Search results for: exposure models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8613

Search results for: exposure models

8313 Prompt Design for Code Generation in Data Analysis Using Large Language Models

Authors: Lu Song Ma Li Zhi

Abstract:

With the rapid advancement of artificial intelligence technology, large language models (LLMs) have become a milestone in the field of natural language processing, demonstrating remarkable capabilities in semantic understanding, intelligent question answering, and text generation. These models are gradually penetrating various industries, particularly showcasing significant application potential in the data analysis domain. However, retraining or fine-tuning these models requires substantial computational resources and ample downstream task datasets, which poses a significant challenge for many enterprises and research institutions. Without modifying the internal parameters of the large models, prompt engineering techniques can rapidly adapt these models to new domains. This paper proposes a prompt design strategy aimed at leveraging the capabilities of large language models to automate the generation of data analysis code. By carefully designing prompts, data analysis requirements can be described in natural language, which the large language model can then understand and convert into executable data analysis code, thereby greatly enhancing the efficiency and convenience of data analysis. This strategy not only lowers the threshold for using large models but also significantly improves the accuracy and efficiency of data analysis. Our approach includes requirements for the precision of natural language descriptions, coverage of diverse data analysis needs, and mechanisms for immediate feedback and adjustment. Experimental results show that with this prompt design strategy, large language models perform exceptionally well in multiple data analysis tasks, generating high-quality code and significantly shortening the data analysis cycle. This method provides an efficient and convenient tool for the data analysis field and demonstrates the enormous potential of large language models in practical applications.

Keywords: large language models, prompt design, data analysis, code generation

Procedia PDF Downloads 37
8312 Capability of Available Seismic Soil Liquefaction Potential Assessment Models Based on Shear-Wave Velocity Using Banchu Case History

Authors: Nima Pirhadi, Yong Bo Shao, Xusheng Wa, Jianguo Lu

Abstract:

Several models based on the simplified method introduced by Seed and Idriss (1971) have been developed to assess the liquefaction potential of saturated sandy soils. The procedure includes determining the cyclic resistance of the soil as the cyclic resistance ratio (CRR) and comparing it with earthquake loads as cyclic stress ratio (CSR). Of all methods to determine CRR, the methods using shear-wave velocity (Vs) are common because of their low sensitivity to the penetration resistance reduction caused by fine content (FC). To evaluate the capability of the models, based on the Vs., the new data from Bachu-Jianshi earthquake case history collected, then the prediction results of the models are compared to the measured results; consequently, the accuracy of the models are discussed via three criteria and graphs. The evaluation demonstrates reasonable accuracy of the models in the Banchu region.

Keywords: seismic liquefaction, banchu-jiashi earthquake, shear-wave velocity, liquefaction potential evaluation

Procedia PDF Downloads 235
8311 Adverse Childhood Experiences (ACES) and Later-Life Depression: Perceived Social Support as a Potential Protective Factor

Authors: E. Von Cheong, Carol Sinnott, Darren Dahly, Patricia M. Kearney

Abstract:

Introduction and Aim: Adverse childhood experiences (ACEs) are all too common and have been linked to poorer health and wellbeing across the life course. While the prevention of ACEs is a worthy goal, it is important that we also try to lessen the impact of ACEs for those who do experience them. This study aims to investigate associations between adverse childhood experiences (ACEs) and later-life depressive symptoms; and to explore whether perceived social support (PSS) moderates these. Method: We analysed baseline data from the Mitchelstown (Ireland) 2010-11 cohort involving 2047 men and women aged 50–69 years. Self-reported assessments included ACEs (Centre for Disease Control ACE questionnaire), PSS (Oslo Social Support Scale), and depressive symptoms (CES-D). The primary exposure was self-report of at least one ACE. We also investigated the effects of ACE exposure by the subtypes abuse, neglect, and household dysfunction. Associations between each of these exposures and depressive symptoms were estimated using logistic regression, adjusted for socio-demographic factors that were selected using the Directed Acyclic Graph (DAG) approach. We also tested whether the estimated associations varied across levels of PSS (poor, moderate, and good). Results: 23.7% of participants reported at least one ACE (95% CI: 21.9% to 25.6%). ACE exposures (overall or subtype) were associated with a higher odds of depressive symptoms, but only among individuals with poor PSS. For example, exposure to any ACE (vs. none) was associated with 3 times the odds of depressive symptoms (Adjusted OR 2.97; 95% CI 1.63 to 5.40) among individuals reporting poor PSS, while among those reporting moderate PSS, the adjusted OR was 1.18 (95% CI 0.72 to 1.94). Discussion: ACEs are common among older adults in Ireland and are associated with higher odds of later-life depressive symptoms among those also reporting poor PSS. Interventions that enhance perception of social support following ACE exposure may help reduce the burden of depression in older populations.

