Search results for: 2n light dimension energy states systems effect
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32957

Search results for: 2n light dimension energy states systems effect

227 Effect of Chitosan Oligosaccharide from Tenebrio Molitor on Prebiotics

Authors: Hyemi Kim, Jay Kim, Kyunghoon Han, Ra-Yeong Choi, In-Woo Kim, Hyung Joo Suh, Ki-Bae Hong, Sung Hee Han

Abstract:

Chitosan is used in various industries such as food and medical care because it is known to have various functions such as anti-obesity, anti-inflammatory and anti-cancer benefits. Most of the commercial chitosan is extracted from crustaceans. As the harvest rate of snow crabs and red snow crabs decreases and safety issues arise due to environmental pollution, research is underway to extract chitosan from insects. In this study, we used Response Surface Methodology (RSM) to predict the optimal conditions to produce chitosan oligosaccharides from mealworms (MCOS), which can be absorbed through the intestine as low-molecular-weight chitosan. The experimentally confirmed optimal conditions for MCOS production using chitosanase were found to be a substrate concentration of 2.5%, enzyme addition of 30 mg/g and a reaction time of 6 hours. The chemical structure and physicochemical properties of the produced MCOS were measured using MALDI-TOF mass spectra and FTIR spectra. The MALDI-TOF mass spectra revealed peaks corresponding to the dimer (375.045), trimer (525.214), tetramer (693.243), pentamer (826.296), and hexamer (987.360). In the FTIR spectra, commercial chitosan oligosaccharides exhibited a weak peak pattern at 3500-2500 cm-1, unlike chitosan or chitosan oligosaccharides. There was a difference in the peak at 3200~3500 cm-1, where different vibrations corresponding to OH and amine groups overlapped. Chitosan, chitosan oligosaccharide, and commercial chitosan oligosaccharide showed peaks at 2849, 2884, and 2885 cm-1, respectively, attributed to the absorption of the C-H stretching vibration of methyl or methine. The amide I, amide II, and amide III bands of chitosan, chitosan oligosaccharide, and commercial chitosan oligosaccharide exhibited peaks at 1620/1620/1602, 1553/1555/1505, and 1310/1309/1317 cm-1, respectively. Furthermore, the solubility of MCOS was 45.15±3.43, water binding capacity (WBC) was 299.25±4.57, and fat binding capacity (FBC) was 325.61±2.28 and the solubility of commercial chitosan oligosaccharides was 49.04±9.52, WBC was 280.55±0.50, and FBC was 157.22±18.15. Thus, the characteristics of MCOS and commercial chitosan oligosaccharides are similar. The results of investigating the impact of chitosan oligosaccharide on the proliferation of probiotics revealed increased growth in L. casei, L. acidophilus, and Bif. Bifidum. Therefore, the major short-chain fatty acids produced by gut microorganisms, such as acetic acid, propionic acid, and butyric acid, increased within 24 hours of adding 1% (p<0.01) and 2% (p<0.001) MCOS. The impact of MCOS on the overall gut microbiota was assessed, revealing that the Chao1 index did not show significant differences, but the Simpson index decreased in a concentration-dependent manner, indicating a higher species diversity. The addition of MCOS resulted in changes in the overall microbial composition, with an increase in Firmicutes and Verrucomicrobia (p<0.05) compared to the control group, while Proteobacteria and Actinobacteria (p<0.05) decreased. At the genus level, changes in microbiota due to MCOS supplementation showed an increase in beneficial bacteria like lactobacillus, Romboutsia, Turicibacter, and Akkermansia (p<0.0001) while harmful bacteria like Enterococcus, Morganella, Proterus, and Bacteroides (p<0.0001) decreased. In this study, chitosan oligosaccharides were successfully produced under established conditions from mealworms, and these chitosan oligosaccharides are expected to have prebiotic effects, similar to those obtained from crabs.

Keywords: mealworms, chitosan, chitosan oligosaccharide, prebiotics

Procedia PDF Downloads 63
226 Transition Metal Bis(Dicarbollide) Complexes in Design of Molecular Switches

Authors: Igor B. Sivaev

Abstract:

Design of molecular machines is an extraordinary growing and very important area of research that it was recognized by awarding Sauvage, Stoddart and Feringa the Nobel Prize in Chemistry in 2016 'for the design and synthesis of molecular machines'. Based on the type of motion being performed, molecular machines can be divided into two main types: molecular motors and molecular switches. Molecular switches are molecules or supramolecular complexes having bistability, i.e., the ability to exist in two or more stable forms, among which may be reversible transitions under external influence (heating, lighting, changing the medium acidity, the action of chemicals, exposure to magnetic or electric field). Molecular switches are the main structural element of any molecular electronics devices. Therefore, the design and the study of molecules and supramolecular systems capable of performing mechanical movement is an important and urgent problem of modern chemistry. There is growing interest in molecular switches and other devices of molecular electronics based on transition metal complexes; therefore choice of suitable stable organometallic unit is of great importance. An example of such unit is bis(dicarbollide) complexes of transition metals [3,3’-M(1,2-C₂B₉H₁₁)₂]ⁿ⁻. The control on the ligand rotation in such complexes can be reached by introducing substituents which could provide stabilization of certain rotamers due to specific interactions between the ligands, on the one hand, and which can participate as Lewis bases in complex formation with external metals resulting in a change in the rotation angle of the ligands, on the other hand. A series of isomeric methyl sulfide derivatives of cobalt bis(dicarbollide) complexes containing methyl sulfide substituents at boron atoms in different positions of the pentagonal face of the dicarbollide ligands [8,8’-(MeS)₂-3,3’-Co(1,2-C₂B₉H₁₀)₂]⁻, rac-[4,4’-(MeS)₂-3,3’-Co(1,2-C₂B₉H₁₀)₂]⁻ and meso-[4,7’-(MeS)₂-3,3’-Co(1,2-C₂B₉H₁₀)₂]⁻ were synthesized by the reaction of CoCl₂ with the corresponding methyl sulfide carborane derivatives [10-MeS-7,8-C₂B₉H₁₁)₂]⁻ and [10-MeS-7,8-C₂B₉H₁₁)₂]⁻. In the case of asymmetrically substituted cobalt bis(dicarbollide) complexes the corresponding rac- and meso-isomers were successfully separated by column chromatography as the tetrabutylammonium salts. The compounds obtained were studied by the methods of ¹H, ¹³C, and ¹¹B NMR spectroscopy, single crystal X-ray diffraction, cyclic voltammetry, controlled potential coulometry and quantum chemical calculations. It was found that in the solid state, the transoid- and gauche-conformations of the 8,8’- and 4,4’-isomers are stabilized by four intramolecular CH···S(Me)B hydrogen bonds each one (2.683-2.712 Å and 2.709-2.752 Å, respectively), whereas gauche-conformation of the 4,7’-isomer is stabilized by two intramolecular CH···S hydrogen bonds (2.699-2.711 Å). The existence of the intramolecular CH·S(Me)B hydrogen bonding in solutions was supported by the 1H NMR spectroscopy. These data are in a good agreement with results of the quantum chemical calculations. The corresponding iron and nickel complexes were synthesized as well. The reaction of the methyl sulfide derivatives of cobalt bis(dicarbollide) with various labile transition metal complexes results in rupture of intramolecular hydrogen bonds and complexation of the methyl sulfide groups with external metal. This results in stabilization of other rotational conformation of cobalt bis(dicarbollide) and can be used in design of molecular switches. This work was supported by the Russian Science Foundation (16-13-10331).

Keywords: molecular switches, NMR spectroscopy, single crystal X-ray diffraction, transition metal bis(dicarbollide) complexes, quantum chemical calculations

Procedia PDF Downloads 168
225 Intelligent Cooperative Integrated System for Road Safety and Road Infrastructure Maintenance

Authors: Panagiotis Gkekas, Christos Sougles, Dionysios Kehagias, Dimitrios Tzovaras

Abstract:

This paper presents the architecture of the “Intelligent cooperative integrated system for road safety and road infrastructure maintenance towards 2020” (ODOS2020) advanced infrastructure, which implements a number of cooperative ITS applications based on Internet of Things and Infrastructure-to-Vehicle (V2I) technologies with the purpose to enhance the active road safety level of vehicles through the provision of a fully automated V2I environment. The primary objective of the ODOS2020 project is to contribute to increased road safety but also to the optimization of time for maintenance of road infrastructure. The integrated technological solution presented in this paper addresses all types of vehicles and requires minimum vehicle equipment. Thus, the ODOS2020 comprises a low-cost solution, which is one of its main benefits. The system architecture includes an integrated notification system to transmit personalized information on road, traffic, and environmental conditions, in order for the drivers to receive real-time and reliable alerts concerning upcoming critical situations. The latter include potential dangers on the road, such as obstacles or road works ahead, extreme environmental conditions, etc., but also informative messages, such as information on upcoming tolls and their charging policies. At the core of the system architecture lies an integrated sensorial network embedded in special road infrastructures (strips) that constantly collect and transmit wirelessly information about passing vehicles’ identification, type, speed, moving direction and other traffic information in combination with environmental conditions and road wear monitoring and predictive maintenance data. Data collected from sensors is transmitted by roadside infrastructure, which supports a variety of communication technologies such as ITS-G5 (IEEE-802.11p) wireless network and Internet connectivity through cellular networks (3G, LTE). All information could be forwarded to both vehicles and Traffic Management Centers (TMC) operators, either directly through the ITS-G5 network, or to smart devices with Internet connectivity, through cloud-based services. Therefore, through its functionality, the system could send personalized notifications/information/warnings and recommendations for upcoming events to both road users and TMC operators. In the course of the ODOS2020 project pilot operation has been conducted to allow drivers of both C-ITS equipped and non-equipped vehicles to experience the provided added value services. For non-equipped vehicles, the provided information is transmitted to a smartphone application. Finally, the ODOS2020 system and infrastructure is appropriate for installation on both urban, rural, and highway environments. The paper presents the various parts of the system architecture and concludes by outlining the various challenges that had to be overcome during its design, development, and deployment in a real operational environment. Acknowledgments: Work presented in this paper was co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation (call RESEARCH–CREATE–INNOVATE) under contract no. Τ1EDK-03081 (project ODOS2020).

