Search results for: mechanical responses
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5847

Search results for: mechanical responses

2637 Microstructure and Hot Deformation Behavior of Fe-20Cr-5Al Alloy

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

Abstract—High temperature deformation behavior of cast Fe-20Cr-5Al alloy has been investigated in this study by performing tensile and compression tests at temperatures from 1100 to 1200oC. Rectangular ingots of which the dimensions were 300×300×100 in millimeter were cast using vacuum induction melting. Phase equilibrium was calculated using the FactSage®, thermodynamic software and database. Tensile strength of cast Fe-20Cr-5Al alloy was 4 MPa at 1200oC. With temperature decreased, tensile strength increased rapidly and reached up to 13 MPa at 1100oC. Elongation also increased from 18 to 80% with temperature decreased from 1200oC to 1100oC. Microstructure observation revealed that M23C6 carbide was precipitated along the grain boundary and within the matrix.

Keywords: 20 Cr-5Al ferritic stainless, high temperature deformation, aging treatment, microstructure, mechanical properties

Procedia PDF Downloads 450
2636 Effects of Malachite Green Contaminated Water on Production of Pak Choy and Chinese Convolvulus

Authors: N. Piwpuan, J. Tosalee, N. Phonkerd

Abstract:

Malachite green (MG), a synthetic dye, is used in industries and aquaculture and also disposed in the effluent. Use of wastewater in irrigation increases due to water shortage. However, wastewater containing dyes, MG, are toxic to biological systems. Therefore, effects of MG on growth of vegetables were evaluated in order to utilize dye-contaminated wastewater for irrigation. In this study, Pak choy (Brassica chinensis) and Chinese convolvulus (Ipomoea aquatica) were grown in growing material (mixture of soil, coconut fiber, and compost) for four weeks and afterward kept watering with 200 ml of tap water containing MG at the concentrations of 0 (control), 1, 2, 10, and 20 mg/L. At harvest, number of leaf and shoot and root dry weight of the treated plants were measured and compared with control. For both species, their biomass values were similar among treatments and did not differ from the control plants (dry weight were 0.6-1.0 and 1.1-1.7 g/plant for B. chinensis and I. aquatica, respectively). B. chinensis treated with 2, 10, and 20 mg/L of MG produced lower number of new leaf and had smaller and shorter leaf compared to control and treatment of 1 mg/L. These results indicate the different responses between plant species, which B. chinensis is more sensitive to contaminant compared to I. aquatica. There was no sign of MG and leucomalachite green (LMG) detected in root and shoot tissues of plants treated with MG at 20 mg/L, tested by thin layer chromatography. After plant harvest, toxicity of the growing material from all treatments was tested on mung beans. Percent germination (83-97%), seedling fresh weight (0.3-0.5 g/plant), and shoot length (11-12.5 cm) were similar to the control. These indicated that contaminant in growing material did not pose detrimental effect on mung beans. Based on these results, the water contaminated with low concentration of MG, such as discharge from aquaculture, may serve as ferti-irrigation water to compensate water shortage.

Keywords: ferti-irrigation, soil toxicity, triphenylmethane dye, wastewater reuse

Procedia PDF Downloads 203
2635 LTF Expression Profiling Which is Essential for Cancer Cell Proliferation and Metastasis, Correlating with Clinical Features, as Well as Early Stages of Breast Cancer

Authors: Azar Heidarizadi, Mahdieh Salimi, Hossein Mozdarani

Abstract:

Introduction: As a complex disease, breast cancer results from several genetic and epigenetic changes. Lactoferrin, a member of the transferrin family, is reported to have a number of biological functions, including DNA synthesis, immune responses, iron transport, etc., any of which could play a role in tumor progression. The aim of this study was to investigate the bioinformatics data and experimental assay to find the pattern of promoter methylation and gene expression of LTF in breast cancer in order to study its potential role in cancer management. Material and Methods: In order to evaluate the methylation status of the LTF promoter, we studied the MS-PCR and Real-Time PCR on samples from patients with breast cancer and normal cases. 67 patient samples were conducted for this study, including tumoral, plasma, and normal tissue adjacent samples, as well as 30 plasma from normal cases and 10 tissue breast reduction cases. Subsequently, bioinformatics analyses such as cBioPortal databases, string, and genomatix were conducted to disclose the prognostic value of LTF in breast cancer progression. Results: The analysis of LTF expression showed an inverse relationship between the expression level of LTF and the stages of tissues of breast cancer patients (p<0.01). In fact, stages 1 and 2 had a high expression in LTF, while, in stages 3 and 4, a significant reduction was observable (p < 0.0001). LTF expression frequently alters with a decrease in the expression in ER⁺, PR⁺, and HER2⁺ patients (P < 0.01) and an increase in the expression in the TNBC, LN¯, ER¯, and PR- patients (P < 0.001). Also, LTF expression is significantly associated with metastasis and lymph node involvement factors (P < 0.0001). The sensitivity and specificity of LTF were detected, respectively. A negative correlation was detected between the results of level expression and methylation of the LTF promoter. Conclusions: The altered expression of LTF observed in breast cancer patients could be considered as a promotion in cell proliferation and metastasis even in the early stages of cancer.

Keywords: LTF, expression, methylation, breast cancer

Procedia PDF Downloads 75
2634 Preparation of Protective Coating Film on Metal Alloy

Authors: Rana Th. A. Al-rubaye

Abstract:

A novel chromium-free protective coating films based on a zeolite coating was growing onto a FeCrAlloy metal using in –situ hydrothermal method. The zeolite film was obtained using in-situ crystallization process that is capable of coating large surfaces with complex shape and in confined spaces has been developed. The zeolite coating offers an advantage of a high mechanical stability and thermal stability. The physico-chemical properties were investigated using X-ray diffraction (XRD), Electron microscopy (SEM), Energy Dispersive X–ray analysis (EDX) and Thermogravimetric Analysis (TGA). The transition from oxide-on-alloy wires to hydrothermally synthesised uniformly zeolite coated surfaces was followed using SEM and XRD. In addition, the robustness of the prepared coating was confirmed by subjecting these to thermal cycling (ambient to 550°C).