Keywords: adverse childhood experiences, depression, later-life, perceived social support

Procedia PDF Downloads 239
8310 Effects of Exercise in the Cold on Glycolipid Metabolism and Insulin Sensitivity in Obese Rats

Authors: Chaoge Wang, Xiquan Weng, Yan Meng, Wentao Lin

Abstract:

Objective: Cold exposure and exercise serve as two physiological stimuli to glycolipid metabolism and insulin sensitivity. So far, it remains to be elucidated whether exercise plus cold exposure can produce an addictive effect on promoting glycolipid metabolism and insulin sensitivity. Methods: 64 SD rats were subjected to high-fat and high-sugar diets for 9-week and sucessfully to establish an obesity model. They were randomly divided into 8 groups: normal control group (NC), normal exercise group (NE), continuous cold control group (CC), continuous cold exercise group (CE), acute clod control group (AC), acute cold exercise group (AE), intermittent cold control group (IC) and intermittent cold exercise group (IE). For continuous cold exposure, the rats stayed in a cold environment all day; for acute cold exposure, the rats were exposed to cold for only 4h before the end of the experiment; for intermittent cold exposure, the rats were exposed to cold for 4h per day. The protocol for treadmill runnings were as follows: 25m/min (speed), 0°C (slope), 30 mins each time, an interval for 10 mins between two runnings, twice/two days, lasting for 5 weeks. Sampling were conducted on the 5th weekend. Blood lipids, free fatty acids, blood glucose (FBG), and serum insulin (FINS) were examined, and the insulin resistance index (HOMA-IR = FBG (mmol/L)×FINS(mIU/L)/22.5) was calculated. SPSS 22.0 was used for statistical analysis of the experimental results, and the ANOVA analysis was performed between groups (p < 0.05 was significant). Results: (1) Compared with the NC group, the FBG of the rats was significantly declined in the NE, CE, AC, AE, and IE groups (p < 0.05), the FINS of the rats was significantly declined in the AE group (p < 0.05), the HOMA-IR of the rats was significantly declined in the NE, CE, AC, AE and IE groups (p < 0.05). Compared with the NE group, the FBG of the rats was significantly declined in the CE, AE, and IE groups (p < 0.05), the FINS and HOMA-IR of the rats were significantly declined in the AE group (p < 0.05). (2) Compared with the NC group, the CHO, TG, LDL-C, and FFA of the rats were significantly declined in CE and IE groups (p < 0.05), the HDL-C of the rats was significantly higher in NE, CC, CE, AE, and IE groups (p < 0.05). Compared with the NE group, the HDL-C of the rats was significantly higher in the CE and IE groups (p < 0.05). Conclusions: Sedentariness or exercise in the acute cold doesn't make sense in the treatment of type 2 diabetes, which led to one-off increases of the body's insulin sensitivity. Exercise in the continuous and intermittent cold can effectively decline the FBG, TC, TG, LDL-C, and FFA levels and increase the HDL-C level and insulin sensitivity in obese rats. These results can impact the prevention and treatment of type 2 diabetes.

Keywords: cold, exercise, insulin sensitivity, obesity

Procedia PDF Downloads 142
8309 Compromising Relevance for Elegance: A Danger of Dominant Growth Models for Backward Economies

Authors: Givi Kupatadze

Abstract:

Backward economies are facing a challenge of achieving sustainable high economic growth rate. Dominant growth models represent a roadmap in framing economic development strategy. This paper examines a relevance of the dominant growth models for backward economies. Cobb-Douglas production function, the Harrod-Domar model of economic growth, the Solow growth model and general formula of gross domestic product are examined to undertake a comprehensive study of the dominant growth models. Deductive research method allows to uncover major weaknesses of the dominant growth models and to come up with practical implications for economic development strategy. The key finding of the paper shows, contrary to what used to be taught by textbooks of economics, that constant returns to scale property of the dominant growth models are a mere coincidence and its generalization over space and time can be regarded as one of the most unfortunate mistakes in the whole field of political economy. The major suggestion of the paper for backward economies is that understanding and considering taxonomy of economic activities based on increasing and diminishing returns to scale represent a cornerstone of successful economic development strategy.

Keywords: backward economies, constant returns to scale, dominant growth models, taxonomy of economic activities

Procedia PDF Downloads 373
8308 Single Imputation for Audiograms

Authors: Sarah Beaver, Renee Bryce

Abstract:

Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125Hz to 8000Hz. The data contains patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R\textsuperscript{2} values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R\textsuperscript{2} values for the best models for KNN ranges from .89 to .95. The best imputation models received R\textsuperscript{2} between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our best imputation models versus constant imputations by a two percent increase.

Keywords: machine learning, audiograms, data imputations, single imputations

Procedia PDF Downloads 80
8307 On Bianchi Type Cosmological Models in Lyra’s Geometry

Authors: R. K. Dubey

Abstract:

Bianchi type cosmological models have been studied on the basis of Lyra’s geometry. Exact solution has been obtained by considering a time dependent displacement field for constant deceleration parameter and varying cosmological term of the universe. The physical behavior of the different models has been examined for different cases.

Keywords: Bianchi type-I cosmological model, variable gravitational coupling, cosmological constant term, Lyra's model

Procedia PDF Downloads 353
8306 Nanoparticles Activated Inflammasome Lead to Airway Hyperresponsiveness and Inflammation in a Mouse Model of Asthma

Authors: Pureun-Haneul Lee, Byeong-Gon Kim, Sun-Hye Lee, An-Soo Jang

Abstract:

Background: Nanoparticles may pose adverse health effects due to particulate matter inhalation. Nanoparticle exposure induces cell and tissue damage, causing local and systemic inflammatory responses. The inflammasome is a major regulator of inflammation through its activation of pro-caspase-1, which cleaves pro-interleukin-1β (IL-1β) into its mature form and may signal acute and chronic immune responses to nanoparticles. Objective: The aim of the study was to identify whether nanoparticles exaggerates inflammasome pathway leading to airway inflammation and hyperresponsiveness in an allergic mice model of asthma. Methods: Mice were treated with saline (sham), OVA-sensitized and challenged (OVA), or titanium dioxide nanoparticles. Lung interleukin 1 beta (IL-1β), interleukin 18 (IL-18), NACHT, LRR and PYD domains-containing protein 3 (NLRP3) and caspase-1 levels were assessed with Western Blot. Caspase-1 was checked by immunohistochemical staining. Reactive oxygen species were measured for the marker 8-isoprostane and carbonyl by ELISA. Results: Airway inflammation and hyperresponsiveness increased in OVA-sensitized/challenged mice and these responses were exaggerated by TiO2 nanoparticles exposure. TiO2 nanoparticles treatment increased IL-1β and IL-18 protein expression in OVA-sensitized/challenged mice. TiO2 nanoparticles augmented the expression of NLRP3 and caspase-1 leading to the formation of an active caspase-1 in the lung. Lung caspase-1 expression was increased in OVA-sensitized/challenged mice and these responses were exaggerated by TiO2 nanoparticles exposure. Reactive oxygen species was increased in OVA-sensitized/challenged mice and in OVA-sensitized/challenged plus TiO2 exposed mice. Conclusion: Our data demonstrate that inflammasome pathway activates in asthmatic lungs following nanoparticles exposure, suggesting that targeting the inflammasome may help control nanoparticles-induced airway inflammation and responsiveness.

Keywords: bronchial asthma, inflammation, inflammasome, nanoparticles

Procedia PDF Downloads 372
8305 Acoustic Behavior of Polymer Foam Composite of Shorea leprosula after UV-Irradiation Exposure

Authors: Anika Zafiah M. Rus, S. Shafizah

Abstract:

This study was developed to compare the behavior and the ability of polymer foam composites towards sound absorption test of Shorea leprosula wood (SL) of acid hydrolysis treatment with particle size < 355µm. Three different weight ratio of polyol to wood particle has been selected which are 10wt%, 15wt%, and 20wt%. The acid hydrolysis treatment is to optimize the surface interaction of a wood particle with polymer foam matrix. In addition, the acoustic characteristic of sound absorption coefficient (Į) was determined. Further treatment is to expose the polymer composite in UV irradiation by using UV-Weatherometer. Polymer foam composite of untreated shorea leprosula particle (SL-B) with respective percentage loading shows uniform pore structure as compared with treated wood particle (SL-A). As the filler percentage loading in polymer foam increases, the Į value approaching 1 for both samples. Furthermore, SL-A shows better Į value at 3500-4500 frequency absorption level(Hz), meanwhile Į value for SL-B is maximum at 4000-5000 Hz. The frequencies absorption level for both SL-B and SL-A after UV exposure was increased with the increasing of exposure time from 0-1000 hours. It is, therefore, concluded that the Į for each sound absorbing material, with or without acid hydrolysis treatment of wood particles and it’s percentages loading in polymer matrix effect the sound absorption behavior.

Keywords: polymer foam composite, sound absorption coefficient, UV-irradiation, wood

Procedia PDF Downloads 463
8304 Emissivity Analysis of Hot-Dip Galvanized Steel in Fire

Authors: Christian Gaigl, Martin Mensinger

Abstract:

Once a fire resistance rating is necessary, it has to be proofed that the load bearing behavior of a steel construction under the exposure of fire still fits the static demands. High costs of passive fire protection, which satisfies the requirements, frequently result in a concrete solution. To optimize these expenses, one method is to determine the critical temperature according to the Eurocode DIN EN 1993-1-2. For this purpose, positive effects of hot-dip galvanized surface layers on the temperature development of steel members in the accidental situation of fire exposure has been investigated. The test results show a significant better heating behavior of hot-dip galvanized steel components compared to normal steel specimen. This leads in many cases to a R30 (30 minutes of ISO-fire) fire protection requirement of unprotected steel members and therefore to an economic added value.

Keywords: fire resistance, hot-dip galvanizing, steel constructions, R30 requirement, emissivity

Procedia PDF Downloads 259
8303 Influence of Optimization Method on Parameters Identification of Hyperelastic Models

Authors: Bale Baidi Blaise, Gilles Marckmann, Liman Kaoye, Talaka Dya, Moustapha Bachirou, Gambo Betchewe, Tibi Beda

Abstract:

This work highlights the capabilities of particles swarm optimization (PSO) method to identify parameters of hyperelastic models. The study compares this method with Genetic Algorithm (GA) method, Least Squares (LS) method, Pattern Search Algorithm (PSA) method, Beda-Chevalier (BC) method and the Levenberg-Marquardt (LM) method. Four classic hyperelastic models are used to test the different methods through parameters identification. Then, the study compares the ability of these models to reproduce experimental Treloar data in simple tension, biaxial tension and pure shear.

Keywords: particle swarm optimization, identification, hyperelastic, model

Procedia PDF Downloads 169
8302 Bridging the Data Gap for Sexism Detection in Twitter: A Semi-Supervised Approach

Authors: Adeep Hande, Shubham Agarwal

Abstract:

This paper presents a study on identifying sexism in online texts using various state-of-the-art deep learning models based on BERT. We experimented with different feature sets and model architectures and evaluated their performance using precision, recall, F1 score, and accuracy metrics. We also explored the use of pseudolabeling technique to improve model performance. Our experiments show that the best-performing models were based on BERT, and their multilingual model achieved an F1 score of 0.83. Furthermore, the use of pseudolabeling significantly improved the performance of the BERT-based models, with the best results achieved using the pseudolabeling technique. Our findings suggest that BERT-based models with pseudolabeling hold great promise for identifying sexism in online texts with high accuracy.