Keywords: infrastructure to vehicle, intelligent transportation systems, internet of things, road safety

Procedia PDF Downloads 114
224 International Collaboration: Developing the Practice of Social Work Curriculum through Study Abroad and Participatory Research

Authors: Megan Lindsey

Abstract:

Background: Globalization presents international social work with both opportunities and challenges. Thus, the design of this international experience aligns with the three charges of the Commission on Global Social Work Education. An international collaborative effort between an American and Scottish University Social Work Program was based on an established University agreement. The presentation provides an overview of an international study abroad among American and Scottish Social Work students. Further, presenters will discuss the opportunities of international collaboration and the challenges of the project. First, we will discuss the process of a successful international collaboration. This discussion will include the planning, collaboration, execution of the experience, along with its application to the international field of social work. Second, we will discuss the development and implementation of participatory action research in which the student engage to enhance their learning experience. A collaborative qualitative research project was undertaken with three goals. First, students gained experience in Scottish social services, including agency visits and presentations. Second, a collaboration between American and Scottish MSW Students allowed the exchange of ideas and knowledge about services and social work education. Third, students collaborated on a qualitative research method to reflect on their social work education and the formation of their professional identity. Methods/Methodology: American and Scottish students engaged in participatory action research by using Photovoice methods while studying together in Scotland. The collaboration between faculty researchers framed a series of research questions. Both universities obtained IRB approval and trained students in Photovoice methods. The student teams used the research question and Photovoice method to discover images that represented their professional identity formation. Two Photovoice goals grounded the study's research question. First, the methods enabled the individual students to record and reflect on their professional strengths and concerns. Second, student teams promoted critical dialogue and knowledge about personal and professional issues through large and small group discussions of photographs. Results: The international participatory approach generated the ability for students to contextualize their common social work education and practice experiences. Team discussions between representatives of each country resulted in understanding professional identity formation and the processes of social work education that contribute to that identity. Students presented the photograph narration of their knowledge and understanding of international social work education and practice. Researchers then collaborated on finding common themes. The results found commonalities in the quality and depth of social work education. The themes found differences regarding how professional identity is formed. Students found great differences between their and American accreditation and certification. Conclusions: Faculty researchers’ collaboration themes sought to categorize the students’ experiences of their professional identity. While the social work education systems are similar, there are vast differences. The Scottish themes noted structures within American social work not found in the United Kingdom. The American researchers noted that Scotland, as does the United Kingdom, relies on programs, agencies, and the individual social worker to provide structure to identity formation. Other themes will be presented.

Keywords: higher education curriculum, international collaboration, social sciences, action research

Procedia PDF Downloads 122
223 Identification of Failures Occurring on a System on Chip Exposed to a Neutron Beam for Safety Applications

Authors: S. Thomet, S. De-Paoli, F. Ghaffari, J. M. Daveau, P. Roche, O. Romain

Abstract:

In this paper, we present a hardware module dedicated to understanding the fail reason of a System on Chip (SoC) exposed to a particle beam. Impact of Single-Event Effects (SEE) on processor-based SoCs is a concern that has increased in the past decade, particularly for terrestrial applications with automotive safety increasing requirements, as well as consumer and industrial domains. The SEE created by the impact of a particle on an SoC may have consequences that can end to instability or crashes. Specific hardening techniques for hardware and software have been developed to make such systems more reliable. SoC is then qualified using cosmic ray Accelerated Soft-Error Rate (ASER) to ensure the Soft-Error Rate (SER) remains in mission profiles. Understanding where errors are occurring is another challenge because of the complexity of operations performed in an SoC. Common techniques to monitor an SoC running under a beam are based on non-intrusive debug, consisting of recording the program counter and doing some consistency checking on the fly. To detect and understand SEE, we have developed a module embedded within the SoC that provide support for recording probes, hardware watchpoints, and a memory mapped register bank dedicated to software usage. To identify CPU failure modes and the most important resources to probe, we have carried out a fault injection campaign on the RTL model of the SoC. Probes are placed on generic CPU registers and bus accesses. They highlight the propagation of errors and allow identifying the failure modes. Typical resulting errors are bit-flips in resources creating bad addresses, illegal instructions, longer than expected loops, or incorrect bus accesses. Although our module is processor agnostic, it has been interfaced to a RISC-V by probing some of the processor registers. Probes are then recorded in a ring buffer. Associated hardware watchpoints are allowing to do some control, such as start or stop event recording or halt the processor. Finally, the module is also providing a bank of registers where the firmware running on the SoC can log information. Typical usage is for operating system context switch recording. The module is connected to a dedicated debug bus and is interfaced to a remote controller via a debugger link. Thus, a remote controller can interact with the monitoring module without any intrusiveness on the SoC. Moreover, in case of CPU unresponsiveness, or system-bus stall, the recorded information can still be recovered, providing the fail reason. A preliminary version of the module has been integrated into a test chip currently being manufactured at ST in 28-nm FDSOI technology. The module has been triplicated to provide reliable information on the SoC behavior. As the primary application domain is automotive and safety, the efficiency of the module will be evaluated by exposing the test chip under a fast-neutron beam by the end of the year. In the meantime, it will be tested with alpha particles and electromagnetic fault injection (EMFI). We will report in the paper on fault-injection results as well as irradiation results.

Keywords: fault injection, SoC fail reason, SoC soft error rate, terrestrial application

Procedia PDF Downloads 228
222 Satellite Connectivity for Sustainable Mobility

Authors: Roberta Mugellesi Dow

Abstract:

As the climate crisis becomes unignorable, it is imperative that new services are developed addressing not only the needs of customers but also taking into account its impact on the environment. The Telecommunication and Integrated Application (TIA) Directorate of ESA is supporting the green transition with particular attention to the sustainable mobility.“Accelerating the shift to sustainable and smart mobility” is at the core of the European Green Deal strategy, which seeks a 90% reduction in related emissions by 2050 . Transforming the way that people and goods move is essential to increasing mobility while decreasing environmental impact, and transport must be considered holistically to produce a shared vision of green intermodal mobility. The use of space technologies, integrated with terrestrial technologies, is an enabler of smarter traffic management and increased transport efficiency for automated and connected multimodal mobility. Satellite connectivity, including future 5G networks, and digital technologies such as Digital Twin, AI, Machine Learning, and cloud-based applications are key enablers of sustainable mobility.SatCom is essential to ensure that connectivity is ubiquitously available, even in remote and rural areas, or in case of a failure, by the convergence of terrestrial and SatCom connectivity networks, This is especially crucial when there are risks of network failures or cyber-attacks targeting terrestrial communication. SatCom ensures communication network robustness and resilience. The combination of terrestrial and satellite communication networks is making possible intelligent and ubiquitous V2X systems and PNT services with significantly enhanced reliability and security, hyper-fast wireless access, as well as much seamless communication coverage. SatNav is essential in providing accurate tracking and tracing capabilities for automated vehicles and in guiding them to target locations. SatNav can also enable location-based services like car sharing applications, parking assistance, and fare payment. In addition to GNSS receivers, wireless connections, radar, lidar, and other installed sensors can enable automated vehicles to monitor surroundings, to ‘talk to each other’ and with infrastructure in real-time, and to respond to changes instantaneously. SatEO can be used to provide the maps required by the traffic management, as well as evaluate the conditions on the ground, assess changes and provide key data for monitoring and forecasting air pollution and other important parameters. Earth Observation derived data are used to provide meteorological information such as wind speed and direction, humidity, and others that must be considered into models contributing to traffic management services. The paper will provide examples of services and applications that have been developed aiming to identify innovative solutions and new business models that are allowed by new digital technologies engaging space and non space ecosystem together to deliver value and providing innovative, greener solutions in the mobility sector. Examples include Connected Autonomous Vehicles, electric vehicles, green logistics, and others. For the technologies relevant are the hybrid satcom and 5G providing ubiquitous coverage, IoT integration with non space technologies, as well as navigation, PNT technology, and other space data.

Keywords: sustainability, connectivity, mobility, satellites

Procedia PDF Downloads 128
221 The Prevalence of Soil Transmitted Helminths among Newly Arrived Expatriate Labors in Jeddah, Saudi Arabia

Authors: Mohammad Al-Refai, Majed Wakid

Abstract:

Introduction: Soil-transmitted diseases (STD) are caused by intestinal worms that are transmitted via various routes into the human body resulting in various clinical manifestations. The intestinal worms causing these infections are known as soil transmitted helminths (STH), including Hook worms, Ascaris lumbricoides (A. lumbricoides), Trichuris trichiura (T. trichiura), and Strongyloides sterocoralis (S. sterocoralis). Objectives: The aim of this study was to investigate the prevalence of STH among newly arrived expatriate labors in Jeddah city, Saudi Arabia, using three different techniques (direct smears, sedimentation concentration, and real-time PCR). Methods: A total of 188 stool specimens were collected and investigated at the parasitology laboratory in the Special Infectious Agents Unit at King Fahd Medical Research Center, King Abdulaziz University in Jeddah, Saudi Arabia. Microscopic examination of wet mount preparations using normal saline and Lugols Iodine was carried out, followed by the formal ether sedimentation method. In addition, real-time PCR was used as a molecular tool to detect several STH and hookworm speciation. Results: Out of 188 stool specimens analyzed, in addition to STH parasite, several other types were detected. 9 samples (4.79%) were positive for Entamoeba coli, 7 samples (3.72%) for T. trichiura, 6 samples (3.19%) for Necator americanus, 4 samples (2.13%) for S. sterocoralis, 4 samples (2.13%) for A. lumbricoides, 4 samples (2.13%) for E. histolytica, 3 samples (1.60%) for Blastocystis hominis, 2 samples (1.06%) for Ancylostoma duodenale, 2 samples (1.06%) for Giardia lamblia, 1 sample (0.53%) for Iodamoeba buetschlii, 1 sample (0.53%) for Hymenolepis nana, 1 sample (0.53%) for Endolimax nana, and 1 sample (0.53%) for Heterophyes heterophyes. Out of the 35 infected cases, 26 revealed single infection, 8 with double infections, and only one triple infection of different STH species and other intestinal parasites. Higher rates of STH infections were detected among housemaids (11 cases) followed by drivers (7 cases) when compared to other occupations. According to educational level, illiterate participants represent the majority of infected workers (12 cases). The majority of workers' positive cases were from the Philippines. In comparison between laboratory techniques, out of the 188 samples screened for STH, real-time PCR was able to detect the DNA in (19/188) samples followed by Ritchie sedimentation technique (18/188), and direct wet smear (7/188). Conclusion: STH infections are a major public health issue to healthcare systems around the world. Communities must be educated on hygiene practices and the severity of such parasites to human health. As far as drivers and housemaids come to close contact with families, including children and elderlies. This may put family members at risk of developing serious side effects related to STH, especially as the majority of workers were illiterate, lacking the basic hygiene knowledge and practices. We recommend the official authority in Jeddah and around the kingdom of Saudi Arabia to revise the standard screening tests for newly arrived workers and enforce regular follow-up inspections to minimize the chances of the spread of STH from expatriate workers to the public.

