Search results for: active compounds
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5460

Search results for: active compounds

5160 Optimisation of Extraction of Phenolic Compounds in Algerian Lavandula multifida, Algeria, NW

Authors: Mustapha Mahmoud Dif, Fouzia Benali-Toumi, Mohamed Benyahia, Sofiane Bouazza, Abbes Dellal, Slimane Baha

Abstract:

L. multifida is applied to treat rheumatism and cold and has hypoglycemic and anti-inflammatory properties. The present study is to optimize the extraction of phenolic compounds in Algerian Lavandula multifida. The influences of parameters including temperature (decoction and maceration) and extraction time (15min to 45 min) on the flavonoids concentration are studied. The optimal conditions are determined and the quadratic response surfaces draw from the mathematical models. Total phenols were evaluated using Folin sicaltieu methods, total flavonoids were estimated using the Tri chloral aluminum method. The maximum concentration extracted, for total flavonoids, equal to 0.043 mg/g was achieved with decoction and extraction time of 41.55 min. However, for total phenol compounds highest concentration of 0.218 mg/g, is obtained with 45 min at 49.99°C.

Keywords: L multifidi, phenolic content, optimization, time, temperature

Procedia PDF Downloads 402
5159 Antioxidant Activity and Microbiological Quality of Functional Bread Enriched with Morus Alba Leaf Extract during Storage

Authors: Joanna Kobus-Cisowska, Daria Szymanowska, Piotr Szulc, Oskar Szczepaniak, Marcin Dziedzinski, Szymon Byczkiewicz

Abstract:

A wide range of food products is offered on the market. However, increasing consumer awareness of the impact of food on health causes a growing interest in enriched products. Cereal products are an important element of the daily diet of man. In the literature, no data was found on the impact of Morus alba preparations on the content of active ingredients and properties of wholemeal bread. Mulberry leaves (Morus alba L) are a rich source of bioactive compounds with multidirectional antioxidant activity, which means that they can be a component of new foods that prevent disease or support therapy and improve the patient's health. The aim of the study was to assess the impact of the addition of white mulberry leaf extract on the antioxidant activity of bread. It has been shown that bread can be a carrier of biologically active substances from mulberry leaves, because the addition of mulberry at a sensory acceptable level and meeting microbiological requirements significantly influenced the increase in the content of bioactive ingredients and the antioxidant activity of bread. The addition of mulberry leaf water extract to bread increased the level of flavonols and phenolic acids, in particular protocatechic, chlorogenic gallic and caffeic acid and isoquercetin and rutine, and also increased the antioxidant potential, which were microbiological stable during 5 days storage. It has been shown also that the addition of Morus alba preparations has a statistically significant effect on anti-radical activity. In addition, there were no differences in activity in DPPH · and ABTS · + tests between post-storage samples. This means that the compounds responsible for the anti-radical activity present in the bread were not inactivated during storage. It was found that the tested bread was characterized by high microbiological purity, which is indicated by the obtained results of analyzes performed for the titers of indicator microorganisms and the absence of pathogens. In the tested products from the moment of production throughout the entire storage period, no undesirable microflora was found, which proves their safety and guarantees microbiological stability during the storage period.

Keywords: antioxidants, bread, extract, quality

Procedia PDF Downloads 154
5158 Structural Properties, Natural Bond Orbital, Theory Functional Calculations (DFT), and Energies for Fluorous Compounds: C13H12F7ClN2O

Authors: Shahriar Ghammamy, Masomeh Shahsavary

Abstract:

In this paper, the optimized geometries and frequencies of the stationary point and the minimum energy paths of C13H12F7ClN2O are calculated by using the DFT (B3LYP) methods with LANL2DZ basis sets. B3LYP/ LANL2DZ calculation results indicated that some selected bond length and bond angles values for the C13H12F7ClN2O.

Keywords: C13H12F7ClN2O, vatural bond orbital, fluorous compounds, functional calculations

Procedia PDF Downloads 319
5157 Short-Term Effects of Environmentally Relevant Concentrations of Organic UV Filters on Signal Crayfish Pacifastacus Leniusculus

Authors: Viktoriia Malinovska, Iryna Kuklina, Katerina Grabicova, Milos Buric, Pavel Kozak

Abstract:

Personal care products, including organic UV filters, are considered emerging contaminants and their toxic effects have been a concern for the last decades. Sunscreen compounds continually enter the surface waters via sewage water treatment due to incomplete removal and during human recreational and laundry activities. Despite the environmental occurrence of organic UV filters in the freshwater environment, little is known about their impacts on aquatic biota. In this study, environmentally relevant concentrations of 5-Benzoyl-4-hydroxy-2-methoxybenzenesulfonic acid (BP-4, 2.5 µg/L) and 2-Phenylbenzimidazole-5-sulfonic acid (PBSA, 3 µg/L) were used to evaluate the cardiac and locomotor responses of signal crayfish Pacifastacus leniusculus during a short time period. The effects of these compounds were evident in experimental animals. Specimens exposed to both tested compounds exhibited significantly bigger changes in distance moved and time movement than controls. Significant differences in changes in mean heart rate were detected in both PBSA and BP-4 experimental groups compared to control groups. Such behavioral and physiological alterations demonstrate the ecological effects of selected sunscreen compounds during a short time period. Since the evidence of the impacts of sunscreen compounds is scarce, the knowledge of how organic UV filters influence aquatic organisms is of key importance for future research.

Keywords: aquatic pollutants, behavior, freshwaters, heart rate, invertebrate

Procedia PDF Downloads 94
5156 Effects of New Anthraquinone Derivatives on Resistance Ovarian Cancer Cells and The Mechanism Investigation

Authors: Hui-Hsin Huang, Sheng-Tung Huang, Chi-Ming Lee, Chiao-Han Yen, Chun-Mao Lin

Abstract:

At initiation stage, there are no symptoms at initiation stage; however, at late stage, patients suffer symptoms as soon as ovarian cancer metastasis. Moreover, ovarian cancer cells are resistant to some anti-ovarian cancer drugs in clinical. Thus, it is very important to find an effective treatment for resistant ovarian cancer. Anthraquinone derivatives are able to induce DNA damage and lead to cell apoptosis, so several derivatives have been used for clinical application. Therefore, to explore more effective anti-ovarian cancer drugs, this study investigates the mechanism of three new anthraquinone compounds bearing different functional groups to camptothecin-resistance ovarian cell line A2780R2000. Cell viability was determined by MTT assay after treating A2780R2000 with the three new anthraquinone compounds. The results indicated that IC50 values are 33.44μM (Compound I), 25.77μM (Compound II) and 24.59μM (Compound III). Next, through cell cycle analysis, the results demonstrated that three new anthraquinone compounds not only induced A2780R2000 cell cycle arrest at early stage but also apoptosis at late stage. Besides, through apoptosis assay, the results indicated new anthraquinone compound induced apoptosis at late stage. Furthermore, the results of western blot show that the three new anthraquinone compounds lead to A2780R2000 apoptosis through intrinsic pathway. Theses results suggested that three new anthraquinone compounds may be potential new drugs for clinical cancer treatment in the future.