Keywords: large language models, semi-supervised learning, sexism detection, data sparsity

Procedia PDF Downloads 68
8301 Models of Innovation Processes and Their Evolution: A Literature Review

Authors: Maier Dorin, Maier Andreea

Abstract:

Today, any organization - regardless of the specific activity - must be prepared to face continuous radical changes, innovation thus becoming a condition of survival in a globalized market. Not all managers have an overall view on the real size of necessary innovation potential. Unfortunately there is still no common (and correct) understanding of the term of innovation among managers. Moreover, not all managers are aware of the need for innovation. This article highlights and analyzes a series of models of innovation processes and their evolution. The models analyzed encompass both the strategic level and the operational one within an organization, indicating performance innovation on each landing. As the literature review shows, there are no easy answers to the innovation process as there are no shortcuts to great results. Successful companies do not have a silver innovative bullet - they do not get results by making one or few things better than others, they make everything better.

Keywords: innovation, innovation process, business success, models of innovation

Procedia PDF Downloads 398
8300 Towards Efficient Reasoning about Families of Class Diagrams Using Union Models

Authors: Tejush Badal, Sanaa Alwidian

Abstract:

Class diagrams are useful tools within the Unified Modelling Language (UML) to model and visualize the relationships between, and properties of objects within a system. As a system evolves over time and space (e.g., products), a series of models with several commonalities and variabilities create what is known as a model family. In circumstances where there are several versions of a model, examining each model individually, becomes expensive in terms of computation resources. To avoid performing redundant operations, this paper proposes an approach for representing a family of class diagrams into Union Models to represent model families using a single generic model. The paper aims to analyze and reason about a family of class diagrams using union models as opposed to individual analysis of each member model in the family. The union algorithm provides a holistic view of the model family, where the latter cannot be otherwise obtained from an individual analysis approach, this in turn, enhances the analysis performed in terms of speeding up the time needed to analyze a family of models together as opposed to analyzing individual models, one model at a time.

Keywords: analysis, class diagram, model family, unified modeling language, union model

Procedia PDF Downloads 72
8299 Applying Business Model Patterns: A Case Study in Latin American Building Industry

Authors: James Alberto Ortega Morales, Nelson Andrés Martínez Marín

Abstract:

The bulding industry is one of the most important sectors all around the world in terms of contribution to index like GDP and labor. On the other hand, it is a major contributor to Greenhouse Gases (GHG) and waste generation contributing to global warming. In this sense, it is necessary to establish sustainable practices both from the strategic point of view to the operations point of view as well in all business and industries. Business models don’t scape to this reality attending it´s mediator role between strategy and operations. Business models can turn from the traditional practices searching economic benefits to sustainable bussines models that generate both economic value and value for society and the environment. Recent advances in the analysis of sustainable business models find different classifications that allow finding potential triple bottom line (economic, social and environmental) solutions applicable in every business sector. Into the metioned Advances have been identified, 11 groups and 45 patterns of sustainable business models have been identified; such patterns can be found either in the business models as a whole or found concurrently in their components. This article presents the analysis of a case study, seeking to identify the components and elements that are part of it, using the ECO CANVAS conceptual model. The case study allows showing the concurrent existence of different patterns of business models for sustainability empirically, serving as an example and inspiration for other Latin American companies interested in integrating sustainability into their new and existing business models.

Keywords: sustainable business models, business sustainability, business model patterns, case study, construction industry

Procedia PDF Downloads 112
8298 Volatility Model with Markov Regime Switching to Forecast Baht/USD

Authors: Nop Sopipan

Abstract:

In this paper, we forecast the volatility of Baht/USDs using Markov Regime Switching GARCH (MRS-GARCH) models. These models allow volatility to have different dynamics according to unobserved regime variables. The main purpose of this paper is to find out whether MRS-GARCH models are an improvement on the GARCH type models in terms of modeling and forecasting Baht/USD volatility. The MRS-GARCH is the best performance model for Baht/USD volatility in short term but the GARCH model is best perform for long term.

Keywords: volatility, Markov Regime Switching, forecasting, Baht/USD

Procedia PDF Downloads 301
8297 Effects of Exposure to a Language on Perception of Non-Native Phonologically Contrastive Duration

Authors: Chuyu Huang, Itsuki Minemi, Kuanlin Chen, Yuki Hirose

Abstract:

It remains unclear how language speakers are able to perceive phonological contrasts that do not exist on their own. This experiment uses the vowel-length distinction in Japanese, which is phonologically contrastive and co-occurs with tonal change in some cases. For speakers whose first language does not distinguish vowel length, contrastive duration is usually misperceived, e.g., Mandarin speakers. Two alternative hypotheses for how Mandarin speakers would perceive a phonological contrast that does not exist in their language make different predictions. The stress parameter model does not have a clear prediction about the impact of tonal type. Mandarin speakers will likely be not able to perceive vowel length as well as Japanese native speakers do, but the performance might not correlate to tonal type because the prosody of their language is distinctive, which requires users to encode lexical prosody and notice subtle differences in word prosody. By contrast, cue-based phonetic models predict that Mandarin speakers may rely on pitch differences, a secondary cue, to perceive vowel length. Two groups of Mandarin speakers, including naive non-Japanese speakers and beginner learners, were recruited to participate in an AX discrimination task involving two Japanese sound stimuli that contain a phonologically contrastive environment. Participants were asked to indicate whether the two stimuli containing a vowel-length contrast (e.g., maapero vs. mapero) sound the same. The experiment was bifactorial. The first factor contrasted three syllabic positions (syllable position; initial/medial/final), as it would be likely to affect the perceptual difficulty, as seen in previous studies, and the second factor contrasted two pitch types (accent type): one with accentual change that could be distinguished with the lexical tones in Mandarin (the different condition), with the other group having no tonal distinction but only differing in vowel length (the same condition). The overall results showed that a significant main effect of accent type by applying a linear mixed-effects model (β = 1.48, SE = 0.35, p < 0.05), which implies that Mandarin speakers tend to more successfully recognize vowel-length differences when the long vowel counterpart takes on a tone that exists in Mandarin. The interaction between the accent type and the syllabic position is also significant (β = 2.30, SE = 0.91, p < 0.05), showing that vowel lengths in the different conditions are more difficult to recognize in the word-final case relative to the initial condition. The second statistical model, which compares naive speakers to beginners, was conducted with logistic regression to test the effects of the participant group. A significant difference was found between the two groups (β = 1.06, 95% CI = [0.36, 2.03], p < 0.05). This study shows that: (1) Mandarin speakers are likely to use pitch cues to perceive vowel length in a non-native language, which is consistent with the cue-based approaches; (2) an exposure effect was observed: the beginner group achieved a higher accuracy for long vowel perception, which implied the exposure effect despite the short period of language learning experience.

