Search results for: solid lubrication mechanisms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4644

Search results for: solid lubrication mechanisms

1404 Evaluating the Dosimetric Performance for 3D Treatment Planning System for Wedged and Off-Axis Fields

Authors: Nashaat A. Deiab, Aida Radwan, Mohamed S. Yahiya, Mohamed Elnagdy, Rasha Moustafa

Abstract:

This study is to evaluate the dosimetric performance of our institution's 3D treatment planning system for wedged and off-axis 6MV photon beams, guided by the recommended QA tests documented in the AAPM TG53; NCS report 15 test packages, IAEA TRS 430 and ESTRO booklet no.7. The study was performed for Elekta Precise linear accelerator designed for clinical range of 4, 6 and 15 MV photon beams with asymmetric jaws and fully integrated multileaf collimator that enables high conformance to target with sharp field edges. Ten tests were applied on solid water equivalent phantom along with 2D array dose detection system. The calculated doses using 3D treatment planning system PrecisePLAN were compared with measured doses to make sure that the dose calculations are accurate for simple situations such as square and elongated fields, different SSD, beam modifiers e.g. wedges, blocks, MLC-shaped fields and asymmetric collimator settings. The QA results showed dosimetric accuracy of the TPS within the specified tolerance limits. Except for large elongated wedged field, the central axis and outside central axis have errors of 0.2% and 0.5%, respectively, and off- planned and off-axis elongated fields the region outside the central axis of the beam errors are 0.2% and 1.1%, respectively. The dosimetric investigated results yielded differences within the accepted tolerance level as recommended. Differences between dose values predicted by the TPS and measured values at the same point are the result from limitations of the dose calculation, uncertainties in the measurement procedure, or fluctuations in the output of the accelerator.

Keywords: quality assurance, dose calculation, wedged fields, off-axis fields, 3D treatment planning system, photon beam

Procedia PDF Downloads 434
1403 Examining the Relationship between Concussion and Neurodegenerative Disorders: A Review on Amyotrophic Lateral Sclerosis and Alzheimer’s Disease

Authors: Edward Poluyi, Eghosa Morgan, Charles Poluyi, Chibuikem Ikwuegbuenyi, Grace Imaguezegie

Abstract:

Background: Current epidemiological studies have examined the associations between moderate and severe traumatic brain injury (TBI) and their risks of developing neurodegenerative diseases. Concussion, also known as mild TBI (mTBI), is however quite distinct from moderate or severe TBIs. Only few studies in this burgeoning area have examined concussion—especially repetitive episodes—and neurodegenerative diseases. Thus, no definite relationship has been established between them. Objectives : This review will discuss the available literature linking concussion and amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD). Materials and Methods: Given the complexity of this subject, a realistic review methodology was selected which includes clarifying the scope and developing a theoretical framework, developing a search strategy, selection and appraisal, data extraction, and synthesis. A detailed literature matrix was set out in order to get relevant and recent findings on this topic. Results: Presently, there is no objective clinical test for the diagnosis of concussion because the features are less obvious on physical examination. Absence of an objective test in diagnosing concussion sometimes leads to skepticism when confirming the presence or absence of concussion. Intriguingly, several possible explanations have been proposed in the pathological mechanisms that lead to the development of some neurodegenerative disorders (such as ALS and AD) and concussion but the two major events are deposition of tau proteins (abnormal microtubule proteins) and neuroinflammation, which ranges from glutamate excitotoxicity pathways and inflammatory pathways (which leads to a rise in the metabolic demands of microglia cells and neurons), to mitochondrial function via the oxidative pathways.

Keywords: amyotrophic lateral sclerosis, Alzheimer's disease, mild traumatic brain injury, neurodegeneration

Procedia PDF Downloads 83
1402 Phosphate Regulation of Arbuscular Mycorrhiza Symbiosis in Rice

Authors: Debatosh Das, Moxian Chen, Jianhua Zhang, Caroline Gutjahr

Abstract:

Arbuscular mycorrhiza (AM) is a mutualistic symbiosis between plant roots and Glomeromycotina fungi, which is activated under low but inhibited by high phosphate. The effect of phosphate on AM development has been observed for many years, but mechanisms regulating it under contrasting phosphate levels remain unknown. Based on previous observations that promoters of several AM functional genes contain PHR binding motifs, we hypothesized that PHR2, a master regulator of phosphate starvation response in rice, was recruited to regulate AM symbiosis development. We observed a drastic reduction in root colonization and significant AM transcriptome modulation in phr2. PHR2 targets genes required for root colonization and AM signaling. The role of PHR2 in improving root colonization, mycorrhizal phosphate uptake, and growth response was confirmed in field soil. In conclusion, rice PHR2, which is considered a master regulator of phosphate starvation responses, acts as a positive regulator of AM symbiosis between Glomeromycotina fungi and rice roots. PHR2 directly targets the transcription of plant strigolactone and AM genes involved in the establishment of this symbiosis. Our work facilitates an understanding of ways to enhance AMF propagule populations introduced in field soils (as a biofertilizer) in order to restore the natural plant-AMF networks disrupted by modern agricultural practices. We show that PHR2 is required for AM-mediated improvement of rice yield in low phosphate paddy field soil. Thus, our work contributes knowledge for rational application of AM in sustainable agriculture. Our data provide important insights into the regulation of AM by the plant phosphate status, which has a broad significance in agriculture and terrestrial ecosystems.

Keywords: biofertilizer, phosphate, mycorrhiza, rice, sustainable, symbiosis

Procedia PDF Downloads 128
1401 Modelling Insider Attacks in Public Cloud

Authors: Roman Kulikov, Svetlana Kolesnikova

Abstract:

Last decade Cloud Computing technologies have been rapidly becoming ubiquitous. Each year more and more organizations, corporations, internet services and social networks trust their business sensitive information to Public Cloud. The data storage in Public Cloud is protected by security mechanisms such as firewalls, cryptography algorithms, backups, etc.. In this way, however, only outsider attacks can be prevented, whereas virtualization tools can be easily compromised by insider. The protection of Public Cloud’s critical elements from internal intruder remains extremely challenging. A hypervisor, also called a virtual machine manager, is a program that allows multiple operating systems (OS) to share a single hardware processor in Cloud Computing. One of the hypervisor's functions is to enforce access control policies. Furthermore, it prevents guest OS from disrupting each other and from accessing each other's memory or disk space. Hypervisor is the one of the most critical and vulnerable elements in Cloud Computing infrastructure. Nevertheless, it has been poorly protected from being compromised by insider. By exploiting certain vulnerabilities, privilege escalation can be easily achieved in insider attacks on hypervisor. In this way, an internal intruder, who has compromised one process, is able to gain control of the entire virtual machine. Thereafter, the consequences of insider attacks in Public Cloud might be more catastrophic and significant to virtual tools and sensitive data than of outsider attacks. So far, almost no preventive security countermeasures have been developed. There has been little attention paid for developing models to assist risks mitigation strategies. In this paper formal model of insider attacks on hypervisor is designed. Our analysis identifies critical hypervisor`s vulnerabilities that can be easily compromised by internal intruder. Consequently, possible conditions for successful attacks implementation are uncovered. Hence, development of preventive security countermeasures can be improved on the basis of the proposed model.