Keywords: anthraquinone, camptothecin, resistance, ovarian cancer

Procedia PDF Downloads 377
5155 Changes in Amounts of Glycyrrhizin and Phenolic Compounds of Glycrrhiza glabra L. Seedlings Treated by Copper and Zinc Oxide

Authors: Roya Razavizadeh, Razieh Soltaninejad, Hakimeh Oloumi

Abstract:

Glycyrrhiza glabra L. (Licorice) is one of the oldest medicinal plants in Iran and secondary metabolites present in the plant root is used in food and pharmaceutical industries. With the use of heavy metals as elicitors, plant secondary metabolite production can be increased. In this study, the effects of the concentrations of 1 and 10 μM of zinc oxide and copper oxide on the contents of reducing sugars (as precursor of secondary metabolites), proline, glycyrrhizin, total phenolic compounds, flavonoids and anthocyanin in Glycyrrhiza glabra seedlings were investigated. Also, the correlation between the content of these metabolites in the treated seedlings was examined using Pearson's test. The amount of reducing sugars at concentration of 10 μM zinc oxide was decreased. Whereas, the amounts of proline and glycyrrhizin under treatment 1 and 10 μM copper oxide and 1 μM zinc oxide compared with the control plants was increased. The content of total phenolic compounds was increased with increasing concentrations of copper oxide. The highest amount of flavonoids was observed at concentrations of 1 and 10 μM copper oxide. Anthocyanin content was increased in concentration of 1 μM copper oxide. Also, the tannin content of the Glycyrrhiza glabra seedlings at concentrations of 10 μM zinc oxide was increased. Based on the result it seemed that at concentrations of 1 and 10 μM copper oxide the amount of glycyrrhizin, phenolic compounds, flavonoids, anthocyanins were significantly increased, whereas, zinc oxide had no significant impact on the levels of these metabolites.

Keywords: zinc oxide, copper oxide, phenolic compounds, licorice (glycyrrhiza glabra L.), glycyrrhizin

Procedia PDF Downloads 449
5154 Aggregation-Induced-Active Stimuli-Responsive Based Nano-Objects for Wastewater Treatment Application

Authors: Parvaneh Eskandari, Rachel O'Reilly

Abstract:

In the last years, controlling the self-assembly behavior of stimuli-responsive nano-objects, including micelles, vesicles, worm-like, etc., at different conditions is considered a pertinent challenge in the polymer community. The aim of the project was to synthesize aggregation-induced emission (AIE)-active stimuli-responsive polymeric nano-objects to control the self-assemblies morphologies of the prepared nano-objects. Two types of nanoobjects, micelle and vesicles, including PDMAEMA-b-P(BzMA-TPEMA) [PDMAEMA: poly(N,Ndimethylaminoethyl methacrylate); P(BzMA-TPEMA): poly[benzyl methacrylate-co- tetraphenylethene methacrylate]] were synthesized by using reversible addition−fragmentation chain-transfer (RAFT)- mediated polymerization-induced self-assembly (PISA), which combines polymerization and self-assembly in a single step. Transmission electron microscope and dynamic light scattering (DLS) analysis were used to confirm the formed self-assemblies morphologies. The controlled self-assemblies were applied as nitrophenolic compounds (NPCs) adsorbents from wastewater, thanks to their CO2-responsive part, PDMAEMA. Moreover, the fluorescence-active part of the prepared nano-objects, P(BzMA-TPEMA), played a key role in the detection of the NPCs at the aqueous solution. The optical properties of the prepared nano-objects were studied by UV/Vis and fluorescence spectroscopies. For responsivity investigations, the hydrodynamic diameter and Zeta-potential (ζ-potential) of the sample's aqueous solution were measured by DLS. In the end, the prepared nano-objects were used for the detection and adsorption of different NPCs.

Keywords: aggregation-induced emission polymers, stimuli-responsive polymers, reversible addition−fragmentation chain-transfer polymerization, polymerization-induced self-assembly, wastewater treatment

Procedia PDF Downloads 54
5153 Stilbenes as Sustainable Antimicrobial Compounds to Control Vitis Vinifera Diseases

Authors: David Taillis, Oussama Becissa, Julien Gabaston, Jean-Michel Merillon, Tristan Richard, Stephanie Cluzet

Abstract:

Nowadays, there is a strong pressure to reduce the phytosanitary inputs of synthetic chemistry in vineyards. It is, therefore, necessary to find viable alternatives in order to protect the vine against its major diseases. For this purpose, we suggest the use of a plant extract enriched in antimicrobial compounds. Being produced from vine trunks and roots, which are co-products of wine production, the extract produced is part of a circular economy. The antimicrobial molecules present in this plant material are polyphenols and, more particularly, stilbenes, which are derived from a common base, the resveratrol unit, and that are well known vine phytoalexins. The stilbenoids were extracted from trunks and roots (30/70, w/w) by a double extraction with ethyl acetate followed by enrichment by liquid-liquid extraction. The produced extract was characterized by UHPLC-MS, then its antimicrobial activities were tested on Plasmopara viticola and Botrytis cinerea in the laboratory and/or in greenhouse and in vineyard. The major compounds were purified, and their antimicrobial activity was evaluated on B. cinerea. Moreover, after its spraying, the effect of the stilbene extract on the plant defence status was evaluated by analysis of defence gene expression. UHPLC-MS analysis revealed that the extract contains 50% stilbenes with resveratrol, ε-viniferin and r-viniferin as major compounds. The extract showed antimicrobial activities on P. viticola with IC₅₀ and IC₁₀₀ respectively of 90 and 300 mg/L in the laboratory. In addition, it inhibited 40% of downy mildew development in greenhouse. However, probably because of the sensitivity of stilbenes to the environment, such as UV degradation, no activity has been observed in vineyard towards P. viticola development. For B. cinerea, the extract IC50 was 123 mg/L, with resveratrol and ε-viniferin being the most active stilbenes (IC₅₀ of 88 and 142 mg/L, respectively). The analysis of the expression of defence genes revealed that the extract can induce the expression of some defence genes 24, 48, and 72 hours after treatment, meaning that the extract has a defence-stimulating effect at least for the first three days after treatment. In conclusion, we produced a plant extract enriched in stilbenes with antimicrobial properties against two major grapevine pathogenic agents P. viticola and B. cinerea. In addition, we showed that this extract displayed eliciting activity of plant defences. This extract can therefore represent, after formulation development, a viable eco-friendly alternative for vineyard protection. Subsequently, the effect of the stilbenoid extract on primary metabolism will be evaluated by quantitative NMR.