Keywords: cue-based perception, exposure effect, prosodic perception, vowel duration

Procedia PDF Downloads 219
8296 Chronic Pesticides Exposure and Certain Endocrine Functions Among Farmers in East Almnaif District, Ismailia, Egypt

Authors: Amani Waheed, Mostafa Kofi, Shaymaa Attia, Soha Younis, Basma Abdel Hadi

Abstract:

Background: Exposure to pesticides is one of the most important occupational risks among farmers in developing countries. Along with the wide use of pesticides in the world, the concerns over their health impacts are rapidly growing. Objective: To investigate thyroid and reproductive hormones and fasting blood glucose levels among farmers chronically exposed to pesticide from East Almnaif district, Ismailia governorate. Methods: An analytical cross-sectional study was conducted on 43 farmers with active involvement pesticides handling and 43 participants not occupationally exposed to pesticides as the control group. A structured interview questionnaire measuring the sociodemographic characteristics, pesticides exposure characteristics, and safety measures was used. General examination including measurements of height, weight, and blood pressure was done. Moreover, levels of plasma cholinesterase enzyme (PChE), glucose, as well as reproductive and thyroid hormones (TSH, T4, and testosterone) were determined. Results: There were no statistically significant differences between both groups regarding their age, educational level, smoking status, and body mass index. The mean duration of exposure was 20.60 11.06 years. Majority of farmers (76.7%) did not use any personal protective equipment (PPE) during pesticides handling. The mean systolic blood pressure among exposed farmers was greater (134.88 17.18 mm Hg) compared to control group (125 14.69 mm Hg) with statistically significant difference (p = 0.003). The mean diastolic blood pressure was higher (84.02 8.69 mm Hg) compared to control group (78.79 8.98 mm Hg) with statistically significant difference (p = 0.006). The pesticide exposed farmers had statistically significant lower level of PChE (3969.93 1841U/L) than control group (4879.29 1950.08 U/L). Additionally, TSH level was significantly higher in exposed farmers (median =1.39µIU/ml) compared to controls (median = 0.91 µIU/ml) (p=0.032). While, the exposed group had a lower T4 level (6.91 1.91 µg/dl) compared to the control group (7.79 2.10µg/dl), with the statistically significant difference between the two groups (p = 0.045). The exposed group had significantly lower level of testosterone hormone (median=3.37 ng/ml) compared to the control group (median= 6.22 ng/ml) (p=0.003). While, the exposed farmers had statistically insignificant higher level of fasting blood glucose (median =89 mg/dl) than the controls (median=88 mg/dl). Furthermore, farmers who did not use PPE had statistically significant lower level of T4 (6.57 1.81µg/dl) than farmers who used PPE during handling of pesticides (8.01 1.89 µg/dl). Conclusion: Chronic exposure to pesticides exerts disturbing action on reproductive function and thyroid function of the male farmers.

Keywords: chronic occupational pesticide exposure, Diabetes mellitus, male reproductive hormones, thyroid function

Procedia PDF Downloads 134
8295 Development of pm2.5 Forecasting System in Seoul, South Korea Using Chemical Transport Modeling and ConvLSTM-DNN

Authors: Ji-Seok Koo, Hee‑Yong Kwon, Hui-Young Yun, Kyung-Hui Wang, Youn-Seo Koo

Abstract:

This paper presents a forecasting system for PM2.5 levels in Seoul, South Korea, leveraging a combination of chemical transport modeling and ConvLSTM-DNN machine learning technology. Exposure to PM2.5 has known detrimental impacts on public health, making its prediction crucial for establishing preventive measures. Existing forecasting models, like the Community Multiscale Air Quality (CMAQ) and Weather Research and Forecasting (WRF), are hindered by their reliance on uncertain input data, such as anthropogenic emissions and meteorological patterns, as well as certain intrinsic model limitations. The system we've developed specifically addresses these issues by integrating machine learning and using carefully selected input features that account for local and distant sources of PM2.5. In South Korea, the PM2.5 concentration is greatly influenced by both local emissions and long-range transport from China, and our model effectively captures these spatial and temporal dynamics. Our PM2.5 prediction system combines the strengths of advanced hybrid machine learning algorithms, convLSTM and DNN, to improve upon the limitations of the traditional CMAQ model. Data used in the system include forecasted information from CMAQ and WRF models, along with actual PM2.5 concentration and weather variable data from monitoring stations in China and South Korea. The system was implemented specifically for Seoul's PM2.5 forecasting.