Keywords: expatriate labors, Jeddah, prevalence, soil transmitted helminths

Procedia PDF Downloads 145
220 Stress and Distress among Physician Trainees: A Wellbeing Workshop

Authors: Carmen Axisa, Louise Nash, Patrick Kelly, Simon Willcock

Abstract:

Introduction: Doctors experience high levels of burnout, stress and psychiatric morbidity. This can affect the health of the doctor and impact patient care. Study Aims: To evaluate the effectiveness of a workshop intervention to promote wellbeing for Australian Physician Trainees. Methods: A workshop was developed in consultation with specialist clinicians to promote health and wellbeing for physician trainees. The workshop objectives were to improve participant understanding about factors affecting their health and wellbeing, to outline strategies on how to improve health and wellbeing and to encourage participants to apply these strategies in their own lives. There was a focus on building resilience and developing long term healthy behaviours as part of the physician trainee daily lifestyle. Trainees had the opportunity to learn practical strategies for stress management, gain insight into their behaviour and take steps to improve their health and wellbeing. The workshop also identified resources and support systems available to trainees. The workshop duration was four and a half hours including a thirty- minute meal break where a catered meal was provided for the trainees. Workshop evaluations were conducted at the end of the workshop. Sixty-seven physician trainees from Adult Medicine and Paediatric training programs in Sydney Australia were randomised into intervention and control groups. The intervention group attended a workshop facilitated by specialist clinicians and the control group did not. Baseline and post intervention measurements were taken for both groups to evaluate the impact and effectiveness of the workshop. Forty-six participants completed all three measurements (69%). Demographic, personal and self-reported data regarding work/life patterns was collected. Outcome measures include Depression Anxiety Stress Scale (DASS), Professional Quality of Life Scale (ProQOL) and Alcohol Use Disorders Identification Test (AUDIT). Results: The workshop was well received by the physician trainees and workshop evaluations showed that the majority of trainees strongly agree or agree that the training was relevant to their needs (96%) and met their expectations (92%). All trainees strongly agree or agree that they would recommend the workshop to their medical colleagues. In comparison to the control group we observed a reduction in alcohol use, depression and burnout but an increase in stress, anxiety and secondary traumatic stress in the intervention group, at the primary endpoint measured at 6 months. However, none of these differences reached statistical significance (p > 0.05). Discussion: Although the study did not reach statistical significance, the workshop may be beneficial to physician trainees. Trainees had the opportunity to share ideas, gain insight into their own behaviour, learn practical strategies for stress management and discuss approach to work, life and self-care. The workshop discussions enabled trainees to share their experiences in a supported environment where they learned that other trainees experienced stress and burnout and they were not alone in needing to acquire successful coping mechanisms and stress management strategies. Conclusion: These findings suggest that physician trainees are a vulnerable group who may benefit from initiatives that promote wellbeing and from a more supportive work environment.

Keywords: doctors' health, physician burnout, physician resilience, wellbeing workshop

Procedia PDF Downloads 190
219 Protocol for Dynamic Load Distributed Low Latency Web-Based Augmented Reality and Virtual Reality

Authors: Rohit T. P., Sahil Athrij, Sasi Gopalan

Abstract:

Currently, the content entertainment industry is dominated by mobile devices. As the trends slowly shift towards Augmented/Virtual Reality applications the computational demands on these devices are increasing exponentially and we are already reaching the limits of hardware optimizations. This paper proposes a software solution to this problem. By leveraging the capabilities of cloud computing we can offload the work from mobile devices to dedicated rendering servers that are way more powerful. But this introduces the problem of latency. This paper introduces a protocol that can achieve high-performance low latency Augmented/Virtual Reality experience. There are two parts to the protocol, 1) In-flight compression The main cause of latency in the system is the time required to transmit the camera frame from client to server. The round trip time is directly proportional to the amount of data transmitted. This can therefore be reduced by compressing the frames before sending. Using some standard compression algorithms like JPEG can result in minor size reduction only. Since the images to be compressed are consecutive camera frames there won't be a lot of changes between two consecutive images. So inter-frame compression is preferred. Inter-frame compression can be implemented efficiently using WebGL but the implementation of WebGL limits the precision of floating point numbers to 16bit in most devices. This can introduce noise to the image due to rounding errors, which will add up eventually. This can be solved using an improved interframe compression algorithm. The algorithm detects changes between frames and reuses unchanged pixels from the previous frame. This eliminates the need for floating point subtraction thereby cutting down on noise. The change detection is also improved drastically by taking the weighted average difference of pixels instead of the absolute difference. The kernel weights for this comparison can be fine-tuned to match the type of image to be compressed. 2) Dynamic Load distribution Conventional cloud computing architectures work by offloading as much work as possible to the servers, but this approach can cause a hit on bandwidth and server costs. The most optimal solution is obtained when the device utilizes 100% of its resources and the rest is done by the server. The protocol balances the load between the server and the client by doing a fraction of the computing on the device depending on the power of the device and network conditions. The protocol will be responsible for dynamically partitioning the tasks. Special flags will be used to communicate the workload fraction between the client and the server and will be updated in a constant interval of time ( or frames ). The whole of the protocol is designed so that it can be client agnostic. Flags are available to the client for resetting the frame, indicating latency, switching mode, etc. The server can react to client-side changes on the fly and adapt accordingly by switching to different pipelines. The server is designed to effectively spread the load and thereby scale horizontally. This is achieved by isolating client connections into different processes.

Keywords: 2D kernelling, augmented reality, cloud computing, dynamic load distribution, immersive experience, mobile computing, motion tracking, protocols, real-time systems, web-based augmented reality application

Procedia PDF Downloads 70
218 A Comparative Analysis on the Impact of the Prevention and Combating of Hate Crimes and Hate Speech Bill of 2016 on the Rights to Human Dignity, Equality, and Freedom in South Africa

Authors: Tholaine Matadi

Abstract:

South Africa is a democratic country with a historical record of racially-motivated marginalisation and exclusion of the majority. During the apartheid era the country was run along pieces of legislation and policies based on racial segregation. The system held a tight clamp on interracial mixing which forced people to remain in segregated areas. For example, a citizen from the Indian community could not own property in an area allocated to white people. In this way, a great majority of people were denied basic human rights. Now, there is a supreme constitution with an entrenched justiciable Bill of Rights founded on democratic values of social justice, human dignity, equality and the advancement of human rights and freedoms. The Constitution also enshrines the values of non-racialism and non-sexism. The Constitutional Court has the power to declare unconstitutional any law or conduct considered to be inconsistent with it. Now, more than two decades down the line, despite the abolition of apartheid, there is evidence that South Africa still experiences hate crimes which violate the entrenched right of vulnerable groups not to be discriminated against on the basis of race, sexual orientation, gender, national origin, occupation, or disability. To remedy this mischief parliament has responded by drafting the Prevention and Combatting of Hate Crimes and Hate Speech Bill. The Bill has been disseminated for public comment and suggestions. It is intended to combat hate crimes and hate speech based on sheer prejudice. The other purpose of the Bill is to bring South Africa in line with international human rights instruments against racism, racial discrimination, xenophobia and related expressions of intolerance identified in several international instruments. It is against this backdrop that this paper intends to analyse the impact of the Bill on the rights to human dignity, equality, and freedom. This study is significant because the Bill was highly contested and creates a huge debate. This study relies on a qualitative evaluative approach based on desktop and library research. The article recurs to primary and secondary sources. For comparative purpose, the paper compares South Africa with countries such as Australia, Canada, Kenya, Cuba, and United Kingdom which have criminalised hate crimes and hate speech. The finding from this study is that despite the Bill’s expressed positive intentions, this draft legislation is problematic for several reasons. The main reason is that it generates considerable controversy mostly because it is considered to infringe the right to freedom of expression. Though the author suggests that the Bill should not be rejected in its entirety, she notes the brutal psychological effect of hate crimes on their direct victims and the writer emphasises that a legislature can succeed to combat hate-crimes only if it provides for them as a separate stand-alone category of offences. In view of these findings, the study recommended that since hate speech clauses have a negative impact on freedom of expression it can be promulgated, subject to the legislature enacting the Prevention and Combatting of Hate-Crimes Bill as a stand-alone law which criminalises hate crimes.

Keywords: freedom of expression, hate crimes, hate speech, human dignity

Procedia PDF Downloads 165
217 A Randomized, Controlled Trial to Test Behavior Change Techniques to Improve Low Intensity Physical Activity in Older Adults

Authors: Ciaran Friel, Jerry Suls, Mark Butler, Patrick Robles, Samantha Gordon, Frank Vicari, Karina W. Davidson

Abstract:

Physical activity guidelines focus on increasing moderate-intensity activity for older adults, but adherence to recommendations remains low. This is despite the fact that scientific evidence supports that any increase in physical activity is positively correlated with health benefits. Behavior change techniques (BCTs) have demonstrated effectiveness in reducing sedentary behavior and promoting physical activity. This pilot study uses a Personalized Trials (N-of-1) design to evaluate the efficacy of using four BCTs to promote an increase in low-intensity physical activity (2,000 steps of walking per day) in adults aged 45-75 years old. The 4 BCTs tested were goal setting, action planning, feedback, and self-monitoring. BCTs were tested in random order and delivered by text message prompts requiring participant engagement. The study recruited health system employees in the target age range, without mobility restrictions and demonstrating interest in increasing their daily activity by a minimum of 2,000 steps per day for a minimum of five days per week. Participants were sent a Fitbit® fitness tracker with an established study account and password. Participants were recommended to wear the Fitbit device 24/7 but were required to wear it for a minimum of ten hours per day. Baseline physical activity was measured by Fitbit for two weeks. In the 8-week intervention phase of the study, participants received each of the four BCTs, in random order, for a two-week period. Text message prompts were delivered daily each morning at a consistent time. All prompts required participant engagement to acknowledge receipt of the BCT message. Engagement is dependent upon the BCT message and may have included recording that a detailed plan for walking has been made or confirmed a daily step goal (action planning, goal setting). Additionally, participants may have been directed to a study dashboard to view their step counts or compare themselves to their baseline average step count (self-monitoring, feedback). At the end of each two-week testing interval, participants were asked to complete the Self-Efficacy for Walking Scale (SEW_Dur), a validated measure that assesses the participant’s confidence in walking incremental distances, and a survey measuring their satisfaction with the individual BCT that they tested. At the end of their trial, participants received a personalized summary of their step data in response to each individual BCT. The analysis will examine the novel individual-level heterogeneity of treatment effect made possible by N-of-1 design and pool results across participants to efficiently estimate the overall efficacy of the selected behavioral change techniques in increasing low-intensity walking by 2,000 steps, five days per week. Self-efficacy will be explored as the likely mechanism of action prompting behavior change. This study will inform the providers and demonstrate the feasibility of an N-of-1 study design to effectively promote physical activity as a component of healthy aging.