Keywords: antimicrobial, bioprotection, grapevine, Plasmopara viticola, stilbene

Procedia PDF Downloads 198
5152 Photocatalytic Disintegration of Naphthalene and Naphthalene Similar Compounds in Indoors Air

Authors: Tobias Schnabel

Abstract:

Naphthalene and naphthalene similar compounds are a common problem in the indoor air of buildings from the 1960s and 1970s in Germany. Often tar containing roof felt was used under the concrete floor to prevent humidity to come through the floor. This tar containing roof felt has high concentrations of PAH (Polycyclic aromatic hydrocarbon) and naphthalene. Naphthalene easily evaporates and contaminates the indoor air. Especially after renovations and energetically modernization of the buildings, the naphthalene concentration rises because no forced air exchange can happen. Because of this problem, it is often necessary to change the floors after renovation of the buildings. The MFPA Weimar (Material research and testing facility) developed in cooperation a project with LEJ GmbH and Reichmann Gebäudetechnik GmbH. It is a technical solution for the disintegration of naphthalene in naphthalene, similar compounds in indoor air with photocatalytic reforming. Photocatalytic systems produce active oxygen species (hydroxyl radicals) through trading semiconductors on a wavelength of their bandgap. The light energy separates the charges in the semiconductor and produces free electrons in the line tape and defect electrons. The defect electrons can react with hydroxide ions to hydroxyl radicals. The produced hydroxyl radicals are a strong oxidation agent, and can oxidate organic matter to carbon dioxide and water. During the research, new titanium oxide catalysator surface coatings were developed. This coating technology allows the production of very porous titan oxide layer on temperature stable carrier materials. The porosity allows the naphthalene to get easily absorbed by the surface coating, what accelerates the reaction of the heterogeneous photocatalysis. The photocatalytic reaction is induced by high power and high efficient UV-A (ultra violet light) Leds with a wavelength of 365nm. Various tests in emission chambers and on the reformer itself show that a reduction of naphthalene in important concentrations between 2 and 250 µg/m³ is possible. The disintegration rate was at least 80%. To reduce the concentration of naphthalene from 30 µg/m³ to a level below 5 µg/m³ in a usual 50 ² classroom, an energy of 6 kWh is needed. The benefits of the photocatalytic indoor air treatment are that every organic compound in the air can be disintegrated and reduced. The use of new photocatalytic materials in combination with highly efficient UV leds make a safe and energy efficient reduction of organic compounds in indoor air possible. At the moment the air cleaning systems take the step from prototype stage into the usage in real buildings.

Keywords: naphthalene, titandioxide, indoor air, photocatalysis

Procedia PDF Downloads 131
5151 Intelligent Semi-Active Suspension Control of a Electric Model Vehicle System

Authors: Shiuh-Jer Huang, Yun-Han Yeh

Abstract:

A four-wheel drive electric vehicle was built with hub DC motors and FPGA embedded control structure. A 40 steps manual adjusting motorcycle shock absorber was refitted with DC motor driving mechanism to construct as a semi-active suspension system. Accelerometer and potentiometer sensors are installed to measure the sprung mass acceleration and suspension system compression or rebound states for control purpose. An intelligent fuzzy logic controller was proposed to real-time search appropriate damping ratio based on vehicle running condition. Then, a robust fuzzy sliding mode controller (FSMC) is employed to regulate the target damping ratio of each wheel axis semi-active suspension system. Finally, different road surface conditions are chosen to evaluate the control performance of this semi-active suspension and compare with that of passive system based on wheel axis acceleration signal.

Keywords: acceleration, FPGA, Fuzzy sliding mode control, semi-active suspension

Procedia PDF Downloads 399
5150 The Application of Active Learning to Develop Creativity in General Education

Authors: Chalermwut Wijit

Abstract:

This research is conducted in order to 1) study the result of applying “Active Learning” in general education subject to develop creativity 2) explore problems and obstacles in applying Active Learning in general education subject to improve the creativity in 1780 undergraduate students who registered this subject in the first semester 2013. The research is implemented by allocating the students into several groups of 10 -15 students and assigning them to design the activities for society under the four main conditions including 1) require no financial resources 2) practical 3) can be attended by every student 4) must be accomplished within 2 weeks. The researcher evaluated the creativity prior and after the study. Ultimately, the problems and obstacles from creating activity are evaluated from the open-ended questions in the questionnaires. The study result states that overall average scores on students’ ability increased significantly in terms of creativity, analytical ability and the synthesis, the complexity of working plan and team working. It can be inferred from the outcome that active learning is one of the most efficient methods in developing creativity in general education.

Keywords: creative thinking, active learning, general education, social sustainability

Procedia PDF Downloads 172
5149 Antimicrobial Properties of SEBS Compounds with Copper Microparticles

Authors: Vanda Ferreira Ribeiro, Daiane Tomacheski, Douglas Naue Simões, Michele Pitto, Ruth Marlene Campomanes Santana

Abstract:

Indoor environments, such as car cabins and public transportation vehicles are places where users are subject to air quality. Microorganisms (bacteria, fungi, yeasts) enter these environments through windows, ventilation systems and may use the organic particles present as a growth substrate. In addition, atmospheric pollutants can act as potential carbon and nitrogen sources for some microorganisms. Compounds base SEBS copolymers, poly(styrene-b-(ethylene-co-butylene)-b-styrene, are a class of thermoplastic elastomers (TPEs), fully recyclable and largely used in automotive parts. Metals, such as cooper and silver, have biocidal activities and the production of the SEBS compounds by melting blending with these agents can be a good option for producing compounds for use in plastic parts of ventilation systems and automotive air-conditioning, in order to minimize the problems caused by growth of pathogenic microorganisms. In this sense, the aim of this work was to evaluate the effect of copper microparticles as antimicrobial agent in compositions based on SEBS/PP/oil/calcite. Copper microparticles were used in weight proportion of 0%, 1%, 2% and 4%. The compounds were prepared using a co-rotating double screw extruder (L/D ratio of 40/1 and 16 mm screw diameter). The processing parameters were 300 rpm of screw rotation rate, with a temperature profile between 150 to 190°C. SEBS based TPE compounds were injection molded. The compounds emission were characterized by gravimetric fogging test. Compounds were characterized by physical (density and staining by contact), mechanical (hardness and tension properties) and rheological properties (melt volume rate – MVR). Antibacterial properties were evaluated against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) strains. To avaluate the abilities toward the fungi have been chosen Aspergillus niger (A. niger), Candida albicans (C. albicans), Cladosporium cladosporioides (C. cladosporioides) and Penicillium chrysogenum (P. chrysogenum). The results of biological tests showed a reduction on bacteria in up to 88% in E.coli and up to 93% in S. aureus. The tests with fungi showed no conclusive results because the sample without copper also demonstrated inhibition of the development of these microorganisms. The copper addition did not cause significant variations in mechanical properties, in the MVR and the emission behavior of the compounds. The density increases with the increment of copper in compounds.