Keywords: fecralloy, zsm-5 zeolite, zeolite coatings, hydrothermal method

Procedia PDF Downloads 397
2633 A Study on Improvement of Straightness of Preform Pulling Process of Hollow Pipe by Finete Element Analysis Method

Authors: Yeon-Jong Jeong, Jun-Hong Park, Hyuk Choi

Abstract:

In this study, we have studied the design of intermediate die in multipass drawing. Research has been continuously studied because of the advantage of better dimensional accuracy, smooth surface and improved mechanical properties in the case of drawing. Among them, multipass drawing, which is a method to realize complicated shape by drawing, was discussed in this study. The most important factor in the multipass drawing is the dimensional accuracy and simplify the process. To accomplish this, a multistage shape drawing was performed using various intermediate die shape designs, and finite element analysis was performed.

Keywords: FEM (Finite Element Method), multipass drawing, intermediate die, hollow pipe

Procedia PDF Downloads 317
2632 Nanocellulose Reinforced Biocomposites Based on Wheat Plasticized Starch for Food Packaging

Authors: Belen Montero, Carmen Ramirez, Maite Rico, Rebeca Bouza, Irene Derungs

Abstract:

Starch is a promising polymer for producing biocomposite materials because it is renewable, completely biodegradable and easily available at a low cost. Thermoplastic starches (TPS) can be obtained after the disruption and plasticization of native starch with a plasticizer. In this work, the solvent casting method was used to obtain TPS films from wheat starch plasticized with glycerol and reinforced with nanocellulose (CNC). X-ray diffraction analysis was used to follow the evolution of the crystallinity. The native wheat starch granules have shown a profile corresponding to A-type crystal structures typical for cereal starches. When TPS films are analyzed a high amorphous halo centered on 19º is obtained, indicating the plasticization process is completed. SEM imaging was made in order to analyse the morphology. The image from the raw wheat starch granules shows a bimodal granule size distribution with some granules in large round disk-shape forms (A-type) and the others as smaller spherical particles (B-type). The image from the neat TPS surface shows a continuous surface. No starch aggregates or swollen granules can be seen so, the plasticization process is complete. In the surfaces of reinforced TPS films aggregates are seen as the CNC concentration in the matrix increases. The CNC influence on the mechanical properties of TPS films has been studied by dynamic mechanical analysis. A direct relation exists between the storage modulus values, E’, and the CNC content in reinforced TPS films: higher is the content of nanocellulose in the composite, higher is the value of E’. This reinforcement effect can be explained by the appearance of a strong and crystalline nanoparticle-TPS interphase. Thermal stability of films was analysed by TGA. It has not observed any influence on the behaviour related to the thermal degradation of films with the incorporation of the CNC. Finally, the resistance to the water absorption films was analysed following the standard UNE-EN ISO 1998:483. The percentage of water absorbed by the samples at each time was calculated. The addition of 5 wt % of CNC to the TPS matrix leads to a significant improvement in the moisture resistance of the starch based material decreasing their diffusivity. It has been associated to the formation of a nanocrystal network that prevents swelling of the starch and therefore water absorption and to the high crystallinity of cellulose compared to starch. As a conclusion, the wheat film reinforced with 5 wt % of cellulose nanocrystals seems to be a good alternative for short-life applications into the packaging industry, because of its greatest rigidity, thermal stability and moisture sorption resistance.

Keywords: biocomposites, nanocellulose, starch, wheat

Procedia PDF Downloads 215
2631 Human Bone Marrow Stem Cell Behavior on 3D Printed Scaffolds as Trabecular Bone Grafts

Authors: Zeynep Busra Velioglu, Deniz Pulat, Beril Demirbakan, Burak Ozcan, Ece Bayrak, Cevat Erisken

Abstract:

Bone tissue has the ability to perform a wide array of functions including providing posture, load-bearing capacity, protection for the internal organs, initiating hematopoiesis, and maintaining the homeostasis of key electrolytes via calcium/phosphate ion storage. The most common cause for bone defects is extensive trauma and subsequent infection. Bone tissue has the self-healing capability without a scar tissue formation for the majority of the injuries. However, some may result with delayed union or fracture non-union. Such cases include reconstruction of large bone defects or cases of compromised regenerative process as a result of avascular necrosis and osteoporosis. Several surgical methods exist to treat bone defects, including Ilizarov method, Masquelete technique, growth factor stimulation, and bone replacement. Unfortunately, these are technically demanding and come with noteworthy disadvantages such as lengthy treatment duration, adverse effects on the patient’s psychology, repeated surgical procedures, and often long hospitalization times. These limitations associated with surgical techniques make bone substitutes an attractive alternative. Here, it was hypothesized that a 3D printed scaffold will mimic trabecular bone in terms of biomechanical properties and that such scaffolds will support cell attachment and survival. To test this hypothesis, this study aimed at fabricating poly(lactic acid), PLA, structures using 3D printing technology for trabecular bone defects, characterizing the scaffolds and comparing with bovine trabecular bone. Capacity of scaffolds on human bone marrow stem cell (hBMSC) attachment and survival was also evaluated. Cubes with a volume of 1 cm³ having pore sizes of 0.50, 1.00 and 1.25 mm were printed. The scaffolds/grafts were characterized in terms of porosity, contact angle, compressive mechanical properties as well cell response. Porosities of the 3D printed scaffolds were calculated based on apparent densities. For contact angles, 50 µl distilled water was dropped over the surface of scaffolds, and contact angles were measured using ‘Image J’ software. Mechanical characterization under compression was performed on scaffolds and native trabecular bone (bovine, 15 months) specimens using a universal testing machine at a rate of 0.5mm/min. hBMSCs were seeded onto the 3D printed scaffolds. After 3 days of incubation with fully supplemented Dulbecco’s modified Eagle’s medium, the cells were fixed using 2% formaldehyde and glutaraldehyde mixture. The specimens were then imaged under scanning electron microscopy. Cell proliferation was determined by using EZQuant dsDNA Quantitation kit. Fluorescence was measured using microplate reader Spectramax M2 at the excitation and emission wavelengths of 485nm and 535nm, respectively. Findings suggested that porosity of scaffolds with pore dimensions of 0.5mm, 1.0mm and 1.25mm were not affected by pore size, while contact angle and compressive modulus decreased with increasing pore size. Biomechanical characterization of trabecular bone yielded higher modulus values as compared to scaffolds with all pore sizes studied. Cells attached and survived in all surfaces, demonstrating higher proliferation on scaffolds with 1.25mm pores as compared with those of 1mm. Collectively, given lower mechanical properties of scaffolds as compared to native bone, and biocompatibility of the scaffolds, the 3D printed PLA scaffolds of this study appear as candidate substitutes for bone repair and regeneration.