Keywords: insider attack, public cloud, cloud computing, hypervisor

Procedia PDF Downloads 357
1400 Adaptive Certificate-Based Mutual Authentication Protocol for Mobile Grid Infrastructure

Authors: H. Parveen Begam, M. A. Maluk Mohamed

Abstract:

Mobile Grid Computing is an environment that allows sharing and coordinated use of diverse resources in dynamic, heterogeneous and distributed environment using different types of electronic portable devices. In a grid environment the security issues are like authentication, authorization, message protection and delegation handled by GSI (Grid Security Infrastructure). Proving better security between mobile devices and grid infrastructure is a major issue, because of the open nature of wireless networks, heterogeneous and distributed environments. In a mobile grid environment, the individual computing devices may be resource-limited in isolation, as an aggregated sum, they have the potential to play a vital role within the mobile grid environment. Some adaptive methodology or solution is needed to solve the issues like authentication of a base station, security of information flowing between a mobile user and a base station, prevention of attacks within a base station, hand-over of authentication information, communication cost of establishing a session key between mobile user and base station, computing complexity of achieving authenticity and security. The sharing of resources of the devices can be achieved only through the trusted relationships between the mobile hosts (MHs). Before accessing the grid service, the mobile devices should be proven authentic. This paper proposes the dynamic certificate based mutual authentication protocol between two mobile hosts in a mobile grid environment. The certificate generation process is done by CA (Certificate Authority) for all the authenticated MHs. Security (because of validity period of the certificate) and dynamicity (transmission time) can be achieved through the secure service certificates. Authentication protocol is built on communication services to provide cryptographically secured mechanisms for verifying the identity of users and resources.

Keywords: mobile grid computing, certificate authority (CA), SSL/TLS protocol, secured service certificates

Procedia PDF Downloads 300
1399 Spirituality and Coping with Breast Cancer among Omani Women

Authors: Huda Al-Awisi, Mohammed Al-Azri, Samira Al-Rasbi, Mansour Al-Moundhri

Abstract:

Cancer diagnosis is invariably a profound and catastrophic life-changing experience for individuals and their families. It has been found that cancer patients and survivors are distressed with the fragility of their life and their mortality. Based on the literature, cancer patients /survivors value their spiritual experience and connecting with unknown power either related to religious belief or not as an important coping mechanism. Health care professionals including nurses are expected to provide spiritual care for cancer patients as holistic care. Yet, nurses face many challenges in providing such care mainly due to lack of clear definition of spirituality. This study aims to explore coping mechanisms of Omani women diagnosed with breast cancer throughout their cancer journey including spirituality using a qualitative approach. A purposive sample of 19 Omani women diagnosed with breast cancer at different stages of cancer treatment modalities were interviewed. Interviews were tape recorded and transcribed verbatim. The framework approach was used to analyze the data. One main theme related to spirituality was identified and called “The power of faith”. For the majority of participants, faith in God (the will of God) was most important in coping with all stages of their breast cancer experience. Some participants thought that the breast cancer is a test from God which they have to accept. Participants also expressed acceptance of death as the eventual end and reward from God. This belief gives them the strength to cope with cancer and seek medical treatment. In conclusion, women participated in this study believed faith in God imposed spiritual power for them to cope with cancer. They connected spirituality with religious beliefs. Therefore, regardless of nurses’ faith in spirituality, the spiritual care needs to be tailored and provided according to each patient individual need.

Keywords: breast cancer, spiritual, religion, coping, diagnosis, oman, women

Procedia PDF Downloads 320
1398 Facile Synthesis of Sulfur Doped TiO2 Nanoparticles with Enhanced Photocatalytic Activity

Authors: Vishnu V. Pillai, Sunil P. Lonkar, Akhil M. Abraham, Saeed M. Alhassan

Abstract:

An effectual technology for wastewater treatment is a great demand now in order to encounter the water pollution caused by organic pollutants. Photocatalytic oxidation technology is widely used in removal of such unsafe contaminants. Among the semi-conducting metal oxides, robust and thermally stable TiO2 has emerged as a fascinating material for photocatalysis. Enhanced catalytic activity was observed for nanostructured TiO2 due to its higher surface, chemical stability and higher oxidation ability. However, higher charge carrier recombination and wide band gap of TiO2 limits its use as a photocatalyst in the UV region. It is desirable to develop a photocatalyst that can efficiently absorb the visible light, which occupies the main part of the solar spectrum. Hence, in order to extend its photocatalytic efficiency under visible light, TiO2 nanoparticles are often doped with metallic or non-metallic elements. Non-metallic doping of TiO2 has attracted much attention due to the low thermal stability and enhanced recombination of charge carriers endowed by metallic doping of TiO2. Amongst, sulfur doped TiO2 is most widely used photocatalyst in environmental purification. However, the most of S-TiO2 synthesis technique uses toxic chemicals and complex procedures. Hence, a facile, scalable and environmentally benign preparation process for S-TiO2 is highly desirable. In present work, we have demonstrated new and facile solid-state reaction method for S-TiO2 synthesis that uses abundant elemental sulfur as S source and moderate temperatures. The resulting nano-sized S-TiO2 has been successfully employed as visible light photocatalyst in methylene blue dye removal from aqueous media.

Keywords: ecofriendly, nanomaterials, methylene blue, photocatalysts

Procedia PDF Downloads 345
1397 Combustion Characteristic of Propane/Acetylene Fuel Blends Pool Fire

Authors: Yubo Bi, Xiao Chen, Shouxiang Lu

Abstract:

A kind of gas-fueled burner, named Burning Rate Emulator, was proposed for the purpose of the emulation of condensed fuel recently. The gaseous fuel can be pure combustible fuel gas or blends of gaseous fuel or inert gas. However, this concept was recently proposed without detailed study on the combustion characteristic of fuel blends. In this study, two kinds of common gaseous fuels were selected, propane and acetylene, to provide the combustion heat as well as a large amount of smoke, which widely exists in liquid and solid fuel burning process. A set of experiments were carried out using a gas-fueled burner with a diameter of 8 cm. The total volume flow rate of propane and acetylene was kept at 3 liters per minute. The volume fraction of propane varied from 0% to 100% at interval of 10%. It is found that the flame height increases with propane volume fraction, which may be caused by the increase of heat release rate, as the energy density of propane is larger than that of acetylene. The dimensionless flame height is correlated against dimensionless heat release rate, which shows a power function relationship. The radiation fraction of the flame does not show a monotonic relationship with propane volume fraction. With the increase of propane volume fraction from 0% to 100%, the value of radiation fraction increases first and reach a maximum value around 0.46 at a propane volume fraction of 10%, and then decreases continuously to a value of 0.25 at the propane volume fraction of 100%. The flame radiation is related to the soot in the flame. The trend of the radiation fraction reflects that there may be a synergistic effect of soot formation between propane and acetylene which can be guessed from the significantly high radiation fraction at a propane volume fraction of 10%. This work provides data for combustion of gaseous fuel blends pool fire and also give reference on the design of Burning Rate Emulator.

