Search results for: ANN regression
2943 Regional Flood Frequency Analysis in Narmada Basin: A Case Study
Authors: Ankit Shah, R. K. Shrivastava
Abstract:
Flood and drought are two main features of hydrology which affect the human life. Floods are natural disasters which cause millions of rupees’ worth of damage each year in India and the whole world. Flood causes destruction in form of life and property. An accurate estimate of the flood damage potential is a key element to an effective, nationwide flood damage abatement program. Also, the increase in demand of water due to increase in population, industrial and agricultural growth, has let us know that though being a renewable resource it cannot be taken for granted. We have to optimize the use of water according to circumstances and conditions and need to harness it which can be done by construction of hydraulic structures. For their safe and proper functioning of hydraulic structures, we need to predict the flood magnitude and its impact. Hydraulic structures play a key role in harnessing and optimization of flood water which in turn results in safe and maximum use of water available. Mainly hydraulic structures are constructed on ungauged sites. There are two methods by which we can estimate flood viz. generation of Unit Hydrographs and Flood Frequency Analysis. In this study, Regional Flood Frequency Analysis has been employed. There are many methods for estimating the ‘Regional Flood Frequency Analysis’ viz. Index Flood Method. National Environmental and Research Council (NERC Methods), Multiple Regression Method, etc. However, none of the methods can be considered universal for every situation and location. The Narmada basin is located in Central India. It is drained by most of the tributaries, most of which are ungauged. Therefore it is very difficult to estimate flood on these tributaries and in the main river. As mentioned above Artificial Neural Network (ANN)s and Multiple Regression Method is used for determination of Regional flood Frequency. The annual peak flood data of 20 sites gauging sites of Narmada Basin is used in the present study to determine the Regional Flood relationships. Homogeneity of the considered sites is determined by using the Index Flood Method. Flood relationships obtained by both the methods are compared with each other, and it is found that ANN is more reliable than Multiple Regression Method for the present study area.Keywords: artificial neural network, index flood method, multi layer perceptrons, multiple regression, Narmada basin, regional flood frequency
Procedia PDF Downloads 4222942 New Approach for Load Modeling
Authors: Slim Chokri
Abstract:
Load forecasting is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.Keywords: neural network, load forecasting, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression
Procedia PDF Downloads 4392941 Agriculture Yield Prediction Using Predictive Analytic Techniques
Authors: Nagini Sabbineni, Rajini T. V. Kanth, B. V. Kiranmayee
Abstract:
India’s economy primarily depends on agriculture yield growth and their allied agro industry products. The agriculture yield prediction is the toughest task for agricultural departments across the globe. The agriculture yield depends on various factors. Particularly countries like India, majority of agriculture growth depends on rain water, which is highly unpredictable. Agriculture growth depends on different parameters, namely Water, Nitrogen, Weather, Soil characteristics, Crop rotation, Soil moisture, Surface temperature and Rain water etc. In our paper, lot of Explorative Data Analysis is done and various predictive models were designed. Further various regression models like Linear, Multiple Linear, Non-linear models are tested for the effective prediction or the forecast of the agriculture yield for various crops in Andhra Pradesh and Telangana states.Keywords: agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models
Procedia PDF Downloads 3212940 Using Linear Logistic Regression to Evaluation the Patient and System Delay and Effective Factors in Mortality of Patients with Acute Myocardial Infarction
Authors: Firouz Amani, Adalat Hoseinian, Sajjad Hakimian
Abstract:
Background: The mortality due to Myocardial Infarction (MI) is often occur during the first hours after onset of symptom. So, for taking the necessary treatment and decreasing the mortality rate, timely visited of the hospital could be effective in this regard. The aim of this study was to investigate the impact of effective factors in mortality of MI patients by using Linear Logistic Regression. Materials and Methods: In this case-control study, all patients with Acute MI who referred to the Ardabil city hospital were studied. All of died patients were considered as the case group (n=27) and we select 27 matched patients without Acute MI as a control group. Data collected for all patients in two groups by a same checklist and then analyzed by SPSS version 24 software using statistical methods. We used the linear logistic regression model to determine the effective factors on mortality of MI patients. Results: The mean age of patients in case group was significantly higher than control group (75.1±11.7 vs. 63.1±11.6, p=0.001).The history of non-cardinal diseases in case group with 44.4% significantly higher than control group with 7.4% (p=0.002).The number of performed PCIs in case group with 40.7% significantly lower than control group with 74.1% (P=0.013). The time distance between hospital admission and performed PCI in case group with 110.9 min was significantly upper than control group with 56 min (P=0.001). The mean of delay time from Onset of symptom to hospital admission (patient delay) and the mean of delay time from hospital admissions to receive treatment (system delay) was similar between two groups. By using logistic regression model we revealed that history of non-cardinal diseases (OR=283) and the number of performed PCIs (OR=24.5) had significant impact on mortality of MI patients in compare to other factors. Conclusion: Results of this study showed that of all studied factors, the number of performed PCIs, history of non-cardinal illness and the interval between onset of symptoms and performed PCI have significant relation with morality of MI patients and other factors were not meaningful. So, doing more studies with a large sample and investigated other involved factors such as smoking, weather and etc. is recommended in future.Keywords: acute MI, mortality, heart failure, arrhythmia