Keywords: PM2.5 forecast, machine learning, convLSTM, DNN

Procedia PDF Downloads 54
8294 Use of Cyber-Physical Devices for the Implementation of Virtual and Augmented Realities in Bridge Construction

Authors: Muhammmad Fawad

Abstract:

The bridge construction industry has been revolutionized by the applications of Virtual Reality (VR) and Augmented Reality (AR). In this article, the author has focused on the field applications of digital technologies in structural, especially in bridge engineering. This research analyzed the use of VR/AR for the assessment of bridge concepts. For this purpose, the author has used Cyber-Physical Devices, i.e., Oculus Quest (OQ) for the implementation of VR, Trimble Microsoft HoloLens (THL), and Trimble Site Vision (TSV) for the implementation of AR/MR by visualizing the models of bridge planned to be constructed in Poland. The visualization of the models in Extended Reality (XR) is based on the development of BIM models of the bridge, which are further uploaded to the platforms required to implement these models in XR. This research helped to implement the models in MR so a bridge with a 1:1 scale at the exact location was placed, and authorities were presented with the possibility to visualize the exact scale and location of the bridge before its construction.

Keywords: augmented reality, virtual reality, HoloLens, BIM, bridges

Procedia PDF Downloads 120
8293 Public Spending and Economic Growth: An Empirical Analysis of Developed Countries

Authors: Bernur Acikgoz

Abstract:

The purpose of this paper is to investigate the effects of public spending on economic growth and examine the sources of economic growth in developed countries since the 1990s. This paper analyses whether public spending effect on economic growth based on Cobb-Douglas Production Function with the two econometric models with Autoregressive Distributed Lag (ARDL) and Dynamic Fixed Effect (DFE) for 21 developed countries (high-income OECD countries), over the period 1990-2013. Our models results are parallel to each other and the models support that public spending has an important role for economic growth. This result is accurate with theories and previous empirical studies.

Keywords: public spending, economic growth, panel data, ARDL models

Procedia PDF Downloads 368
8292 The Evaluation of Occupational Exposure of Chrome in Welders of Stainless Steels

Authors: L. Musak, J. Valachova, T. Vasicko, O. Osina

Abstract:

Introduction: Stainless steel is resistant to electrochemical corrosion by passivation. Welders are greatly exposed to welding fumes of toxic metals, which added to this steel. The content of chromium (Cr) in steel was above 11.5%, Ni and Mo from 2 to 6.5%. The aim of the study was the evaluation of occupational exposure to Cr, chromosome analysis and valuation of individual susceptibility polymorphism of gene CCND1 c.870 G>A. Materials and Methods: The exposed group was consisted from 117 welders of stainless steels. The average age was 38.43 years and average exposure time 7.14 years. Smokers represented 40.17%. The control group consisted of 123 non-exposed workers with an average age of 39.74 years and time employment 16.67 years. Smokers accounted for 22.76%. Analysis of Cr in blood and urine was performed by atomic absorption spectrophotometry (AAS Varian SpectraAA 30P) with electrothermal decomposition of the sample in the graphite furnace. For the evaluation of chromosomal aberrations (CA) was used cytogenetic analysis of peripheral blood lymphocytes, gene polymorphism was determined by PCR-RFLP reaction using appropriate primers and restriction enzymes. For statistical analysis was used the Mann-Whitney U-test. Results: The mean Cr level in exposed group was 0.095 mmol/l (0.019 min-max 0.504). No value does exceed the average normal value. The average value Cr in urine was 7.9 mmol/mol creatinine (min 0.026 to max 19.26). The total number of CA was 1.86% in compared to 1.70% controls. (CTA-type 0.90% vs 0.80% and CSA-type 0.96% vs 0.90%). In the number of total CA was observed statistical difference between smokers and non-smokers of exposed group (S-1.57% vs. NS-2.04%, P<0.05). In CCND1 gene polymorphisms was observed the increasing of the total CA with wild-type allele (WT) via heterozygous to the VAR genotype (1.44%<1.82%<2.13%). There was observed a statistically higher incidence of CTA-type aberrations in variant genotypes between exposed and control groups (1.22% vs. 0.59%, P<0.05). Discussion and conclusions: The work place is usually higher source of exposure to harmful factors. Workers need consistently and checked frequently health control. In assessing the risk of adverse effects of metals is important to consider their persistence, behavior and bioavailability. Prolonged exposure to carcinogens may not manifest symptoms of poisoning, but delayed effects may occur, which resulted in a higher incidence of malignant tumors.

Keywords: genotoxicity, chromium, stainless steels, welders

Procedia PDF Downloads 367
8291 Effect of Drag Coefficient Models concerning Global Air-Sea Momentum Flux in Broad Wind Range including Extreme Wind Speeds

Authors: Takeshi Takemoto, Naoya Suzuki, Naohisa Takagaki, Satoru Komori, Masako Terui, George Truscott

Abstract:

Drag coefficient is an important parameter in order to correctly estimate the air-sea momentum flux. However, The parameterization of the drag coefficient hasn’t been established due to the variation in the field data. Instead, a number of drag coefficient model formulae have been proposed, even though almost all these models haven’t discussed the extreme wind speed range. With regards to such models, it is unclear how the drag coefficient changes in the extreme wind speed range as the wind speed increased. In this study, we investigated the effect of the drag coefficient models concerning the air-sea momentum flux in the extreme wind range on a global scale, comparing two different drag coefficient models. Interestingly, one model didn’t discuss the extreme wind speed range while the other model considered it. We found that the difference of the models in the annual global air-sea momentum flux was small because the occurrence frequency of strong wind was approximately 1% with a wind speed of 20m/s or more. However, we also discovered that the difference of the models was shown in the middle latitude where the annual mean air-sea momentum flux was large and the occurrence frequency of strong wind was high. In addition, the estimated data showed that the difference of the models in the drag coefficient was large in the extreme wind speed range and that the largest difference became 23% with a wind speed of 35m/s or more. These results clearly show that the difference of the two models concerning the drag coefficient has a significant impact on the estimation of a regional air-sea momentum flux in an extreme wind speed range such as that seen in a tropical cyclone environment. Furthermore, we estimated each air-sea momentum flux using several kinds of drag coefficient models. We will also provide data from an observation tower and result from CFD (Computational Fluid Dynamics) concerning the influence of wind flow at and around the place.

