Search results for: slope stability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3859

Search results for: slope stability

619 Methylation Profiling and Validation of Candidate Tissue-Specific Differentially Methylated Regions for Identification of Human Blood, Saliva, Semen and Vaginal Fluid and Its Application in Forensics

Authors: Meenu Joshi, Natalie Naidoo, Farzeen Kader

Abstract:

Identification of body fluids is an essential step in forensic investigation to aid in crime reconstruction. Tissue-specific differentially methylated regions (tDMRs) of the human genome can be targeted to be used as biomarkers to differentiate between body fluids. The present study was undertaken to establish the methylation status of potential tDMRs in blood, semen, saliva, and vaginal fluid by using methylation-specific PCR (MSP) and bisulfite sequencing (BS). The methylation statuses of 3 potential tDMRS in genes ZNF282, PTPRS, and HPCAL1 were analysed in 10 samples of each body fluid. With MSP analysis, the ZNF282, and PTPRS1 tDMR displayed semen-specific hypomethylation while HPCAL1 tDMR showed saliva-specific hypomethylation. With quantitative analysis by BS, the ZNF282 tDMR showed statistically significant difference in overall methylation between semen and all other body fluids as well as at individual CpG sites (p < 0.05). To evaluate the effect of environmental conditions on the stability of methylation profiles of the ZNF282 tDMR, five samples of each body fluid were subjected to five different forensic simulated conditions (dry at room temperature, wet in an exsiccator, outside on the ground, sprayed with alcohol, and sprayed with bleach) for 50 days. Vaginal fluid showed highest DNA recovery under all conditions while semen had least DNA quantity. Under outside on the ground condition, all body fluids except semen showed a decrease in methylation level; however, a significant decrease in methylation level was observed for saliva. A statistical significant difference was observed for saliva and semen (p < 0.05) for outside on the ground condition. No differences in methylation level were observed for the ZNF282 tDMR under all conditions for vaginal fluid samples. Thus, in the present study ZNF282 tDMR has been identified as a novel and stable semen-specific hypomethylation marker.

Keywords: body fluids, bisulphite sequencing, forensics, tDMRs, MSP

Procedia PDF Downloads 163
618 Evaluation of Genetic Fidelity and Phytochemical Profiling of Micropropagated Plants of Cephalantheropsis obcordata: An Endangered Medicinal Orchid

Authors: Gargi Prasad, Ashiho A. Mao, Deepu Vijayan, S. Mandal

Abstract:

The main objective of the present study was to optimize and develop an efficient protocol for in vitro propagation of a medicinally important orchid Cephalantheropsis obcordata (Lindl.) Ormerod along with genetic stability analysis of regenerated plants. This plant has been traditionally used in Chinese folk medicine and the decoction of whole plant is known to possess anticancer activity. Nodal segments used as explants were inoculated on Murashige and Skoog (MS) medium supplemented with various concentrations of isopentenyl adenine (2iP). The rooted plants were successfully acclimatized in the greenhouse with 100% survival rate. Inter-simple sequence repeats (ISSR) markers were used to assess the genetic fidelity of in vitro raised plants and the mother plant. It was revealed that monomorphic bands showing the absence of polymorphism in all in vitro raised plantlets analyzed, confirming the genetic uniformity among the regenerants. Phytochemical analysis was done to compare the antioxidant activities and HPLC fingerprinting assay of 80% aqueous ethanol extract of the leaves and stem of in vitro and in vivo grown C. obcordata. The extracts of the plants were examined for their antioxidant activities by using free radical 1, 1-diphenyl-2-picryl hydrazyl (DPPH) scavenging method, 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging ability, reducing power capacity, estimation of total phenolic content, flavonoid content and flavonol content. A simplified method for the detection of ascorbic acid, phenolic acids and flavonoids content was also developed by using reversed phase high-performance liquid chromatography (HPLC). This is the first report on the micropropagation, genetic integrity study and quantitative phytochemical analysis of in vitro regenerated plants of C. obcordata.

Keywords: Cephalantheropsis obcordata, genetic fidelity, ISSR markers, HPLC

Procedia PDF Downloads 156
617 Evaluation of Weather Risk Insurance for Agricultural Products Using a 3-Factor Pricing Model

Authors: O. Benabdeljelil, A. Karioun, S. Amami, R. Rouger, M. Hamidine

Abstract:

A model for preventing the risks related to climate conditions in the agricultural sector is presented. It will determine the yearly optimum premium to be paid by a producer in order to reach his required turnover. The model is based on both climatic stability and 'soft' responses of usually grown species to average climate variations at the same place and inside a safety ball which can be determined from past meteorological data. This allows the use of linear regression expression for dependence of production result in terms of driving meteorological parameters, the main ones of which are daily average sunlight, rainfall and temperature. By simple best parameter fit from the expert table drawn with professionals, optimal representation of yearly production is determined from records of previous years, and yearly payback is evaluated from minimum yearly produced turnover. The model also requires accurate pricing of commodity at N+1. Therefore, a pricing model is developed using 3 state variables, namely the spot price, the difference between the mean-term and the long-term forward price, and the long-term structure of the model. The use of historical data enables to calibrate the parameters of state variables, and allows the pricing of commodity. Application to beet sugar underlines pricer precision. Indeed, the percentage of accuracy between computed result and real world is 99,5%. Optimal premium is then deduced and gives the producer a useful bound for negotiating an offer by insurance companies to effectively protect its harvest. The application to beet production in French Oise department illustrates the reliability of present model with as low as 6% difference between predicted and real data. The model can be adapted to almost any agricultural field by changing state parameters and calibrating their associated coefficients.

Keywords: agriculture, production model, optimal price, meteorological factors, 3-factor model, parameter calibration, forward price

Procedia PDF Downloads 376
616 A Comprehensive Approach to Scour Depth Estimation Through HEC-RAS 2D and Physical Modeling

Authors: Ashvinie Thembiliyagoda, Kasun De Silva, Nimal Wijayaratna

Abstract:

The lowering of the riverbed level as a result of water erosion is termed as scouring. This phenomenon remarkably undermines the potential stability of the bridge pier, causing a threat of failure or collapse. The formation of vortices in the vicinity of bridges due to the obstruction caused by river flow is the main reason behind this pursuit. Scouring is aggravated by factors including high flow rates, bridge pier geometry, sediment configuration etc. Tackling scour-related problems when they become severe is more costly and disruptive compared to implementing preventive measures based on predicted scour depths. This paper presents a comprehensive investigation of the development of a numerical model that could reproduce the scouring effect around bridge piers and estimate the scour depth. The numerical model was developed for one selected bridge in Sri Lanka, the Kelanisiri Bridge. HEC-RAS two-dimensional (2D) modeling approach was utilized for the development of the model and was calibrated and validated with field data. To further enhance the reliability of the model, a physical model was developed, allowing for additional validation. Results from the numerical model were compared with those obtained from the physical model, revealing a strong correlation between the two methods and confirming the numerical model's accuracy in predicting scour depths. The findings from this study underscore the ability of the HEC-RAS two-dimensional modeling approach for the estimation of scour depth around bridge piers. The developed model is able to estimate the scour depth under varying flow conditions, and its flexibility allows it to be adapted for application to other bridges with similar hydraulic and geomorphological conditions, providing a robust tool for widespread use in scour estimation. The developed two-dimensional model not only offers reliable predictions for the case study bridge but also holds significant potential for broader implementation, contributing to the improved design and maintenance of bridge structures in diverse environments.