Procedia PDF Downloads 1252939 Islamic Equity Markets Response to Volatility of Bitcoin
Authors: Zakaria S. G. Hegazy, Walid M. A. Ahmed
Abstract:
This paper examines the dependence structure of Islamic stock markets on Bitcoin’s realized volatility components in bear, normal, and bull market periods. A quantile regression approach is employed, after adjusting raw returns with respect to a broad set of relevant global factors and accounting for structural breaks in the data. The results reveal that upside volatility tends to exert negative influences on Islamic developed-market returns more in bear than in bull market conditions, while downside volatility positively affects returns during bear and bull conditions. For emerging markets, we find that the upside (downside) component exerts lagged negative (positive) effects on returns in bear (all) market regimes. By and large, the dependence structures turn out to be asymmetric. Our evidence provides essential implications for investors.Keywords: cryptocurrency markets, bitcoin, realized volatility measures, asymmetry, quantile regression
Procedia PDF Downloads 1912938 Estimation of Dynamic Characteristics of a Middle Rise Steel Reinforced Concrete Building Using Long-Term
Authors: Fumiya Sugino, Naohiro Nakamura, Yuji Miyazu
Abstract:
In earthquake resistant design of buildings, evaluation of vibration characteristics is important. In recent years, due to the increment of super high-rise buildings, the evaluation of response is important for not only the first mode but also higher modes. The knowledge of vibration characteristics in buildings is mostly limited to the first mode and the knowledge of higher modes is still insufficient. In this paper, using earthquake observation records of a SRC building by applying frequency filter to ARX model, characteristics of first and second modes were studied. First, we studied the change of the eigen frequency and the damping ratio during the 3.11 earthquake. The eigen frequency gradually decreases from the time of earthquake occurrence, and it is almost stable after about 150 seconds have passed. At this time, the decreasing rates of the 1st and 2nd eigen frequencies are both about 0.7. Although the damping ratio has more large error than the eigen frequency, both the 1st and 2nd damping ratio are 3 to 5%. Also, there is a strong correlation between the 1st and 2nd eigen frequency, and the regression line is y=3.17x. In the damping ratio, the regression line is y=0.90x. Therefore 1st and 2nd damping ratios are approximately the same degree. Next, we study the eigen frequency and damping ratio from 1998 after 3.11 earthquakes, the final year is 2014. In all the considered earthquakes, they are connected in order of occurrence respectively. The eigen frequency slowly declined from immediately after completion, and tend to stabilize after several years. Although it has declined greatly after the 3.11 earthquake. Both the decresing rate of the 1st and 2nd eigen frequencies until about 7 years later are about 0.8. For the damping ratio, both the 1st and 2nd are about 1 to 6%. After the 3.11 earthquake, the 1st increases by about 1% and the 2nd increases by less than 1%. For the eigen frequency, there is a strong correlation between the 1st and 2nd, and the regression line is y=3.17x. For the damping ratio, the regression line is y=1.01x. Therefore, it can be said that the 1st and 2nd damping ratio is approximately the same degree. Based on the above results, changes in eigen frequency and damping ratio are summarized as follows. In the long-term study of the eigen frequency, both the 1st and 2nd gradually declined from immediately after completion, and tended to stabilize after a few years. Further it declined after the 3.11 earthquake. In addition, there is a strong correlation between the 1st and 2nd, and the declining time and the decreasing rate are the same degree. In the long-term study of the damping ratio, both the 1st and 2nd are about 1 to 6%. After the 3.11 earthquake, the 1st increases by about 1%, the 2nd increases by less than 1%. Also, the 1st and 2nd are approximately the same degree.Keywords: eigenfrequency, damping ratio, ARX model, earthquake observation records
Procedia PDF Downloads 2192937 Impact of Positive Psychology Education and Interventions on Well-Being: A Study of Students Engaged in Pastoral Care
Authors: Inna R. Edara, Haw-Lin Wu
Abstract:
Positive psychology investigates human strengths and virtues and promotes well-being. Relying on this assumption, positive interventions have been continuously designed to build pleasure and happiness, joy and contentment, engagement and meaning, hope and optimism, satisfaction and gratitude, spirituality, and various other positive measures of well-being. In line with this model of positive psychology and interventions, this study investigated certain measures of well-being in a group of 45 students enrolled in an 18-week positive psychology course and simultaneously engaged in service-oriented interventions that they chose for themselves based on the course content and individual interests. Students’ well-being was measured at the beginning and end of the course. The well-being indicators included positive automatic thoughts, optimism and hope, satisfaction with life, and spirituality. A paired-samples t-test conducted to evaluate the impact of class content and service-oriented interventions on students’ scores of well-being indicators indicated statistically significant increase from pre-class to post-class scores. There were also significant gender differences in post-course well-being scores, with females having higher levels of well-being than males. A two-way between groups analysis of variance indicated a significant interaction effect of age by gender on the post-course well-being scores, with females in the age group of 56-65 having the highest scores of well-being in comparison to the males in the same age group. Regression analyses indicated that positive automatic thought significantly predicted hope and satisfaction with life in the pre-course analysis. In the post-course regression analysis, spiritual transcendence made a significant contribution to optimism, and positive automatic thought made a significant contribution to both hope and satisfaction with life. Finally, a significant test between pre-course and post-course regression coefficients indicated that the regression coefficients at pre-course were significantly different from post-course coefficients, suggesting that the positive psychology course and the interventions were helpful in raising the levels of well-being. The overall results suggest a substantial increase in the participants’ well-being scores after engaging in the positive-oriented interventions, implying a need for designing more positive interventions in education to promote well-being.Keywords: hope, optimism, positive automatic thoughts, satisfaction with life, spirituality, well-being
Procedia PDF Downloads 2212936 The Effect of Sustainable Land Management Technologies on Food Security of Farming Households in Kwara State, Nigeria
Authors: Shehu A. Salau, Robiu O. Aliu, Nofiu B. Nofiu
Abstract:
Nigeria is among countries of the world confronted with food insecurity problem. The agricultural production systems that produces food for the teaming population is not endurable. Attention is thus being given to alternative approaches of intensification such as the use of Sustainable Land Management (SLM) technologies. Thus, this study assessed the effect of SLM technologies on food security of farming households in Kwara State, Nigeria. A-three stage sampling technique was used to select a sample of 200 farming households for this study. Descriptive statistics, Shriar index, Likert scale, food security index and logistic regression were employed for the analysis. The result indicated that majority (41%) of the household heads were between the ages of 51 and 70 years with an average of 60.5 years. Food security index revealed that 35% and 65% of the households were food secure and food insecure respectively. The logistic regression showed that SLM technologies, estimated income, household size, gender and age of the household heads were the critical determinants of food security among farming households. The most effective coping strategies adopted by households geared towards lessening the effects of food insecurity are reduced quality of food consumed, employed off-farm jobs to raise household income and diversion of money budgeted for other uses to purchase foods. Governments should encourage the adoption and use of SLM technologies at all levels. Policies and strategies that reduce household size should be enthusiastically pursued to reduce food insecurity.Keywords: agricultural practices, coping strategies, farming households, food security, SLM technologies, logistic regression
Procedia PDF Downloads 1782935 The Factors Predicting Credibility of News in Social Media in Thailand
Authors: Ekapon Thienthaworn
Abstract:
This research aims to study the reliability of the forecasting factor in social media by using survey research methods with questionnaires. The sampling is the group of undergraduate students in Bangkok. A multiple-step random number of 400 persons, data analysis are descriptive statistics with multivariate regression analysis. The research found the average of the overall trust at the intermediate level for reading the news in social media and the results of the multivariate regression analysis to find out the factors that forecast credibility of the media found the only content that has the power to forecast reliability of undergraduate students in Bangkok to reading the news on social media at the significance level.at 0.05.These can be factors with forecasts reliability of news in social media by a variable that has the highest influence factor of the media content and the speed is also important for reliability of the news.Keywords: credibility of news, behaviors and attitudes, social media, web board
Procedia PDF Downloads 4722934 Evaluation of the Effect of IMS on the Social Responsibility in the Oil and Gas Production Companies of National Iranian South Oil Fields Company (NISOC)
Authors: Kamran Taghizadeh
Abstract:
This study was aimed at evaluating the effect of IMS including occupational health system, environmental management system, and safety and health system on the social responsibility (case study of NISOC`s oil and gas production companies). This study`s objectives include evaluating the IMS situation and its effect on social responsibility in addition of providing appropriate solutions based on the study`s hypotheses as a basis for future. Data collection was carried out by library and field studies as well as a questionnaire. The stratified random method was the sampling method and a sample of 285 employees in addition to the collected data (from the questionnaire) were analyzed by inferential statistics methods using SPSS software. Finally, results of regression and fitted model at a significance level of 5% confirmed all hypotheses meaning that IMS and its items have a significant effect on social responsibility.Keywords: social responsibility, integrated management, oil and gas production companies, regression
Procedia PDF Downloads 2602933 Determining the Factors Affecting Social Media Addiction (Virtual Tolerance, Virtual Communication), Phubbing, and Perception of Addiction in Nurses
Authors: Fatima Zehra Allahverdi, Nukhet Bayer
Abstract:
Objective: Three questions were formulated to examine stressful working units (intensive care units, emergency unit nurses) utilizing the self-perception theory and social support theory. This study provides a distinctive input by inspecting the combination of variables regarding stressful working environments. Method: The descriptive research was conducted with the participation of 400 nurses working at Ankara City Hospital. The study used Multivariate Analysis of Variance (MANOVA), regression analysis, and a mediation model. Hypothesis one used MANOVA followed by a Scheffe post hoc test. Hypothesis two utilized regression analysis using a hierarchical linear regression model. Hypothesis three used a mediation model. Result: The study utilized mediation analyses. Findings supported the hypotheses that intensive care units have significantly high scores in virtual communication and virtual tolerance. The number of years on the job, virtual communication, virtual tolerance, and phubbing significantly predicted 51% of the variance of perception of addiction. Interestingly, the number of years on the job, while significant, was negatively related to perception of addiction. Conclusion: The reasoning behind these findings and the lack of significance in the emergency unit is discussed. Around 7% of the variance of phubbing was accounted for through working in intensive care units. The model accounted for 26.80 % of the differences in the perception of addiction.Keywords: phubbing, social media, working units, years on the job, stress
Procedia PDF Downloads 582932 Unlocking E-commerce: Analyzing User Behavior and Segmenting Customers for Strategic Insights
Authors: Aditya Patil, Arun Patil, Vaishali Patil, Sudhir Chitnis, Anjum Patel
Abstract:
Rapid growth has given e-commerce platforms a lot of client behavior and spending data. To maximize their strategy, businesses must understand how customers utilize online shopping platforms and what influences their purchases. Our research focuses on e-commerce user behavior and purchasing trends. This extensive study examines spending and user behavior. Regression and grouping disclose relevant data from the dataset. We can understand user spending trends via multilevel regression. We can analyze how pricing, user demographics, and product categories affect customer purchase decisions with this technique. Clustering groups consumers by spending. Important information was found. Purchase habits vary by user group. Our analysis illuminates the complex world of e-commerce consumer behavior and purchase trends. Understanding user behavior helps create effective e-commerce marketing strategies. This market can benefit from K-means clustering. This study focuses on tailoring strategies to user groups and improving product and price effectiveness. Customer buying behaviors across categories were shown via K-means clusters. Average spending is highest in Cluster 4 and lowest in Cluster 3. Clothing is less popular than gadgets and appliances around the holidays. Cluster spending distribution is examined using average variables. Our research enhances e-commerce analytics. Companies can improve customer service and decision-making with this data.Keywords: e-commerce, regression, clustering, k-means
Procedia PDF Downloads 282931 Analysis on Prediction Models of TBM Performance and Selection of Optimal Input Parameters
Authors: Hang Lo Lee, Ki Il Song, Hee Hwan Ryu
Abstract:
An accurate prediction of TBM(Tunnel Boring Machine) performance is very difficult for reliable estimation of the construction period and cost in preconstruction stage. For this purpose, the aim of this study is to analyze the evaluation process of various prediction models published since 2000 for TBM performance, and to select the optimal input parameters for the prediction model. A classification system of TBM performance prediction model and applied methodology are proposed in this research. Input and output parameters applied for prediction models are also represented. Based on these results, a statistical analysis is performed using the collected data from shield TBM tunnel in South Korea. By performing a simple regression and residual analysis utilizinFg statistical program, R, the optimal input parameters are selected. These results are expected to be used for development of prediction model of TBM performance.Keywords: TBM performance prediction model, classification system, simple regression analysis, residual analysis, optimal input parameters
Procedia PDF Downloads 3132930 Audit Committee Characteristics and Earnings Quality of Listed Food and Beverages Firms in Nigeria
Authors: Hussaini Bala
Abstract:
There are different opinions in the literature on the relationship between Audit Committee characteristics and earnings management. The mix of opinions makes the direction of their relationship ambiguous. This study investigated the relationship between Audit Committee characteristics and earnings management of listed food and beverages Firms in Nigeria. The study covered the period of six years from 2007 to 2012. Data for the study were extracted from the Firms’ annual reports and accounts. After running the OLS regression, a robustness test was conducted for the validity of statistical inferences. The dependent variable was generated using two steps regression in order to determine the discretionary accrual of the sample Firms. Multiple regression was employed to run the data of the study using Random Model. The results from the analysis revealed a significant association between audit committee characteristics and earnings management of the Firms. While audit committee size and committees’ financial expertise showed an inverse relationship with earnings management, committee’s independence, and frequency of meetings are positively and significantly related to earnings management. In line with the findings, the study recommended among others that listed food and beverages Firms in Nigeria should strictly comply with the provision of Companies and Allied Matters Act (CAMA) and SEC Code of Corporate Governance on the issues regarding Audit Committees. Regulators such as SEC should increase the minimum number of Audit Committee members with financial expertise and also have a statutory position on the maximum number of Audit Committees meetings, which should not be greater than four meetings in a year as SEC code of corporate governance is silent on this.Keywords: audit committee, earnings management, listed Food and beverages size, leverage, Nigeria
Procedia PDF Downloads 2742929 Assessing the Impacts of Urbanization on Urban Precincts: A Case of Golconda Precinct, Hyderabad
Authors: Sai AKhila Budaraju
Abstract:
Heritage sites are an integral part of cities and carry a sense of identity to the cities/ towns, but the process of urbanization is a carrying potential threat for the loss of these heritage sites/monuments. Both Central and State Governments listed the historic Golconda fort as National Important Monument and the Heritage precinct with eight heritage-listed buildings and two historical sites respectively, for conservation and preservation, due to the presence of IT Corridor 6kms away accommodating more people in the precinct is under constant pressure. The heritage precinct possesses high property values, being a prime location connecting the IT corridor and CBD (central business district )areas. The primary objective of the study was to assess and identify the factors that are affecting the heritage precinct through Mapping and documentation, Identifying and assessing the factors through empirical analysis, Ordinal regression analysis and Hedonic Pricing Model. Ordinal regression analysis was used to identify the factors that contribute to the changes in the precinct due to urbanization. Hedonic Pricing Model was used to understand and establish a relation whether the presence of historical monuments is also a contributing factor to the property value and to what extent this influence can contribute. The above methods and field visit indicates the Physical, socio-economic factors and the neighborhood characteristics of the precinct contributing to the property values. The outturns and the potential elements derived from the analysis of the Development Control Rules were derived as recommendations to Integrate both Old and newly built environments.Keywords: heritage planning, heritage conservation, hedonic pricing model, ordinal regression analysis
Procedia PDF Downloads 1962928 Forecasting Stock Indexes Using Bayesian Additive Regression Tree
Authors: Darren Zou
Abstract:
Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.Keywords: BART, Bayesian, predict, stock
Procedia PDF Downloads 1362927 Detecting Trends in Annual Discharge and Precipitation in the Chott Melghir Basin in Southeastern Algeria
Authors: M. T. Bouziane, A. Benkhaled, B. Achour
Abstract:
In this study, data from 30 catchments in the Chott Melghir basin in the semiarid region of southern East Algeria were analyzed to investigate changes in annual discharge, annual precipitation over the 1965-2005 period. These data were analyzed with the aid of Kendall test trend and regression analysis. The results indicate that the major variations in all catchments discharge in Chott Melghir correspond well to the precipitation. Changes in total annual discharge of Chott Melghir were lower than changes in annual precipitation. Annual precipitation decreased by 66 percent and annual discharge decreased by 4 percent. No significant trend is detected for annual discharge and precipitation at major catchments up to 95% confidence level. The decreasing trend in Chott Melghir discharge is mainly attributed to the decrease of precipitation.Keywords: trends, climate change, precipitation, discharge, Kendall test, regression analysis, Chott Melghir catchments
Procedia PDF Downloads 3092926 Phase II Monitoring of First-Order Autocorrelated General Linear Profiles
Authors: Yihua Wang, Yunru Lai
Abstract:
Statistical process control has been successfully applied in a variety of industries. In some applications, the quality of a process or product is better characterized and summarized by a functional relationship between a response variable and one or more explanatory variables. A collection of this type of data is called a profile. Profile monitoring is used to understand and check the stability of this relationship or curve over time. The independent assumption for the error term is commonly used in the existing profile monitoring studies. However, in many applications, the profile data show correlations over time. Therefore, we focus on a general linear regression model with a first-order autocorrelation between profiles in this study. We propose an exponentially weighted moving average charting scheme to monitor this type of profile. The simulation study shows that our proposed methods outperform the existing schemes based on the average run length criterion.Keywords: autocorrelation, EWMA control chart, general linear regression model, profile monitoring
Procedia PDF Downloads 4642925 Breast Cancer Detection Using Machine Learning Algorithms
Authors: Jiwan Kumar, Pooja, Sandeep Negi, Anjum Rouf, Amit Kumar, Naveen Lakra
Abstract:
In modern times where, health issues are increasing day by day, breast cancer is also one of them, which is very crucial and really important to find in the early stages. Doctors can use this model in order to tell their patients whether a cancer is not harmful (benign) or harmful (malignant). We have used the knowledge of machine learning in order to produce the model. we have used algorithms like Logistic Regression, Random forest, support Vector Classifier, Bayesian Network and Radial Basis Function. We tried to use the data of crucial parts and show them the results in pictures in order to make it easier for doctors. By doing this, we're making ML better at finding breast cancer, which can lead to saving more lives and better health care.Keywords: Bayesian network, radial basis function, ensemble learning, understandable, data making better, random forest, logistic regression, breast cancer
Procedia PDF Downloads 582924 Stock Price Informativeness and Profit Warnings: Empirical Analysis
Authors: Adel Almasarwah
Abstract:
This study investigates the nature of association between profit warnings and stock price informativeness in the context of Jordan as an emerging country. The analysis is based on the response of stock price synchronicity to profit warnings percentages that have been published in Jordanian firms throughout the period spanning 2005–2016 in the Amman Stock Exchange. The standard of profit warnings indicators have related negatively to stock price synchronicity in Jordanian firms, meaning that firms with a high portion of profit warnings integrate with more firm-specific information into stock price. Robust regression was used rather than OLS as a parametric test to overcome the variances inflation factor (VIF) and heteroscedasticity issues recognised as having occurred during running the OLS regression; this enabled us to obtained stronger results that fall in line with our prediction that higher profit warning encourages firm investors to collect and process more firm-specific information than common market information.Keywords: Profit Warnings, Jordanian Firms, Stock Price Informativeness, Synchronicity
Procedia PDF Downloads 1442923 Major Variables Influencing Marketed Surplus of Seed Cotton in District Khanewal, Pakistan
Authors: Manan Aslam, Shafqat Rasool
Abstract:
This paper attempts to examine impact of major factors affecting marketed surplus of seed cotton in district Khanewal (Punjab) using primary source of data. A representative sample of 40 cotton farmers was selected using stratified random sampling technique. The impact of major factors on marketed surplus of seed cotton growers was estimated by employing double log form of regression analysis. The value of adjusted R2 was 0.64 whereas the F-value was 10.81. The findings of analysis revealed that experience of farmers, education of farmers, area under cotton crop and distance from wholesale market were the significant variables affecting marketed surplus of cotton whereas the variables (marketing cost and sale price) showed insignificant impact. The study suggests improving prevalent marketing practices to increase volume of marketed surplus of cotton in district Khanewal.Keywords: seed cotton, marketed surplus, double log regression analysis
Procedia PDF Downloads 3122922 Modelling of Factors Affecting Bond Strength of Fibre Reinforced Polymer Externally Bonded to Timber and Concrete
Authors: Abbas Vahedian, Rijun Shrestha, Keith Crews
Abstract:
In recent years, fibre reinforced polymers as applications of strengthening materials have received significant attention by civil engineers and environmentalists because of their excellent characteristics. Currently, these composites have become a mainstream technology for strengthening of infrastructures such as steel, concrete and more recently, timber and masonry structures. However, debonding is identified as the main problem which limit the full utilisation of the FRP material. In this paper, a preliminary analysis of factors affecting bond strength of FRP-to-concrete and timber bonded interface has been conducted. A novel theoretical method through regression analysis has been established to evaluate these factors. Results of proposed model are then assessed with results of pull-out tests and satisfactory comparisons are achieved between measured failure loads (R2 = 0.83, P < 0.0001) and the predicted loads (R2 = 0.78, P < 0.0001).Keywords: debonding, fibre reinforced polymers (FRP), pull-out test, stepwise regression analysis
Procedia PDF Downloads 2502921 Modified Clusterwise Regression for Pavement Management
Authors: Mukesh Khadka, Alexander Paz, Hanns de la Fuente-Mella
Abstract:
Typically, pavement performance models are developed in two steps: (i) pavement segments with similar characteristics are grouped together to form a cluster, and (ii) the corresponding performance models are developed using statistical techniques. A challenge is to select the characteristics that define clusters and the segments associated with them. If inappropriate characteristics are used, clusters may include homogeneous segments with different performance behavior or heterogeneous segments with similar performance behavior. Prediction accuracy of performance models can be improved by grouping the pavement segments into more uniform clusters by including both characteristics and a performance measure. This grouping is not always possible due to limited information. It is impractical to include all the potential significant factors because some of them are potentially unobserved or difficult to measure. Historical performance of pavement segments could be used as a proxy to incorporate the effect of the missing potential significant factors in clustering process. The current state-of-the-art proposes Clusterwise Linear Regression (CLR) to determine the pavement clusters and the associated performance models simultaneously. CLR incorporates the effect of significant factors as well as a performance measure. In this study, a mathematical program was formulated for CLR models including multiple explanatory variables. Pavement data collected recently over the entire state of Nevada were used. International Roughness Index (IRI) was used as a pavement performance measure because it serves as a unified standard that is widely accepted for evaluating pavement performance, especially in terms of riding quality. Results illustrate the advantage of the using CLR. Previous studies have used CLR along with experimental data. This study uses actual field data collected across a variety of environmental, traffic, design, and construction and maintenance conditions.Keywords: clusterwise regression, pavement management system, performance model, optimization
Procedia PDF Downloads 2542920 Lean Implementation Analysis on the Safety Performance of Construction Projects in the Philippines
Authors: Kim Lindsay F. Restua, Jeehan Kyra A. Rivero, Joneka Myles D. Taguba
Abstract:
Lean construction is defined as an approach in construction with the purpose of reducing waste in the process without compromising the value of the project. There are numerous lean construction tools that are applied in the construction process, which maximizes the efficiency of work and satisfaction of customers while minimizing waste. However, the complexity and differences of construction projects cause a rise in challenges on achieving the lean benefits construction can give, such as improvement in safety performance. The objective of this study is to determine the relationship between lean construction tools and their effects on safety performance. The relationship between construction tools applied in construction and safety performance is identified through Logistic Regression Analysis, and Correlation Analysis was conducted thereafter. Based on the findings, it was concluded that almost 60% of the factors listed in the study, which are different tools and effects of lean construction, were determined to have a significant relationship with the level of safety in construction projects.Keywords: correlation analysis, lean construction tools, lean construction, logistic regression analysis, risk management, safety
Procedia PDF Downloads 1922919 Mutual Fund Anchoring Bias with its Parent Firm Performance: Evidence from Mutual Fund Industry of Pakistan
Authors: Muhammad Tahir
Abstract:
Purpose The purpose of the study is to find anchoring bias behavior in mutual fund return with its parent firm performance in Pakistan. Research Methodology The paper used monthly returns of equity funds whose parent firm exist from 2011 to 2021, along with parent firm return. Proximity to 52-week highest return calculated by dividing fund return by parent firm 52-week highest return. Control variables are also taken and used pannel regression model to estimate our results. For robust results, we also used feasible generalize least square (FGLS) model. Findings The results showed that there exist anchoring biased in mutual fund return with its parent firm performance. The FGLS results reaffirms the same results as obtained from panner regression results. Proximity to 52-week highest Xc is significant in both models. Research Implication Since most of mutual funds has a parent firm, anchoring behavior biased found in mutual fund with its parent firm performance. Practical Implication Mutual fund investors in Pakistan invest in equity funds in which behavioral bias exist, although there might be better opportunity in market. Originality/Value Addition Our research is a pioneer study to investigate anchoring bias in mutual fund return with its parent firm performance. Research limitations Our sample is limited to only 23 equity funds, which has a parent firm and data was available from 2011 to 2021.Keywords: mutual fund, anchoring bias, 52-week high return, proximity to 52-week high, parent firm performance, pannel regression, FGLS
Procedia PDF Downloads 1222918 Topical Nonsteroidal Anti-Inflammatory Eye Drops and Oral Acetazolamide for Macular Edema after Uncomplicated Phacoemulsification: Outcome and Predictors of Non-Response
Authors: Wissam Aljundi, Loay Daas, Yaser Abu Dail, Barbara Käsmann-Kellner, Berthold Seitz, Alaa Din Abdin
Abstract:
Purpose: To investigate the effectiveness of nonsteroidal anti-inflammatory eye drops (NSAIDs) combined with oral acetazolamide for postoperative macular edema (PME) after uncomplicated phacoemulsification (PE) and to identify predictors of non-response. Methods: We analyzed data of uncomplicated PE and identified eyes with PME. First-line therapy included topical NSAIDs combined with oral acetazolamide. In case of non-response, triamcinolone was administered subtenonally. Outcome measures included best-corrected visual acuity (BCVA) and central macular thickness (CMT). Results: 94 eyes out of 9750 uncomplicated PE developed PME, of which 60 eyes were included. Follow-ups occurred 6.4±1.8, 12.5±3.7, and 18.6±6.0 weeks after diagnosis. BCVA and CMT improved significantly in all follow-ups. 40 eyes showed response to first-line therapy at first follow-up (G1). The remaining 20 eyes showed no response and required subtenon triamcinolone (G2), of which 11 eyes showed complete regression at the second follow-up and 4 eyes at the third follow-up. 5 eyes showed no response and required intravitreal injection. Multivariate linear regression model showed that diabetes mellitus (DM) and increased cumulative dissipated energy (CDE) are predictors of non-response. Conclusion: Topical NSAIDs with acetazolamide resulted in complete regression of PME in 67% of all cases. DM and increased CDE might be considered as predictors of nonresponse to this treatment.Keywords: postoperative macular edema, intravitreal injection, cumulative energy, irvine gass syndrome, pseudophakie
Procedia PDF Downloads 1232917 Functional Decomposition Based Effort Estimation Model for Software-Intensive Systems
Authors: Nermin Sökmen
Abstract:
An effort estimation model is needed for software-intensive projects that consist of hardware, embedded software or some combination of the two, as well as high level software solutions. This paper first focuses on functional decomposition techniques to measure functional complexity of a computer system and investigates its impact on system development effort. Later, it examines effects of technical difficulty and design team capability factors in order to construct the best effort estimation model. With using traditional regression analysis technique, the study develops a system development effort estimation model which takes functional complexity, technical difficulty and design team capability factors as input parameters. Finally, the assumptions of the model are tested.Keywords: functional complexity, functional decomposition, development effort, technical difficulty, design team capability, regression analysis
Procedia PDF Downloads 2972916 Heart Ailment Prediction Using Machine Learning Methods
Authors: Abhigyan Hedau, Priya Shelke, Riddhi Mirajkar, Shreyash Chaple, Mrunali Gadekar, Himanshu Akula
Abstract:
The heart is the coordinating centre of the major endocrine glandular structure of the body, which produces hormones that profoundly affect the operations of the body, and diagnosing cardiovascular disease is a difficult but critical task. By extracting knowledge and information about the disease from patient data, data mining is a more practical technique to help doctors detect disorders. We use a variety of machine learning methods here, including logistic regression and support vector classifiers (SVC), K-nearest neighbours Classifiers (KNN), Decision Tree Classifiers, Random Forest classifiers and Gradient Boosting classifiers. These algorithms are applied to patient data containing 13 different factors to build a system that predicts heart disease in less time with more accuracy.Keywords: logistic regression, support vector classifier, k-nearest neighbour, decision tree, random forest and gradient boosting
Procedia PDF Downloads 572915 A Case Comparative Study of Infant Mortality Rate in North-West Nigeria
Authors: G. I. Onwuka, A. Danbaba, S. U. Gulumbe
Abstract:
This study investigated of Infant Mortality Rate as observed at a general hospital in Kaduna-South, Kaduna State, North West Nigeria. The causes of infant Mortality were examined. The data used for this analysis were collected at the statistics unit of the Hospital. The analysis was carried out on the data using Multiple Linear regression Technique and this showed that there is linear relationship between the dependent variable (death) and the independent variables (malaria, measles, anaemia, and coronary heart disease). The resultant model also revealed that a unit increment in each of these diseases would result to a unit increment in death recorded, 98.7% of the total variation in mortality is explained by the given model. The highest number of mortality was recorded in July, 2005 and the lowest mortality recorded in October, 2009.Recommendations were however made based on the results of the study.Keywords: infant mortality rate, multiple linear regression, diseases, serial correlation
Procedia PDF Downloads 3352914 Investigating the Effect of Study Plan and Homework on Student's Performance by Using Web Based Learning MyMathLab
Authors: Mohamed Chabi, Mahmoud I. Syam, Sarah Aw
Abstract:
In Summer 2012, the Foundation Program Unit of Qatar University has started implementing new ways of teaching Math by introducing MML (MyMathLab) as an innovative interactive tool to support standard teaching. In this paper, we focused on the effect of proper use of the Study Plan component of MML on student’s performance. Authors investigated the results of students of pre-calculus course during Fall 2013 in Foundation Program at Qatar University. The results showed that there is a strong correlation between study plan results and final exam results, also a strong relation between homework results and final exam results. In addition, the attendance average affected on the student’s results in general. Multiple regression is determined between passing rate dependent variable and study plan, homework as independent variable.Keywords: MyMathLab, study plan, assessment, homework, attendance, correlation, regression
Procedia PDF Downloads 423