Keywords: air conditioner, antimicrobial, cooper, SEBS

Procedia PDF Downloads 266
5148 Robust State feedback Controller for an Active Suspension System

Authors: Hussein Altartouri

Abstract:

The purpose of this paper is to present a modeling and control of the active suspension system using robust state feedback controller implemented for a half car model. This system represents a mechatronic system which contains all the essential components to be considered a complete mechatronic system. This system must adapt different conditions which are difficult to compromise, such as disturbances, slippage, and motion on rough road (that contains rocks, stones, and other miscellanies). Some current automobile suspension systems use passive components only by utilizing spring and damping coefficient with fixed rates. Vehicle suspensions systems are used to provide good road handling and improve passenger comfort. Passive suspensions only offer compromise between these two conflicting criteria. Active suspension poses the ability to reduce the traditional design as a compromise between handling and comfort by directly controlling the suspensions force actuators. In this study, the robust state feedback controller implemented to the active suspensions system for half car model.

Keywords: half-car model, active suspension system, state feedback, road profile

Procedia PDF Downloads 378
5147 Gas Chromatography-Analysis, Antioxidant, Anti-Inflammatory, and Anticancer Activities of Some Extracts and Fractions of Linum usitatissimum

Authors: Eman Abdullah Morsi, Hend Okasha, Heba Abdel Hady, Mortada El-Sayed, Mohamed Abbas Shemis

Abstract:

Context: Linum usitatissimum (Linn), known as Flaxseed, is one of the most important medicinal plants traditionally used for various health as nutritional purposes. Objective: Estimation of total phenolic and flavonoid contents as well as evaluate the antioxidant using α, α-diphenyl-β-picrylhydrazyl (DPPH), 2-2'azinobis (3-ethylbenzthiazoline-6-sulphonic acid (ABTS) and total antioxidant capacity (TAC) assay and investigation of anti-inflammatory by Bovine serum albumin (BSA) and anticancer activities of hepatocellular carcinoma cell line (HepG2) and breast cancer cell line (MCF7) have been applied on hexane, ethyl acetate, n-butanol and methanol extracts and also, fractions of methonal extract (hexane, ethyl acetate and n-butanol). Materials and Methods: Phenolic and flavonoid contents were detected using spectrophotometric and colorimetric assays. Antioxidant and anti-inflammatory activities were estimated in-vitro. Anticancer activity of extracts and fractions of methanolic extract were tested on (HepG2) and (MCF7). Results: Methanolic extract and its ethyl acetate fraction contain higher contents of total phenols and flavonoids. In addition, methanolic extract had higher antioxidant activity. Butanolic and ethyl acetate fractions yielded higher percent of inhibition of protein denaturation. Meanwhile, ethyl acetate fraction and methanolic extract had anticancer activity against HepG2 and MCF7 (IC50=60 ± 0.24 and 29.4 ± 0.12µg.mL⁻¹) and (IC50=94.7 ± 0.21 and 227 ± 0.48µg.mL⁻¹), respectively. In Gas chromatography-mass spectrometry (GC-MS) analysis, methanolic extract has 32 compounds, whereas; ethyl acetate and butanol fractions contain 40 and 36 compounds, respectively. Conclusion: Flaxseed contains totally different biologically active compounds that have been found to possess good variable activities, which can protect human body against several diseases.

Keywords: phenolic content, flavonoid content, HepG2, MCF7, hemolysis-assay, flaxseed

Procedia PDF Downloads 114
5146 Nanomaterial Based Electrochemical Sensors for Endocrine Disrupting Compounds

Authors: Gaurav Bhanjana, Ganga Ram Chaudhary, Sandeep Kumar, Neeraj Dilbaghi

Abstract:

Main sources of endocrine disrupting compounds in the ecosystem are hormones, pesticides, phthalates, flame retardants, dioxins, personal-care products, coplanar polychlorinated biphenyls (PCBs), bisphenol A, and parabens. These endocrine disrupting compounds are responsible for learning disabilities, brain development problems, deformations of the body, cancer, reproductive abnormalities in females and decreased sperm count in human males. Although discharge of these chemical compounds into the environment cannot be stopped, yet their amount can be retarded through proper evaluation and detection techniques. The available techniques for determination of these endocrine disrupting compounds mainly include high performance liquid chromatography (HPLC), mass spectroscopy (MS) and gas chromatography-mass spectrometry (GC–MS). These techniques are accurate and reliable but have certain limitations like need of skilled personnel, time consuming, interference and requirement of pretreatment steps. Moreover, these techniques are laboratory bound and sample is required in large amount for analysis. In view of above facts, new methods for detection of endocrine disrupting compounds should be devised that promise high specificity, ultra sensitivity, cost effective, efficient and easy-to-operate procedure. Nowadays, electrochemical sensors/biosensors modified with nanomaterials are gaining high attention among researchers. Bioelement present in this system makes the developed sensors selective towards analyte of interest. Nanomaterials provide large surface area, high electron communication feature, enhanced catalytic activity and possibilities of chemical modifications. In most of the cases, nanomaterials also serve as an electron mediator or electrocatalyst for some analytes.