Keywords: piers, scouring, HEC-RAS, physical model

Procedia PDF Downloads 13
615 Political Antinomy and Its Resolution in Islam

Authors: Abdul Nasir Zamir

Abstract:

After the downfall of Ottoman Caliphate, it scattered into different small Muslim states. Muslim leaders, intellectuals, revivalists as well as modernists started trying to boost up their nation. Some Muslims are also trying to establish the caliphate. Every Muslim country has its own political system, i.e., kingship, dictatorship or democracy, etc. But these are not in their original forms as the historian or political science discussed in their studies. The laws and their practice are mixed, i.e., others with Islamic laws, e.g., Saudi Arabia (K.S.A) and the Islamic Republic of Pakistan, etc. There is great conflict among the revivalist Muslim parties (groups) and governments about political systems. The question is that the subject matter is Sharia or political system? Leaders of Modern Muslim states are alleged as disbelievers due to neglecting the revelation in their laws and decisions. There are two types of laws; Islamic laws and management laws. The conflict is that the non-Islamic laws are in practice in Muslim states. Non-Islamic laws can be gradually changed with Islamic laws with a legal and peaceful process according to the practice of former Muslim leaders and scholars. The bloodshed of Muslims is not allowed in any case. Weak Muslim state is a blessing than nothing. The political system after Muhammad and guided caliphs is considered as kingship. But during this period Muslims not only developed in science and technology but conquered many territories also. If the original aim is in practice, then the Modern Muslim states can be stabled with different political systems. Modern Muslim states are the hope of survival, stability, and development of Muslim Ummah. Islam does not allow arm clash with Muslim army or Muslim civilians. The caliphate is based on believing in one Allah Almighty and good deeds according to Quran and Sunnah. As faith became weak and good deeds became less from its standard level, caliphate automatically became weak and even ended. The last weak caliphate was Ottoman Caliphate which was a hope of all the Muslims of the world. There is no caliphate or caliph present in the world. But every Muslim country or state is like an Amarat (a part of caliphate or small and alternate form of the caliphate) of Muslims. It is the duty of all Muslims to stable these modern Muslim states with tolerance.

Keywords: caliphate, conflict resolution, modern Muslim state, political conflicts, political systems, tolerance

Procedia PDF Downloads 154
614 Resveratrol-Phospholipid Complex for Sustained Delivery of Resveratrol via the Skin for the Treatment of Inflammatory Diseases

Authors: Malay K. Das, Bhupen Kalita

Abstract:

The poor oral bioavailability of resveratrol (RSV) due to presystemic metabolism can be avoided via dermal route of administration. The hydrophilic-lipophilic nature of resveratrol-phospholipid complex (RSVPs) favors the delivery of resveratrol via the skin. The RSVPs embedded polymeric patch with moderate adhesiveness was developed for dermal application for sustained anti-inflammatory effect. The prepared patches were evaluated for various physicochemical properties, surface morphology by SEM, TEM, and compatibility of patch components by FT-IR and DSC studies. The dermal flux of the optimized patch formulation was found to be at 4.28 ± 0.48 mg/cm2/24 h. The analysis of skin extract after permeation study revealed the presence of resveratrol, which confirmed the localization of RSVPs in the skin. The stability of RSVPs in the polymeric patch and the physiologic environment was confirmed by FE-SEM studies on the patches after drug release and skin permeation studies. The RSVPs particles released from the polymer matrix maintaining the structural integrity and permeate the keratinized horney layer of skin. The optimized patch formulation showed sustained anti-inflammatory effect (84.10% inhibition of inflammation at 24 h) in carrageenan-induced rat paw edema model compared to marketed diclofenac sodium gel (39.58% inhibition of inflammation at 24 h). The CLSM study confirmed the localization of RSVPs for a longer period, thus enabling drug targeting to the dermis for sustained anti-inflammatory effect. Histological studies with phase contrast trinocular microscope suggested no alteration of skin integrity and no evidence of the presence of inflammatory cells after exposure to the permeants. The patch was found to be safe for skin application as evaluated by Draize method for skin irritation scoring in a rabbit model. These results suggest the therapeutic efficacy of the developed patch in both acute and chronic inflammatory diseases.

Keywords: resveratrol-phospholipid complex, skin delivery, sustained anti-inflammatory effect, inflammatory diseases, dermal patch

Procedia PDF Downloads 230
613 The Role of Land Consolidation to Reduce Soil Degradation in the Czech Republic

Authors: Miroslav Dumbrovsky

Abstract:

The paper deals with positive impacts of land consolidation on decreasing soil degradation with the main emphasis on soil and water conservation in the landscape. The importance of land degradation is very high because of its impact on crop productivity and many other adverse effects. Soil degradation through soil erosion is causing losses in crop productivity and quality of the environment, through decreasing quality of soil and water (especially water resources). Negative effects of conventional farming practices are increased water erosion, as well as crusting and compaction of the topsoil and subsoil. Soil erosion caused by water destructs the soil’s structure, reduces crop productivity due to deterioration in soil physical and chemical properties such as infiltration rate, water holding capacity, loss of nutrients needed for crop production, and loss of soil carbon. Recently, a new process of complex land consolidation in the Czech Republic has provided a unique opportunity for improving the quality of the environment and sustainability of the crop production by means a better soil and water conservation. The present process of the complex land consolidation is not only a reallocation of plots, but this system consists of a new layout of plots within a certain territory, aimed at establishing the integrated land-use economic units, based on the needs of individual landowners and land users. On the other hand, the interests of the general public and the environmental protection have to be solved, too. From the general point of view, a large part of the Czech landscape shall be reconstructed in the course of complex land consolidation projects. These projects will be based on new integrated soil-economic units, spatially arranged in a designed multifunctional system of soil and water conservation measures, such as path network and a territorial system of ecological stability, according to structural changes in agriculture. This new approach will be the basis of a rational economic utilization of the region which will comply with the present ecological and aesthetic demands at present.

Keywords: soil degradation, land consolidation, soil erosion, soil conservation

Procedia PDF Downloads 356
612 Mucoadhesive Chitosan-Coated Nanostructured Lipid Carriers for Oral Delivery of Amphotericin B

Authors: S. L. J. Tan, N. Billa, C. J. Roberts

Abstract:

Oral delivery of amphotericin B (AmpB) potentially eliminates constraints and side effects associated with intravenous administration, but remains challenging due to the physicochemical properties of the drug such that it results in meagre bioavailability (0.3%). In an advanced formulation, 1) nanostructured lipid carriers (NLC) were formulated as they can accommodate higher levels of cargoes and restrict drug expulsion and 2) a mucoadhesion feature was incorporated so as to impart sluggish transit of the NLC along the gastrointestinal tract and hence, maximize uptake and improve bioavailability of AmpB. The AmpB-loaded NLC formulation was successfully formulated via high shear homogenisation and ultrasonication. A chitosan coating was adsorbed onto the formed NLC. Physical properties of the formulations; particle size, zeta potential, encapsulation efficiency (%EE), aggregation states and mucoadhesion as well as the effect of the variable pH on the integrity of the formulations were examined. The particle size of the freshly prepared AmpB-loaded NLC was 163.1 ± 0.7 nm, with a negative surface charge and remained essentially stable over 120 days. Adsorption of chitosan caused a significant increase in particle size to 348.0 ± 12 nm with the zeta potential change towards positivity. Interestingly, the chitosan-coated AmpB-loaded NLC (ChiAmpB NLC) showed significant decrease in particle size upon storage, suggesting 'anti-Ostwald' ripening effect. AmpB-loaded NLC formulation showed %EE of 94.3 ± 0.02 % and incorporation of chitosan increased the %EE significantly, to 99.3 ± 0.15 %. This suggests that the addition of chitosan renders stability to the NLC formulation, interacting with the anionic segment of the NLC and preventing the drug leakage. AmpB in both NLC and ChiAmpB NLC showed polyaggregation which is the non-toxic conformation. The mucoadhesiveness of the ChiAmpB NLC formulation was observed in both acidic pH (pH 5.8) and near-neutral pH (pH 6.8) conditions as opposed to AmpB-loaded NLC formulation. Hence, the incorporation of chitosan into the NLC formulation did not only impart mucoadhesive property but also protected against the expulsion of AmpB which makes it well-primed as a potential oral delivery system for AmpB.

Keywords: Amphotericin B, mucoadhesion, nanostructured lipid carriers, oral delivery

Procedia PDF Downloads 162
611 Humins: From Industrial By-Product to High Value Polymers

Authors: Pierluigi Tosi, Ed de Jong, Gerard van Klink, Luc Vincent, Alice Mija

Abstract:

During the last decades renewable and low-cost resources have attracted increasingly interest. Carbohydrates can be derived by lignocellulosic biomasses, which is an attractive option since they represent the most abundant carbon source available in nature. Carbohydrates can be converted in a plethora of industrially relevant compounds, such as 5-hydroxymethylfurfural (HMF) and levulinic acid (LA), within acid catalyzed dehydration of sugars with mineral acids. Unfortunately, these acid catalyzed conversions suffer of the unavoidable formation of highly viscous heterogeneous poly-disperse carbon based materials known as humins. This black colored low value by-product is made by a complex mixture of macromolecules built by covalent random condensations of the several compounds present during the acid catalyzed conversion. Humins molecular structure is still under investigation but seems based on furanic rings network linked by aliphatic chains and decorated by several reactive moieties (ketones, aldehydes, hydroxyls, …). Despite decades of research, currently there is no way to avoid humins formation. The key parameter for enhance the economic viability of carbohydrate conversion processes is, therefore, increasing the economic value of the humins by-product. Herein are presented new humins based polymeric materials that can be prepared starting from the raw by-product by thermal treatment, without any step of purification or pretreatment. Humins foams can be produced with the control of reaction key parameters, obtaining polymeric porous materials with designed porosity, density, thermal and electrical conductivity, chemical and electrical stability, carbon amount and mechanical properties. Physico chemical properties can be enhanced by modifications on the starting raw material or adding different species during the polymerization. A comparisons on the properties of different compositions will be presented, along with tested applications. The authors gratefully acknowledge the European Community for financial support through Marie-Curie H2020-MSCA-ITN-2015 "HUGS" Project.

Keywords: by-product, humins, polymers, valorization

Procedia PDF Downloads 143
610 Establish Co-Culture System of Dehalococcoides and Sulfate-Reducing Bacteria to Generate Ferrous Sulfide for Reversing Sulfide-Inhibited Reductive Dechlorination

Authors: Po-Sheng Kuo, Che-Wei Lu, Ssu-Ching Chen

Abstract:

Chlorinated ethenes (CEs) constitute a predominant contaminant in Taiwan's native polluted sites, particularly in groundwater inundated with sulfate salts that substantially impede remediation efforts. The reduction of sulfate by sulfate-reducing bacteria (SRB) impairs the dechlorination efficiency of Dehalococcoides by generating hydrogen sulfide (H₂S), resulting in incomplete chloride degradation and thereby leading to the failure of bioremediation. In order to elucidate interactions between sulfate reduction and dechlorination, this study aims to establish a co-culture system of Dehalococcoides and SRB, overcoming H₂S inhibition by employing the synthesis of ferrous sulfide (FeS), which is commonly utilized in chemical remediation due to its high reduction potential. Initially, the study demonstrates that the addition of ferrous chloride (FeCl₂) effectively removed H₂S production from SRB and enhanced the degradation of trichloroethylene to ethene. This process overcomes the inhibition caused by H₂S produced by SRB in high sulfate environments. Compared to different concentrations of ferrous dosages for the biogenic generation of FeS, the efficiency was optimized by adding FeCl₂ at an equal ratio to the concentration of sulfate in the environment. This was more effective in removing H₂S and crystal particles under 10 times smaller than those synthesized under excessive FeCl₂ dosages, addressing clogging issues in situ remediation. Finally, utilizing Taiwan's indigenous dechlorinating consortium in a simulated high sulfate-contaminated environment, the biodiversity of microbial species was analyzed to reveal a higher species richness within the FeS group, conducive to ecological stability. This study validates the potential of the co-culture system in generating biogenic FeS under sulfate and CEs co-contamination, removing sulfate-reducing products, and improving CE remediation through integrated chemical and biological remediations.

Keywords: biogenic ferrous sulfide, chlorinated ethenes, Dehalococcoides, sulfate-reducing bacteria, sulfide inhibition

Procedia PDF Downloads 51
609 Stakeholders Perspectives on the Social Determinants of Health and Quality of Life in Aseer Healthy Cities

Authors: Metrek Almetrek, Naser Alqahtani, Eisa Ghazwani, Mona Asiri, Mohammed Alqahtani, Magboolah Balobaid

Abstract:

Background: Advocacy of potential for community coalitions to positively address social determinants of health and quality of life, little is known about the views of stakeholders involved in such efforts. This study sought to assess the provinces leaders’ perspectives about social determinants related to the Health Neighborhood Initiative (HNI), a new county effort to support community coalitions. Method and Subjects: We used a descriptive, qualitative study using personal interviews in 2022. We conducted it in the community coalition's “main cities committees” set across service planning areas that serve vulnerable groups located in the seven registered healthy cities to WHO (Abha, Tareeb, Muhayel, Balqarn, Alharajah, Alamwah, and Bisha). We conducted key informant interviews with 76 governmental, profit, non-profit, and community leaders to understand their perspectives about the HNI. As part of a larger project, this study focused on leaders’ views about social determinants of health related to the HNI. All interviews were audio-recorded and transcribed. An inductive approach to coding was used, with text segments grouped by social determinant categories. Results: Provinces leaders described multiple social determinants of health and quality of life that were relevant to the HNI community coalitions: housing and safety, community violence, economic stability, city services coordination and employment and education. Leaders discussed how social determinants were interconnected with each other and the need for efforts to address multiple social determinants simultaneously to effectively improve health and quality of life. Conclusions: Community coalitions have an opportunity to address multiple social determinants of health and quality of life to meet the social needs of vulnerable groups. Future research should examine how community coalitions, like those in the HNI, can actively engage with community members to identify needs and then deliver evidence-based care.