Keywords: aging, exercise, habit, walking

Procedia PDF Downloads 87
216 Evaluation of the Suitability of a Microcapsule-Based System for the Manufacturing of Self-Healing Low-Density Polyethylene

Authors: Małgorzata Golonka, Jadwiga Laska

Abstract:

Among self-healing materials, the most unexplored group are thermoplastic polymers. These polymers are used not only to produce packaging with a relatively short life but also to obtain coatings, insulation, casings, or parts of machines and devices. Due to its exceptional resistance to weather conditions, hydrophobicity, sufficient mechanical strength, and ease of extrusion, polyethylene is used in the production of polymer pipelines and as an insulating layer for steel pipelines. Polyethylene or PE coated steel pipelines can be used in difficult conditions such as underground or underwater installations. Both installation and use under such conditions are associated with high stresses and consequently the formation of microdamages in the structure of the material, loss of its integrity and final applicability. The ideal solution would be to include a self-healing system in the polymer material. In the presented study the behavior of resin-coated microcapsules in the extrusion process of low-density polyethylene was examined. Microcapsules are a convenient element of the repair system because they can be filled with appropriate reactive substances to ensure the repair process, but the main problem is their durability under processing conditions. Rapeseed oil, which has a relatively high boiling point of 240⁰C and low volatility, was used as the core material that simulates the reactive agents. The capsule shell, which is a key element responsible for its mechanical strength, was obtained by in situ polymerising urea-formaldehyde, melamine-urea-formaldehyde or melamine-formaldehyde resin on the surface of oil droplets dispersed in water. The strength of the capsules was compared based on the shell material, and in addition, microcapsules with single- and multilayer shells were obtained using different combinations of the chemical composition of the resins. For example, the first layer of appropriate tightness and stiffness was made of melamine-urea-formaldehyde resin, and the second layer was a melamine-formaldehyde reinforcing layer. The size, shape, distribution of capsule diameters and shell thickness were determined using digital optical microscopy and electron microscopy. The efficiency of encapsulation (i.e., the presence of rapeseed oil as the core) and the tightness of the shell were determined by FTIR spectroscopic examination. The mechanical strength and distribution of microcapsules in polyethylene were tested by extruding samples of crushed low-density polyethylene mixed with microcapsules in a ratio of 1 and 2.5% by weight. The extrusion process was carried out in a mini extruder at a temperature of 150⁰C. The capsules obtained had a diameter range of 70-200 µm. FTIR analysis confirmed the presence of rapeseed oil in both single- and multilayer shell microcapsules. Microscopic observations of cross sections of the extrudates confirmed the presence of both intact and cracked microcapsules. However, the melamine-formaldehyde resin shells showed higher processing strength compared to that of the melamine-urea-formaldehyde coating and the urea-formaldehyde coating. Capsules with a urea-formaldehyde shell work very well in resin coating systems and cement composites, i.e., in pressureless processing and moulding conditions. The addition of another layer of melamine-formaldehyde coating to both the melamine-urea-formaldehyde and melamine-formaldehyde resin layers significantly increased the number of microcapsules undamaged during the extrusion process. The properties of multilayer coatings were also determined and compared with each other using computer modelling.

Keywords: self-healing polymers, polyethylene, microcapsules, extrusion

Procedia PDF Downloads 19
215 Catchment Nutrient Balancing Approach to Improve River Water Quality: A Case Study at the River Petteril, Cumbria, United Kingdom

Authors: Nalika S. Rajapaksha, James Airton, Amina Aboobakar, Nick Chappell, Andy Dyer

Abstract:

Nutrient pollution and their impact on water quality is a key concern in England. Many water quality issues originate from multiple sources of pollution spread across the catchment. The river water quality in England has improved since 1990s and wastewater effluent discharges into rivers now contain less phosphorus than in the past. However, excess phosphorus is still recognised as the prevailing issue for rivers failing Water Framework Directive (WFD) good ecological status. To achieve WFD Phosphorus objectives, Wastewater Treatment Works (WwTW) permit limits are becoming increasingly stringent. Nevertheless, in some rural catchments, the apportionment of Phosphorus pollution can be greater from agricultural runoff and other sources such as septic tanks. Therefore, the challenge of meeting the requirements of watercourses to deliver WFD objectives often goes beyond water company activities, providing significant opportunities to co-deliver activities in wider catchments to reduce nutrient load at source. The aim of this study was to apply the United Utilities' Catchment Systems Thinking (CaST) strategy and pilot an innovative permitting approach - Catchment Nutrient Balancing (CNB) in a rural catchment in Cumbria (the River Petteril) in collaboration with the regulator and others to achieve WFD objectives and multiple benefits. The study area is mainly agricultural land, predominantly livestock farms. The local ecology is impacted by significant nutrient inputs which require intervention to meet WFD obligations. There are a range of Phosphorus inputs into the river, including discharges from wastewater assets but also significantly from agricultural contributions. Solely focusing on the WwTW discharges would not have resolved the problem hence in order to address this issue effectively, a CNB trial was initiated at a small WwTW, targeting the removal of a total of 150kg of Phosphorus load, of which 13kg were to be reduced through the use of catchment interventions. Various catchment interventions were implemented across selected farms in the upstream of the catchment and also an innovative polonite reactive filter media was implemented at the WwTW as an alternative to traditional Phosphorus treatment methods. During the 3 years of this trial, the impact of the interventions in the catchment and the treatment works were monitored. In 2020 and 2022, it respectively achieved a 69% and 63% reduction in the phosphorus level in the catchment against the initial reduction target of 9%. Phosphorus treatment at the WwTW had a significant impact on overall load reduction. The wider catchment impact, however, was seven times greater than the initial target when wider catchment interventions were also established. While it is unlikely that all the Phosphorus load reduction was delivered exclusively from the interventions implemented though this project, this trial evidenced the enhanced benefits that can be achieved with an integrated approach, that engages all sources of pollution within the catchment - rather than focusing on a one-size-fits-all solution. Primarily, the CNB approach and the act of collaboratively engaging others, particularly the agriculture sector is likely to yield improved farm and land management performance and better compliance, which can lead to improved river quality as well as wider benefits.

Keywords: agriculture, catchment nutrient balancing, phosphorus pollution, water quality, wastewater

Procedia PDF Downloads 61
214 Assessing Diagnostic and Evaluation Tools for Use in Urban Immunisation Programming: A Critical Narrative Review and Proposed Framework

Authors: Tim Crocker-Buque, Sandra Mounier-Jack, Natasha Howard

Abstract:

Background: Due to both the increasing scale and speed of urbanisation, urban areas in low and middle-income countries (LMICs) host increasingly large populations of under-immunized children, with the additional associated risks of rapid disease transmission in high-density living environments. Multiple interdependent factors are associated with these coverage disparities in urban areas and most evidence comes from relatively few countries, e.g., predominantly India, Kenya, Nigeria, and some from Pakistan, Iran, and Brazil. This study aimed to identify, describe, and assess the main tools used to measure or improve coverage of immunisation services in poor urban areas. Methods: Authors used a qualitative review design, including academic and non-academic literature, to identify tools used to improve coverage of public health interventions in urban areas. Authors selected and extracted sources that provided good examples of specific tools, or categories of tools, used in a context relevant to urban immunization. Diagnostic (e.g., for data collection, analysis, and insight generation) and programme tools (e.g., for investigating or improving ongoing programmes) and interventions (e.g., multi-component or stand-alone with evidence) were selected for inclusion to provide a range of type and availability of relevant tools. These were then prioritised using a decision-analysis framework and a tool selection guide for programme managers developed. Results: Authors reviewed tools used in urban immunisation contexts and tools designed for (i) non-immunization and/or non-health interventions in urban areas, and (ii) immunisation in rural contexts that had relevance for urban areas (e.g., Reaching every District/Child/ Zone). Many approaches combined several tools and methods, which authors categorised as diagnostic, programme, and intervention. The most common diagnostic tools were cross-sectional surveys, key informant interviews, focus group discussions, secondary analysis of routine data, and geographical mapping of outcomes, resources, and services. Programme tools involved multiple stages of data collection, analysis, insight generation, and intervention planning and included guidance documents from WHO (World Health Organisation), UNICEF (United Nations Children's Fund), USAID (United States Agency for International Development), and governments, and articles reporting on diagnostics, interventions, and/or evaluations to improve urban immunisation. Interventions involved service improvement, education, reminder/recall, incentives, outreach, mass-media, or were multi-component. The main gaps in existing tools were an assessment of macro/policy-level factors, exploration of effective immunization communication channels, and measuring in/out-migration. The proposed framework uses a problem tree approach to suggest tools to address five common challenges (i.e. identifying populations, understanding communities, issues with service access and use, improving services, improving coverage) based on context and available data. Conclusion: This study identified many tools relevant to evaluating urban LMIC immunisation programmes, including significant crossover between tools. This was encouraging in terms of supporting the identification of common areas, but problematic as data volumes, instructions, and activities could overwhelm managers and tools are not always suitably applied to suitable contexts. Further research is needed on how best to combine tools and methods to suit local contexts. Authors’ initial framework can be tested and developed further.

Keywords: health equity, immunisation, low and middle-income countries, poverty, urban health

Procedia PDF Downloads 137
213 Surface-Enhanced Raman Detection in Chip-Based Chromatography via a Droplet Interface

Authors: Renata Gerhardt, Detlev Belder

Abstract:

Raman spectroscopy has attracted much attention as a structurally descriptive and label-free detection method. It is particularly suited for chemical analysis given as it is non-destructive and molecules can be identified via the fingerprint region of the spectra. In this work possibilities are investigated how to integrate Raman spectroscopy as a detection method for chip-based chromatography, making use of a droplet interface. A demanding task in lab-on-a-chip applications is the specific and sensitive detection of low concentrated analytes in small volumes. Fluorescence detection is frequently utilized but restricted to fluorescent molecules. Furthermore, no structural information is provided. Another often applied technique is mass spectrometry which enables the identification of molecules based on their mass to charge ratio. Additionally, the obtained fragmentation pattern gives insight into the chemical structure. However, it is only applicable as an end-of-the-line detection because analytes are destroyed during measurements. In contrast to mass spectrometry, Raman spectroscopy can be applied on-chip and substances can be processed further downstream after detection. A major drawback of Raman spectroscopy is the inherent weakness of the Raman signal, which is due to the small cross-sections associated with the scattering process. Enhancement techniques, such as surface enhanced Raman spectroscopy (SERS), are employed to overcome the poor sensitivity even allowing detection on a single molecule level. In SERS measurements, Raman signal intensity is improved by several orders of magnitude if the analyte is in close proximity to nanostructured metal surfaces or nanoparticles. The main gain of lab-on-a-chip technology is the building block-like ability to seamlessly integrate different functionalities, such as synthesis, separation, derivatization and detection on a single device. We intend to utilize this powerful toolbox to realize Raman detection in chip-based chromatography. By interfacing on-chip separations with a droplet generator, the separated analytes are encapsulated into numerous discrete containers. These droplets can then be injected with a silver nanoparticle solution and investigated via Raman spectroscopy. Droplet microfluidics is a sub-discipline of microfluidics which instead of a continuous flow operates with the segmented flow. Segmented flow is created by merging two immiscible phases (usually an aqueous phase and oil) thus forming small discrete volumes of one phase in the carrier phase. The study surveys different chip designs to realize coupling of chip-based chromatography with droplet microfluidics. With regards to maintaining a sufficient flow rate for chromatographic separation and ensuring stable eluent flow over the column different flow rates of eluent and oil phase are tested. Furthermore, the detection of analytes in droplets with surface enhanced Raman spectroscopy is examined. The compartmentalization of separated compounds preserves the analytical resolution since the continuous phase restricts dispersion between the droplets. The droplets are ideal vessels for the insertion of silver colloids thus making use of the surface enhancement effect and improving the sensitivity of the detection. The long-term goal of this work is the first realization of coupling chip based chromatography with droplets microfluidics to employ surface enhanced Raman spectroscopy as means of detection.