Keywords: 3D printing, biomechanics, bone repair, stem cell

Procedia PDF Downloads 176
2630 Corrosion Resistance of Mild Steel Coated with Different Polyimides/h-Boron Nitride Composite Films

Authors: Tariku Nefo Duke

Abstract:

Herein, we synthesized three PIs/h-boron nitride composite films for corrosion resistance of mild steel material. The structures of these three polyimide/h-boron nitride composite films were confirmed using (FTIR, 1H NMR, 13C NMR, and 2D NMR) spectroscopy techniques. The synthesized PIs composite films have high mechanical properties, thermal stability, high glass-transition temperature (Tg), and insulating properties. It has been shown that the presence of electroactive TiO2, SiO2, and h-BN, in polymer coatings effectively inhibits corrosion. The h-BN displays an admirable anti-corrosion barrier for the 6F-OD and BT-OD films. PI/ h-BN composite films of 6F-OD exhibited better resistance to water vapor, high corrosion resistance, and positive corrosion voltage. Only four wt. percentage of h-BN in the composite is adequate.

Keywords: polyimide, corrosion resistance, electroactive, Tg

Procedia PDF Downloads 206
2629 Electrospun TiO2/Nylon-6 Nanofiber Mat: Improved Hydrophilicity Properties

Authors: Roshank Haghighat, Laleh Maleknia

Abstract:

In this study, electrospun TiO2/nylon-6 nanofiber mats were successfully prepared. The nanofiber mats were characterized by SEM, FE-SEM, TEM, XRD, WCA, and EDX analyses. The results revealed that fibers in different distinct sizes (nano and subnano scale) were obtained with the electrospinning parameters. The presence of a small amount of TiO2 in nylon-6 solution was found to improve the hydrophilicity (antifouling effect), mechanical strength, antimicrobial and UV protecting ability of electrospun mats. The resultant nylon-6/TiO2 antimicrobial spider-net like composite mat with antifouling effect may be a potential candidate for future water filter applications, and its improved UV blocking ability will also make it a potential candidate for protective clothing.

Keywords: electrospinning, hydrophilicity, antimicrobial, nanocomposite, nylon-6/TiO2

Procedia PDF Downloads 354
2628 Effect of Pulsed Electrical Field on the Mechanical Properties of Raw, Blanched and Fried Potato Strips

Authors: Maria Botero-Uribe, Melissa Fitzgerald, Robert Gilbert, Kim Bryceson, Jocelyn Midgley

Abstract:

French fry manufacturing involves a series of processes in which structural properties of potatoes are modified to produce crispy french fries which consumers enjoy. In addition to the traditional french fry manufacturing process, the industry is applying a relatively new process called pulsed electrical field (PEF) to the whole potatoes. There is a wealth of information on the technical treatment conditions of PEF, however, there is a lack of information about its effect on the structural properties that affect texture and its synergistic interactions with the other manufacturing steps of french fry production. The effect of PEF on starch gelatinisation properties of Russet Burbank potato was measured using a Differential Scanning Calorimeter. Cation content (K+, Ca2+ and Mg2+) was determined by inductively coupled plasma optical emission spectrophotometry. Firmness, and toughness of raw and blanched potatoes were determined in an uniaxial compression test. Moisture content was determined in a vacuum oven and oil content was measured using the soxhlet system with hexane. The final texture of the french fries – crispness - was determined using a three bend point test. Triangle tests were conducted to determine if consumers were able to perceive sensory differences between French fries that were PEF treated and those without treatment. The concentration of K+, Ca2+ and Mg2+ decreased significantly in the raw potatoes after the PEF treatment. The PEF treatment significantly increased modulus of elasticity, compression strain, compression force and toughness in the raw potato. The PEF-treated raw potato were firmer and stiffer, and its structure integrity held together longer, resisted higher force before fracture and stretched further than the untreated ones. The strain stress relationship exhibited by the PEF-treated raw potato could be due to an increase in the permeability of the plasmalema and tonoplasm allowing Ca2+ and Mg2+ cations to reach the cell wall and middle lamella, and be available for cross linking with the pectin molecule. The PEF-treated raw potato exhibited a slightly higher onset gelatinisation temperatures, similar peak temperatures and lower gelatinisation ranges than the untreated raw potatoes. The final moisture content of the french fries was not significantly affected by the PEF treatment. Oil content in the PEF- treated potatoes was lower than the untreated french fries, however, not statistically significant at 5 %. The PEF treatment did not have an overall significant effect on french fry crispness (modulus of elasticity), flexure stress or strain. The triangle tests show that most consumers could not detect a difference between French fries that received a PEF treatment from those that did not.

Keywords: french fries, mechanical properties, PEF, potatoes

Procedia PDF Downloads 238
2627 Two Dimensional Numerical Analysis for the Seismic Response of the Geosynthetic-Reinforced Soil Integral Abutments

Authors: Dawei Shen, Ming Xu, Pengfei Liu

Abstract:

The joints between simply supported bridge decks and abutments need to be regularly repaired, which would greatly increase the cost during the service life of the bridge. Simply supported girder bridges suffered the most severe damage during earthquakes. Another type of bridge, the integral bridge, of which the superstructure and abutment are rigidly connected, was also used in some European countries. Because no bearings or joints exit in the integral bridge, this type of bridge could significantly reduce maintenance requirements and costs. However, conventional integral bridge usually result in high earth pressure on the abutment and surface settlement in the backfill. To solve these problems, a new type of integral bridge, geosynthetic-reinforced soil (GRS) integral bridge, was come up in recent years. This newly invented bridge has not been used in engineering practices. There was a lack of research on the seismic behavior of the conventional and new type of integral abutments. In addition, no common design code could be found for the calculation of seismic pressure of soil behind the abutment. This paper developed a dynamic constitutive model, which can consider the soil behaviors under cyclic loading. Numerical analyses of the seismic response of a full height integral bridge and GRS integral bridge were carried out using the two-dimensional numerical code, FLAC. A parametric study was also performed to investigate the soil-structure interaction. The results are presented below. The seismic responses of GRS integral bridge together with conventional simply supported bridge, GRS conventional bridge and conventional integral bridge were investigated. The results show that the GRS integral bridge holds the highest seismic stability, followed by conventional integral bridge, GRS simply supported bridge and conventional simply supported bridge. Compared with the integral bridge with 1 m thick abutments, the GRS integral bridge with 0.4 m thick abutments is subjected to a smaller bending moment, and the natural frequency and horizontal displacement remains almost the same. Geosynthetic-reinforcement will be more effective when the abutment becomes thinner or the abutment is higher.