Keywords: social determinants, health and quality of life, vulnerable groups, qualitative research

Procedia PDF Downloads 84
608 Rooftop Rainwater Harvesting for Sustainable Organic Farming: Insights from Smart cities in India

Authors: Rajkumar Ghosh

Abstract:

India faces a critical task of water shortage, specifically during dry seasons, which adversely impacts agricultural productivity and food protection. Natural farming, specializing in sustainable practices, demands green water management in smart cities in India. This paper examines how rooftop rainwater harvesting (RRWH) can alleviate water scarcity and support sustainable organic farming practices in India. RRWH emerges as a promising way to increase water availability for the duration of dry intervals and decrease reliance on traditional water sources in smart cities. The look at explores the capacity of RRWH to enhance water use performance, help crop growth, enhance soil health, and promote ecological stability inside the farming ecosystem. The medical paper delves into the advantages, challenges, and implementation techniques of RRWH in organic farming. It addresses demanding situations, including seasonal variability of rainfall, limited rooftop vicinity, and monetary concerns. Moreover, it analyses broader environmental and socio-economic implications of RRWH for sustainable agriculture, emphasizing water conservation, biodiversity protection, and the social properly-being of farming communities. The belief underscores the importance of RRWH as a sustainable solution for reaching the aim of sustainable agriculture in natural farming in India. It emphasizes the want for further studies, policy advocacy, and capacity-building initiatives to promote RRWH adoption and assist the transformation in the direction of sustainable organic farming systems. The paper proposes adaptive strategies to triumph over demanding situations and optimize the advantages of RRWH in organic farming. By way of doing so, India can make vast development in addressing water scarcity issues and making sure a greater resilient and sustainable agricultural future in smart cities.

Keywords: rooftop rainwater harvesting, organic farming, green water management, food protection, ecological stabilty

Procedia PDF Downloads 102
607 Speaking of Genocide: Lithuanian 'Occupation’ Museums and Foucault's Discursive Formation

Authors: Craig Wight

Abstract:

Tourism visits to sites associated to varying degrees with death and dying have for some time inspired academic debate and research into what has come to be popularly described as ‘dark tourism’. Research to date has been based on the mobilisation of various social scientific methodologies to understand issues such as the motivations of visitors to consume dark tourism experiences and visitor interpretations of the various narratives that are part of the consumption experience. This thesis offers an alternative conceptual perspective for carrying out research into dark tourism by presenting a discourse analysis of Lithuanian occupation-themed museums using Foucault’s concept of ‘discursive formation’ from ‘Archaeology of Knowledge’. A constructivist methodology is therefore applied to locate the rhetorical representations of Lithuanian and Jewish subject positions and to identify the objects of discourse that are produced in five museums that interpret a historical era defined by occupation, the persecution of people and genocide. The discourses and consequent cultural function of these museums are examined, and the key finding of the research proposes that they authorise a particular Lithuanian individualism which marginalises the Jewish subject position and its related objects of discourse into abstraction. The thesis suggests that these museums create the possibility to undermine the ontological stability of Holocaust and the Jewish-Lithuanian subject which is produced as an anomalous, ‘non-Lithuanian’ cultural reference point. As with any Foucauldian archaeological research, it cannot be offered as something that is ‘complete’ since it captures only a partial field, or snapshot of knowledge, bound to a specific temporal and spatial context. The discourses that have been identified are perhaps part of a more elusive ‘positivity’ which is salient across a number of cultural and political surfaces which are ripe for a similar analytical approach in future. It is hoped that the study will motivate others to follow a discourse-analytical approach to research in order to further understand the critical role of museums in public culture when it comes to shaping knowledge about ‘inconvenient’ pasts.

Keywords: genocide heritage, foucault, Lithuanian tourism, discursive formatoin

Procedia PDF Downloads 232
606 Dielectric Study of Ethanol Water Mixtures at Different Concentration Using Hollow Channel Cantilever Platform

Authors: Maryam S. Ghoraishi, John E. Hawk, Thomas Thundat

Abstract:

Understanding liquid properties in small scale has become important in recent decades as immerging new microelectromechanical systems (MEMS) devices have been widely used for micro pumps, drug delivery, and many other laboratory-on-microchips analysis. Often in microfluidic devices, fluids are transported electrokinetically. Therefore, extensive knowledge of fluid flow, heat transport, electrokinetics and electrochemistry are key to successful lab on a chip design. Among different microfluidic devices, recently developed hollow channel cantilever offers an ideal platform to study different fluid properties simultaneously without drastic decrease in quality factor which normally occurs when traditional cantilevers operate in the liquid phase. Using hollow channel cantilever, we monitor changes in density and viscosity of liquid while simultaneously investigating dielectric properties of alcohol water binary mixtures. Considerable research has been conducted on alcohol-water mixtures since such a mixture is a typical prototype for biomolecules, Micelle formation, and structural stability of proteins (to name a few). Here we show that hollow channel cantilever can be employed to investigate dielectric properties of ethanol/water mixtures in different concentrations. We study dynamic amplitude shifts of hollow channel cantilever oscillation at different concentrations of ethanol/water for different voltages. Our results show how interactions between solute and solvent, and possibly cluster formation, could change dielectric properties and dipole reorientation of the mixture, as well as the resulting force on the hollow cantilever. For comparison, we also examine higher conductivity ionic mixtures of sodium sulfate solution under the same conditions as low conductivity ethanol/water mixtures. We will show the results from systematic investigation of solvent effects on dielectric properties of the binary mixture. We will also address the question of resolution limits in dielectric study of analyte molecules imposed by solvent concentrations.

Keywords: dielectric constant, cantilever sensors, ethanol water mixtures, low frequency

Procedia PDF Downloads 202
605 Cannabis Sativa L as Natural Source of Promising Anti-Alzheimer Drug Candidates: A Comprehensive Computational Approach Including Molecular Docking, Molecular Dynamics, ADMET and MM-PBSA Studies

Authors: Hassan Nour, Nouh Mounadi, Oussama Abchir, Belaidi Salah, Samir Chtita

Abstract:

Cholinesterase enzymes are biological catalysts essential for the transformation of acetylcholine, which is a neurotransmitter implicated in memory and learning, into acetic acid and choline, altering the neurotransmission process in Alzheimer’s disease patients. Therefore, inhibition of cholinesterase enzymes is a relevant strategy for the symptomatic treatment of Alzheimer’s disease. The current investigation aims to explore potential cholinesterase (ChE) inhibitors through a comprehensive computational approach. Forty-nine phytoconstituents extracted from Cannabis sativa L. were in-silico screened using molecular docking and pharmacokinetic and toxicological analysis to evaluate their possible inhibitory effect on the cholinesterase enzymes. Two phytoconstituents belonging to cannabinoid derivatives were revealed to be promising candidates for Alzheimer's therapy by acting as cholinesterase inhibitors. They have exhibited high binding affinities towards the cholinesterase enzymes and showed their ability to interact with key residues involved in cholinesterase enzymatic activity. In addition, they presented good ADMET profiles allowing them to be promising oral drug candidates. Furthermore, molecular dynamics (MD) simulations were executed to explore their interaction stability under mimetic biological conditions and thus support our findings. To corroborate the docking results, the binding free energy corresponding to the more stable ligand-ChE complexes was re-estimated by applying the MM-PBSA method. MD and MM-PBSA studies affirmed that the ligand-ChE recognition is a spontaneous reaction leading to stable complexes. The conducted investigations have led to great findings that would strongly guide the pharmaceutical industries toward the rational development of potent anti-Alzheimer agents.

