lantri, Z. Aziz, A. Zitouni
Abstract:
The electronic and magnetic structures of double perovskite Ba2MnMoO6 are systematically investigated using the first principle method of the Full Potential Linear Augmented Plane Waves Plus the Local Orbitals (FP-LAPW+LO) within the Local Spin Density Approximation (LSDA) and the Generalized Gradient Approximation (GGA). In order to take into account the strong on-site Coulomb interaction, we included the Hubbard correlation terms: LSDA+U and GGA+U approaches. Whereas half-metallic ferromagnetic character is observed due to dominant Mn spin-up and Mo spin-down contributions insulating ground state is obtained. The LSDA+U and GGA+U calculations yield better agreement with the theoretical and the experimental results than LSDA and GGA do.Keywords: electronic structure, double perovskite, first principles, Ba2MnMoO6, half-metallic
Procedia PDF Downloads 441505 Dual-Layer Microporous Layer of Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells under Various RH Conditions
Authors: Grigoria Athanasaki, Veerarajan Vimala, A. M. Kannan, Louis Cindrella
Abstract:
Energy usage has been increased throughout the years, leading to severe environmental impacts. Since the majority of the energy is currently produced from fossil fuels, there is a global need for clean energy solutions. Proton Exchange Membrane Fuel Cells (PEMFCs) offer a very promising solution for transportation applications because of their solid configuration and low temperature operations, which allows them to start quickly. One of the main components of PEMFCs is the Gas Diffusion Layer (GDL), which manages water and gas transport and shows direct influence on the fuel cell performance. In this work, a novel dual-layer GDL with gradient porosity was prepared, using polyethylene glycol (PEG) as pore former, to improve the gas diffusion and water management in the system. The microporous layer (MPL) of the fabricated GDL consists of carbon powder PUREBLACK, sodium dodecyl sulfate as a surfactant, 34% wt. PTFE and the gradient porosity was created by applying one layer using 30% wt. PEG on the carbon substrate, followed by a second layer without using any pore former. The total carbon loading of the microporous layer is ~ 3 mg.cm-2. For the assembly of the catalyst layer, Nafion membrane (Ion Power, Nafion Membrane NR211) and Pt/C electrocatalyst (46.1% wt.) were used. The catalyst ink was deposited on the membrane via microspraying technique. The Pt loading is ~ 0.4 mg.cm-2, and the active area is 5 cm2. The sample was ex-situ characterized via wetting angle measurement, Scanning Electron Microscopy (SEM), and Pore Size Distribution (PSD) to evaluate its characteristics. Furthermore, for the performance evaluation in-situ characterization via Fuel Cell Testing using H2/O2 and H2/air as reactants, under 50, 60, 80, and 100% relative humidity (RH), took place. The results were compared to a single layer GDL, fabricated with the same carbon powder and loading as the dual layer GDL, and a commercially available GDL with MPL (AvCarb2120). The findings reveal high hydrophobic properties of the microporous layer of the GDL for both PUREBLACK based samples, while the commercial GDL demonstrates hydrophilic behavior. The dual layer GDL shows high and stable fuel cell performance under all the RH conditions, whereas the single layer manifests a drop in performance at high RH in both oxygen and air, caused by catalyst flooding. The commercial GDL shows very low and unstable performance, possibly because of its hydrophilic character and thinner microporous layer. In conclusion, the dual layer GDL with PEG appears to have improved gas diffusion and water management in the fuel cell system. Due to its increasing porosity from the catalyst layer to the carbon substrate, it allows easier access of the reactant gases from the flow channels to the catalyst layer, and more efficient water removal from the catalyst layer, leading to higher performance and stability.Keywords: gas diffusion layer, microporous layer, proton exchange membrane fuel cells, relative humidity
Procedia PDF Downloads 124504 Design of a Compact Herriott Cell for Heat Flux Measurement Applications
Authors: R. G. Ramírez-Chavarría, C. Sánchez-Pérez, V. Argueta-Díaz
Abstract:
In this paper we present the design of an optical device based on a Herriott multi-pass cell fabricated on a small sized acrylic slab for heat flux measurements using the deflection of a laser beam propagating inside the cell. The beam deflection is produced by the heat flux conducted to the acrylic slab due to a gradient in the refractive index. The use of a long path cell as the sensitive element in this measurement device, gives the possibility of high sensitivity within a small size device. We present the optical design as well as some experimental results in order to validate the device’s operation principle.Keywords: heat flux, Herriott cell, optical beam deflection, thermal conductivity
Procedia PDF Downloads 657503 Numerical Solution to Coupled Heat and Moisture Diffusion in Bio-Sourced Composite Materials
Authors: Mnasri Faiza, El Ganaoui Mohammed, Khelifa Mourad, Gabsi Slimane
Abstract:
The main objective of this paper is to describe the hydrothermal behavior through porous material of construction due to temperature gradient. The construction proposed a bi-layer structure which composed of two different materials. The first is a bio-sourced panel named IBS-AKU (inertia system building), the second is the Neopor material. This system (IBS-AKU Neopor) is developed by a Belgium company (Isohabitat). The study suggests a multi-layer structure of the IBS-AKU panel in one dimension. A numerical method was proposed afterwards, by using the finite element method and a refined mesh area to strong gradients. The evolution of temperature fields and the moisture content has been processed.Keywords: heat transfer, moisture diffusion, porous media, composite IBS-AKU, simulation
Procedia PDF Downloads 508502 Slugging Frequency Correlation for High Viscosity Oil-Gas Flow in Horizontal Pipeline
Authors: B. Y. Danjuma, A. Archibong-Eso, Aliyu M. Aliyu, H. Yeung
Abstract:
In this experimental investigation, a new data for slugging frequency for high viscosity oil-gas flow are reported. Scale experiments were carried out using a mixture of air and mineral oil as the liquid phase in a 17 m long horizontal pipe with 0.0762 ID. The data set was acquired using two high-speed Gamma Densitometers at a data acquisition frequency of 250 Hz over a time interval of 30 seconds. For the range of flow conditions investigated, increase in liquid oil viscosity was observed to strongly influence the slug frequency. A comparison of the present data with prediction models available in the literature revealed huge discrepancies. A new correlation incorporating the effect of viscosity on slug frequency has been proposed for the horizontal flow, which represents the main contribution of this work.Keywords: gamma densitometer, flow pattern, pressure gradient, slug frequency