Keywords: air-sea interaction, drag coefficient, air-sea momentum flux, CFD (Computational Fluid Dynamics)

Procedia PDF Downloads 369
8290 Volatility Switching between Two Regimes

Authors: Josip Visković, Josip Arnerić, Ante Rozga

Abstract:

Based on the fact that volatility is time varying in high frequency data and that periods of high volatility tend to cluster, the most successful and popular models in modelling time varying volatility are GARCH type models. When financial returns exhibit sudden jumps that are due to structural breaks, standard GARCH models show high volatility persistence, i.e. integrated behaviour of the conditional variance. In such situations models in which the parameters are allowed to change over time are more appropriate. This paper compares different GARCH models in terms of their ability to describe structural changes in returns caused by financial crisis at stock markets of six selected central and east European countries. The empirical analysis demonstrates that Markov regime switching GARCH model resolves the problem of excessive persistence and outperforms uni-regime GARCH models in forecasting volatility when sudden switching occurs in response to financial crisis.

Keywords: central and east European countries, financial crisis, Markov switching GARCH model, transition probabilities

Procedia PDF Downloads 225
8289 DNA of Hibiscus sabdariffa Damaged by Radiation from 900 MHz GSM Antenna

Authors: A. O. Oluwajobi, O. A. Falusi, N. A. Zubbair, T. Owoeye, F. Ladejobi, M. C. Dangana, A. Abubakar

Abstract:

The technology of mobile telephony has positively enhanced human life and reports on the bio safety of the radiation from their antennae have been contradictory, leading to serious litigations and violent protests by residents in several parts of the world. The crave for more information, as requested by WHO in order to resolve this issue, formed the basis for this study on the effect of the radiation from 900 MHz GSM antenna on the DNA of Hibiscus sabdariffa. Seeds of H. sabdariffa were raised in pots placed in three replicates at 100, 200, 300 and 400 metres from the GSM antennae in three selected test locations and a control where there was no GSM signal. Temperature (˚C) and the relative humidity (%) of study sites were measured for the period of study (24 weeks). Fresh young leaves were harvested from each plant at two, eight and twenty-four weeks after sowing and the DNA extracts were subjected to RAPD-PCR analyses. There were no significant differences between the weather conditions (temperature and relative humidity) in all the study locations. However, significant differences were observed in the intensities of radiations between the control (less than 0.02 V/m) and the test (0.40-1.01 V/m) locations. Data obtained showed that DNA of samples exposed to rays from GSM antenna had various levels of distortions, estimated at 91.67%. Distortions occurred in 58.33% of the samples between 2-8 weeks of exposure while 33.33% of the samples were distorted between 8-24 weeks exposure. Approximately 8.33% of the samples did not show distortions in DNA while 33.33% of the samples had their DNA damaged twice, both at 8 and at 24 weeks of exposure. The study showed that radiation from the 900 MHz GSM antenna is potent enough to cause distortions to DNA of H. sabdariffa even within 2-8 weeks of exposure. DNA damage was also independent of the distance from the antenna. These observations would qualify emissions from GSM mast as environmental hazard to the existence of plant biodiversities and all life forms in general. These results will trigger efforts to prevent further erosion of plant genetic resources which have been threatening food security and also the risks posed to living organisms, thereby making our environment very safe for our existence while we still continue to enjoy the benefits of the GSM technology.

Keywords: damage, DNA, GSM antenna, radiation

Procedia PDF Downloads 338
8288 Agriculture Yield Prediction Using Predictive Analytic Techniques

Authors: Nagini Sabbineni, Rajini T. V. Kanth, B. V. Kiranmayee

Abstract:

India’s economy primarily depends on agriculture yield growth and their allied agro industry products. The agriculture yield prediction is the toughest task for agricultural departments across the globe. The agriculture yield depends on various factors. Particularly countries like India, majority of agriculture growth depends on rain water, which is highly unpredictable. Agriculture growth depends on different parameters, namely Water, Nitrogen, Weather, Soil characteristics, Crop rotation, Soil moisture, Surface temperature and Rain water etc. In our paper, lot of Explorative Data Analysis is done and various predictive models were designed. Further various regression models like Linear, Multiple Linear, Non-linear models are tested for the effective prediction or the forecast of the agriculture yield for various crops in Andhra Pradesh and Telangana states.