Keywords: Burning Rate Emulator, fuel blends pool fire, flame height, radiation fraction

Procedia PDF Downloads 225
1396 FE Modelling of Structural Effects of Alkali-Silica Reaction in Reinforced Concrete Beams

Authors: Mehdi Habibagahi, Shami Nejadi, Ata Aminfar

Abstract:

A significant degradation factor that impacts the durability of concrete structures is the alkali-silica reaction. Engineers are frequently charged with the challenges of conducting a thorough safety assessment of concrete structures that have been impacted by ASR. The alkali-silica reaction has a major influence on the structural capacities of structures. In most cases, the reduction in compressive strength, tensile strength, and modulus of elasticity is expressed as a function of free expansion and crack widths. Predicting the effect of ASR on flexural strength is also relevant. In this paper, a nonlinear three-dimensional (3D) finite-element model was proposed to describe the flexural strength degradation induced byASR.Initial strains, initial stresses, initial cracks, and deterioration of material characteristics were all considered ASR factors in this model. The effects of ASR on structural performance were evaluated by focusing on initial flexural stiffness, force–deformation curve, and load-carrying capacity. Degradation of concrete mechanical properties was correlated with ASR growth using material test data conducted at Tech Lab, UTS, and implemented into the FEM for various expansions. The finite element study revealed a better understanding of the ASR-affected RC beam's failure mechanism and capacity reduction as a function of ASR expansion. Furthermore, in this study, decreasing of the residual mechanical properties due to ASRisreviewed, using as input data for the FEM model. Finally, analysis techniques and a comparison of the analysis and the experiment results are discussed. Verification is also provided through analyses of reinforced concrete beams with behavior governed by either flexural or shear mechanisms.

Keywords: alkali-silica reaction, analysis, assessment, finite element, nonlinear analysis, reinforced concrete

Procedia PDF Downloads 154
1395 Study on the Mechanism of CO₂-Viscoelastic Fluid Synergistic Oil Displacement in Tight Sandstone Reservoirs

Authors: Long Long Chen, Xinwei Liao, Shanfa Tang, Shaojing Jiang, Ruijia Tang, Rui Wang, Shu Yun Feng, Si Yao Wang

Abstract:

Tight oil reservoirs have poor physical properties, insufficient formation energy, and low natural productivity; it is necessary to effectively improve their crude oil recovery. CO₂ flooding is an important technical means to enhance oil recovery and achieve effective CO₂ storage in tight oil reservoirs, but its heterogeneity is strong, which makes CO₂ flooding prone to gas channeling and poor recovery. Aiming at the problem of gas injection channeling, combined with the excellent performance of low interfacial tension viscoelastic fluid (GOBTK), the research on CO₂-low interfacial tension viscoelastic fluid synergistic oil displacement in tight reservoirs was carried out, and the synergy of CO₂ and low interfacial tension viscoelastic fluid was discussed. Oil displacement mechanism. Experiments show that GOBTK has good injectability in tight oil reservoirs (Kg=0.141~0.793mD); CO₂-0.4% GOBTK synergistic flooding can improve the recovery factor of low permeability layers (31.41%) under heterogeneous (gradient difference of 10) conditions the) effect is better than that of CO₂ flooding (0.56%) and 0.4% GOBT-water flooding (20.99%); CO₂-GOBT synergistic oil displacement mechanism includes: 1) The formation of CO₂ foam increases the flow resistance of viscoelastic fluid, forcing the displacement fluid to flow 2) GOBTK can emulsify and disperse residual oil into small oil droplets, and smoothly pass through narrow pores to produce; 3) CO₂ dissolved in GOBTK synergistically enhances the water wettability of the core, and the use of viscosity Elastomeric fluid injection and stripping of residual oil; 4) CO₂-GOBTK synergy superimposes multiple mechanisms, effectively improving the swept volume and oil washing efficiency of the injected fluid to the reservoir.

Keywords: tight oil reservoir, CO₂ flooding, low interfacial tension viscoelastic fluid flooding, synergistic oil displacement, EOR mechanism

Procedia PDF Downloads 169
1394 Dynamic Thin Film Morphology near the Contact Line of a Condensing Droplet: Nanoscale Resolution

Authors: Abbasali Abouei Mehrizi, Hao Wang

Abstract:

The thin film region is so important in heat transfer process due to its low thermal resistance. On the other hand, the dynamic contact angle is crucial boundary condition in numerical simulations. While different modeling contains different assumption of the microscopic contact angle, none of them has experimental evidence for their assumption, and the contact line movement mechanism still remains vague. The experimental investigation in complete wetting is more popular than partial wetting, especially in nanoscale resolution when there is sharp variation in thin film profile in partial wetting. In the present study, an experimental investigation of water film morphology near the triple phase contact line during the condensation is performed. The state-of-the-art tapping-mode atomic force microscopy (TM-AFM) was used to get the high-resolution film profile goes down to 2 nm from the contact line. The droplet was put in saturated chamber. The pristine silicon wafer was used as a smooth substrate. The substrate was heated by PI film heater. So the chamber would be over saturated by droplet evaporation. By turning off the heater, water vapor gradually started condensing on the droplet and the droplet advanced. The advancing speed was less than 20 nm/s. The dominant results indicate that in contrast to nonvolatile liquid, the film profile goes down straightly to the surface till 2 nm from the substrate. However, small bending has been observed below 20 nm, occasionally. So, it can be claimed that for the low condensation rate the microscopic contact angle equals to the optically detectable macroscopic contact angle. This result can be used to simplify the heat transfer modeling in partial wetting. The experimental result of the equality of microscopic and macroscopic contact angle can be used as a solid evidence for using this boundary condition in numerical simulation.