Keywords: geosynthetic-reinforced soil integral bridge, nonlinear hysteretic model, numerical analysis, seismic response

Procedia PDF Downloads 467
2626 A Mixed Methods Study: Evaluation of Experiential Learning Techniques throughout a Nursing Curriculum to Promote Empathy

Authors: Joan Esper Kuhnly, Jess Holden, Lynn Shelley, Nicole Kuhnly

Abstract:

Empathy serves as a foundational nursing principle inherent in the nurse’s ability to form those relationships from which to care for patients. Evidence supports, including empathy in nursing and healthcare education, but there is limited data on what methods are effective to do so. Building evidence supports experiential and interactive learning methods to be effective for students to gain insight and perspective from a personalized experience. The purpose of this project is to evaluate learning activities designed to promote the attainment of empathic behaviors across 5 levels of the nursing curriculum. Quantitative analysis will be conducted on data from pre and post-learning activities using the Toronto Empathy Questionnaire. The main hypothesis, that simulation learning activities will increase empathy, will be examined using a repeated measures Analysis of Variance (ANOVA) on Pre and Post Toronto Empathy Questionnaire scores for three simulation activities (Stroke, Poverty, Dementia). Pearson product-moment correlations will be conducted to examine the relationships between continuous demographic variables, such as age, credits earned, and years practicing, with the dependent variable of interest, Post Test Toronto Empathy Scores. Krippendorff’s method of content analysis will be conducted to identify the quantitative incidence of empathic responses. The researchers will use Colaizzi’s descriptive phenomenological method to describe the students’ simulation experience and understand its impact on caring and empathy behaviors employing bracketing to maintain objectivity. The results will be presented, answering multiple research questions. The discussion will be relevant to results and educational pedagogy in the nursing curriculum as they relate to the attainment of empathic behaviors.

Keywords: curriculum, empathy, nursing, simulation

Procedia PDF Downloads 116
2625 Fuzzy Based Stabilizer Control System for Quad-Rotor

Authors: B. G. Sampath, K. C. R. Perera, W. A. S. I. Wijesuriya, V. P. C. Dassanayake

Abstract:

In this paper the design, development and testing of a stabilizer control system for a Quad-rotor is presented which is focused on the maneuverability. The mechanical design is performed along with the design of the controlling algorithm which is devised using fuzzy logic controller. The inputs for the system are the angular positions and angular rates of the Quad-Rotor relative to three axes. Then the output data is filtered from an accelerometer and a gyroscope through a Kalman filter. In the development of the stability controlling system Mandani Fuzzy Model is incorporated. The results prove that the fuzzy based stabilizer control system is superior in high dynamic disturbances compared to the traditional systems which use PID integrated stabilizer control systems.

Keywords: fuzzy stabilizer, maneuverability, PID, quad-rotor

Procedia PDF Downloads 327
2624 Military Role of Russia beyond Its National Boundary

Authors: Nipuli Gajanayake

Abstract:

The Russian military role beyond its national frontier has become a debatable hot topic in the international political arena. It’s advanced, and strategic responses in combating regional and international security problems have always been a factor to debate and criticize. Under such critical circumstances, Russia is attentive to play its military role according to the provisions of the Military Doctrine of the Russian Federation. Most importantly, the legal basis of the doctrine has also consisted with the generally recognized principles and norms of international law. Therefore, Russian international military assistances are pledged to accomplish international peace and security. The expansion of Russian military participation in the United Nations Peacekeeping operations, and military- political, and technical cooperation have largely evident the great effort of Russia in maintaining and restoring international peace and security. Moreover, the conflict management diplomacy and the development of dialogue with nation states to confront military risks and threats can also identify as a part of preserving international peace and security. In addition, Russia strives to strengthen the system of collective security with regional and international organizations through the legal framework of the Collective Security Treaty Organization (CSTO). Maintaining cooperative ties with the Commonwealth of Independent States (CIS), the Organization for Security and Cooperation in Europe (OSCE) and the Shanghai Cooperation Organization (SCO) have highlighted the Russian deliberation on maintaining regional peace and security. Nevertheless, the extension of cordial relations with nation states and providing of military assistances during tensions and conflicts on their territories can also underscore as Russians commitments on maintaining international peace and security. Observing and recognizing the disparity between the West portrayed terms like ‘illegal Russian interventions’ and the comprehensive reality behind the ‘Russian military assistances’ are important to understand. However, a lopsided vision or a perspective towards the Russian international military role would not present a clear understanding about its valued and also dedicated hard work on maintaining international peace and security.