Keywords: chip-based separation, chip LC, droplets, Raman spectroscopy, SERS

Procedia PDF Downloads 240
212 Gendered Water Insecurity: a Structural Equation Approach for Female-Headed Households in South Africa

Authors: Saul Ngarava, Leocadia Zhou, Nomakhaya Monde

Abstract:

Water crises have the fourth most significant societal impact after weapons of mass destruction, climate change, and extreme weather conditions, ahead of natural disasters. Intricacies between women and water are central to achieving the 2030 Sustainable Development Goals (SDGs). The majority of the 1.2 billion poor people worldwide, with two-thirds being women, and mostly located in Sub Sahara Africa (SSA) and South Asia, do not have access to safe and reliable sources of water. There exist gendered differences in water security based on the division of labour associating women with water. Globally, women and girls are responsible for water collection in 80% of the households which have no water on their premises. Women spend 16 million hours a day collecting water, while men and children spend 6 million and 4 million per day, respectively, which is time foregone in the pursuit of other livelihood activities. Due to their proximity and activities concerning water, women are vulnerable to water insecurity through exposures to water-borne diseases, fatigue from physically carrying water, and exposure to sexual and physical harassment, amongst others. Proximity to treated water and their wellbeing also has an effect on their sensitivity and adaptive capacity to water insecurity. The great distances, difficult terrain and heavy lifting expose women to vulnerabilities of water insecurity. However, few studies have quantified the vulnerabilities and burdens on women, with a few taking a phenomenological qualitative approach. Vulnerability studies have also been scanty in the water security realm, with most studies taking linear forms of either quantifying exposures, sensitivities or adaptive capacities in climate change studies. The current study argues for the need for a water insecurity vulnerability assessment, especially for women into research agendas as well as policy interventions, monitoring, and evaluation. The study sought to identify and provide pathways through which female-headed households were water insecure in South Africa, the 30th driest country in the world. This was through linking the drinking water decision as well as the vulnerability frameworks. Secondary data collected during the 2016 General Household Survey (GHS) was utilised, with a sample of 5928 female-headed households. Principal Component Analysis and Structural Equation Modelling were used to analyse the data. The results show dynamic relationships between water characteristics and water treatment. There were also associations between water access and wealth status of the female-headed households. Association was also found between water access and water treatment as well as between wealth status and water treatment. The study concludes that there are dynamic relationships in water insecurity (exposure, sensitivity, and adaptive capacity) for female-headed households in South Africa. The study recommends that a multi-prong approach is required in tackling exposures, sensitivities, and adaptive capacities to water insecurity. This should include capacitating and empowering women for wealth generation, improve access to water treatment equipment as well as prioritising the improvement of infrastructure that brings piped and safe water to female-headed households.

Keywords: gender, principal component analysis, structural equation modelling, vulnerability, water insecurity

Procedia PDF Downloads 117
211 Possible Involvement of DNA-methyltransferase and Histone Deacetylase in the Regulation of Virulence Potential of Acanthamoeba castellanii

Authors: Yi H. Wong, Li L. Chan, Chee O. Leong, Stephen Ambu, Joon W. Mak, Priyadashi S. Sahu

Abstract:

Background: Acanthamoeba is a free-living opportunistic protist which is ubiquitously distributed in the environment. Virulent Acanthamoeba can cause fatal encephalitis in immunocompromised patients and potential blinding keratitis in immunocompetent contact lens wearers. Approximately 24 species have been identified but only the A. castellanii, A. polyphaga and A. culbertsoni are commonly associated with human infections. Until to date, the precise molecular basis for Acanthamoeba pathogenesis remains unclear. Previous studies reported that Acanthamoeba virulence can be diminished through prolonged axenic culture but revived through serial mouse passages. As no clear explanation on this reversible pathogenesis is established, hereby, we postulate that the epigenetic regulators, DNA-methyltransferases (DNMT) and histone-deacetylases (HDAC), could possibly be involved in granting the virulence plasticity of Acanthamoeba spp. Methods: Four rounds of mouse passages were conducted to revive the virulence potential of the virulence-attenuated Acanthamoeba castellanii strain (ATCC 50492). Briefly, each mouse (n=6/group) was inoculated intraperitoneally with Acanthamoebae cells (2x 105 trophozoites/mouse) and incubated for 2 months. Acanthamoebae cells were isolated from infected mouse organs by culture method and subjected to subsequent mouse passage. In vitro cytopathic, encystment and gelatinolytic assays were conducted to evaluate the virulence characteristics of Acanthamoebae isolates for each passage. PCR primers which targeted on the 2 members (DNMT1 and DNMT2) and 5 members (HDAC1 to 5) of the DNMT and HDAC gene families respectively were custom designed. Quantitative real-time PCR (qPCR) was performed to detect and quantify the relative expression of the two gene families in each Acanthamoeba isolates. Beta-tubulin of A. castellanii (Genbank accession no: XP_004353728) was included as housekeeping gene for data normalisation. PCR mixtures were also analyzed by electrophoresis for amplicons detection. All statistical analyses were performed using the paired one-tailed Student’s t test. Results: Our pathogenicity tests showed that the virulence-reactivated Acanthamoeba had a higher degree of cytopathic effect on vero cells, a better resistance to encystment challenge and a higher gelatinolytic activity which was catalysed by serine protease. qPCR assay showed that DNMT1 expression was significantly higher in the virulence-reactivated compared to the virulence-attenuated Acanthamoeba strain (p ≤ 0.01). The specificity of primers which targeted on DNMT1 was confirmed by sequence analysis of PCR amplicons, which showed a 97% similarity to the published DNA-methyltransferase gene of A. castellanii (GenBank accession no: XM_004332804.1). Out of the five primer pairs which targeted on the HDAC family genes, only HDAC4 expression was significantly difference between the two variant strains. In contrast to DNMT1, HDAC4 expression was much higher in the virulence-attenuated Acanthamoeba strain. Conclusion: Our mouse passages had successfully restored the virulence of the attenuated strain. Our findings suggested that DNA-methyltransferase (DNMT1) and histone deacetylase (HDAC4) expressions are associated with virulence potential of Acanthamoeba spp.

Keywords: acanthamoeba, DNA-methyltransferase, histone deacetylase, virulence-associated proteins

Procedia PDF Downloads 285
210 Prospects of Low Immune Response Transplants Based on Acellular Organ Scaffolds

Authors: Inna Kornienko, Svetlana Guryeva, Anatoly Shekhter, Elena Petersen

Abstract:

Transplantation is an effective treatment option for patients suffering from different end-stage diseases. However, it is plagued by a constant shortage of donor organs and the subsequent need of a lifelong immunosuppressive therapy for the patient. Currently some researchers look towards using of pig organs to replace human organs for transplantation since the matrix derived from porcine organs is a convenient substitute for the human matrix. As an initial step to create a new ex vivo tissue engineered model, optimized protocols have been created to obtain organ-specific acellular matrices and evaluated their potential as tissue engineered scaffolds for culture of normal cells and tumor cell lines. These protocols include decellularization by perfusion in a bioreactor system and immersion-agitation on an orbital shaker with use of various detergents (SDS, Triton X-100) and freezing. Complete decellularization – in terms of residual DNA amount – is an important predictor of probability of immune rejection of materials of natural origin. However, the signs of cellular material may still remain within the matrix even after harsh decellularization protocols. In this regard, the matrices obtained from tissues of low-immunogenic pigs with α3Galactosyl-tranferase gene knock out (GalT-KO) may be a promising alternative to native animal sources. The research included a study of induced effect of frozen and fresh fragments of GalT-KO skin on healing of full-thickness plane wounds in 80 rats. Commercially available wound dressings (Ksenoderm, Hyamatrix and Alloderm) as well as allogenic skin were used as a positive control and untreated wounds were analyzed as a negative control. The results were evaluated on the 4th day after grafting, which corresponds to the time of start of normal wound epithelization. It has been shown that a non-specific immune response in models treated with GalT-Ko pig skin was milder than in all the control groups. Research has been performed to measure technical skin characteristics: stiffness and elasticity properties, corneometry, tevametry, and cutometry. These metrics enabled the evaluation of hydratation level, corneous layer husking level, as well as skin elasticity and micro- and macro-landscape. These preliminary data may contribute to development of personalized transplantable organs from GalT-Ko pigs with significantly limited potential of immune rejection. By applying growth factors to a decellularized skin sample it is possible to achieve various regenerative effects based on the particular situation. In this particular research BMP2 and Heparin-binding EGF-like growth factor have been used. Ideally, a bioengineered organ must be biocompatible, non-immunogenic and support cell growth. Porcine organs are attractive for xenotransplantation if severe immunologic concerns can be bypassed. The results indicate that genetically modified pig tissues with knock-outed α3Galactosyl-tranferase gene may be used for production of low-immunogenic matrix suitable for transplantation.

Keywords: decellularization, low-immunogenic, matrix, scaffolds, transplants

Procedia PDF Downloads 274
209 Assessment and Characterization of Dual-Hardening Adhesion Promoter for Self-Healing Mechanisms in Metal-Plastic Hybrid System

Authors: Anas Hallak, Latifa Seblini, Juergen Wilde

Abstract:

In mechatronics or sensor technology, plastic housings are used to protect sensitive components from harmful environmental influences, such as moisture, media, or reactive substances. Connections, preferably in the form of metallic lead-frame structures, through the housing wall are required for their electrical supply or control. In this system, an insufficient connection between the plastic component, e.g., Polyamide66, and the metal surface, e.g., copper, due to the incompatibility is dominating. As a result, leakage paths can occur along with the plastic-metal interface. Since adhesive bonding has been established as one of the most important joining processes and its use has expanded significantly, driven by the development of improved high-performance adhesives and bonding techniques, this technology has been involved in metal-plastic hybrid structures. In this study, an epoxy bonding agent from DELO (DUALBOND LT2266) has been used to improve the mechanical and chemical binding between the metal and the polymer. It is an adhesion promoter with two reaction stages. In these, the first stage provides fixation to the lead frame directly after the coating step, which can be done by UV-Exposure for a few seconds. In the second stage, the material will be thermally hardened during injection molding. To analyze the two reaction stages of the primer, dynamic DSC experiments were carried out and correlated with Fourier-transform infrared spectroscopy measurements. Furthermore, the number of crosslinking bonds formed in the system in each reaction stage has also been estimated by a rheological characterization. Those investigations have been performed with different times of UV exposure: 12, 96 s and in an industrial preferred temperature range from -20 to 175°C. The shear viscosity values of primer have been measured as a function of temperature and exposure times. For further interpretation, the storage modulus values have been calculated, and the so-called Booij–Palmen plot has been sketched. The next approach in this study is the self-healing mechanisms in the hydride system in which the primer should flow into micro-damage such as interface, cracks, inhibit them from growing, and close them. The ability of the primer to flow in and penetrate defined capillaries made in Ultramid was investigated. Holes with a diameter of 0.3 mm were produced in injection-molded A3EG7 plates with 4 mm thickness. A copper substrate coated with the DUALBOND was placed on the A3EG7 plate and pressed with a certain force. Metallographic analyses were carried out to verify the filling grade, which showed an almost 95% filling ratio of the capillaries. Finally, to estimate the self-healing mechanism in metal-plastic hybrid systems, characterizations have been done on a simple geometry with a metal inlay developed by the Institute of Polymer Technology in Friedrich-Alexander-University. The specimens have been modified with tungsten wire which was to be pulled out after the injection molding to create a micro-hole in the specimen at the interface between the primer and the polymer. The capability of the primer to heal those micro-cracks upon heating, pressing, and thermal aging has been characterized through metallographic analyses.