Keywords: advancing, condensation, microscopic contact angle, partial wetting

Procedia PDF Downloads 291
1393 Case Report and Literature Review of Opalski Syndrome: A Rare Brainstem Stroke

Authors: Ramuel Spirituel Mattathiah A. San Juan, Neil Ambasing

Abstract:

Background: In lateral medullary strokes, hemiparesis doesn't typically manifest due to the distinct vascular supply to the corticospinal tract located within the medulla's tegmentum. Hemiparesis resulting from a medullary infarct would likely be attributable to a medial medullary stroke characterized by contralateral hemiparesis since the corticospinal tract fibers at this level have yet to cross over. This paper reports a unique case of a lateral medullary stroke variant that presented with ipsilateral hemiparesis. Objective: There have only been 23 other cases of reported Opalski syndrome, making this only the 24th and 25th case reported worldwide. Case Presentation: A 53-year-old male was admitted with slurring of speech with gait instability, numbness on the right face, Horner’s syndrome, and 4/5 motor strength on the right extremities. Hyperreflexia was noted on the right, together with a Babinski’s sign. Cranial magnetic resonance imaging (MRI) showed an infarct on the right dorsolateral medulla. A 48-year-old male was admitted complaining of dizziness, ataxic gait, veering to the left during ambulation, left facial numbness, left hemiplegia, crossed sensory disturbance, and right limb ataxia. MRI revealed an acute left lateral medullary infarction. Conclusion: A rare type of lateral medullary infarction, the Opalski Syndrome, is a weakness ipsilateral to the lesion of the infarct. The lesion involves the ipsilateral corticospinal tract below the pyramidal decussation. The considerable diversity in the posterior brain circulation serves as a contributing factor to the clinical observation of incomplete textbook syndromes, underscoring the significance of the neurological clinical approach and a solid foundation in neuroanatomy.

Keywords: Opalski syndrome, rare stroke, stroke, Wallenberg's syndrome

Procedia PDF Downloads 66
1392 Calculation of Electronic Structures of Nickel in Interaction with Hydrogen by Density Functional Theoretical (DFT) Method

Authors: Choukri Lekbir, Mira Mokhtari

Abstract:

Hydrogen-Materials interaction and mechanisms can be modeled at nano scale by quantum methods. In this work, the effect of hydrogen on the electronic properties of a cluster material model «nickel» has been studied by using of density functional theoretical (DFT) method. Two types of clusters are optimized: Nickel and hydrogen-nickel system. In the case of nickel clusters (n = 1-6) without presence of hydrogen, three types of electronic structures (neutral, cationic and anionic), have been optimized according to three basis sets calculations (B3LYP/LANL2DZ, PW91PW91/DGDZVP2, PBE/DGDZVP2). The comparison of binding energies and bond lengths of the three structures of nickel clusters (neutral, cationic and anionic) obtained by those basis sets, shows that the results of neutral and anionic nickel clusters are in good agreement with the experimental results. In the case of neutral and anionic nickel clusters, comparing energies and bond lengths obtained by the three bases, shows that the basis set PBE/DGDZVP2 is most suitable to experimental results. In the case of anionic nickel clusters (n = 1-6) with presence of hydrogen, the optimization of the hydrogen-nickel (anionic) structures by using of the basis set PBE/DGDZVP2, shows that the binding energies and bond lengths increase compared to those obtained in the case of anionic nickel clusters without the presence of hydrogen, that reveals the armor effect exerted by hydrogen on the electronic structure of nickel, which due to the storing of hydrogen energy within nickel clusters structures. The comparison between the bond lengths for both clusters shows the expansion effect of clusters geometry which due to hydrogen presence.

Keywords: binding energies, bond lengths, density functional theoretical, geometry optimization, hydrogen energy, nickel cluster

Procedia PDF Downloads 416
1391 An Investigation on the Need to Provide Environmental Sanitation Facilities to Informal Settlement in Shagari Low-Cost Katsina State for Sustainable Built Environment

Authors: Abdullahi Mannir Rawayau

Abstract:

This paper identifies the problems that have aided the decoy to adequate basic infrastructural amenities, sub-standard housing, over-crowding, poor ventilation in homes and work places, sanitation, and non-compliance with building bye-laws and regulation. The paper also asserts the efficient disposal of solid and liquid waste is one of the challenges in the informal areas due to threats on the environment and public health. Sanitation services in the informal settlements have been found to be much lower compared to the average for unban. Bearing in mind a factor which prevents sustainable sanitation in informal areas which include low incomes, insecure tenure, low education levels, difficulty topography and transitory populations, and this study aim to identify effective strategies for achieving sustainable sanitation with specific reference to the informal settlement. Using the Shanghai Low-Cost as a case study. The primary data collected was through observation and interview method. Similarly, the secondary data used for the study was collected through literature reviews from extent studies with specific reference to informal settlement. A number of strategies towards achieving sustainable sanitation in the study were identified here in classified into three (3):- Advocacy and capacity building, infrastructural provision and institutionalization of systems and processes. The paper concludes with the premise on the need to build alliances between the government and stakeholders concerned with sanitation provision through the creation of sanitation and employ adaptable technology. Provision of sanitation facilities in public areas and to establish a statutory body for timely response to sanitation waste management in Katsina. It is imperative to check and prevent further decay for harmonious living and sustainable development.

Keywords: built environment, sanitation, facilities, settlement

Procedia PDF Downloads 219
1390 Prostatic Cyst in Suprapubic Ultrasound Examination

Authors: Angelis P. Barlampas, Ghita Bianca-Andreea

Abstract:

A case of a prostatic midline cyst is presented, which was found during a routine general ultrasound examination in an otherwise healthy young man. The incidence of prostatic cysts discovered in suprapubic ultrasound examination has constantly been rising over the previous decades. Despite the fact that the majority of them are benign, a significant amount is related to symptoms, such as pain, dysuria, infertility, and even cancer. The wide use of ultrasound examination and the increasing availability of high-resolution ultrasound systems have rendered new diagnostic challenges. Once upon a time a suprapubic ultrasound was only useful for measuring only the size and the dimensions of the prostatic gland. It did not have the ability to analyze and resolve structures such as cystic or solid nodules. The current machine equipment has managed to depict the imaging characteristics of lesions with high acuity that compares of an intrarectal ultrasound. But the last one is a specialized examination, which demands expertise and good knowledge. Maybe the time has come for the general radiologist and, especially the one who uses suprapubic ultrasound, to pay more attention to the examination of the prostate gland and to take advantage of the superb abilities and the high resolution of the new ultrasound systems. That is exactly, what this case is emphasizing. The incidental discovery of prostatic cysts, and the relatively little available literature about managing them turns them into an interesting theme for exploring and studying. The prostatic cysts are further divided into midline and paramidline cysts, with the first being usually utricle cysts. A more precise categorization is as follows: A midline cystic lesion usually regards a Mullerian duct cyst, a prostatic utricle cyst, an ejaculatory duct cyst, a prostatic cystadenoma, a ductus deferens cyst, and a TURP. On the other hand, a lateral cystic lesion usually refers to a cystic degeneration of benign prostatic hyperplasia, a prostatic retention cyst, a seminal vesicle cyst, diverticular prostatitis, a prostatic abscess, cavitatory prostatitis from chronic prostatitis, a parasitic prostatic cyst, a cystic prostatic carcinoma, e.t.c.