Keywords: electrochemical, endocrine disruptors, microscopy, nanoparticles, sensors

Procedia PDF Downloads 261
5145 Effect of Fermentation on the Bioavailability of Some Fruit Extracts

Authors: Kubra Ozkan, Osman Sagdic

Abstract:

To better understand the benefits of these fresh and fermented fruits on human health, the consequences of human metabolism and the bioavailability must be known. In this study, brine with 10% salt content, sugar, and vinegar (5% acetic acid) was added to fruits (Prunus domestica L. and Prunus amygdalus Batsch) in different formulations. Samples were stored at 20±2˚C for their fermentation for 21 days. The effects of in vitro digestion were determined on the bioactive compounds in fresh and fermented fruits ((Prunus domestica L. and Prunus amygdalus Batsch). Total phenolic compounds, total flavonoid compounds and antioxidant capacities of post gastric (PG), IN (with small intestinal absorbers) and OUT (without small intestine absorbers) samples obtained as gastric and intestinal digestion in vitro were measured. Bioactive compounds and antioxidant capacity were determined by spectrophotometrically. Antioxidant capacity was tested by the CUPRAC methods, the total phenolic content (TPC) was determined by the Folin-Ciocalteu method, the total flavonoid content (TFC) determined by Aluminium trichloride (AlCl3) method. While the antioxidant capacity of fresh Prunus domestica L. and Prunus amygdalus Batsch samples were 2.21±0.05 mg TEAC/g, 4.39±0.02mg TEAC/g; these values for fermented fruits were found 2.37±0.08mg TEAC/g, 5.38±0.07mg TEAC/g respectively. While the total phenolic contents of fresh fruits namely, Prunus domestica L. and Prunus amygdalus Batsch samples were 0.51±0.01mg GAE/g, 5.56±0.01mg GAE/g; these values for fermented fruits were found as 0.52±0.01mg GAE/g, 6.81±0.03mg GAE/g, respectively. While the total flavonoid amounts of fresh Prunus domestica L. and Prunus amygdalus Batsch samples were 0.19±0.01mg CAE/g, 2.68±0.02mg CAE/g, these values for fermented fruits were found 0.20±0.01mg CAE/g, 2.93±0.02mg CAE/g, respectively. This study showed that phenolic, flavonoid compounds and antioxidant capacities of the samples were increased during the fermantation process. As a result of digestion, the amounts of bioactive components decreased in the stomach and intestinal environment. The bioavailability values of the phenolic compounds in fresh and fermented Prunus domestica L. fruits are 40.89% and 43.28%, respectively. The bioavailability values of the phenolic compounds in fresh and fermented Prunus amygdalus Batsch fruits 4.27% and 3.82%, respectively. The bioavailability values of the flavonoid compounds in fresh and fermented Prunus domestica L. fruits are 5.32% and 19.98%, respectively. The bioavailability values of the flavonoid compounds in fresh and fermented Prunus amygdalus Batsch fruits 2.22% and 1.53%, respectively. The bioavailability values of antioxidant capacity in fresh and fermented Prunus domestica L. fruits are 33.06% and 33.51, respectively. The bioavailability values of antioxidant capacity in fresh and fermented Prunus amygdalus Batsch fruits 14.50% and 15.31%, respectively. Fermentation process; Prunus amygdalus Batsch decreased bioavailability while Prunus domestica increased bioavailability. When two fruits are compared; Prunus domestica bioavailability is more than Prunus amygdalus Batsch.

Keywords: bioactivity, bioavailability, fermented, fruit, nutrition

Procedia PDF Downloads 148
5144 Screening for Hit Identification against Mycobacterium abscessus

Authors: Jichan Jang

Abstract:

Mycobacterium abscessus is a rapidly growing life-threatening mycobacterium with multiple drug-resistance mechanisms. In this study, we screened the library to identify active molecules targeting Mycobacterium abscessus using resazurin live/dead assays. In this screening assay, the Z-factor was 0.7, as an indication of the statistical confidence of the assay. A cut-off of 80% growth inhibition in the screening resulted in the identification of four different compounds at a single concentration (20 μM). Dose-response curves identified three different hit candidates, which generated good inhibitory curves. All hit candidates were expected to have different molecular targets. Thus, we found that compound X, identified, may be a promising candidate in the M. abscessus drug discovery pipeline.

Keywords: Mycobacterium abscessus, antibiotics, drug discovery, emerging Pathogen

Procedia PDF Downloads 191
5143 Stems of Prunus avium: An Unexplored By-product with Great Bioactive Potential

Authors: Luís R. Silva, Fábio Jesus, Catarina Bento, Ana C. Gonçalves

Abstract:

Over the last few years, the traditional medicine has gained ground at nutritional and pharmacological level. The natural products and their derivatives have great importance in several drugs used in modern therapeutics. Plant-based systems continue to play an essential role in primary healthcare. Additionally, the utilization of their plant parts, such as leaves, stems and flowers as nutraceutical and pharmaceutical products, can add a high value in the natural products market, not just by the nutritional value due to the significant levels of phytochemicals, but also by to the high benefit for the producers and manufacturers business. Stems of Prunus avium L. are a byproduct resulting from the processing of cherry, and have been consumed over the years as infusions and decoctions due to its bioactive properties, being used as sedative, diuretic and draining, to relief of renal stones, edema and hypertension. In this work, we prepared a hydroethanolic and infusion extracts from stems of P. avium collected in Fundão Region (Portugal), and evaluate the phenolic profile by LC/DAD, antioxidant capacity, α-glucosidase inhibitory activity and protection of human erythrocytes against oxidative damage. The LC-DAD analysis allowed to the identification of 19 phenolic compounds, catechin and 3-O-caffolquinic acid were the main ones. In a general way, hydroethanolic extract proved to be more active than infusion. This extract had the best antioxidant activity against DPPH• (IC50=22.37 ± 0.28 µg/mL) and superoxide radical (IC50=13.93 ± 0.30 µg/mL). Furthermore, it was the most active concerning inhibition of hemoglobin oxidation (IC50=13.73 ± 0.67 µg/mL), hemolysis (IC50=1.49 ± 0.18 µg/mL) and lipid peroxidation (IC50=26.20 ± 0.38 µg/mL) on human erythrocytes. On the other hand, infusion revealed to be more efficient towards α-glucosidase inhibitory activity (IC50=3.18 ± 0.23 µg/mL) and against nitric oxide radical (IC50=99.99 ± 1.89 µg/mL). The Sweet cherry sector is very important in Fundão Region (Portugal), and taking profit from the great wastes produced during processing of the cherry to produce added-value products, such as food supplements cannot be ignored. Our results demonstrate that P. avium stems possesses remarkable antioxidant and free radical scavenging properties. It is therefore, suggest, that P. avium stems can be used as a natural antioxidant with high potential to prevent or slow the progress of human diseases mediated by oxidative stress.