Keywords: Alzheimer’s disease, molecular docking, Cannabis sativa L., cholinesterase inhibitors, molecular dynamics, ADMET, MM-PBSA

Procedia PDF Downloads 83
604 Polypyrrole Integrated MnCo2O4 Nanorods Hybrid as Electrode Material for High Performance Supercapacitor

Authors: Santimoy Khilari, Debabrata Pradhan

Abstract:

Ever−increasing energy demand and growing energy crisis along with environmental issues emphasize the research on sustainable energy conversion and storage systems. Recently, supercapacitors or electrochemical capacitors emerge as a promising energy storage technology for future generation. The activity of supercapacitors generally depends on the efficiency of its electrode materials. So, the development of cost−effective efficient electrode materials for supercapacitors is one of the challenges to the scientific community. Transition metal oxides with spinel crystal structure receive much attention for different electrochemical applications in energy storage/conversion devices because of their improved performance as compared to simple oxides. In the present study, we have synthesized polypyrrole (PPy) supported manganese cobaltite nanorods (MnCo2O4 NRs) hybrid electrode material for supercapacitor application. The MnCo2O4 NRs were synthesized by a simple hydrothermal and calcination approach. The MnCo2O4 NRs/PPy hybrid was prepared by in situ impregnation of MnCo2O4 NRs during polymerization of pyrrole. The surface morphology and microstructure of as−synthesized samples was characterized by scanning electron microscopy and transmission electron microscopy, respectively. The crystallographic phase of MnCo2O4 NRs, PPy and hybrid was determined by X-ray diffraction. Electrochemical charge storage activity of MnCo2O4 NRs, PPy and MnCo2O4 NRs/PPy hybrid was evaluated from cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy. Significant improvement of specific capacitance was achieved in MnCo2O4 NRs/PPy hybrid as compared to the individual components. Furthermore, the mechanically mixed MnCo2O4 NRs, and PPy shows lower specific capacitance as compared to MnCo2O4 NRs/PPy hybrid suggesting the importance of in situ hybrid preparation. The stability of as prepared electrode materials was tested by cyclic charge-discharge measurement for 1000 cycles. Maximum 94% capacitance was retained with MnCo2O4 NRs/PPy hybrid electrode. This study suggests that MnCo2O4 NRs/PPy hybrid can be used as a low cost electrode material for charge storage in supercapacitors.

Keywords: supercapacitors, nanorods, spinel, MnCo2O4, polypyrrole

Procedia PDF Downloads 340
603 Simulation of a Control System for an Adaptive Suspension System for Passenger Vehicles

Authors: S. Gokul Prassad, S. Aakash, K. Malar Mohan

Abstract:

In the process to cope with the challenges faced by the automobile industry in providing ride comfort, the electronics and control systems play a vital role. The control systems in an automobile monitor various parameters, controls the performances of the systems, thereby providing better handling characteristics. The automobile suspension system is one of the main systems that ensure the safety, stability and comfort of the passengers. The system is solely responsible for the isolation of the entire automobile from harmful road vibrations. Thus, integration of the control systems in the automobile suspension system would enhance its performance. The diverse road conditions of India demand the need of an efficient suspension system which can provide optimum ride comfort in all road conditions. For any passenger vehicle, the design of the suspension system plays a very important role in assuring the ride comfort and handling characteristics. In recent years, the air suspension system is preferred over the conventional suspension systems to ensure ride comfort. In this article, the ride comfort of the adaptive suspension system is compared with that of the passive suspension system. The schema is created in MATLAB/Simulink environment. The system is controlled by a proportional integral differential controller. Tuning of the controller was done with the Particle Swarm Optimization (PSO) algorithm, since it suited the problem best. Ziegler-Nichols and Modified Ziegler-Nichols tuning methods were also tried and compared. Both the static responses and dynamic responses of the systems were calculated. Various random road profiles as per ISO 8608 standard are modelled in the MATLAB environment and their responses plotted. Open-loop and closed loop responses of the random roads, various bumps and pot holes are also plotted. The simulation results of the proposed design are compared with the available passive suspension system. The obtained results show that the proposed adaptive suspension system is efficient in controlling the maximum over shoot and the settling time of the system is reduced enormously.

Keywords: automobile suspension, MATLAB, control system, PID, PSO

Procedia PDF Downloads 294
602 A Review on Development of Pedicle Screws and Characterization of Biomaterials for Fixation in Lumbar Spine

Authors: Shri Dubey, Jamal Ghorieshi

Abstract:

Instability of the lumbar spine is caused by various factors that include degenerative disc, herniated disc, traumatic injuries, and other disorders. Pedicle screws are widely used as a main fixation device to construct rigid linkages of vertebrae to provide a fully functional and stable spine. Various technologies and methods have been used to restore the stabilization. However, loosening of pedicle screws is the main cause of concerns for neurosurgeons. This could happen due to poor bone quality with osteoporosis as well as types of pedicle screw used. Compatibilities and stabilities of pedicle screws with bone depend on design (thread design, length, and diameter) and material. Grip length and pullout strength affect the motion and stability of the spine when it goes through different phases such as extension, flexion, and rotation. Pullout strength of augmented pedicle screws is increased in both primary and salvage procedures by 119% (p = 0.001) and 162% (p = 0.01), respectively. Self-centering pedicle screws at different trajectories (0°, 10°, 20°, and 30°) show the same pullout strength as insertion in a straight-ahead trajectory. The outer cylindrical and inner conical shape of pedicle screws show the highest pullout strength in Grades 5 and 15 foams (synthetic bone). An outer cylindrical and inner conical shape with a V-shape thread exhibit the highest pullout strength in all foam grades. The maximum observed pullout strength is at axial pullout configuration at 0°. For Grade 15 (240 kg/m³) foam, there is a decline in pull out strength. The largest decrease in pullout strength is reported for Grade 10 (160 kg/m³) foam. The maximum pullout strength of 2176 N (0.32-g/cm³ Sawbones) on all densities. Type 1 Pedicle screw shows the best fixation due to smaller conical core diameter and smaller thread pitch (Screw 2 with 2 mm; Screws 1 and 3 with 3 mm).