Keywords: prostatic cyst, radiology, benign prostatic lesions, prostatic cancer, suprapubic prostatic ultrasound

Procedia PDF Downloads 51
1389 Evaluation of Elements Impurities in Drugs According to Pharmacopoeia by use FESEM-EDS Technique

Authors: Rafid Doulab

Abstract:

Elemental Impurities in the Pharmaceuticals industryis are indispensable to ensure pharmaceuticalssafety for 24 elements. Although atomic absorption and inductively coupled plasma are used in the U.S Pharmacopeia and the European Pharmacopoeia, FESEM with energy dispersive spectrometers can be applied as an alternative analysis method for quantitative and qualitative results for a variety of elements without chemical pretreatment, unlike other techniques. This technique characterizes by shortest time, with more less contamination, no reagent consumption, and generation of minimal residue or waste, as well as sample preparations time limiting, with minimal analysis error. Simple dilution for powder or direct analysis for liquid, we analyzed the usefulness of EDS method in testing with field emission scanning electron microscopy (FESEM, SUPRA 55 Carl Zeiss Germany) with an X-ray energy dispersion (XFlash6l10 Bruker Germany). The samples analyzed directly without coating by applied 5µ of known concentrated diluted sample on carbon stub with accelerated voltage according to sample thickness, the result for this spot was in atomic percentage, and by Avogadro converted factor, the final result will be in microgram. Conclusion and recommendation: The conclusion of this study is application of FESEM-EDS in US pharmacopeia and ICH /Q3D guideline to reach a high-precision and accurate method in element impurities analysis of drugs or bulk materials to determine the permitted daily exposure PDE in liquid or solid specimens, and to obtain better results than other techniques, by the way it does not require complex methods or chemicals for digestion, which interfere with the final results with the possibility of to keep the sample at any time for re analysis. The recommendation is to use this technique in pharmacopeia as standard methods like inductively coupled plasma both ICP-AES, ICP-OES, and ICP-MS.

Keywords: pharmacopoeia, FESEM-EDS, element impurities, atomic concentration

Procedia PDF Downloads 112
1388 Analysing the Renewable Energy Integration Paradigm in the Post-COVID-19 Era: An Examination of the Upcoming Energy Law of China

Authors: Lan Wu

Abstract:

The declared transformation towards a ‘new electricity system dominated by renewable energy’ by China requires a cleaner electricity consumption mix with high shares of renewable energy sourced-electricity (RES-E). Unfortunately, integration of RES-E into Chinese electricity markets remains a problem pending more robust legal support, evidenced by the curtailment of wind and solar power as a consequence of integration constraints. The upcoming energy law of the PRC (energy law) is expected to provide such long-awaiting support and coordinate the existing diverse sector-specific laws to deal with the weak implementation that dampening the delivery of their desired regulatory effects. However, in the shadow of the COVID-19 crisis, it remains uncertain how this new energy law brings synergies to RES-E integration, mindful of the significant impacts of the pandemic. Through the theoretical lens of the interplay between China’s electricity reform and legislative development, the present paper investigates whether there is a paradigm shift in energy law regarding renewable energy integration compared with the existing sector-specific energy laws. It examines the 2020 draft for comments on the energy law and analyses its relationship with sector-specific energy laws focusing on RES-E integration. The comparison is drawn upon five key aspects of the RES-E integration issue, including the status of renewables, marketisation, incentive schemes, consumption mechanisms, access to power grids, and dispatching. The analysis shows that it is reasonable to expect a more open and well-organized electricity market enabling absorption of high shares of RES-E. The present paper concludes that a period of prosperous development of RES-E in the post-COVID-19 era can be anticipated with the legal support by the upcoming energy law. It contributes to understanding the signals China is sending regarding the transition towards a cleaner energy future.

Keywords: energy law, energy transition, electricity market reform, renewable energy integration

Procedia PDF Downloads 189
1387 Ripening Conditions Suitable for Marketing of Winter Squash ‘Bochang’

Authors: Do Su Park, Sang Jun Park, Cheon Soon Jeong

Abstract:

This study was performed in order to investigate the optimum ripening conditions for the marketing of Squash. Research sample 'Bochang' was grown at Hongcheonin in Gangwon province in August 2014. Ripening the samples were stored under the conditions of 25℃, 30℃, and 35℃ with the humidity RH70 ± 5%. They were checked every 3 days for 21 days. The respiration rate, water loss, hardness, coloration, the contents of soluble solids, starch, total sugar were evaluated after storage. Respiration rate was reduced in all treatments with longer storage period. Water loss was increased in the higher temperature. The 13% water loss was found at 35℃ on 21st storage day. The store initially 25℃ and 30℃ Hardness 47N and the ripening 21 days decreased slightly. On the other hand, in the case of 35℃ showed a large reduction than 25℃ and 30℃. Soluble solid contents were increased with longer ripening period. 30℃ and 35℃ was highest ripening 15 days. In the case of 25℃, it was highest on 21th day. The higher the temperature, the higher the soluble solids content are. 25℃ and 30℃ Coloration was increased rapidly until the ripening 12 days. In case of 35℃, continued increase up to 21 days. 25℃ and 30℃ showed no differences. Meanwhile, in case of 35℃, appearance quality was reduced in Occurrence of yellowing phenomenon of pericarp occurs from after ripening for 9 days. The coloration of fruit flesh is increase until after ripening for 9 days and decrease from after ripening for 9 days. There was no significant difference depending on the conditions of temperature. The higher the temperature, the lower the content of the starch. In case of 30℃ and 35℃, was reduced with longer storage period. 25℃ was minimal content change. Total sugar was increased in all treatments with longer storage period. The higher the temperature, the higher the amount of total sugar content is. Therefore, at 25℃ for 18-21 days and at 30℃ for 12-15 days is suitable for ripening.

Keywords: marketing, ripening, temperature, winter squash

Procedia PDF Downloads 595
1386 Effect of Chemical Mutagen on Seeds Germination of Lima Bean

Authors: G. Ultanbekova, Zh. Suleimenova, Zh. Rakhmetova, G. Mombekova, S. Mantieva

Abstract:

Plant Growth Promoting Rhizobacteria (PGPR) are a group of free-living bacteria that colonize the rhizosphere, enhance plant growth of many cereals and other important agricultural crops and protect plants from disease and abiotic stresses through a wide variety of mechanisms. The use of PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth. In the present study, strain improvement of PGPR isolates were carried out by chemical mutagenesis for the improvement of growth and yield of lima bean. Induced mutagenesis is widely used for the selection of microorganisms producing biologically active substances and further improving their activities. Strain improvement is usually done by classical mutagenesis which involves exposing the microbes to chemical or physical mutagens. The strains of Pseudomonas putida 4/1, Azotobacter chroococcum Р-29 and Bacillus subtilis were subjected to mutation process for strain improvement by treatment with a chemical agent (sodium nitrite) to cause mutation and were observed for its consequent action on the seeds germination and plant growth of lima bean (Phaseolus lunatus). Bacterial mutant strains of Pseudomonas putida M-1, Azotobacter chroococcum M-1 and Bacillus subtilis M-1, treated with sodium nitrite in the concentration of 5 mg/ml for 120 min, were found effective to enhance the germination of lima bean seeds compared to parent strains. Moreover, treatment of the lima bean seeds with a mutant strain of Bacillus subtilis M-1 had a significant stimulation effect on plant growth. The length of the stems and roots of lima bean treated with Bacillus subtilis M-1 increased significantly in comparison with parent strain in 1.6 and 1.3 times, respectively.