Keywords: hybrid structures, self-healing, thermoplastic housing, adhesive

Procedia PDF Downloads 189
208 Teachers Engagement to Teaching: Exploring Australian Teachers’ Attribute Constructs of Resilience, Adaptability, Commitment, Self/Collective Efficacy Beliefs

Authors: Lynn Sheridan, Dennis Alonzo, Hoa Nguyen, Andy Gao, Tracy Durksen

Abstract:

Disruptions to teaching (e.g., COVID-related) have increased work demands for teachers. There is an opportunity for research to explore evidence-informed steps to support teachers. Collective evidence informs data on teachers’ personal attributes (e.g., self-efficacy beliefs) in the workplace are seen to promote success in teaching and support teacher engagement. Teacher engagement plays a role in students’ learning and teachers’ effectiveness. Engaged teachers are better at overcoming work-related stress, burnout and are more likely to take on active roles. Teachers’ commitment is influenced by a host of personal (e.g., teacher well-being) and environmental factors (e.g., job stresses). The job demands-resources model provided a conceptual basis for examining how teachers’ well-being, and is influenced by job demands and job resources. Job demands potentially evoke strain and exceed the employee’s capability to adapt. Job resources entail what the job offers to individual teachers (e.g., organisational support), helping to reduce job demands. The application of the job demands-resources model involves gathering an evidence-base of and connection to personal attributes (job resources). The study explored the association between constructs (resilience, adaptability, commitment, self/collective efficacy) and a teacher’s engagement with the job. The paper sought to elaborate on the model and determine the associations between key constructs of well-being (resilience, adaptability), commitment, and motivation (self and collective-efficacy beliefs) to teachers’ engagement in teaching. Data collection involved online a multi-dimensional instrument using validated items distributed from 2020-2022. The instrument was designed to identify construct relationships. The participant number was 170. Data Analysis: The reliability coefficients, means, standard deviations, skewness, and kurtosis statistics for the six variables were completed. All scales have good reliability coefficients (.72-.96). A confirmatory factor analysis (CFA) and structural equation model (SEM) were performed to provide measurement support and to obtain latent correlations among factors. The final analysis was performed using structural equation modelling. Several fit indices were used to evaluate the model fit, including chi-square statistics and root mean square error of approximation. The CFA and SEM analysis was performed. The correlations of constructs indicated positive correlations exist, with the highest found between teacher engagement and resilience (r=.80) and the lowest between teacher adaptability and collective teacher efficacy (r=.22). Given the associations; we proceeded with CFA. The CFA yielded adequate fit: CFA fit: X (270, 1019) = 1836.79, p < .001, RMSEA = .04, and CFI = .94, TLI = .93 and SRMR = .04. All values were within the threshold values, indicating a good model fit. Results indicate that increasing teacher self-efficacy beliefs will increase a teacher’s level of engagement; that teacher ‘adaptability and resilience are positively associated with self-efficacy beliefs, as are collective teacher efficacy beliefs. Implications for school leaders and school systems: 1. investing in increasing teachers’ sense of efficacy beliefs to manage work demands; 2. leadership approaches can enhance teachers' adaptability and resilience; and 3. a culture of collective efficacy support. Preparing teachers for now and in the future offers an important reminder to policymakers and school leaders on the importance of supporting teachers’ personal attributes when faced with the challenging demands of the job.

Keywords: collective teacher efficacy, teacher self-efficacy, job demands, teacher engagement

Procedia PDF Downloads 111
207 Moderating and Mediating Effects of Business Model Innovation Barriers during Crises: A Structural Equation Model Tested on German Chemical Start-Ups

Authors: Sarah Mueller-Saegebrecht, André Brendler

Abstract:

Business model innovation (BMI) as an intentional change of an existing business model (BM) or the design of a new BM is essential to a firm's development in dynamic markets. The relevance of BMI is also evident in the ongoing COVID-19 pandemic, in which start-ups, in particular, are affected by limited access to resources. However, first studies also show that they react faster to the pandemic than established firms. A strategy to successfully handle such threatening dynamic changes represents BMI. Entrepreneurship literature shows how and when firms should utilize BMI in times of crisis and which barriers one can expect during the BMI process. Nevertheless, research merging BMI barriers and crises is still underexplored. Specifically, further knowledge about antecedents and the effect of moderators on the BMI process is necessary for advancing BMI research. The addressed research gap of this study is two-folded: First, foundations to the subject on how different crises impact BM change intention exist, yet their analysis lacks the inclusion of barriers. Especially, entrepreneurship literature lacks knowledge about the individual perception of BMI barriers, which is essential to predict managerial reactions. Moreover, internal BMI barriers have been the focal point of current research, while external BMI barriers remain virtually understudied. Second, to date, BMI research is based on qualitative methodologies. Thus, a lack of quantitative work can specify and confirm these qualitative findings. By focusing on the crisis context, this study contributes to BMI literature by offering a first quantitative attempt to embed BMI barriers into a structural equation model. It measures managers' perception of BMI development and implementation barriers in the BMI process, asking the following research question: How does a manager's perception of BMI barriers influence BMI development and implementation in times of crisis? Two distinct research streams in economic literature explain how individuals react when perceiving a threat. "Prospect Theory" claims that managers demonstrate risk-seeking tendencies when facing a potential loss, and opposing "Threat-Rigidity Theory" suggests that managers demonstrate risk-averse behavior when facing a potential loss. This study quantitively tests which theory can best predict managers' BM reaction to a perceived crisis. Out of three in-depth interviews in the German chemical industry, 60 past BMIs were identified. The participating start-up managers gave insights into their start-up's strategic and operational functioning. After, each interviewee described crises that had already affected their BM. The participants explained how they conducted BMI to overcome these crises, which development and implementation barriers they faced, and how severe they perceived them, assessed on a 5-point Likert scale. In contrast to current research, results reveal that a higher perceived threat level of a crisis harms BM experimentation. Managers seem to conduct less BMI in times of crisis, whereby BMI development barriers dampen this relation. The structural equation model unveils a mediating role of BMI implementation barriers on the link between the intention to change a BM and the concrete BMI implementation. In conclusion, this study confirms the threat-rigidity theory.

Keywords: barrier perception, business model innovation, business model innovation barriers, crises, prospect theory, start-ups, structural equation model, threat-rigidity theory

Procedia PDF Downloads 92
206 A Magnetic Hydrochar Nanocomposite as a Potential Adsorbent of Emerging Pollutants

Authors: Aura Alejandra Burbano Patino, Mariela Agotegaray, Veronica Lassalle, Fernanda Horst

Abstract:

Water pollution is of worldwide concern due to its importance as an essential resource for life. Industrial and urbanistic growth are anthropogenic activities that have caused an increase of undesirable compounds in water. In the last decade, emerging pollutants have become of great interest since, at very low concentrations (µg/L and ng/L), they exhibit a hazardous effect on wildlife, aquatic ecosystems, and human organisms. One group of emerging pollutants that are a matter of study are pharmaceuticals. Their high consumption rate and their inappropriate disposal have led to their detection in wastewater treatment plant influent, effluent, surface water, and drinking water. In consequence, numerous technologies have been developed to efficiently treat these pollutants. Adsorption appears like an easy and cost-effective technology. One of the most used adsorbents of emerging pollutants removal is carbon-based materials such as hydrochars. This study aims to use a magnetic hydrochar nanocomposite to be employed as an adsorbent for diclofenac removal. Kinetics models and the adsorption efficiency in real water samples were analyzed. For this purpose, a magnetic hydrochar nanocomposite was synthesized through the hydrothermal carbonization (HTC) technique hybridized to co-precipitation to add the magnetic component into the hydrochar, based on iron oxide nanoparticles. The hydrochar was obtained from sunflower husk residue as the precursor. TEM, TGA, FTIR, Zeta potential as a function of pH, DLS, BET technique, and elemental analysis were employed to characterize the material in terms of composition and chemical structure. Adsorption kinetics were carried out in distilled water and real water at room temperature, pH of 5.5 for distilled water and natural pH for real water samples, 1:1 adsorbent: adsorbate dosage ratio, contact times from 10-120 minutes, and 50% dosage concentration of DCF. Results have demonstrated that magnetic hydrochar presents superparamagnetic properties with a saturation magnetization value of 55.28 emu/g. Besides, it is mesoporous with a surface area of 55.52 m²/g. It is composed of magnetite nanoparticles incorporated into the hydrochar matrix, as can be proven by TEM micrographs, FTIR spectra, and zeta potential. On the other hand, kinetic studies were carried out using DCF models, finding percent removal efficiencies up to 85.34% after 80 minutes of contact time. In addition, after 120 minutes of contact time, desorption of emerging pollutants from active sites took place, which indicated that the material got saturated after that t time. In real water samples, percent removal efficiencies decrease up to 57.39%, ascribable to a possible mechanism of competitive adsorption of organic or inorganic compounds, ions for active sites of the magnetic hydrochar. The main suggested adsorption mechanism between the magnetic hydrochar and diclofenac include hydrophobic and electrostatic interactions as well as hydrogen bonds. It can be concluded that the magnetic hydrochar nanocomposite could be valorized into a by-product which appears as an efficient adsorbent for DCF removal as a model emerging pollutant. These results are being complemented by modifying experimental variables such as pollutant’s initial concentration, adsorbent: adsorbate dosage ratio, and temperature. Currently, adsorption assays of other emerging pollutants are being been carried out.