Keywords: stems, Prunus avium, phenolic compounds, biological potential

Procedia PDF Downloads 282
5142 The Evaluation of Substitution of Acacia villosa in Ruminants Ration

Authors: Hadriana Bansi, Elizabeth Wina, Toto Toharmat

Abstract:

Acacia villosa is thornless shrub legume which contents high crude protein. However, the utilization of A. villosa as ruminant feed is limited by its secondary compounds. The aim of this article is to find out the maximum of substitution A. villosa in sheep ration. The nutritional evaluation consisted of in vitro two stages, in vivo, and in vitro gas production trials. The secondary compounds of A. villosa also were analyzed. Evaluating digestibility of increasing level of substitution A. villosa replacing Pennisetum purpureum was using in vitro two stages. The substitution of 30% A. villosa was compared to 100% P. purpureum by in vitro gas production technique and in vivo digestibility. The results of two stages in vitro showed that total phenol, condensed tannin, and non-protein amino acid (NPAA) were high. Substitution 15% A. villosa reached the highest digestibility for both dry matter (DM) and crude protein (CP) which were 67% and 86% respectively, but it was shown that DM and CP digestibility of substitution 30% of A. villosa was still high which were 61.82% and 75-67% respectively. The pattern of gas production showed that first 8 hours total gas production substitution of 30% A. villosa was higher than 100% P. purpureum and declined after 10 hours incubation. In vivo trials showed that substitution of 30% A. villosa significantly increased CP intake, CP digestibility, and nitrogen retention. It can be concluded that substitution A. villosa until 30% still gave the good impact even though it has high secondary compounds.

Keywords: Acacia villosa, digestibility, gas production, secondary compounds

Procedia PDF Downloads 143
5141 Discovery, Design and Synthesis of Some Novel Antitumor 1,2,4-Triazine Derivatives as C-Met Kinase Inhibitors

Authors: Ibrahim M. Labouta, Marwa H. El-Wakil, Hayam M. Ashour, Ahmed M. Hassan, Manal N. Saudi

Abstract:

The receptor tyrosine kinase c-Met is an attractive target for therapeutic treatment of cancers nowadays. Among the wide variety of heterocycles that have been explored for developing c-Met kinase inhibitors, the 1,2,4-triazines have been rarely investigated, although they are well known in the literature to possess antitumor activities. Herein we describe the design and synthesis of a novel series of 1,2,4-triazine derivatives possessing N-acylarylhydrazone moiety and another series combining the 1,2,4-triazine scaffold to the well-known anticancer drug 6-MP in order to explore their “double-drug” effect. The synthesized compounds were evaluated for their in vitro antitumor activity against three c-Met addicted cancer cell lines (A549, HT-29 and MKN-45). Most compounds showed moderate to excellent antiproliferative activity and four compounds showed potent inhibitory activity more than the reference drug Foretinib against one or more cancer cell lines. The obtained results revealed that the potent compounds are highly selective to A549 (lung adenocarcinoma) cancer cell line. The c-Met kinase inhibitory activity of the potent derivatives is still under investigation. The present study clearly demonstrates that the 1,2,4-triazine core ring exhibits promising antitumor activity with potential c-Met kinase inhibitory activity.

Keywords: 1, 2, 4-triazine, antitumor, c-Met inhibitor, double-drug

Procedia PDF Downloads 327
5140 Vapochromism of 3,3’,5,5’-Tetramethylbenzidine-Tetrasilisicfluormica Intercalation Compounds with High Selectivity for Water and Acetonitrile

Authors: Reira Kinoshita, Shin'ichi Ishimaru

Abstract:

Vapochromism is a type of chromism in which the color of a substance changes when it is exposed to the vapor of volatile materials, and has been investigated for the application of chemical sensors for volatile organic compounds causing sick building syndrome and health hazards in workspaces. We synthesized intercalation compounds of 3,3',5,5'-tetramethylbenzidine (TMB), and tetrasilisicfluormica (TSFM) by the commonly used cation-exchange method with the cation ratio TMB²⁺/CEC of TSFM = 1.0, 2.0, 2.7 and 5.4 to investigate the vapochromism of these materials. The obtained samples were characterized by powder XRD, XRF, TG-DTA, N₂ adsorption, and SEM. Vapochromism was measured for each sample under a controlled atmosphere by a handy reflectance spectrometer directly from the outside of the glass sample tubes. The color was yellow for all specimens vacuum-dried at 50 °C, but it turned green under H₂O vapor exposure for the samples with TMB²⁺/CEC = 2.0, 2.7, and 5.4 and blue under acetonitrile vapor for all cation ratios. Especially the sample TMB²⁺/CEC = 2.0 showed clear chromism both for water and acetonitrile. On the other hand, no clear color change was observed for vapors of alcohols, acetone, and non-polar solvents. From these results, this material can be expected to apply for easy detection of humidity and acetonitrile vapor in the environment.

Keywords: chemical sensor, intercalation compound, tetramethylbenzidine, tetrasilisicfluormica, vapochromism, volatile organic compounds

Procedia PDF Downloads 98
5139 Smart and Active Package Integrating Printed Electronics

Authors: Joana Pimenta, Lorena Coelho, José Silva, Vanessa Miranda, Jorge Laranjeira, Rui Soares

Abstract:

In this paper, the results of R&D on an innovative food package for increased shelf-life are presented. SAP4MA aims at the development of a printed active device that enables smart packaging solutions for food preservation, targeting the extension of the shelf-life of the packed food through the controlled release of active natural antioxidant agents at the onset of the food degradation process. To do so, SAP4MA focuses on the development of active devices such as printed heaters and batteries/supercapacitors in a label format to be integrated on packaging lids during its injection molding process, promoting the passive release of natural antioxidants after the product is packed, during transportation and in the shelves, and actively when the end-user activates the package, just prior to consuming the product at home. When the active device present on the lid is activated, the release of the natural antioxidants embedded in the inner layer of the packaging lid in direct contact with the headspace atmosphere of the food package starts. This approach is based on the use of active functional coatings composed of nano encapsulated active agents (natural antioxidants species) in the prevention of the oxidation of lipid compounds in food by agents such as oxygen. Thus keeping the product quality during the shelf-life, not only when the user opens the packaging, but also during the period from food packaging up until the purchase by the consumer. The active systems that make up the printed smart label, heating circuit, and battery were developed using screen-printing technology. These systems must operate under the working conditions associated with this application. The printed heating circuit was studied using three different substrates and two different conductive inks. Inks were selected, taking into consideration that the printed circuits will be subjected to high pressures and temperatures during the injection molding process. The circuit must reach a homogeneous temperature of 40ºC in the entire area of the lid of the food tub, promoting a gradual and controlled release of the antioxidant agents. In addition, the circuit design involves a high level of study in order to guarantee maximum performance after the injection process and meet the specifications required by the control electronics component. Furthermore, to characterize the different heating circuits, the electrical resistance promoted by the conductive ink and the circuit design, as well as the thermal behavior of printed circuits on different substrates, were evaluated. In the injection molding process, the serpentine-shaped design developed for the heating circuit was able to resolve the issues connected to the injection point; in addition, the materials used in the support and printing had high mechanical resistance against the pressure and temperature inherent to the injection process. Acknowledgment: This research has been carried out within the Project “Smart and Active Packing for Margarine Product” (SAP4MA) running under the EURIPIDES Program being co-financed by COMPETE 2020 – the Operational Programme for Competitiveness and Internationalization and under Portugal 2020 through the European Regional Development Fund (ERDF).