Keywords: collective security, diplomacy, international military role of Russia, international peace and security

Procedia PDF Downloads 304
2623 The Performance Evaluation of the Modular Design of Hybrid Wall with Surface Heating and Cooling System

Authors: Selcen Nur Eri̇kci̇ Çeli̇k, Burcu İbaş Parlakyildiz, Gülay Zorer Gedi̇k

Abstract:

Reducing the use of mechanical heating and cooling systems in buildings, which accounts for approximately 30-40% of total energy consumption in the world has a major impact in terms of energy conservation. Formations of buildings that have sustainable and low energy utilization, structural elements with mechanical systems should be evaluated with a holistic approach. In point of reduction of building energy consumption ratio, wall elements that are vertical building elements and have an area broadly (m2) have proposed as a regulation with a different system. In the study, designing surface heating and cooling energy with a hybrid type of modular wall system and the integration of building elements will be evaluated. The design of wall element; - Identification of certain standards in terms of architectural design and size, -Elaboration according to the area where the wall elements (interior walls, exterior walls) -Solution of the joints, -Obtaining the surface in terms of building compatible with both conceptual structural put emphasis on upper stages, these elements will be formed. The durability of the product to the various forces, stability and resistance are so much substantial that are used the establishment of ready-wall element section and the planning of structural design. All created ready-wall alternatives will be paid attention at some parameters; such as adapting to performance-cost by optimum level and size that can be easily processed and reached. The restrictions such as the size of the zoning regulations, building function, structural system, wheelbase that are imposed by building laws, should be evaluated. The building aims to intend to function according to a certain standardization system and construction of wall elements will be used. The scope of performance criteria determined on the wall elements, utilization (operation, maintenance) and renovation phase, alternative material options will be evaluated with interim materials located in the contents. Design, implementation and technical combination of modular wall elements in the use phase and installation details together with the integration of energy saving, heat-saving and useful effects on the environmental aspects will be discussed in detail. As a result, the ready-wall product with surface heating and cooling modules will be created and defined as hybrid wall and will be compared with the conventional system in terms of thermal comfort. After preliminary architectural evaluations, certain decisions for all architectural design processes (pre and post design) such as the implementation and performance in use, maintenance, renewal will be evaluated in the results.

Keywords: modular ready-wall element, hybrid, architectural design, thermal comfort, energy saving

Procedia PDF Downloads 259
2622 Hydrocolloid Dressings for Wound Healing

Authors: Berk Kiliç

Abstract:

In the medical and surgical fields, wound care is a critical and expansive industry. Hydrocolloid wound dressings have been introduced and are widely used due to their effectiveness in promoting healing, managing wound fluids, and protecting against infection. Hydrocolloid wound dressings have been introduced as effective solutions, adherence to wound surfaces and infection prevention. it fabricated different hydrocolloid wound dressings with myrrh resin, garlic and sorrel inorder to enhance healing properties. The physical and mechanical properties were evaluated to confirm which one is most suitable as a hydrocolloid wound dressing. it observations show that mirderm solution showed superior wound healing and fluid control properties compared to other prepared solutions. This indicates that “mirderm” could be a viable alternative to standard gauze and some commercial hydrocolloid dressings that do not contain myrrh.

Keywords: wound, hydrocolloid, myrrh, garlic, sorrel

Procedia PDF Downloads 32
2621 Aerodynamic Analysis of Multiple Winglets for Aircrafts

Authors: S. Pooja Pragati, B. Sudarsan, S. Raj Kumar

Abstract:

This paper provides a practical design of a new concept of massive Induced Drag reductions of stream vise staggered multiple winglets. It is designed to provide an optimum performance of a winglet from conventional designs. In preparing for a mechanical design, aspects such as shape, dimensions are analyzed to yield a huge amount of reduction in fuel consumption and increased performance. Owing to its simplicity of application and effectiveness we believe that it will enable us to consider its enhanced version for the grid effect of the staggered multiple winglets on the deflected mass flow of the wing system. The objective of the analysis were to compare the aerodynamic characteristics of two winglet configuration and to investigate the performance of two winglets shape simulated at selected cant angle of 0,45,60 degree.

Keywords: multiple winglets, induced drag, aerodynamics analysis, low speed aircrafts

Procedia PDF Downloads 483
2620 An Investigation on Opportunities and Obstacles on Implementation of Building Information Modelling for Pre-fabrication in Small and Medium Sized Construction Companies in Germany: A Practical Approach

Authors: Nijanthan Mohan, Rolf Gross, Fabian Theis

Abstract:

The conventional method used in the construction industries often resulted in significant rework since most of the decisions were taken onsite under the pressure of project deadlines and also due to the improper information flow, which results in ineffective coordination. However, today’s architecture, engineering, and construction (AEC) stakeholders demand faster and accurate deliverables, efficient buildings, and smart processes, which turns out to be a tall order. Hence, the building information modelling (BIM) concept was developed as a solution to fulfill the above-mentioned necessities. Even though BIM is successfully implemented in most of the world, it is still in the early stages in Germany, since the stakeholders are sceptical of its reliability and efficiency. Due to the huge capital requirement, the small and medium-sized construction companies are still reluctant to implement BIM workflow in their projects. The purpose of this paper is to analyse the opportunities and obstacles to implementing BIM for prefabrication. Among all other advantages of BIM, pre-fabrication is chosen for this paper because it plays a vital role in creating an impact on time as well as cost factors of a construction project. The positive impact of prefabrication can be explicitly observed by the project stakeholders and participants, which enables the breakthrough of the skepticism factor among the small scale construction companies. The analysis consists of the development of a process workflow for implementing prefabrication in building construction, followed by a practical approach, which was executed with two case studies. The first case study represents on-site prefabrication, and the second was done for off-site prefabrication. It was planned in such a way that the first case study gives a first-hand experience for the workers at the site on the BIM model so that they can make much use of the created BIM model, which is a better representation compared to the traditional 2D plan. The main aim of the first case study is to create a belief in the implementation of BIM models, which was succeeded by the execution of offshore prefabrication in the second case study. Based on the case studies, the cost and time analysis was made, and it is inferred that the implementation of BIM for prefabrication can reduce construction time, ensures minimal or no wastes, better accuracy, less problem-solving at the construction site. It is also observed that this process requires more planning time, better communication, and coordination between different disciplines such as mechanical, electrical, plumbing, architecture, etc., which was the major obstacle for successful implementation. This paper was carried out in the perspective of small and medium-sized mechanical contracting companies for the private building sector in Germany.