Keywords: chemical mutagenesis, germination, kidney bean, plant growth promoting rhizobacteria (PGPR)

Procedia PDF Downloads 192
1385 Quality Assurance for the Climate Data Store

Authors: Judith Klostermann, Miguel Segura, Wilma Jans, Dragana Bojovic, Isadora Christel Jimenez, Francisco Doblas-Reyees, Judit Snethlage

Abstract:

The Climate Data Store (CDS), developed by the Copernicus Climate Change Service (C3S) implemented by the European Centre for Medium-Range Weather Forecasts (ECMWF) on behalf of the European Union, is intended to become a key instrument for exploring climate data. The CDS contains both raw and processed data to provide information to the users about the past, present and future climate of the earth. It allows for easy and free access to climate data and indicators, presenting an important asset for scientists and stakeholders on the path for achieving a more sustainable future. The C3S Evaluation and Quality Control (EQC) is assessing the quality of the CDS by undertaking a comprehensive user requirement assessment to measure the users’ satisfaction. Recommendations will be developed for the improvement and expansion of the CDS datasets and products. User requirements will be identified on the fitness of the datasets, the toolbox, and the overall CDS service. The EQC function of the CDS will help C3S to make the service more robust: integrated by validated data that follows high-quality standards while being user-friendly. This function will be closely developed with the users of the service. Through their feedback, suggestions, and contributions, the CDS can become more accessible and meet the requirements for a diverse range of users. Stakeholders and their active engagement are thus an important aspect of CDS development. This will be achieved with direct interactions with users such as meetings, interviews or workshops as well as different feedback mechanisms like surveys or helpdesk services at the CDS. The results provided by the users will be categorized as a function of CDS products so that their specific interests will be monitored and linked to the right product. Through this procedure, we will identify the requirements and criteria for data and products in order to build the correspondent recommendations for the improvement and expansion of the CDS datasets and products.

Keywords: climate data store, Copernicus, quality, user engagement

Procedia PDF Downloads 142
1384 FWGE Production From Wheat Germ Using Co-culture of Saccharomyces cerevisiae and Lactobacillus plantarum

Authors: Valiollah Babaeipour, Mahdi Rahaie

Abstract:

food supplements are rich in specific nutrients and bioactive compounds that eliminate free radicals and improve cellular metabolism. The major bioactive compounds are found in bran and cereal sprouts. Secondary metabolites of these microorganisms have antioxidant properties that can be used alone or in combination with chemotherapy and radiation therapy to treat cancer. Biologically active compounds such as benzoquinone derivatives extracted from fermented wheat germ extract (FWGE) have several positive effects on the overall state of human health and strengthen the immune system. The present work describes the discontinuous fermentation of raw wheat germ for FWGE production through the simultaneous culture process using the probiotic strains of Saccharomyces cerevisiae, Lactobacillus plantarum, and the possibility of using solid waste. To increase production efficiency, first to select important factors in the optimization of each fermentation process, using a factorial statistical scheme of stirring fraction (120 to 200 rpm), dilution of solids to solvent (1 to 8-12), fermentation time (16 to 24 hours) and strain to wheat germ ratio (20% to 50%) were studied and then simultaneous culture was performed to increase the yields of 2 and 6 dimethoxybenzoquinone (2,6-DMBQ). Since 2 and 6 dimethoxy benzoquinone were fermented as the main biologically active compound in wheat germ extract, UV-Vis analysis was performed to confirm the presence of 2 and 6 dimethoxy benzoquinone in the final product. In addition, 2,6-DMBQ of some products was isolated in a non-polar C-18 column and quantified using high performance liquid chromatography (HPLC). Based on our findings, it can be concluded that the increase of 2 and 6 dimethoxybenzoquinone in the simultaneous culture of Saccharomyces cerevisiae - Lactobacillus plantarum compared to pure culture of Saccharomyces cerevisiae (from 1.89 mg / g) to 28.9% (2.66 mg / g) Increased.

Keywords: wheat germ, FWGE, saccharomyces cerevisiae, lactobacillus plantarum, co-culture, 2, 6-DMBQ

Procedia PDF Downloads 122
1383 Effect of Processing Parameters on the Physical Properties of Pineapple Pomace Based Aquafeed

Authors: Oluwafemi Babatunde Oduntan, Isaac A. Bamgboye

Abstract:

The solid waste disposal and its management from pineapple juice processing constitute environmental contamination affecting public health. The use of this by-product called pomace has potentials to reduce cost of aquafeed. Pineapple pomace collected after juice extraction was dried and milled. The interactive effects of feeding rate (1.28, 1.44 and 1.60kg/min), screw speed (305, 355 and 405rpm), moisture content (16, 19 and 22%), temperatures (60, 80, 100 and 120°C), cutting speed (1300, 1400 and 1500rpm), pomace inclusion ratio (5, 10, 15, 20%) and open surface die (50, 75 and 100%) on the extrudate physical properties (bulk density, unit density, expansion ratio, durability and floatability) were investigated using optimal custom design (OCD) matrix and response surface methodology. The predicted values were found to be in good agreement with the experimental values for, expansion ratio, durability and floatability (R2 = 0.7970; 0.9264; 0.9098 respectively) with the exceptions of unit density and bulk density (R2 = 0.1639; 0.2768 respectively). All the extrudates showed relatively high floatability, durability. The inclusion of pineapple pomace produced less expanded and more compact textured extrudates. Results indicated that increased in the value of pineapple pomace, screw speed, feeding rate decreased unit density, bulk density, expansion ratio, durability and floatability of the extrudate. However, increasing moisture content of feed mash resulted in increase unit density and bulk density. Addition of extrusion temperature and cutting speed increased the floatability and durability of extrudate. The proportion of pineapple pomace in aquafeed extruded product was observed to have significantly lower effect on the selected responses.