Keywords: polymethylmethacrylate, PMMA, classical pedicle screws, CPS, expandable poly-ether-ether-ketone shell, EPEEKS, includes translaminar facet screw, TLFS, poly-ether-ether-ketone, PEEK, transfacetopedicular screw, TFPS

Procedia PDF Downloads 155
601 Continuous-Time Convertible Lease Pricing and Firm Value

Authors: Ons Triki, Fathi Abid

Abstract:

Along with the increase in the use of leasing contracts in corporate finance, multiple studies aim to model the credit risk of the lease in order to cover the losses of the lessor of the asset if the lessee goes bankrupt. In the current research paper, a convertible lease contract is elaborated in a continuous time stochastic universe aiming to ensure the financial stability of the firm and quickly recover the losses of the counterparties to the lease in case of default. This work examines the term structure of the lease rates taking into account the credit default risk and the capital structure of the firm. The interaction between the lessee's capital structure and the equilibrium lease rate has been assessed by applying the competitive lease market argument developed by Grenadier (1996) and the endogenous structural default model set forward by Leland and Toft (1996). The cumulative probability of default was calculated by referring to Leland and Toft (1996) and Yildirim and Huan (2006). Additionally, the link between lessee credit risk and lease rate was addressed so as to explore the impact of convertible lease financing on the term structure of the lease rate, the optimal leverage ratio, the cumulative default probability, and the optimal firm value by applying an endogenous conversion threshold. The numerical analysis is suggestive that the duration structure of lease rates increases with the increase in the degree of the market price of risk. The maximal value of the firm decreases with the effect of the optimal leverage ratio. The results are indicative that the cumulative probability of default increases with the maturity of the lease contract if the volatility of the asset service flows is significant. Introducing the convertible lease contract will increase the optimal value of the firm as a function of asset volatility for a high initial service flow level and a conversion ratio close to 1.

Keywords: convertible lease contract, lease rate, credit-risk, capital structure, default probability

Procedia PDF Downloads 98
600 Poly(L-Lactic Acid) Scaffolds for Bone Tissue Engineering

Authors: Aleksandra BužArovska, Gordana Bogoeva Gaceva

Abstract:

Biodegradable polymers have received significant scientific attention in tissue engineering (TE) application, in particular their composites consisting of inorganic nanoparticles. In the last 15 years, they are subject of intensive research by many groups, aiming to develop polymer scaffolds with defined biodegradability, porosity and adequate mechanical stability. The most important characteristic making these materials attractive for TE is their biodegradability, a process that could be time controlled and long enough to enable generation of a new tissue as a replacement for the degraded polymer scaffold. In this work poly(L-lactic acid) scaffolds, filled with TiO2 nanoparticles functionalized with oleic acid, have been prepared by thermally induced phase separation method (TIPS). The functionalization of TiO2 nanoparticles with oleic acid was performed in order to improve the nanoparticles dispersibility within the polymer matrix and at the same time to inhibit the cytotoxicity of the nanofiller. The oleic acid was chosen as amphiphilic molecule belonging to the fatty acid family because of its non-toxicity and possibility for mediation between the hydrophilic TiO2 nanoparticles and hydrophobic PLA matrix. The produced scaffolds were characterized with thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and mechanical compression measurements. The bioactivity for bone tissue engineering application was tested in supersaturated simulated body fluid. The degradation process was followed by Fourier transform infrared spectroscopy (FTIR). The results showed anisotropic morphology with elongated open pores (100 µm), high porosity (around 92%) and perfectly dispersed nanofiller. The compression moduli up to 10 MPa were identified independent on the nanofiller content. Functionalized TiO2 nanoparticles induced formation of hydroxyapatite clusters as much as unfunctionalized TiO2. The prepared scaffolds showed properties ideal for scaffold vascularization, cell attachment, growth and proliferation.

Keywords: biodegradation, bone tissue engineering, mineralization, PLA scaffolds

Procedia PDF Downloads 269
599 Manufacturing New Insulating Materials: A Study on Thermal Properties of Date Palm Wood

Authors: K. Almi, S. Lakel, A. Benchabane, A. Kriker

Abstract:

The fiber–matrix compatibility can be improved if suitable enforcements are chosen. Whenever the reinforcements have more thermal stability, they can resist to the main processes for wood–thermoplastic composites. Several researches are focused on natural resources for the production of biomaterials intended for technical applications. Date palm wood present one of the world’s most important natural resource. Its use as insulating materials will help to solve the severe environmental and recycling problems which other artificial insulating materials caused. This paper reports the results of an experimental investigation on the thermal proprieties of date palm wood from Algeria. A study of physical, chemical and mechanical properties is also carried out. The goal is to use this natural material in the manufacture of thermal insulation materials for buildings. The local natural resources used in this study are the date palm fibers from Biskra oasis in Algeria. The results have shown that there is no significant difference in the morphological proprieties of the four types of residues. Their chemical composition differed slightly; with the lowest amounts of cellulose and lignin content belong to Petiole. Water absorption study proved that Rachis has a low value of sorption whereas Petiole and Fibrillium have a high value of sorption what influenced their mechanical properties. It is seen that the Rachis and leaflets exhibit a high tensile strength values compared to the other residue. On the other hand the low value of bulk density of Petiole and Fibrillium leads to high value of specific tensile strength and young modulus. It was found that the specific young modulus of Petiole and Fibrillium was higher than that of Rachis and Leaflets and that of other natural fibers or even artificial fibers. Compared to the other materials date palm wood provide a good thermal proprieties thus, date palm wood will be a good candidate for the manufacturing efficient and safe insulating materials.

Keywords: composite materials, date palm fiber, natural fibers, tensile tests, thermal proprieties

Procedia PDF Downloads 642
598 Molecular Docking Study of Rosmarinic Acid and Its Analog Compounds on Sickle Cell Hemoglobin

Authors: Roohallah Yousefi

Abstract:

Introduction: Voxelotor, also known as GBT 440, binds to the alpha cleft in HbS tetramers and promotes the stability of the relaxed or oxygenated state of HbS. This process hinders the conformational change of the HbS tetramers into the deoxygenated state. Voxelotor prevents interactions between HbS tetramers in the deoxygenated state, ultimately inhibiting the polymerization of HbS tetramers and resulting in significant clinical improvements, particularly in raising hemoglobin levels in patients. In this study, we have explored the use of herbal compound models, such as rosmarinic acid and compounds with similar structures that exhibit high binding affinity to Voxelotor's hemoglobin binding site. Materials and methods: The molecular model of hemoglobin (PDB: 5E83) was initially obtained from the RCSB PDB database. In addition, we collected 453 ligand models with structural similarity to rosmarinic acid from the PubChem database. To prepare these models for molecular docking, we utilized the Molegro Virtual Docker tool. Subsequently, we used the SwissADME web tool to predict the physicochemical properties and pharmacokinetics of these compounds. Results: We investigated the affinity and binding site of 453 compounds similar to rosmarinic acid on the hemoglobin model (PDB: 5E83). Our focus was on the alpha cleft between two alpha chains of the hemoglobin model (PDB: 5E83). The results showed that most compounds had molecular weights above 500 daltons, and some exhibited acceptable hydrophobicity. Furthermore, their solubility in aqueous solutions was good. None of the compounds were able to cross the blood-brain barrier or have gastrointestinal absorption. However, they did have varying inhibitory effects on CYP2C9 cytochromes. The skin penetration rate was generally low. Conclusion: Through our study, we identified three compounds (CID: 162739375, CID: 141386569, and CID: 24015539) with promising potential for further research. These compounds demonstrated high binding affinity to the hemoglobin model, favorable dissolution and digestive absorption rates, as well as suitable hydrophobicity, making them ideal candidates for continued laboratory investigation.