Keywords: building information modelling, construction wastes, pre-fabrication, small and medium sized company

Procedia PDF Downloads 117
2619 Evaluating Generative Neural Attention Weights-Based Chatbot on Customer Support Twitter Dataset

Authors: Sinarwati Mohamad Suhaili, Naomie Salim, Mohamad Nazim Jambli

Abstract:

Sequence-to-sequence (seq2seq) models augmented with attention mechanisms are playing an increasingly important role in automated customer service. These models, which are able to recognize complex relationships between input and output sequences, are crucial for optimizing chatbot responses. Central to these mechanisms are neural attention weights that determine the focus of the model during sequence generation. Despite their widespread use, there remains a gap in the comparative analysis of different attention weighting functions within seq2seq models, particularly in the domain of chatbots using the Customer Support Twitter (CST) dataset. This study addresses this gap by evaluating four distinct attention-scoring functions—dot, multiplicative/general, additive, and an extended multiplicative function with a tanh activation parameter — in neural generative seq2seq models. Utilizing the CST dataset, these models were trained and evaluated over 10 epochs with the AdamW optimizer. Evaluation criteria included validation loss and BLEU scores implemented under both greedy and beam search strategies with a beam size of k=3. Results indicate that the model with the tanh-augmented multiplicative function significantly outperforms its counterparts, achieving the lowest validation loss (1.136484) and the highest BLEU scores (0.438926 under greedy search, 0.443000 under beam search, k=3). These results emphasize the crucial influence of selecting an appropriate attention-scoring function in improving the performance of seq2seq models for chatbots. Particularly, the model that integrates tanh activation proves to be a promising approach to improve the quality of chatbots in the customer support context.

Keywords: attention weight, chatbot, encoder-decoder, neural generative attention, score function, sequence-to-sequence

Procedia PDF Downloads 79
2618 Exploring Gender-Based Violence in Indigenous Communities in Argentina and Costa Rica: A Review of the Current Literature

Authors: Jocelyn Jones

Abstract:

The objective of this literature review is to provide an assessment of the current literature concerning gender-based violence (GBV) within indigenous communities in Argentina and Costa Rica, and various public intervention strategies that have been implemented to counter the increasing rates of violence within these populations. The review will address some of the unique challenges and contextual factors influencing the prevalence and response to such violence, including the enduring impact of colonialism on familial structures, community dynamics, and the perpetuation of violence. Drawing on indigenous feminist perspectives, the paper critically assesses the intersectionality of gender, ethnicity, and socio-economic status in shaping the experiences of indigenous women, men, and gender-diverse individuals. In comparing the two nations, the literature review identifies commonalities and divergences in policy frameworks, legal responses, and grassroots initiatives aimed at addressing GBV. Regarding the assessment of the efficacy of existing interventions, the paper will consider the role of cultural revitalization, community engagement, and collaborative efforts between indigenous communities and external agencies in the development of future policies. Moreover, the review will highlight the importance of decolonizing methodologies in research and intervention strategies, and the need to emphasise culturally sensitive approaches that respect and integrate indigenous worldviews and traditional knowledge systems. Additionally, the paper will explore the potential impact of colonial legacies, resource extraction, and land dispossession on exacerbating vulnerabilities to GBV within indigenous communities. The aim of this paper is to contribute to a more in-depth understanding of GBV in indigenous contexts in order to promote cross-cultural learning and inform future research. Ultimately, this review will demonstrate the necessity of adopting a holistic and context-specific approach to address gender-based violence in indigenous communities.

Keywords: gender based violence, indigenous, colonialism, literature review

Procedia PDF Downloads 83
2617 Effect of Coriolis Force on Magnetoconvection in an Anisotropic Porous Medium

Authors: N. F. M. Mokhtar, N. Z. A. Hamid

Abstract:

This paper reports an analytical investigation of the stability and thermal convection in a horizontal anisotropic porous medium in the presence of Coriolis force and magnetic field. The Darcy model is used in the momentum equation and Boussinesq approximation is considered for the density variation of the porous medium. The upper and lower boundaries of the porous medium are assumed to be conducting to temperature perturbation and we used first order Chebyshev polynomial Tau method to solve the resulting eigenvalue problem. Analytical solution is obtained for the case of stationary convection. It is found that the porous layer system becomes unstable when the mechanical anisotropy parameter elevated and increasing the Coriolis force and magnetic field help to stabilize the anisotropy porous medium.

Keywords: anisotropic, Chebyshev tau method, Coriolis force, Magnetic field

Procedia PDF Downloads 218
2616 Superhydrophobic Coatings Based On Waterborne Polyolefin And Silica Nanoparticles

Authors: Kyuwon Lee, Young-Wook Chang

Abstract:

Superhydrophobic surfaces have been paid great attentions over the years due to their various applications. In this study, superhydrophobic coatings based on the hybrids of hydrophobically modified silica nanoparticles and waterborne polyolefin were fabricated onto a cotton fabric by spraying a mixture of surface dodecylated silica nanoparticles with aqueous dispersion of polyolefin onto the fabric and a subsequent drying at 80℃. The coated fabrics were characterized using water-contact angle measurement, SEM, and AFM analysis. The coated fabrics exhibit superhydrophobicity with a water contact angle of 155° along with excellent self-cleaning and water/oil separation ability. It was also revealed that such superhydrophobicity was maintained after repeated mechanical abrasion using a sandpaper.

Keywords: superhydrophobic coating, waterborne polyolefin, dodecylated silica nanoparticle, durability

Procedia PDF Downloads 134
2615 The Journalistic Representation of Femicide in Italy

Authors: Saveria Capecchi

Abstract:

In recent decades, the issue of gender-based violence, particularly femicide, has been increasingly presented to the public by Italian media. However, it is often treated in a trivialized and sensationalistic manner, focusing on cases that exhibit the most "attractive" elements (brutality, sex, drugs, the young age and/or good looks of the victims, stories with "mystery," "horror," etc.). Furthermore, this phenomenon is most often represented by referring to the psycho-individualistic paradigm, focusing on the psychological and individual characteristics of the perpetrator rather than referring to the feminist and/or constructivist paradigms. According to the latter, the causes of male violence against women do not lie in the individual problems of the perpetrator but in the social and cultural construction of the power hierarchy between men and women. The following study presents the results of qualitative research on the journalistic approach to male violence against women in Italy, aimed at examining the limitations of the narrative strategies used by the media. The research focuses on the case of Giulia Cecchettin (killed by her ex-boyfriend Filippo Turetta on November 11, 2023), which has fueled the debate on the narrative surrounding male violence against women. This case was chosen based on its significant media coverage and the victim's family's commitment to combating gender-based violence. The research involves a content analysis of 150 articles from four different national newspapers («Corriere della Sera», «La Stampa», «Il Giornale», «la Repubblica»). Additionally, the study analyzed the social media use of two Italian newspapers («Corriere della Sera» and «la Repubblica»), examining 20 posts and their 600 related comments, highlighting the various types of public responses, including criticisms of how femicide is represented by the media. Furthermore, the paper will reflect on the role that the Italian women's movement and certain journalist communities have played in promoting a narrative of femicide that is more attentive to power dynamics and free from gender stereotypes.