Keywords: aquafeed, extrusion, physical properties, pineapple pomace, waste

Procedia PDF Downloads 265
1382 Chitosan-Aluminum Monostearate Dispersion as Fabricating Liquid for Constructing Controlled Drug Release Matrix

Authors: Kotchamon Yodkhum, Thawatchai Phaechamud

Abstract:

Hydrophobic chitosan-based materials have been developed as controlled drug delivery system. This study was aimed to prepare and evaluate chitosan-aluminum monostearate composite dispersion (CLA) as fabricating liquid for construct a hydrophobic, controlled-release solid drug delivery matrix. This work was attempted to blend hydrophobic substance, aluminum monostearate (AMS), with chitosan in acidic aqueous medium without using any surfactants or grafting reaction, and high temperature during mixing that are normally performed when preparing hydrophobic chitosan system. Lactic acid solution (2%w/v) was employed as chitosan solvent. CLA dispersion was prepared by dispersing different amounts of AMS (1-20% w/w) in chitosan solution (4% w/w) with continuous agitation using magnetic stirrer for 24 h. Effect of AMS amount on physicochemical properties of the dispersion such as viscosity, rheology and particle size was evaluated. Morphology of chitosan-AMS complex (dispersant) was observed under inverted microscope and atomic force microscope. Stability of CLA dispersions was evaluated after preparation within 48 h. CLA dispersions containing AMS less than 5 % w/w exhibited rheological behavior as Newtonian while that containing higher AMS amount exhibited as pseudoplastic. Particle size of the dispersant was significantly smaller when AMS amount was increased up to 5% w/w and was not different between the higher AMS amount system. Morphology of the dispersant under inverted microscope displayed irregular shape and their size exhibited the same trend with particle size measurement. Observation of the dispersion stability revealed that phase separation occurred faster in the system containing higher AMS amount which indicated lower stability of the system. However, the dispersions were homogeneous and stable more than 12 hours after preparation that enough for fabrication process. The prepared dispersions had ability to be fabricated as a porous matrix via lyophilization technique.

Keywords: chitosan, aluminum monostearate, dispersion, controlled-release

Procedia PDF Downloads 389
1381 Religion: A Tool for Conflict Resolution and Peace in Nigerian Society

Authors: V. U. Onyemauwa

Abstract:

Conflicts have always been part of human societies. So long as there is interaction amongst individuals or societies, there are bound to be conflicts as a result of the fact that interests among individuals and societies vary. The issue of conflict has become one of the regular headlines in the daily news of the Nigerian and global media today. Nigerian polity has suffered from one conflict or another, ranging from religious, civil, political, cultural, regional and ethnic violence. It has been found out that, the most disturbing part of these acts of conflicts in Nigeria and around the globe is that most of them have traced their roots to religion. Even some perpetrators of these acts of conflicts most of the time justify their actions with religion, thereby wrongly making religion an object of conflict and violence. In this regard, the study seeks to project religion as a potent tool for conflict resolution because it has a way of permeating through the hearts of men. It has a special responsibility of identifying conflicts and proffer solutions. It also has to provide theological reasoning as to why and how these conflicts come about and how they can possibly be solved. Religious actors are known to contribute to the processes of structural reform necessary for the restoration of productive social relations and political stability after a period of conflict and human rights abuses. The study examines the modalities for projecting religious conflict management strategies in Nigeria using an analysis of relevant documents as well as Black’s Social Control Theory and Thomas-Kilmann’s Model of Conflict Management as its theoretical frameworks. It recommends for a religiously-based means of conflict resolution in Nigeria. Religious individuals and faith-based organisations, as carriers of religious ideas are implore to play active roles in conflict resolution and peace-building in Nigeria by creating conducive environment for peaceful talks, mediation and reconciliation. This will enhance social cohesion, provides solid foundation for peace, progress and development in the society.

Keywords: conflict, peace, religion, resolution

Procedia PDF Downloads 389
1380 Electrical Interactions and Patterning of Bio-Polymers and Nanoparticles in Water Suspensions

Authors: N. V. Klassen, A. A. Vasin, A. M. Likhter, K. A. Voronin, A. V. Mariasevskaya, I. M. Shmit’ko

Abstract:

Regular patterning in mixtures of bio-polymers (chitosan and collagen) and nanoparticles in water suspensions has been found by means of optical microscopy. The patterning was created either by external electrical field of moderate amplitude (200–1000 v/cm) or spontaneously. Simultaneously with the patterning pushing out of water drops mixed with nanoparticles to the external regions was observed. These phenomena are explained by interactions of charged bio-polymers and nanoparticles with external and internal electrical fields as well as with the regions of decreased dielectrical permittivity surrounding nano-objects in water which possesses anomalously high dielectrical permittivity. Electrical charges of opposite signs of the nano-objects induce their mutual attraction whereas dipole moments created around these nano-objects by the electrical fields are pushing these particles to the regions with lower fields. Due to this reason, non-homogeneities of dielectrical permittivity around nano-objects immersed into water suspension induces mutual repulsion of the objects. This spatial decrease of this repulsion with the inter-particle distances is more sharp than that of the Coulomb attraction. So, at longer distances, the attractions are stronger whereas at shorter distances the repulsion prevails. At a certain distance these two forces compensate each other creating the equilibrium state of the mixture of nano-objects with opposite charges. When the groups of positive and negative nano-objects consist from identical particles, quasi-periodical pattern of the suspension is observed like mesoscopic two-dimensional super-crystal. These results can clarify the mechanisms of healing of internal organs with direct or alternative electrical fields.

Keywords: bio-polymers, chitosan, collagen, nanoparticles, Coulomb attraction, polarization repulsion, periodical patterning, electrical low frequency resonances

Procedia PDF Downloads 440
1379 Adsorption of Atmospheric Gases Using Atomic Clusters

Authors: Vidula Shevade, B. J. Nagare, Sajeev Chacko

Abstract:

First principles simulation, meaning density functional theory (DFT) calculations with plane waves and pseudopotential, has become a prized technique in condensed matter theory. Nanoparticles (NP) have been known to possess good catalytic activities, especially for molecules such as CO, O₂, etc. Among the metal NPs, Aluminium based NPs are also widely known for their catalytic properties. Aluminium metal is a lightweight, excellent electrical, and thermal abundant chemical element in the earth’s crust. Aluminium NPs, when added to solid rocket fuel, help improve the combustion speed and considerably increase combustion heat and combustion stability. Adding aluminium NPs into normal Al/Al₂O₃ powder improves the sintering processes of the ceramics, with high heat transfer performance, increased density, and enhanced thermal conductivity of the sinter. We used VASP and Gaussian 0₃ package to compute the geometries, electronic structure, and bonding properties of Al₁₂Ni as well as its interaction with O₂ and CO molecules. Several MD simulations were carried out using VASP at various temperatures from which hundreds of structures were optimized, leading to 24 unique structures. These structures were then further optimized through a Gaussian package. The lowest energy structure of Al₁₂Ni has been reported to be a singlet. However, through our extensive search, we found a triplet state to be lower in energy. In our structure, the Ni atom is found to be on the surface, which gives the non-zero magnetic moment. Incidentally, O2 and CO molecules are also triplet in nature, due to which the Al₁₂-Ni cluster is likely to facilitate the oxidation process of the CO molecule. Our results show that the most favourable site for the CO molecule is the Ni atom and that for the O₂ molecule is the Al atom that is nearest to the Ni atom. Al₁₂Ni-O₂ and Al₁₂-Ni-CO structures we extracted using VMD. Al₁₂Ni nanocluster, due to in triplet electronic structure configuration, indicates it to be a potential candidate as a catalyst for oxidation of CO molecules.