Keywords: voxelotor, binding site, hemoglobin, rosmarinic acid

Procedia PDF Downloads 8
597 Towards a Reinvented Cash Management Function: Mobilising Innovative Advances for Enhanced Performance and Optimised Cost Management: Insights from Large Moroccan Companies in the Casablanca-Settat Region

Authors: Badrane Nohayla, Bamousse Zineb

Abstract:

Financial crises, exchange rate volatility, fluctuations in commodity prices, increased competitive pressures, and environmental issues are all threats that businesses face. In light of these diverse challenges, proactive, agile, and innovative cash management becomes an indispensable financial shield, allowing companies to thrive despite the adverse conditions of the global environment. In the same spirit, uncertainty, turbulence, volatility, and competitiveness continue to disrupt economic environments, compelling companies to swiftly master innovative breakthroughs that provide added value. In such a context, innovation emerges as a catalytic vector for performance, aiming to reduce costs, strengthen growth, and ultimately ensure the sustainability of Moroccan companies in the national arena. Moreover, innovation in treasury management promises to be one of the key pillars of financial stability, enabling companies to navigate the tumultuous waters of a globalized environment. Therefore, the objective of this study is to better understand the impact of innovative treasury management on cost optimization and, by extension, performance improvement. To elucidate this relationship, we conducted an exploratory qualitative study with 20 large Moroccan companies operating in the Casablanca-Settat region. The results highlight that innovation at the heart of treasury management is a guarantee of sustainability against the risks of failure and stands as a true pivot of the performance of Moroccan companies, an important parameter of their financial balance and a catalytic vector of their growth in the national economic landscape. In this regard, the present study aims to explore the extent to which innovation at the core of the treasury function serves as an indispensable tool for boosting performance while optimising costs in large Moroccan companies.

Keywords: innovative cash management, artificial intelligence, financial performance, risk management, cost savings

Procedia PDF Downloads 29
596 Thermal Instability in Solid under Irradiation

Authors: P. Selyshchev

Abstract:

Construction materials for nuclear facilities are operated under extreme thermal and radiation conditions. First of all, they are nuclear fuel, fuel assemblies, and reactor vessel. It places high demands on the control of their state, stability of their state, and their operating conditions. An irradiated material is a typical example of an open non-equilibrium system with nonlinear feedbacks between its elements. Fluxes of energy, matter and entropy maintain states which are far away from thermal equilibrium. The links that arise under irradiation are inherently nonlinear. They form the mechanisms of feed-backs that can lead to instability. Due to this instability the temperature of the sample, heat transfer, and the defect density can exceed the steady-state value in several times. This can lead to change of typical operation and an accident. Therefore, it is necessary to take into account the thermal instability to avoid the emergency situation. The point is that non-thermal energy can be accumulated in materials because irradiation produces defects (first of all these are vacancies and interstitial atoms), which are metastable. The stored energy is about energy of defect formation. Thus, an annealing of the defects is accompanied by releasing of non-thermal stored energy into thermal one. Temperature of the material grows. Increase of temperature results in acceleration of defect annealing. Density of the defects drops and temperature grows more and more quickly. The positive feed-back is formed and self-reinforcing annealing of radiation defects develops. To describe these phenomena a theoretical approach to thermal instability is developed via formalism of complex systems. We consider system of nonlinear differential equations for different components of microstructure and temperature. The qualitative analysis of this non-linear dynamical system is carried out. Conditions for development of instability have been obtained. Points of bifurcation have been found. Convenient way to represent obtained results is a set of phase portraits. It has been shown that different regimes of material state under irradiation can develop. Thus degradation of irradiated material can be limited by means of choice appropriate kind of evolution of materials under irradiation.

Keywords: irradiation, material, non-equilibrium state, nonlinear feed-back, thermal instability

Procedia PDF Downloads 268
595 Photocatalytic Degradation of Lead from Aqueous Solution Using TiO2 as Adsorbent

Authors: Navven Desai, Veena Soraganvi

Abstract:

Heavy metals such as lead, cadmium and mercury do not have biological significance hence they are known to be extremely toxic heavy metals. Water contains various heavy metals like Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), Arsenic (As), Lead (Pb), and Zinc (Zn) etc., when it gets polluted with industrial waste water. These heavy metals cause various health effects even at low concentration when consumed by humans. Most of the heavy metals are poisonous to living organisms. Heavy metals are non-degradable and are preserved in the environment through bioaccumulation. Therefore removal of heavy metals from water is necessary. In recent years, a great deal of attentions has been focused on to the application of nanosized metal oxides to treat heavy metals, especially titanium oxides, ferric oxides, manganese oxides, aluminium oxides and magnesium oxides as adsorbent and photocatalyst. TiO2 based photocatalysts have attracted continuously increasing attention because of the excellent properties such as high light -conversion efficiency, chemical stability, nontoxic nature, low cost. The catalyst displays high photocatalytic activity because of its large surface area. In this study, the photocatalytic degradation of Lead (Pb) from aqueous solution was investigated in natural sunlight by using TiO2 as Nanomaterial. This study was performed at laboratory scale. All the experiments were carried out in the batch process. The concentration of lead was constant (25mg/lit) in the experiment and effect of titanium dioxide dose and pH were varied to study the removal efficiency of the lead by adsorption. Further study was performed on the dependence of photocatalytic reaction on the reaction temperature. The aqueous solution was prepared by Lead metal powder. TiO2 photo catalyst nanopowder used was Sisco-74629 grade. The heavy metal is analyzed with VARIAN AA 240 atomic adsorption spectrophotometer. The study shows, with increasing TiO2 dose and pH the lead removal increases. According to study, it can be concluded that the utilization of titanium dioxide accounted for higher efficiency in the removal of lead from aqueous solution.

Keywords: adsorption, heavy metals, nanomaterial, photocatalysis

Procedia PDF Downloads 297
594 Designing Creative Events with Deconstructivism Approach

Authors: Maryam Memarian, Mahmood Naghizadeh

Abstract:

Deconstruction is an approach that is entirely incompatible with the traditional prevalent architecture. Considering the fact that this approach attempts to put architecture in sharp contrast with its opposite events and transpires with attending to the neglected and missing aspects of architecture and deconstructing its stable structures. It also recklessly proceeds beyond the existing frameworks and intends to create a different and more efficient prospect for space. The aim of deconstruction architecture is to satisfy both the prospective and retrospective visions as well as takes into account all tastes of the present in order to transcend time. Likewise, it ventures to fragment the facts and symbols of the past and extract new concepts from within their heart, which coincide with today’s circumstances. Since this approach is an attempt to surpass the limits of the prevalent architecture, it can be employed to design places in which creative events occur and imagination and ambition flourish. Thought-provoking artistic events can grow and mature in such places and be represented in the best way possible to all people. The concept of event proposed in the plan grows out of the interaction between space and creation. In addition to triggering surprise and high impressions, it is also considered as a bold journey into the suspended realms of the traditional conflicts in architecture such as architecture-landscape, interior-exterior, center-margin, product-process, and stability-instability. In this project, at first, through interpretive-historical research method and examining the inputs and data collection, recognition and organizing takes place. After evaluating the obtained data using deductive reasoning, the data is eventually interpreted. Given the fact that the research topic is in its infancy and there is not a similar case in Iran with limited number of corresponding instances across the world, the selected topic helps to shed lights on the unrevealed and neglected parts in architecture. Similarly, criticizing, investigating and comparing specific and highly prized cases in other countries with the project under study can serve as an introduction into this architecture style.