Keywords: environmental remediation, emerging pollutants, hydrochar, magnetite nanoparticles

Procedia PDF Downloads 186
205 The Development of Congeneric Elicited Writing Tasks to Capture Language Decline in Alzheimer Patients

Authors: Lise Paesen, Marielle Leijten

Abstract:

People diagnosed with probable Alzheimer disease suffer from an impairment of their language capacities; a gradual impairment which affects both their spoken and written communication. Our study aims at characterising the language decline in DAT patients with the use of congeneric elicited writing tasks. Within these tasks, a descriptive text has to be written based upon images with which the participants are confronted. A randomised set of images allows us to present the participants with a different task on every encounter, thus allowing us to avoid a recognition effect in this iterative study. This method is a revision from previous studies, in which participants were presented with a larger picture depicting an entire scene. In order to create the randomised set of images, existing pictures were adapted following strict criteria (e.g. frequency, AoA, colour, ...). The resulting data set contained 50 images, belonging to several categories (vehicles, animals, humans, and objects). A pre-test was constructed to validate the created picture set; most images had been used before in spoken picture naming tasks. Hence the same reaction times ought to be triggered in the typed picture naming task. Once validated, the effectiveness of the descriptive tasks was assessed. First, the participants (n=60 students, n=40 healthy elderly) performed a typing task, which provided information about the typing speed of each individual. Secondly, two descriptive writing tasks were carried out, one simple and one complex. The simple task contains 4 images (1 animal, 2 objects, 1 vehicle) and only contains elements with high frequency, a young AoA (<6 years), and fast reaction times. Slow reaction times, a later AoA (≥ 6 years) and low frequency were criteria for the complex task. This task uses 6 images (2 animals, 1 human, 2 objects and 1 vehicle). The data were collected with the keystroke logging programme Inputlog. Keystroke logging tools log and time stamp keystroke activity to reconstruct and describe text production processes. The data were analysed using a selection of writing process and product variables, such as general writing process measures, detailed pause analysis, linguistic analysis, and text length. As a covariate, the intrapersonal interkey transition times from the typing task were taken into account. The pre-test indicated that the new images lead to similar or even faster reaction times compared to the original images. All the images were therefore used in the main study. The produced texts of the description tasks were significantly longer compared to previous studies, providing sufficient text and process data for analyses. Preliminary analysis shows that the amount of words produced differed significantly between the healthy elderly and the students, as did the mean length of production bursts, even though both groups needed the same time to produce their texts. However, the elderly took significantly more time to produce the complex task than the simple task. Nevertheless, the amount of words per minute remained comparable between simple and complex. The pauses within and before words varied, even when taking personal typing abilities (obtained by the typing task) into account.

Keywords: Alzheimer's disease, experimental design, language decline, writing process

Procedia PDF Downloads 272
204 Flood Early Warning and Management System

Authors: Yogesh Kumar Singh, T. S. Murugesh Prabhu, Upasana Dutta, Girishchandra Yendargaye, Rahul Yadav, Rohini Gopinath Kale, Binay Kumar, Manoj Khare

Abstract:

The Indian subcontinent is severely affected by floods that cause intense irreversible devastation to crops and livelihoods. With increased incidences of floods and their related catastrophes, an Early Warning System for Flood Prediction and an efficient Flood Management System for the river basins of India is a must. Accurately modeled hydrological conditions and a web-based early warning system may significantly reduce economic losses incurred due to floods and enable end users to issue advisories with better lead time. This study describes the design and development of an EWS-FP using advanced computational tools/methods, viz. High-Performance Computing (HPC), Remote Sensing, GIS technologies, and open-source tools for the Mahanadi River Basin of India. The flood prediction is based on a robust 2D hydrodynamic model, which solves shallow water equations using the finite volume method. Considering the complexity of the hydrological modeling and the size of the basins in India, it is always a tug of war between better forecast lead time and optimal resolution at which the simulations are to be run. High-performance computing technology provides a good computational means to overcome this issue for the construction of national-level or basin-level flash flood warning systems having a high resolution at local-level warning analysis with a better lead time. High-performance computers with capacities at the order of teraflops and petaflops prove useful while running simulations on such big areas at optimum resolutions. In this study, a free and open-source, HPC-based 2-D hydrodynamic model, with the capability to simulate rainfall run-off, river routing, and tidal forcing, is used. The model was tested for a part of the Mahanadi River Basin (Mahanadi Delta) with actual and predicted discharge, rainfall, and tide data. The simulation time was reduced from 8 hrs to 3 hrs by increasing CPU nodes from 45 to 135, which shows good scalability and performance enhancement. The simulated flood inundation spread and stage were compared with SAR data and CWC Observed Gauge data, respectively. The system shows good accuracy and better lead time suitable for flood forecasting in near-real-time. To disseminate warning to the end user, a network-enabled solution is developed using open-source software. The system has query-based flood damage assessment modules with outputs in the form of spatial maps and statistical databases. System effectively facilitates the management of post-disaster activities caused due to floods, like displaying spatial maps of the area affected, inundated roads, etc., and maintains a steady flow of information at all levels with different access rights depending upon the criticality of the information. It is designed to facilitate users in managing information related to flooding during critical flood seasons and analyzing the extent of the damage.

Keywords: flood, modeling, HPC, FOSS

Procedia PDF Downloads 87
203 Challenges and Lessons of Mentoring Processes for Novice Principals: An Exploratory Case Study of Induction Programs in Chile

Authors: Carolina Cuéllar, Paz González

Abstract:

Research has shown that school leadership has a significant indirect effect on students’ achievements. In Chile, evidence has also revealed that this impact is stronger in vulnerable schools. With the aim of strengthening school leadership, public policy has taken up the challenge of enhancing capabilities of novice principals through the implementation of induction programs, which include a mentoring component, entrusting the task of delivering these programs to universities. The importance of using mentoring or coaching models in the preparation of novice school leaders has been emphasized in the international literature. Thus, it can be affirmed that building leadership capacity through partnership is crucial to facilitate cognitive and affective support required in the initial phase of the principal career, gain role clarification and socialization in context, stimulate reflective leadership practice, among others. In Chile, mentoring is a recent phenomenon in the field of school leadership and it is even more new in the preparation of new principals who work in public schools. This study, funded by the Chilean Ministry of Education, sought to explore the challenges and lessons arising from the design and implementation of mentoring processes which are part of the induction programs, according to the perception of the different actors involved: ministerial agents, university coordinators, mentors and novice principals. The investigation used a qualitative design, based on a study of three cases (three induction programs). The sources of information were 46 semi-structured interviews, applied in two moments (at the beginning and end of mentoring). Content analysis technique was employed. Data focused on the uniqueness of each case and the commonalities within the cases. Five main challenges and lessons emerged in the design and implementation of mentoring within the induction programs for new principals from Chilean public schools. They comprised the need of (i) developing a shared conceptual framework on mentoring among the institutions and actors involved, which helps align the expectations for the mentoring component within the induction programs, along with assisting in establishing a theory of action of mentoring that is relevant to the public school context; (ii) recognizing trough actions and decisions at different levels that the role of a mentor differs from the role of a principal, which challenge the idea that an effective principal will always be an effective mentor; iii) improving mentors’ selection and preparation processes trough the definition of common guiding criteria to ensure that a mentor takes responsibility for developing critical judgment of novice principals, which implies not limiting the mentor’s actions to assist in the compliance of prescriptive practices and standards; (iv) generating common evaluative models with goals, instruments and indicators consistent with the characteristics of mentoring processes, which helps to assess expected results and impact; and (v) including the design of a mentoring structure as an outcome of the induction programs, which helps sustain mentoring within schools as a collective professional development practice. Results showcased interwoven elements that entail continuous negotiations at different levels. Taking action will contribute to policy efforts aimed at professionalizing the leadership role in public schools.

Keywords: induction programs, mentoring, novice principals, school leadership preparation

Procedia PDF Downloads 123
202 Mineralized Nanoparticles as a Contrast Agent for Ultrasound and Magnetic Resonance Imaging

Authors: Jae Won Lee, Kyung Hyun Min, Hong Jae Lee, Sang Cheon Lee

Abstract:

To date, imaging techniques have attracted much attention in medicine because the detection of diseases at an early stage provides greater opportunities for successful treatment. Consequently, over the past few decades, diverse imaging modalities including magnetic resonance (MR), positron emission tomography, computed tomography, and ultrasound (US) have been developed and applied widely in the field of clinical diagnosis. However, each of the above-mentioned imaging modalities possesses unique strengths and intrinsic weaknesses, which limit their abilities to provide accurate information. Therefore, multimodal imaging systems may be a solution that can provide improved diagnostic performance. Among the current medical imaging modalities, US is a widely available real-time imaging modality. It has many advantages including safety, low cost and easy access for patients. However, its low spatial resolution precludes accurate discrimination of diseased region such as cancer sites. In contrast, MR has no tissue-penetrating limit and can provide images possessing exquisite soft tissue contrast and high spatial resolution. However, it cannot offer real-time images and needs a comparatively long imaging time. The characteristics of these imaging modalities may be considered complementary, and the modalities have been frequently combined for the clinical diagnostic process. Biominerals such as calcium carbonate (CaCO3) and calcium phosphate (CaP) exhibit pH-dependent dissolution behavior. They demonstrate pH-controlled drug release due to the dissolution of minerals in acidic pH conditions. In particular, the application of this mineralization technique to a US contrast agent has been reported recently. The CaCO3 mineral reacts with acids and decomposes to generate calcium dioxide (CO2) gas in an acidic environment. These gas-generating mineralized nanoparticles generated CO2 bubbles in the acidic environment of the tumor, thereby allowing for strong echogenic US imaging of tumor tissues. On the basis of this previous work, it was hypothesized that the loading of MR contrast agents into the CaCO3 mineralized nanoparticles may be a novel strategy in designing a contrast agent for dual imaging. Herein, CaCO3 mineralized nanoparticles that were capable of generating CO2 bubbles to trigger the release of entrapped MR contrast agents in response to tumoral acidic pH were developed for the purposes of US and MR dual-modality imaging of tumors. Gd2O3 nanoparticles were selected as an MR contrast agent. A key strategy employed in this study was to prepare Gd2O3 nanoparticle-loaded mineralized nanoparticles (Gd2O3-MNPs) using block copolymer-templated CaCO3 mineralization in the presence of calcium cations (Ca2+), carbonate anions (CO32-) and positively charged Gd2O3 nanoparticles. The CaCO3 core was considered suitable because it may effectively shield Gd2O3 nanoparticles from water molecules in the blood (pH 7.4) before decomposing to generate CO2 gas, triggering the release of Gd2O3 nanoparticles in tumor tissues (pH 6.4~7.4). The kinetics of CaCO3 dissolution and CO2 generation from the Gd2O3-MNPs were examined as a function of pH and pH-dependent in vitro magnetic relaxation; additionally, the echogenic properties were estimated to demonstrate the potential of the particles for the tumor-specific US and MR imaging.