Keywords: catalyst, gaussian, nanoparticles, oxidation

Procedia PDF Downloads 91
1378 Mitigating Food Insecurity and Malnutrition by Promoting Carbon Farming via a Solar-Powered Enzymatic Composting Bioreactor with Arduino-Based Sensors

Authors: Molin A., De Ramos J. M., Cadion L. G., Pico R. L.

Abstract:

Malnutrition and food insecurity represent significant global challenges affecting millions of individuals, particularly in low-income and developing regions. The researchers created a solar-powered enzymatic composting bioreactor with an Arduino-based monitoring system for pH, humidity, and temperature. It manages mixed municipal solid wastes incorporating industrial enzymes and whey additives for accelerated composting and minimized carbon footprint. Within 15 days, the bioreactor yielded 54.54% compost compared to 44.85% from traditional methods, increasing yield by nearly 10%. Tests showed that the bioreactor compost had 4.84% NPK, passing metal analysis standards, while the traditional pit compost had 3.86% NPK; both are suitable for agriculture. Statistical analyses, including ANOVA and Tukey's HSD test, revealed significant differences in agricultural yield across different compost types based on leaf length, width, and number of leaves. The study compared the effects of different composts on Brassica rapa subsp. Chinesis (Petchay) and Brassica juncea (Mustasa) plant growth. For Pechay, significant effects of compost type on plant leaf length (F(5,84) = 62.33, η² = 0.79) and leaf width (F(5,84) = 12.35, η² = 0.42) were found. For Mustasa, significant effects of compost type on leaf length (F(4,70) = 20.61, η² = 0.54), leaf width (F(4,70) = 19.24, η² = 0.52), and number of leaves (F(4,70) = 13.17, η² = 0.43) were observed. This study explores the effectiveness of the enzymatic composting bioreactor and its viability in promoting carbon farming as a solution to food insecurity and malnutrition.

Keywords: malnutrition, food insecurity, enzymatic composting bioreactor, arduino-based monitoring system, enzymes, carbon farming, whey additive, NPK level

Procedia PDF Downloads 50
1377 Adjustments of Mechanical and Hydraulic Properties of Wood Formed under Environmental Stresses

Authors: B. Niez, B. Moulia, J. Dlouha, E. Badel

Abstract:

Trees adjust their development to the environmental conditions they experience. Storms events of last decades showed that acclimation of trees to mechanical stresses due to wind is a very important process that allows the trees to sustain for long years. In the future, trees will experience new wind patterns, namely, more often strong winds and fewer daily moderate winds. Moreover, these patterns will go along with drought periods that may interact with the capacity of trees to adjust their growth to mechanical stresses due to wind. It is necessary to understand the mechanisms of wood functional acclimations to environmental conditions in order to predict their behaviour and in order to give foresters and breeders the relevant tools to adapt their forest management. This work aims to study how trees adjust the mechanical and hydraulic functions of their wood to environmental stresses and how this acclimation may be beneficial for the tree to resist to future stresses. In this work, young poplars were grown under controlled climatic conditions that include permanent environmental stress (daily mechanical stress of the stem by bending and/or hydric stress). Then, the properties of wood formed under these stressed conditions were characterized. First, hydraulic conductivity and sensibility to cavitation were measured at the tissue level in order to evaluate the changes in water transport capacity. Secondly, bending tests and Charpy impact tests were carried out at the millimetric scale to locally measure mechanical parameters such as elastic modulus, elastic limit or rupture energy. These experimental data allow evaluating the impacts of mechanical and water stress on the wood material. At the stem level, they will be merged in an integrative model in order to evaluate the beneficial aspect of wood acclimation for trees.

Keywords: acclimation, environmental stresses, hydraulics, mechanics, wood

Procedia PDF Downloads 200
1376 Development of Immuno-Modulators: Application of Molecular Dynamics Simulation

Authors: Ruqaiya Khalil, Saman Usmani, Zaheer Ul-Haq

Abstract:

The accurate characterization of ligand binding affinity is indispensable for designing molecules with optimized binding affinity. Computational tools help in many directions to predict quantitative correlations between protein-ligand structure and their binding affinities. Molecular dynamics (MD) simulation is a modern state-of-the-art technique to evaluate the underlying basis of ligand-protein interactions by characterizing dynamic and energetic properties during the event. Autoimmune diseases arise from an abnormal immune response of the body against own tissues. The current regimen for the described condition is limited to immune-modulators having compromised pharmacodynamics and pharmacokinetics profiles. One of the key player mediating immunity and tolerance, thus invoking autoimmunity is Interleukin-2; a cytokine influencing the growth of T cells. Molecular dynamics simulation techniques are applied to seek insight into the inhibitory mechanisms of newly synthesized compounds that manifested immunosuppressant potentials during in silico pipeline. In addition to estimation of free energies associated with ligand binding, MD simulation yielded us a great deal of information about ligand-macromolecule interactions to evaluate the pattern of interactions and the molecular basis of inhibition. The present study is a continuum of our efforts to identify interleukin-2 inhibitors of both natural and synthetic origin. Herein, we report molecular dynamics simulation studies of Interluekin-2 complexed with different antagonists previously reported by our group. The study of protein-ligand dynamics enabled us to gain a better understanding of the contribution of different active site residues in ligand binding. The results of the study will be used as the guide to rationalize the fragment based synthesis of drug-like interleukin-2 inhibitors as immune-modulators.

Keywords: immuno-modulators, MD simulation, protein-ligand interaction, structure-based drug design

Procedia PDF Downloads 251
1375 A Critical-Quantitative Approach to Examine the Effects of Systemic Factors on Education Outcomes

Authors: Sireen Irsheid

Abstract:

Despite concerted efforts to improve education attainment with progress in recent years, student achievement and attainment remain among the most significant challenges for school districts across the United States. Many scholars have argued that students who do not complete high school do not drop out of school voluntarily but are ‘pushed out’ of schools through multiple mechanisms related to structural and socioeconomic barriers, behavioral health challenges, pedagogical practices, and administrative procedures. Extant literature has shown that living in historically disadvantaged neighborhoods or attending under-resourced schools exacerbates student-level risk factors for grade retention and school pushout. Most efforts to respond to the school pushout phenomenon have focused on individual characteristics of students, with relatively little attention to addressing these multiple system-level characteristics related to perpetuating inequities. This study is built on a growing body of social justice-oriented research concerned with the systemic influences that shape the experiences and mental health challenges of young people. Specifically, this study examined how young people who have been experiencing education inequities make meaning and navigate the structural factors related to neighborhood and school disinvestment and access to resources and supports, and their risk for school pushout. Furthermore, schools as political, cultural, and ideologically reproductive spaces often serve as sites of resistance and can support students who are impacted by educational inequity. Study findings provide education, neighborhood, school psychology, social work practice, and policy considerations.

Keywords: education policy, mental health, school prison nexus, school pushout, structural trauma

Procedia PDF Downloads 58