Procedia PDF Downloads 414501 Optimization Principles of Eddy Current Separator for Mixtures with Different Particle Sizes
Authors: Cao Bin, Yuan Yi, Wang Qiang, Amor Abdelkader, Ali Reza Kamali, Diogo Montalvão
Abstract:
The study of the electrodynamic behavior of non-ferrous particles in time-varying magnetic fields is a promising area of research with wide applications, including recycling of non-ferrous metals, mechanical transmission, and space debris. The key technology for recovering non-ferrous metals is eddy current separation (ECS), which utilizes the eddy current force and torque to separate non-ferrous metals. ECS has several advantages, such as low energy consumption, large processing capacity, and no secondary pollution, making it suitable for processing various mixtures like electronic scrap, auto shredder residue, aluminum scrap, and incineration bottom ash. Improving the separation efficiency of mixtures with different particle sizes in ECS can create significant social and economic benefits. Our previous study investigated the influence of particle size on separation efficiency by combining numerical simulations and separation experiments. Pearson correlation analysis found a strong correlation between the eddy current force in simulations and the repulsion distance in experiments, which confirmed the effectiveness of our simulation model. The interaction effects between particle size and material type, rotational speed, and magnetic pole arrangement were examined. It offer valuable insights for the design and optimization of eddy current separators. The underlying mechanism behind the effect of particle size on separation efficiency was discovered by analyzing eddy current and field gradient. The results showed that the magnitude and distribution heterogeneity of eddy current and magnetic field gradient increased with particle size in eddy current separation. Based on this, we further found that increasing the curvature of magnetic field lines within particles could also increase the eddy current force, providing a optimized method to improving the separation efficiency of fine particles. By combining the results of the studies, a more systematic and comprehensive set of optimization guidelines can be proposed for mixtures with different particle size ranges. The separation efficiency of fine particles could be improved by increasing the rotational speed, curvature of magnetic field lines, and electrical conductivity/density of materials, as well as utilizing the eddy current torque. When designing an ECS, the particle size range of the target mixture should be investigated in advance, and the suitable parameters for separating the mixture can be fixed accordingly. In summary, these results can guide the design and optimization of ECS, and also expand the application areas for ECS.Keywords: eddy current separation, particle size, numerical simulation, metal recovery
Procedia PDF Downloads 91500 Topology-Based Character Recognition Method for Coin Date Detection
Authors: Xingyu Pan, Laure Tougne
Abstract:
For recognizing coins, the graved release date is important information to identify precisely its monetary type. However, reading characters in coins meets much more obstacles than traditional character recognition tasks in the other fields, such as reading scanned documents or license plates. To address this challenging issue in a numismatic context, we propose a training-free approach dedicated to detection and recognition of the release date of the coin. In the first step, the date zone is detected by comparing histogram features; in the second step, a topology-based algorithm is introduced to recognize coin numbers with various font types represented by binary gradient map. Our method obtained a recognition rate of 92% on synthetic data and of 44% on real noised data.Keywords: coin, detection, character recognition, topology
Procedia PDF Downloads 254499 A Comparative Approach to the Concept of Incarnation of God in Hinduism and Christianity
Authors: Cemil Kutluturk
Abstract:
This is a comparative study of the incarnation of God according to Hinduism and Christianity. After dealing with their basic ideas on the concept of the incarnation of God, the main similarities and differences between each other will be examined by quoting references from their sacred texts. In Hinduism, the term avatara is used in order to indicate the concept of the incarnation of God. The word avatara is derived from ava (down) and tri (to cross, to save, attain). Thus avatara means to come down or to descend. Although an avatara is commonly considered as an appearance of any deity on earth, the term refers particularly to descents of Vishnu. According to Hinduism, God becomes an avatara in every age and entering into diverse wombs for the sake of establishing righteousness. On the Christian side, the word incarnation means enfleshment. In Christianity, it is believed that the Logos or Word, the Second Person of Trinity, presumed human reality. Incarnation refers both to the act of God becoming a human being and to the result of his action, namely the permanent union of the divine and human natures in the one Person of the Word. When the doctrines of incarnation and avatara are compared some similarities and differences can be found between each other. The basic similarity is that both doctrines are not bound by the laws of nature as human beings are. They reveal God’s personal love and concern, and emphasize loving devotion. Their entry into the world is generally accompanied by extraordinary signs. In both cases, the descent of God allows for human beings to ascend to God. On the other hand, there are some distinctions between two religious traditions. For instance, according to Hinduism there are many and repeated avataras, while Christ comes only once. Indeed, this is related to the respective cyclic and linear worldviews of the two religions. Another difference is that in Hinduism avataras are real and perfect, while in Christianity Christ is also real, yet imperfect; that is, he has human imperfections, except sin. While Christ has never been thought of as a partial incarnation, in Hinduism there are some partial and full avataras. The other difference is that while the purpose of Christ is primarily ultimate salvation, not every avatara grants ultimate liberation, some of them come only to save a devotee from a specific predicament.Keywords: Avatara, Christianity, Hinduism, incarnation
Procedia PDF Downloads 256