Keywords: smart package, printed heat circuits, printed batteries, flexible and printed electronic

Procedia PDF Downloads 92
5138 A New Phenolic Compound Isolated from Laurus nobilis from Lebanon and Comparison of Antioxidant Activity of Different Parts

Authors: Turk Ayman, Ahn Jong Hoon, Khalife K. Hala, Gali-Muhtasib Hala, Lee Mi Kyeong

Abstract:

Laurus nobilis is an aromatic plant widely distributed in the Mediterranean region. The leaves of this plant are frequently used as a spice and as a traditional medicine for several diseases. In our present study, the methanolic extract of L. nobilis leaves showed antioxidant activity. Chromatographic separations of the EtOAc fraction which had the highest antioxidant activity led to the isolation of 12 compounds. Among them, there was a new phenylpropanoid derivative, which was identified by 1D and 2D NMR experiments, as well as high resolution mass spectrometry. In addition, two major compounds, catechin and epicatechin, which showed strong antioxidant activity may be responsible for the antioxidant activity of L. nobilis leaves. Since different plant parts may contain different types of constituents which contribute to the biological activities, we investigated the antioxidant activity of different parts of L. nobilis such as leaves, stems and fruits. Stems of L. nobilis showed the most potent antioxidant activity, followed by leaves. Further quantitation of total phenol and flavonoids contents revealed a positive correlation between the content of these compounds and antioxidant activity. Taken together, phenolic compounds including flavonoids are responsible for antioxidant activity of L. nobilis. In addition, stem parts of L. nobilis are suggested as good sources for antioxidant activity. Conclusively, L. nobilis might be effective in several free radical mediated diseases.

Keywords: antioxidant activity, different parts, Laurus nobilis, phenolic compound

Procedia PDF Downloads 284
5137 Recovery and Εncapsulation of Μarine Derived Antifouling Agents

Authors: Marina Stramarkou, Sofia Papadaki, Maria Kaloupi, Ioannis Batzakas

Abstract:

Biofouling is a complex problem of the aquaculture industry, as it reduces the efficiency of the equipment and causes significant losses of cultured organisms. Nowadays, the current antifouling methods are proved to be labor intensive, have limited lifetime and use toxic substances that result in fish mortality. Several species of marine algae produce a wide variety of biogenic compounds with antibacterial and antifouling properties, which are effective in the prevention and control of biofouling and can be incorporated in antifouling coatings. In the present work, Fucus spiralis, a species of macro algae, and Chlorella vulgaris, a well-known species of microalgae, were used for the isolation and recovery of bioactive compounds, belonging to groups of fatty acids, lipopeptides and amides. The recovery of the compounds was achieved through the application of the ultrasound- assisted extraction, an environmentally friendly method, using green, non-toxic solvents. Moreover, the coating of the antifouling agents was done by innovative encapsulation and coating methods, such as electro-hydrodynamic process. For the encapsulation of the bioactive compounds natural matrices were used, such as polysaccharides and proteins. Water extracts that were incorporated in protein matrices were considered the most efficient antifouling coating.

Keywords: algae, electrospinning, fatty acids, ultrasound-assisted extraction

Procedia PDF Downloads 326
5136 The Perceptions, Experiences, and Views of E-Tutors on Active Learning in the ODeL Context

Authors: Bunki Enid Pitsoane

Abstract:

This study was influenced by the radical change in the tutorial system of UNISA, immigrating from face to face to E-tutoring. The study was undertaken to investigate the perceptions, experiences, and views of E-tutors in relation to active learning. The study is aimed at capturing the views and experiences of E-tutors as they are deemed to implement active learning within their E-tutoring. The problem was traced from Developmental and behaviorist’s theorists perspective and factors related to perception, experience, and views of E-tutors on active learning. The research is aligned with the views of constructivism which put more emphasis on situated learning, chaos, and digital factors. The basis of the theory is that learning is developmental, situational and context-sensitive and also digital. The theorists further purports that the tutor’s conception of teaching and learning influence their tutoring style. In order to support or reject the findings of the literature study, qualitative research in the form of interviews and document analysis were conducted. The sample of the study constituted of 10 E-tutors who are involved in tutoring modules from the College of Education. The identified E-tutors were randomly selected based on their availability. The data concerning E-tutors perception and experience was analysed and interpreted. The results of the empirical study indicated that some tutors are struggling to implement active learning because they are digital immigrants or they lack in digital knowledge which affect productivity in their teaching.

Keywords: E-Tutoring, active learning, perceptions, views

Procedia PDF Downloads 205
5135 Bronchospasm Analysis Following the Implementation of a Program of Maximum Aerobic Exercise in Active Men

Authors: Sajjad Shojaeidoust, Mohsen Ghanbarzadeh, Abdolhamid Habibi

Abstract:

Exercise-induced bronchospasm (EIB) is a transitory condition of airflow obstruction that is associated with physical activities. It is noted that high ventilation can lead to an increase in the heat and reduce in the moisture in airways resistance of trachea. Also causes of pathophysiological mechanism are EIB. Accordingly, studying some parameters of pulmonary function (FVC, FEV1) among active people seems quintessential. The aim of this study was to analyze bronchospasm following the implementation of a program of maximum aerobic exercise in active men at Chamran University of Ahwaz. Method: In this quasi-experimental study, the population consisted of all students at Chamran University. Among from 55 participants, of which, 15 were randomly selected as the experimental group. In this study, the size of the maximum oxygen consumption was initially measured, and then, based on the maximum oxygen consumed, the active individuals were identified. After five minutes’ warm-up, Strand treadmill exercise test was taken (one session) and pulmonary parameters were measured at both pre- and post-tests (spirometer). After data normalization using KS and non-normality of the data, the Wilcoxon test was used to analyze the data. The significance level for all statistical surveys was considered p≤0/05. Results: The results showed that the ventilation factors and bronchospasm (FVC, FEV1) in the pre-test and post-test resulted in no significant difference among the active people (p≥0/05). Discussion and conclusion: Based on the results observed in this study, it appears that pulmonary indices in active individuals increased after aerobic test. The increase in this indicator in active people is due to increased volume and elasticity of the lungs as well. In other words, pulmonary index is affected by rib muscles. It is considered that progress over respiratory muscle strength and endurance has raised FEV1 in the active cases.