Keywords: gender-based violence, femicide, gender stereotypes, Italian newspapers

Procedia PDF Downloads 29
2614 How Leader's Language Framing Affects Employees’ Perceptions and Moral Judgment in Organizations

Authors: Cindy Carvalho

Abstract:

Leaders play a crucial role in shaping employee behavior through their communication. Language is a powerful tool used by leaders to influence perceptions, frame actions, and shape organizational culture. While euphemisms and metaphors are widely used, their impact on unethical behaviors in organizational settings remains underexplored. This study investigates how euphemistic and aggressive (military) language in leaders’ speeches can influence employees’ perceptions and encourage unethical behaviors. Two studies were conducted using a between-subjects design where 200 participants for the first study and 280 participants for the second study, recruited through Prolific, were exposed to either a euphemistic or aggressive (military) version of a hypothetical CEO’s speech. They evaluated their perception of the CEO and the company’s attractiveness. In the second part, participants were presented with three vignettes describing each different daily business situation tainted with ethical issues and they were asked how likely they would engage in such behavior. The type of speech impacted the perceptions of the CEO, with the military version leading to participants judging the CEO as less trustworthy, fair, and moral. However, no significant difference in moral judgment or organizational perception was observed. Interestingly, younger participants and female participants rated the CEO more negatively compared to older and male counterparts. The findings suggest that language framing influences perceptions of leadership but may have a limited immediate impact on ethical decision-making. The study's limitations include hypothetical context, isolated focus on language, and lack of incentives. Incentives push participants to consider their responses carefully and align them with perceived norms, reducing biases like social desirability. Future research should examine real-world settings and consider factors such as age, gender, and experience to understand unethical behavior in organizations better.

Keywords: leadership communication, language framing, ethical behavior, euphemism

Procedia PDF Downloads 14
2613 Soil-Cement Floor Produced with Alum Water Treatment Residues

Authors: Flavio Araujo, Paulo Scalize, Julio Lima, Natalia Vieira, Antonio Albuquerque, Isabela Santos

Abstract:

From a concern regarding the environmental impacts caused by the disposal of residues generated in Water Treatment Plants (WTP's), alternatives ways have been studied to use these residues as raw material for manufacture of building materials, avoiding their discharge on water streams, disposal on sanitary landfills or incineration. This paper aims to present the results of a research work, which is using WTR for replacing the soil content in the manufacturing of soil-cement floor with proportions of 0, 5, 10 and 15%. The samples tests showed a reduction mechanical strength in so far as has increased the amount of waste. The water absorption was below the maximum of 6% required by the standard. The application of WTR contributes to the reduction of the environmental damage in the water treatment industry.

Keywords: residue, soil-cement floor, sustainable, WTP

Procedia PDF Downloads 575
2612 Using of Cavitational Disperser for Porous Ceramic and Concrete Material Preparation

Authors: Andrei Shishkin, Aleksandrs Korjakins, Viktors Mironovs

Abstract:

Present paper describes method of obtaining clay ceramic foam (CCF) and foam concrete (FC), by direct foaming with high speed mixer-disperser (HSMD). Three foaming agents (FA) are compared for the FC and CCF production: SCHÄUMUNGSMITTEL W 53 FLÜSSIG (Zschimmer & Schwarz Gmbh, Germany), SCF-1245 (Sika, test sample, Latvia) and FAB-12 (Elade, Latvija). CCF were obtained at 950, 1000°C, 1150°C and 1150°C firing temperature and have mechanical compressive strength 1.2, 2.55, and 4.3 MPa and porosity 79.4, 75.1, 71.6%, respectively. Obtained FC has 6-14 MPa compressive strength and porosity 44-55%. The goal of this work was the development of a sustainable and durable ceramic cellular structures using HSMD.

Keywords: ceramic foam, foam concrete, clay foam, open cell, close cell, direct foaming

Procedia PDF Downloads 810
2611 Dependence of Densification, Hardness and Wear Behaviors of Ti6Al4V Powders on Sintering Temperature

Authors: Adewale O. Adegbenjo, Elsie Nsiah-Baafi, Mxolisi B. Shongwe, Mercy Ramakokovhu, Peter A. Olubambi

Abstract:

The sintering step in powder metallurgy (P/M) processes is very sensitive as it determines to a large extent the properties of the final component produced. Spark plasma sintering over the past decade has been extensively used in consolidating a wide range of materials including metallic alloy powders. This novel, non-conventional sintering method has proven to be advantageous offering full densification of materials, high heating rates, low sintering temperatures, and short sintering cycles over conventional sintering methods. Ti6Al4V has been adjudged the most widely used α+β alloy due to its impressive mechanical performance in service environments, especially in the aerospace and automobile industries being a light metal alloy with the capacity for fuel efficiency needed in these industries. The P/M route has been a promising method for the fabrication of parts made from Ti6Al4V alloy due to its cost and material loss reductions and the ability to produce near net and intricate shapes. However, the use of this alloy has been largely limited owing to its relatively poor hardness and wear properties. The effect of sintering temperature on the densification, hardness, and wear behaviors of spark plasma sintered Ti6Al4V powders was investigated in this present study. Sintering of the alloy powders was performed in the 650–850°C temperature range at a constant heating rate, applied pressure and holding time of 100°C/min, 50 MPa and 5 min, respectively. Density measurements were carried out according to Archimedes’ principle and microhardness tests were performed on sectioned as-polished surfaces at a load of 100gf and dwell time of 15 s. Dry sliding wear tests were performed at varied sliding loads of 5, 15, 25 and 35 N using the ball-on-disc tribometer configuration with WC as the counterface material. Microstructural characterization of the sintered samples and wear tracks were carried out using SEM and EDX techniques. The density and hardness characteristics of sintered samples increased with increasing sintering temperature. Near full densification (99.6% of the theoretical density) and Vickers’ micro-indentation hardness of 360 HV were attained at 850°C. The coefficient of friction (COF) and wear depth improved significantly with increased sintering temperature under all the loading conditions examined, except at 25 N indicating better mechanical properties at high sintering temperatures. Worn surface analyses showed the wear mechanism was a synergy of adhesive and abrasive wears, although the former was prevalent.