Keywords: agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models

Procedia PDF Downloads 311
8287 Novel EGFR Ectodomain Mutations and Resistance to Anti-EGFR and Radiation Therapy in H&N Cancer

Authors: Markus Bredel, Sindhu Nair, Hoa Q. Trummell, Rajani Rajbhandari, Christopher D. Willey, Lewis Z. Shi, Zhuo Zhang, William J. Placzek, James A. Bonner

Abstract:

Purpose: EGFR-targeted monoclonal antibodies (mAbs) provide clinical benefit in some patients with H&N squamous cell carcinoma (HNSCC), but others progress with minimal response. Missense mutations in the EGFR ectodomain (ECD) can be acquired under mAb therapy by mimicking the effect of large deletions on receptor untethering and activation. Little is known about the contribution of EGFR ECD mutations to EGFR activation and anti-EGFR response in HNSCC. Methods: We selected patient-derived HNSCC cells (UM-SCC-1) for resistance to mAb Cetuximab (CTX) by repeated, stepwise exposure to mimic what may occur clinically and identified two concurrent EGFR ECD mutations (UM-SCC-1R). We examined the competence of the mutants to bind EGF ligand or CTX. We assessed the potential impact of the mutations through visual analysis of space-filling models of the native sidechains in the original structures vs. their respective side-chain mutations. We performed CRISPR in combination with site-directed mutagenesis to test for the effect of the mutants on ligand-independent EGFR activation and sorting. We determined the effects on receptor internalization, endocytosis, downstream signaling, and radiation sensitivity. Results: UM-SCC-1R cells carried two non-synonymous missense mutations (G33S and N56K) mapping to domain I in or near the EGF binding pocket of the EGFR ECD. Structural modeling predicted that these mutants restrict the adoption of a tethered, inactive EGFR conformation while not permitting association of EGFR with the EGF ligand or CTX. Binding studies confirmed that the mutant, untethered receptor displayed a reduced affinity for both EGF and CTX but demonstrated sustained activation and presence at the cell surface with diminished internalization and sorting for endosomal degradation. Single and double-mutant models demonstrated that the G33S mutant is dominant over the N56K mutant in its effect on EGFR activation and EGF binding. CTX-resistant UM-SCC-1R cells demonstrated cross-resistance to mAb Panitumuab but, paradoxically, remained sensitive to the reversible receptor tyrosine kinase inhibitor Erlotinib. Conclusions: HNSCC cells can select for EGFR ECD mutations under EGFR mAb exposure that converge to trap the receptor in an open, constitutively activated state. These mutants impede the receptor’s competence to bind mAbs and EGF ligand and alter its endosomal trafficking, possibly explaining certain cases of clinical mAb and radiation resistance.

Keywords: head and neck cancer, EGFR mutation, resistance, cetuximab

Procedia PDF Downloads 91
8286 Graphical Modeling of High Dimension Processes with an Environmental Application

Authors: Ali S. Gargoum

Abstract:

Graphical modeling plays an important role in providing efficient probability calculations in high dimensional problems (computational efficiency). In this paper, we address one of such problems where we discuss fragmenting puff models and some distributional assumptions concerning models for the instantaneous, emission readings and for the fragmenting process. A graphical representation in terms of a junction tree of the conditional probability breakdown of puffs and puff fragments is proposed.

Keywords: graphical models, influence diagrams, junction trees, Bayesian nets

Procedia PDF Downloads 395
8285 Experimental Device to Test Corrosion Behavior of Materials in the Molten Salt Reactor Environment

Authors: Jana Petru, Marie Kudrnova

Abstract:

The use of technologies working with molten salts is conditioned by finding suitable construction materials that must meet several demanding criteria. In addition to temperature resistance, materials must also show corrosion resistance to salts; they must meet mechanical requirements and other requirements according to the area of use – for example, radiation resistance in Molten Salt Reactors. The present text describes an experimental device for studying the corrosion resistance of candidate materials in molten mixtures of salts and is a partial task of the international project ADAR, dealing with the evaluation of advanced nuclear reactors based on molten salts. The design of the device is based on a test exposure of Inconel 625 in the mixture of salts Hitec in a high temperature tube furnace. The result of the pre-exposure is, in addition to the metallographic evaluation of the behavior of material 625 in the mixture of nitrate salts, mainly a list of operational and construction problems that were essential for the construction of the new experimental equipment. The main output is a scheme of a newly designed gas-tight experimental apparatus capable of operating in an inert argon atmosphere, temperature up to 600 °C, pressure 3 bar, in the presence of a corrosive salt environment, with an exposure time of hundreds of hours. This device will enable the study of promising construction materials for nuclear energy.

Keywords: corrosion, experimental device, molten salt, steel

Procedia PDF Downloads 118
8284 Dynamics of the Landscape in the Different Colonization Models Implemented in the Legal Amazon

Authors: Valdir Moura, FranciléIa De Oliveira E. Silva, Erivelto Mercante, Ranieli Dos Anjos De Souza, Jerry Adriani Johann

Abstract:

Several colonization projects were implemented in the Brazilian Legal Amazon in the 1970s and 1980s. Among all of these colonization projects, the most prominent were those with the Fishbone and Topographic models. Within this scope, the projects of settlements known as Anari and Machadinho were created, which stood out because they are contiguous areas with different models and structure of occupation and colonization. The main objective of this work was to evaluate the dynamics of Land-Use and Land-Cover (LULC) in two different colonization models, implanted in the State of Rondonia in the 1980s. The Fishbone and Topographic models were implanted in the Anari and Machadinho settlements respectively. The understanding of these two forms of occupation will help in future colonization programs of the Brazilian Legal Amazon. These settlements are contiguous areas with different occupancy structures. A 32-year Landsat time series (1984-2016) was used to evaluate the rates and trends in the LULC process in the different colonization models. In the different occupation models analyzed, the results showed a rapid loss of primary and secondary forests (deforestation), mainly due to the dynamics of use, established by the Agriculture/Pasture (A/P) relation and, with heavy dependence due to road construction.

Keywords: land-cover, deforestation, rate fragments, remote sensing, secondary succession

Procedia PDF Downloads 134