Keywords: aerobic active maximum, bronchospasm, pulmonary function, spirometer

Procedia PDF Downloads 267
5134 Synthesis of 4', 6'-Bis-(2, 4-Dinitro-Aniline)-(2'-Aryl-Amine)-S-Triazine and Biological Activity Studies

Authors: Dilesh Indorkar

Abstract:

The aromatic, six membered ring containing three nitrogen atoms are known as triazines. Three triazines are theoretically possible, 1,3,5-triazine, 1,2,4-triazine and 1,2,3-triazine[1]. The 1,3,5-triazines are amongst the oldest known organic compounds. Originally they were called the symmetric triazines. Usuelly abbreviated to s- or sys triazines. The numbering follows the usual convention of beginning at the hetero atom as shown for the parent compound 1,3,5-triazine (I). The triazine rings, each contain 6 pi electrons which fill three bonding molecular orbital there are also three pairs of non bonding electrons in each molecule which are responsible for basic properties of the compounds.

Keywords: s-triazine, thiazoline, isoxazoline, benzoxazine heterocyclic

Procedia PDF Downloads 313
5133 Identification of Potent and Selective SIRT7 Anti-Cancer Inhibitor via Structure-Based Virtual Screening and Molecular Dynamics Simulation

Authors: Md. Fazlul Karim, Ashik Sharfaraz, Aysha Ferdoushi

Abstract:

Background: Computational medicinal chemistry approaches are used for designing and identifying new drug-like molecules, predicting properties and pharmacological activities, and optimizing lead compounds in drug development. SIRT7, a nicotinamide adenine dinucleotide (NAD+)-dependent deacylase which regulates aging, is an emerging target for cancer therapy with mounting evidence that SIRT7 downregulation plays important roles in reversing cancer phenotypes and suppressing tumor growth. Activation or altered expression of SIRT7 is associated with the progression and invasion of various cancers, including liver, breast, gastric, prostate, and non-small cell lung cancer. Objectives: The goal of this work was to identify potent and selective bioactive candidate inhibitors of SIRT7 by in silico screening of small molecule compounds obtained from Nigella sativa (N. sativa). Methods: SIRT7 structure was retrieved from The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), and its active site was identified using CASTp and metaPocket. Molecular docking simulation was performed with PyRx 0.8 virtual screening software. Drug-likeness properties were tested using SwissADME and pkCSM. In silico toxicity was evaluated by Osiris Property Explorer. Bioactivity was predicted by Molinspiration software. Antitumor activity was screened for Prediction of Activity Spectra for Substances (PASS) using Way2Drug web server. Molecular dynamics (MD) simulation was carried out by Desmond v3.6 package. Results: A total of 159 bioactive compounds from the N. Sativa were screened against the SIRT7 enzyme. Five bioactive compounds: chrysin (CID:5281607), pinocembrin (CID:68071), nigellidine (CID:136828302), nigellicine (CID:11402337), and epicatechin (CID:72276) were identified as potent SIRT7 anti-cancer candidates after docking score evaluation and applying Lipinski's Rule of Five. Finally, MD simulation identified Chrysin as the top SIRT7 anti-cancer candidate molecule. Conclusion: Chrysin, which shows a potential inhibitory effect against SIRT7, can act as a possible anti-cancer drug candidate. This inhibitor warrants further evaluation to check its pharmacokinetics and pharmacodynamics properties both in vitro and in vivo.

Keywords: SIRT7, antitumor, molecular docking, molecular dynamics simulation

Procedia PDF Downloads 55
5132 Development of Heating Elements Based on Fe₂O₃ Reduction Products by Waste Active Sludge

Authors: Abigail Parra Parra, Jorge L. Morelos Hernandez, Pedro A. Marquez Agilar, Marina Vlasova, Jesus Colin De La Cruz

Abstract:

Carbothermal reduction of metal oxides is widely used both in metallurgical processes and in the production of oxygen-free refractory ceramics. As a rule, crushed coke and graphite are used as a reducing agent. The products of carbonization of organic compounds are among the innovative reducing agents. The aim of this work was to study the process of reduction of iron oxide (hematite) down to iron by waste active sludge (WAS) carbonization products. WAS was chosen due to the accumulation of a large amount of this type of waste, soil pollution, and the relevance of the development of technologies for its disposal. The studies have shown that the temperature treatment of mixtures WAS-Fe₂O₃ in the temperature range 900-1000 ºC for 1-5 hours under oxygen deficiency is described by the following scheme: WAS + Fe₂O₃→ C,CO + Fe₂O₃→ C + FexO → Fe (amorphous and crystalline). During the heat treatment of the mixtures, strong samples are formed. The study of the electrical conductive properties of such samples showed that, depending on the ratio of the components in the initial mixtures, it is possible to change the values of electrical resistivity from 5.6 Ω‧m to 151.6 Ω‧m When a current is passed through the samples, they are heated from 240 to 378ºC. Thus, based on WAS-Fe₂O₃ mixtures, heating elements can be created that can be used to heat ceramics and concrete.

Keywords: Fe₂O₃, reduction, waste activate sludge, electroconductivity

Procedia PDF Downloads 123
5131 Semiconductor Nanofilm Based Schottky-Barrier Solar Cells

Authors: Mariyappan Shanmugam, Bin Yu

Abstract:

Schottky-barrier solar cells are demonstrated employing 2D-layered MoS2 and WS2 semiconductor nanofilms as photo-active material candidates synthesized by chemical vapor deposition method. Large area MoS2 and WS2 nanofilms are stacked by layer transfer process to achieve thicker photo-active material studied by atomic force microscopy showing a thickness in the range of ~200 nm. Two major vibrational active modes associated with 2D-layered MoS2 and WS2 are studied by Raman spectroscopic technique to estimate the quality of the nanofilms. Schottky-barrier solar cells employed MoS2 and WS2 active materials exhibited photoconversion efficiency of 1.8 % and 1.7 % respectively. Fermi-level pinning at metal/semiconductor interface, electronic transport and possible recombination mechanisms are studied in the Schottky-barrier solar cells.

Keywords: two-dimensional nanosheet, graphene, hexagonal boron nitride, solar cell, Schottky barrier

Procedia PDF Downloads 316