Keywords: calcium carbonate, mineralization, ultrasound imaging, magnetic resonance imaging

Procedia PDF Downloads 233
201 Quantum Dots Incorporated in Biomembrane Models for Cancer Marker

Authors: Thiago E. Goto, Carla C. Lopes, Helena B. Nader, Anielle C. A. Silva, Noelio O. Dantas, José R. Siqueira Jr., Luciano Caseli

Abstract:

Quantum dots (QD) are semiconductor nanocrystals that can be employed in biological research as a tool for fluorescence imagings, having the potential to expand in vivo and in vitro analysis as cancerous cell biomarkers. Particularly, cadmium selenide (CdSe) magic-sized quantum dots (MSQDs) exhibit stable luminescence that is feasible for biological applications, especially for imaging of tumor cells. For these facts, it is interesting to know the mechanisms of action of how such QDs mark biological cells. For that, simplified models are a suitable strategy. Among these models, Langmuir films of lipids formed at the air-water interface seem to be adequate since they can mimic half a membrane. They are monomolecular films formed at liquid-gas interfaces that can spontaneously form when organic solutions of amphiphilic compounds are spread on the liquid-gas interface. After solvent evaporation, the monomolecular film is formed, and a variety of techniques, including tensiometric, spectroscopic and optic can be applied. When the monolayer is formed by membrane lipids at the air-water interface, a model for half a membrane can be inferred where the aqueous subphase serve as a model for external or internal compartment of the cell. These films can be transferred to solid supports forming the so-called Langmuir-Blodgett (LB) films, and an ampler variety of techniques can be additionally used to characterize the film, allowing for the formation of devices and sensors. With these ideas in mind, the objective of this work was to investigate the specific interactions of CdSe MSQDs with tumorigenic and non-tumorigenic cells using Langmuir monolayers and LB films of lipids and specific cell extracts as membrane models for diagnosis of cancerous cells. Surface pressure-area isotherms and polarization modulation reflection-absorption spectroscopy (PM-IRRAS) showed an intrinsic interaction between the quantum dots, inserted in the aqueous subphase, and Langmuir monolayers, constructed either of selected lipids or of non-tumorigenic and tumorigenic cells extracts. The quantum dots expanded the monolayers and changed the PM-IRRAS spectra for the lipid monolayers. The mixed films were then compressed to high surface pressures and transferred from the floating monolayer to solid supports by using the LB technique. Images of the films were then obtained with atomic force microscopy (AFM) and confocal microscopy, which provided information about the morphology of the films. Similarities and differences between films with different composition representing cell membranes, with or without CdSe MSQDs, was analyzed. The results indicated that the interaction of quantum dots with the bioinspired films is modulated by the lipid composition. The properties of the normal cell monolayer were not significantly altered, whereas for the tumorigenic cell monolayer models, the films presented significant alteration. The images therefore exhibited a stronger effect of CdSe MSQDs on the models representing cancerous cells. As important implication of these findings, one may envisage for new bioinspired surfaces based on molecular recognition for biomedical applications.

Keywords: biomembrane, langmuir monolayers, quantum dots, surfaces

Procedia PDF Downloads 191
200 Effect of the Incorporation of Modified Starch on the Physicochemical Properties and Consumer Acceptance of Puff Pastry

Authors: Alejandra Castillo-Arias, Santiago Amézquita-Murcia, Golber Carvajal-Lavi, Carlos M. Zuluaga-Domínguez

Abstract:

The intricate relationship between health and nutrition has driven the food industry to seek healthier and more sustainable alternatives. A key strategy currently employed is the reduction of saturated fats and the incorporation of ingredients that align with new consumer trends. Modified starch, a polysaccharide widely used in baking, also serves as a functional ingredient to boost dietary fiber content. However, its use in puff pastry remains challenging due to the technological difficulties in achieving a buttery pastry with the necessary strength to create thin, flaky layers. This study explored the potential of incorporating modified starch into puff pastry formulations. To evaluate the physicochemical properties of wheat flour mixed with modified starch, five different flour samples were prepared: T1, T2, T3, and T4, containing 10g, 20g, 30g, and 40g of modified starch per 100 g mixture, respectively, alongside a control sample (C) with no added starch. The analysis focused on various physicochemical indices, including the Water Absorption Index (WAI), Water Solubility Index (WSI), Swelling Power (SP), and Water Retention Capacity (WRC). The puff pastry was further characterized by color measurement and sensory analysis. For the preparation of the puff pastry dough, the flour, modified starch, and salt were mixed, followed by the addition of water until a homogenous dough was achieved. The margarine was later incorporated into the dough, which was folded and rolled multiple times to create the characteristic layers of puff pastry. The dough was then cut into equal pieces, baked at 170°C, and allowed to cool. The results indicated that the addition of modified starch did not significantly alter the specific volume or texture of the puff pastries, as reflected by the stable WAI and SP values across the samples. However, the WRC increased with higher starch content, highlighting the hydrophilic nature of the modified starch, which necessitated additional water during dough preparation. Color analysis revealed significant variations in the L* (lightness) and a* (red-green) parameters, with no consistent relationship between the modified starch treatments and the control. However, the b* (yellow-blue) parameter showed a strong correlation across most samples, except for treatment T3. Thus, modified starch affected the a* component of the CIELAB color spectrum, influencing the reddish hue of the puff pastries. Variations in baking time due to increased water content in the dough likely contributed to differences in lightness among the samples. Sensory analysis revealed that consumers preferred the sample with a 20% starch substitution (T2), which was rated similarly to the control in terms of texture. However, treatment T3 exhibited unusual behavior in texture analysis, and the color analysis showed that treatment T1 most closely resembled the control, indicating that starch addition is most noticeable to consumers in the visual aspect of the product. In conclusion, while the modified starch successfully maintained the desired texture and internal structure of puff pastry, its impact on water retention and color requires careful consideration in product formulation. This study underscores the importance of balancing product quality with consumer expectations when incorporating modified starches in baked goods.

Keywords: consumer preferences, modified starch, physicochemical properties, puff pastry

Procedia PDF Downloads 18
199 Organisational Mindfulness Case Study: A 6-Week Corporate Mindfulness Programme Significantly Enhances Organisational Well-Being

Authors: Dana Zelicha

Abstract:

A 6-week mindfulness programme was launched to improve the well being and performance of 20 managers (including the supervisor) of an international corporation in London. A unique assessment methodology was customised to the organisation’s needs, measuring four parameters: prioritising skills, listening skills, mindfulness levels and happiness levels. All parameters showed significant improvements (p < 0.01) post intervention, with a remarkable increase in listening skills and mindfulness levels. Although corporate mindfulness programmes have proven to be effective, the challenge remains the low engagement levels at home and the implementation of these tools beyond the scope of the intervention. This study has offered an innovative approach to enforce home engagement levels, which yielded promising results. The programme launched with a 2-day introduction intervention, which was followed by a 6-week training course (1 day a week; 2 hours each). Participants learned all basic principles of mindfulness such as mindfulness meditations, Mindfulness Based Stress Reduction (MBSR) techniques and Mindfulness Based Cognitive Therapy (MBCT) practices to incorporate into their professional and personal lives. The programme contained experiential mindfulness meditations and innovative mindfulness tools (OWBA-MT) created by OWBA - The Well Being Agency. Exercises included Mindful Meetings, Unitasking and Mindful Feedback. All sessions concluded with guided discussions and group reflections. One fundamental element of this programme was engagement level outside of the workshop. In the office, participants connected with a mindfulness buddy - a team member in the group with whom they could find support throughout the programme. At home, participants completed online daily mindfulness forms that varied according to weekly themes. These customised forms gave participants the opportunity to reflect on whether they made time for daily mindfulness practice, and to facilitate a sense of continuity and responsibility. At the end of the programme, the most engaged team member was crowned the ‘mindful maven’ and received a special gift. The four parameters were measured using online self-reported questionnaires, including the Listening Skills Inventory (LSI), Mindfulness Attention Awareness Scale (MAAS), Time Management Behaviour Scale (TMBS) and a modified version of the Oxford Happiness Questionnaire (OHQ). Pre-intervention questionnaires were collected at the start of the programme, and post-intervention data was collected 4-weeks following completion. Quantitative analysis using paired T-tests of means showed significant improvements, with a 23% increase in listening skills, a 22% improvement in mindfulness levels, a 12% increase in prioritising skills, and an 11% improvement in happiness levels. Participant testimonials exhibited high levels of satisfaction and the overall results indicate that the mindfulness programme substantially impacted the team. These results suggest that 6-week mindfulness programmes can improve employees’ capacities to listen and work well with others, to effectively manage time and to experience enhanced satisfaction both at work and in life. Limitations noteworthy to consider include the afterglow effect and lack of generalisability, as this study was conducted on a small and fairly homogenous sample.

Keywords: corporate mindfulness, listening skills, organisational well being, prioritising skills, mindful leadership

Procedia PDF Downloads 269
198 Invasion of Scaevola sericea (Goodeniaceae) in Cuba: Invasive Dynamic and Density-Dependent Relationship with the Native Species Tournefortia gnaphalodes (Boraginaceae)

Authors: Jorge Ferro-Diaz, Lazaro Marquez-Llauger, Jose Alberto Camejo-Lamas, Lazaro Marquez-Govea

Abstract:

The invasion of Scaevola sericea Vahl (Goodeniaceae) in Cuba is a recent process, this exotic invasive species was reported for the first time, in the national territory, by 2008. S. sericea is native to the coasts around the Indian Ocean and western Pacific, common on sandy beaches; it has expanded rapidly around the planet by either natural or anthropic causes, mainly due to its use in hotel gardening. Cuba is highly vulnerable to the colonization of these species, mainly due to tropical hurricanes which have increased in the last decades; it also affects other native species such as Tournefortia gnaphalodes (L.) R. Br. (Boraginaceae) that show invasive manifestations because of the unbalanced state of demographic processes of littoral vegetation, which has been studied by authors during the last 10 years. The fast development of Cuban tourism has encouraged the use of exotic species in gardening that invade large sectors of sandy coasts. Taking into account the importance of assessing the impacts dimensions and adopting effective control measures, a monitoring program for the invasion of S. sericea in Cuba was undertaken. The program has been implemented since 2013 and the main objective was to identify invasive patterns and interactions with other native species of coastal vegetation. This experience also aimed to validate the design and propose a standardized monitoring protocol to be applied throughout the country. In the Cuban territory, 12 sites were chosen, where there were established 24 permanent plots of 100 m2; measurements were taken twice a year taking into consideration variables such as abundance, plant height, soil cover, flora and companion vegetation, density and frequency; other physical variables of the beaches were also measured. Similarly, for associated individuals of T. gnaphalodes, the same variables were measured. The results of these first four years allowed us to document patterns of S. sericea invasion, highlighting the use of adventitious roots to enhance their colonization, and to characterize demographic indicators, ecosystem affections, and interactions with native plants. A density-dependent relationship with T. gnaphalodes was documented, finding a controlling effect on S. sericea, so that a manipulation experiment was applied to evaluate possible management actions to be incorporated in the Plans of the protected areas involved. With these results, it was concluded, for the evaluated sites, that S. sericea has had an invasion dynamics ruled by effects of coastal dynamics, more intense in beaches with affectations to the native vegetation, and more controlled in beaches with more preserved vegetation. It was found that when S. sericea is established, the mechanism that most reinforces its invasion is the use of adventitious roots, used to expand the patches and colonize beach sectors. It was also found that when the density of T. gnaphalodes increases, it detains the expansion of S. sericea and reduces its colonization possibilities, behaving as a natural controller of its biological invasion. The results include a proposal of a new Monitoring Protocol for Scaevola sericea in Cuba, with the possibility of extending its implementation to other countries in the region.

Keywords: biological invasion, exotic invasive species, plant interactions, Scaevola sericea

Procedia PDF Downloads 224