Keywords: hardness, powder metallurgy, spark plasma sintering, wear

Procedia PDF Downloads 280
2610 The Structural, Elastic, Thermal, Electronic, and Magnetic Properties of Intermetallic rmn₂ge₂ (R=CA, Y, ND)

Authors: I. Benkaddour, Y. Benkaddour, A. Benk Addour

Abstract:

The structural, elastic, Thermal, electronic, and magnetic properties of intermetallic RMn₂Ge₂ (R= Ca, Y, Nd) are investigated by density functional theory (DFT), using the full potential –linearised augmented plane wave method (FP-LAPW). In this approach, the local-density approximation (LDA) is used for the exchange-correlation (XC) potential. The equilibrium lattice constant and magnetic moment agree well with the experiment. The density of states shows that these phases are conductors, with contribution predominantly from the R and Mn d states. We have determined the elastic constants C₁₁, C₁₂, C₁₃, C₄₄, C₃₃, andC₆₆ at ambient conditions in, which have not been established neither experimentally nor theoretically. Thermal properties, including the relative expansion coefficients and the heat capacity, have been estimated using a quasi-harmonic Debye model.

Keywords: RMn₂Ge₂, intermetallic, first-principles, density of states, mechanical properties

Procedia PDF Downloads 92
2609 Semantic Processing in Chinese: Category Effects, Task Effects and Age Effects

Authors: Yi-Hsiu Lai

Abstract:

The present study aimed to elucidate the nature of semantic processing in Chinese. Language and cognition related to the issue of aging are examined from the perspective of picture naming and category fluency tasks. Twenty Chinese-speaking adults (ranging from 25 to 45 years old) and twenty Chinese-speaking seniors (ranging from 65 to 75 years old) in Taiwan participated in this study. Each of them individually completed two tasks: a picture naming task and a category fluency task. Instruments for the naming task were sixty black-and-white pictures: thirty-five object and twenty-five action pictures. Category fluency task also consisted of two semantic categories – objects (or nouns) and actions (or verbs). Participants were asked to report as many items within a category as possible in one minute. Scores of action fluency and of object fluency were a summation of correct responses in these two categories. Category effects (actions vs. objects) and age effects were examined in these tasks. Objects were further divided into two major types: living objects and non-living objects. Actions were also categorized into two major types: action verbs and process verbs. Reaction time to each picture/question was additionally calculated and analyzed. Results of the category fluency task indicated that the content of information in Chinese seniors was comparatively deteriorated, thus producing smaller number of semantic-lexical items. Significant group difference was also found in the results of reaction time. Category Effect was significant for both Chinese adults and seniors in the semantic fluency task. Findings in the present study helped characterize the nature of semantic processing in Chinese-speaking adults and seniors and contributed to the issue of language and aging.

Keywords: semantic processing, aging, Chinese, category effects

Procedia PDF Downloads 363
2608 Combining Nitrocarburisation and Dry Lubrication for Improving Component Lifetime

Authors: Kaushik Vaideeswaran, Jean Gobet, Patrick Margraf, Olha Sereda

Abstract:

Nitrocarburisation is a surface hardening technique often applied to improve the wear resistance of steel surfaces. It is considered to be a promising solution in comparison with other processes such as flame spraying, owing to the formation of a diffusion layer which provides mechanical integrity, as well as its cost-effectiveness. To improve other tribological properties of the surface such as the coefficient of friction (COF), dry lubricants are utilized. Currently, the lifetime of steel components in many applications using either of these techniques individually are faced with the limitations of the two: high COF for nitrocarburized surfaces and low wear resistance of dry lubricant coatings. To this end, the current study involves the creation of a hybrid surface using the impregnation of a dry lubricant on to a nitrocarburized surface. The mechanical strength and hardness of Gerster SA’s nitrocarburized surfaces accompanied by the impregnation of the porous outermost layer with a solid lubricant will create a hybrid surface possessing both outstanding wear resistance and a low friction coefficient and with high adherence to the substrate. Gerster SA has the state-of-the-art technology for the surface hardening of various steels. Through their expertise in the field, the nitrocarburizing process parameters (atmosphere, temperature, dwelling time) were optimized to obtain samples that have a distinct porous structure (in terms of size, shape, and density) as observed by metallographic and microscopic analyses. The porosity thus obtained is suitable for the impregnation of a dry lubricant. A commercially available dry lubricant with a thermoplastic matrix was employed for the impregnation process, which was optimized to obtain a void-free interface with the surface of the nitrocarburized layer (henceforth called hybrid surface). In parallel, metallic samples without nitrocarburisation were also impregnated with the same dry lubricant as a reference (henceforth called reference surface). The reference and the nitrocarburized surfaces, with and without the dry lubricant were tested for their tribological behavior by sliding against a quenched steel ball using a nanotribometer. Without any lubricant, the nitrocarburized surface showed a wear rate 5x lower than the reference metal. In the presence of a thin film of dry lubricant ( < 2 micrometers) and under the application of high loads (500 mN or ~800 MPa), while the COF for the reference surface increased from ~0.1 to > 0.3 within 120 m, the hybrid surface retained a COF < 0.2 for over 400m of sliding. In addition, while the steel ball sliding against the reference surface showed heavy wear, the corresponding ball sliding against the hybrid surface showed very limited wear. Observations of the sliding tracks in the hybrid surface using Electron Microscopy show the presence of the nitrocarburized nodules as well as the lubricant, whereas no traces of the lubricant were found in the sliding track on the reference surface. In this manner, the clear advantage of combining nitrocarburisation with the impregnation of a dry lubricant towards forming a hybrid surface has been demonstrated.

Keywords: dry lubrication, hybrid surfaces, improved wear resistance, nitrocarburisation, steels

Procedia PDF Downloads 125