Keywords: anti-architecture, creativity, deconstruction, event

Procedia PDF Downloads 322
593 Nanoparticles of Hyaluronic Acid for Radiation Induced Lung Damages

Authors: Anna Lierova, Jitka Kasparova, Marcela Jelicova, Lucie Korecka, Zuzana Bilkova, Zuzana Sinkorova

Abstract:

Hyaluronic acid (HA) is a simple linear, unbranched polysaccharide with a lot of exceptional physiological and chemical properties such as high biocompatibility and biodegradability, strong hydration and viscoelasticity that depend on the size of the molecule. It plays the important role in a variety of molecular events as tissue hydration, mechanical protection of tissues and as well as during inflammation, leukocyte migration, and extracellular matrix remodeling. Also, HA-based biomaterials, including HA scaffolds, hydrogels, thin membranes, matrix grafts or nanoparticles are widely use in various biomedical applications. Our goal is to determine the radioprotective effect of hyaluronic acid nanoparticles (HA NPs). We are investigating effect of ionizing radiation on stability of HA NPs, in vitro relative toxicity of nanoscale as well as effect on cell lines and specific surface receptors and their response to ionizing radiation. An exposure to ionizing radiation (IR) can irreversibly damage various cell types and may thus have implications for the level of the whole tissue. Characteristic manifestations are formation of over-granulated tissue, remodeling of extracellular matrix (ECM) and abortive wound healing. Damages are caused by either direct interaction with DNA and IR proteins or indirectly by radicals formed during radiolysis of water Accumulation and turnover of ECM are a hallmark of radiation induces lung injury, characterized by inflammation, repair or remodeling health pulmonary tissue. HA is a major component of ECM in lung and plays an important role in regulating tissue injury, accelerating tissue repair, and controlling disease outcomes. Due to that, HA NPs were applied to in vivo model (C57Bl/6J mice) before total body or partial thorax irradiation. This part of our research is targeting on effect of exogenous HA on the development and/or mitigating acute radiation syndrome and radiation induced lung injuries.

Keywords: hyaluronic acid, ionizing radiation, nanoparticles, radiation induces lung damages

Procedia PDF Downloads 167
592 Food Security and Utilization in Ethiopia

Authors: Tuji Jemal Ahmed

Abstract:

Food security and utilization are critical aspects of ensuring the well-being and prosperity of a nation. This paper examines the current state of food security and utilization in Ethiopia, focusing on the challenges, opportunities, and strategies employed to address the issue. Ethiopia, a country in East Africa, has made significant progress in recent years to improve food security and utilization for its population. However, persistent challenges such as recurrent droughts, limited access to resources, and low agricultural productivity continue to pose obstacles to achieving sustainable food security. The paper begins by providing an overview of the concept of food security, emphasizing its multidimensional nature and the importance of access, availability, utilization, and stability. It then explores the specific factors influencing food security and utilization in Ethiopia, including natural resources, climate variability, agricultural practices, infrastructure, and socio-economic factors. Furthermore, the paper highlights the initiatives and interventions implemented by the Ethiopian government, non-governmental organizations, and international partners to enhance food security and utilization. These efforts include agricultural extension programs, irrigation projects, investments in rural infrastructure, and social safety nets to protect vulnerable populations. The study also examines the role of technology and innovation in improving food security and utilization in Ethiopia. It explores the potential of sustainable agricultural practices, such as conservation agriculture, improved seed varieties, and precision farming techniques. Additionally, it discusses the role of digital technologies in enhancing access to market information, financial services, and agricultural inputs for smallholder farmers. Finally, the paper discusses the importance of collaboration and partnerships between stakeholders, including government agencies, development organizations, research institutions, and communities, in addressing food security and utilization challenges. It emphasizes the need for integrated and holistic approaches that consider both production and consumption aspects of the food system.

Keywords: food security, utilization, Ethiopia, challenges

Procedia PDF Downloads 120
591 Food Security and Utilization in Ethiopia

Authors: Tuji Jemal Ahmed

Abstract:

Food security and utilization are critical aspects of ensuring the well-being and prosperity of a nation. This paper examines the current state of food security and utilization in Ethiopia, focusing on the challenges, opportunities, and strategies employed to address the issue. Ethiopia, a country in East Africa, has made significant progress in recent years to improve food security and utilization for its population. However, persistent challenges such as recurrent droughts, limited access to resources, and low agricultural productivity continue to pose obstacles to achieving sustainable food security. The paper begins by providing an overview of the concept of food security, emphasizing its multidimensional nature and the importance of access, availability, utilization, and stability. It then explores the specific factors influencing food security and utilization in Ethiopia, including natural resources, climate variability, agricultural practices, infrastructure, and socio-economic factors. Furthermore, the paper highlights the initiatives and interventions implemented by the Ethiopian government, non-governmental organizations, and international partners to enhance food security and utilization. These efforts include agricultural extension programs, irrigation projects, investments in rural infrastructure, and social safety nets to protect vulnerable populations. The study also examines the role of technology and innovation in improving food security and utilization in Ethiopia. It explores the potential of sustainable agricultural practices, such as conservation agriculture, improved seed varieties, and precision farming techniques. Additionally, it discusses the role of digital technologies in enhancing access to market information, financial services, and agricultural inputs for smallholder farmers. Finally, the paper discusses the importance of collaboration and partnerships between stakeholders, including government agencies, development organizations, research institutions, and communities, in addressing food security and utilization challenges. It emphasizes the need for integrated and holistic approaches that consider both production and consumption aspects of the food system.

Keywords: food security, utilization, Ethiopia, challenges

Procedia PDF Downloads 84
590 Correlates of Cost Effectiveness Analysis of Rating Scale and Psycho-Productive Multiple Choice Test for Assessing Students' Performance in Rice Production in Secondary Schools in Ebonyi State, Nigeria

Authors: Ogbonnaya Elom, Francis N. Azunku, Ogochukwu Onah

Abstract:

This study was carried out to determine the correlates of cost effectiveness analysis of rating scale and psycho-productive multiple choice test for assessing students’ performance in rice production. Four research questions were developed and answered, while one hypothesis was formulated and tested. Survey and correlation designs were adopted. The population of the study was 20,783 made up of 20,511 senior secondary (SSII) students and 272 teachers of agricultural science from 221 public secondary schools. Two schools with one intact class of 30 students each was purposely selected as sample based on certain criteria. Four sets of instruments were used for data collection. One of the instruments-the rating scale, was subjected to face and content validation while the other three were subjected to face validation only. Cronbach alpha technique was utilized to determine the internal consistency of the rating scale items which yielded a coefficient of 0.82 while the Kudder-Richardson (K-R 20) formula was involved in determining the stability of the psycho-productive multiple choice test items which yielded a coefficient of 0.80. Method of data collection involved a step-by-step approach in collecting data. Data collected were analyzed using percentage, weighted mean and sign test to answer the research questions while the hypothesis was tested using Spearman rank-order of correlation and t-test statistic. Findings of the study revealed among others, that psycho-productive multiple choice test is more effective than rating scale when the former is applied on the two groups of students. It was recommended among others, that the external examination bodies should integrate the use of psycho- productive multiple choice test into their examination policy and direct secondary schools to comply with it.

Keywords: correlates, cost-effectiveness, psycho-productive multiple-choice scale, rating scale

Procedia PDF Downloads 141