Search results for: finite elements method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22797

Search results for: finite elements method

19587 The Future of Hospitals: A Systematic Review in the Field of Architectural Design with a Disruptive Research and Development Approach

Authors: María Araya Léon, Ainoa Abella, Aura Murillo, Ricardo Guasch, Laura Clèries

Abstract:

Objectives: This article aims to examine scientific theory framed within the term hospitals of the future from a multidisciplinary and cross-sectional perspective. To understand the connection that the various cross-sectional areas we studied have with architectural spaces and to determine the future outlook of the works examined and how they can be classified into the categories of need/solution, evolution/revolution, collective/individual, and preventive/corrective. Background: The changes currently taking place within the context of healthcare demonstrate how important these projects are and the need for companies to face future changes. Method: A systematic review has been carried out focused on what will the hospitals of the future be like in relation to the elements that form part of their use, design, and architectural space experience, using the WOS database from 2016 to 2019. Results: The large number of works about sensoring & big data and the scarce amount related to the area of materials is worth highlighting. Furthermore, no growth concerning future issues is envisaged over time. Regarding classifications, the articles we reviewed address evolutionary and collective solutions more, and in terms of preventive and corrective solutions, they were found at a similar level. Conclusions: Although our research focused on the future of hospitals, there is little evidence representing this approach. We also detected that, given the relevance of the research on how the built environment influences human health and well-being, these studies should be promoted within the context of healthcare.

Keywords: hospitals, future, architectural space, disruptive approach

Procedia PDF Downloads 98
19586 Speedup Breadth-First Search by Graph Ordering

Authors: Qiuyi Lyu, Bin Gong

Abstract:

Breadth-First Search(BFS) is a core graph algorithm that is widely used for graph analysis. As it is frequently used in many graph applications, improve the BFS performance is essential. In this paper, we present a graph ordering method that could reorder the graph nodes to achieve better data locality, thus, improving the BFS performance. Our method is based on an observation that the sibling relationships will dominate the cache access pattern during the BFS traversal. Therefore, we propose a frequency-based model to construct the graph order. First, we optimize the graph order according to the nodes’ visit frequency. Nodes with high visit frequency will be processed in priority. Second, we try to maximize the child nodes overlap layer by layer. As it is proved to be NP-hard, we propose a heuristic method that could greatly reduce the preprocessing overheads. We conduct extensive experiments on 16 real-world datasets. The result shows that our method could achieve comparable performance with the state-of-the-art methods while the graph ordering overheads are only about 1/15.

Keywords: breadth-first search, BFS, graph ordering, graph algorithm

Procedia PDF Downloads 141
19585 Managing High-Performance Virtual Teams

Authors: Mehdi Rezai, Asghar Zamani

Abstract:

Virtual teams are a reality in today’s fast-paced world. With the possibility of commonly using common resources, an increase of inter-organizational projects, cooperation, outsourcing, and the increase in the number of people who work remotely or flexitime, an extensive and active presence of high-performance teams is a must. Virtual teams are a challenge by themselves. Their members remove the barriers of cultures, time regions and organizations, and they often communicate through electronic devices over considerable distances. Firstly, we examine the management of virtual teams by considering different issues such as cultural and personal diversities, communications and arrangement issues. Then we will examine individuals, processes and the existing tools in a team. The main challenge is managing high-performance virtual teams. First of all, we must examine the concept of performance. Then, we must focus on teams and the best methods of managing them. Constant improvement of performance, together with precisely regulating every individual’s method of working, increases the levels of performance in the course of time. High-performance teams exploit every issue as an opportunity for achieving high performance. And we know that doing projects with high performance is among every organization or team’s objectives. Performance could be measured using many criteria, among which carrying out projects in time, the satisfaction of stakeholders, and not exceeding budgets could be named. Elements such as clear objectives, clearly-defined roles and responsibilities, effective communications, and commitment to collaboration are essential to a team’s effectiveness. Finally, we will examine roles, systems, processes and will carry out a cause-and-effect analysis of different criteria in improving a team’s performance.

Keywords: virtual teams, performance, management, process, improvement, effectiveness

Procedia PDF Downloads 151
19584 Management of the Experts in the Research Evaluation System of the University: Based on National Research University Higher School of Economics Example

Authors: Alena Nesterenko, Svetlana Petrikova

Abstract:

Research evaluation is one of the most important elements of self-regulation and development of researchers as it is impartial and independent process of assessment. The method of expert evaluations as a scientific instrument solving complicated non-formalized problems is firstly a scientifically sound way to conduct the assessment which maximum effectiveness of work at every step and secondly the usage of quantitative methods for evaluation, assessment of expert opinion and collective processing of the results. These two features distinguish the method of expert evaluations from long-known expertise widespread in many areas of knowledge. Different typical problems require different types of expert evaluations methods. Several issues which arise with these methods are experts’ selection, management of assessment procedure, proceeding of the results and remuneration for the experts. To address these issues an on-line system was created with the primary purpose of development of a versatile application for many workgroups with matching approaches to scientific work management. Online documentation assessment and statistics system allows: - To realize within one platform independent activities of different workgroups (e.g. expert officers, managers). - To establish different workspaces for corresponding workgroups where custom users database can be created according to particular needs. - To form for each workgroup required output documents. - To configure information gathering for each workgroup (forms of assessment, tests, inventories). - To create and operate personal databases of remote users. - To set up automatic notification through e-mail. The next stage is development of quantitative and qualitative criteria to form a database of experts. The inventory was made so that the experts may not only submit their personal data, place of work and scientific degree but also keywords according to their expertise, academic interests, ORCID, Researcher ID, SPIN-code RSCI, Scopus AuthorID, knowledge of languages, primary scientific publications. For each project, competition assessments are processed in accordance to ordering party demands in forms of apprised inventories, commentaries (50-250 characters) and overall review (1500 characters) in which expert states the absence of conflict of interest. Evaluation is conducted as follows: as applications are added to database expert officer selects experts, generally, two persons per application. Experts are selected according to the keywords; this method proved to be good unlike the OECD classifier. The last stage: the choice of the experts is approved by the supervisor, the e-mails are sent to the experts with invitation to assess the project. An expert supervisor is controlling experts writing reports for all formalities to be in place (time-frame, propriety, correspondence). If the difference in assessment exceeds four points, the third evaluation is appointed. As the expert finishes work on his expert opinion, system shows contract marked ‘new’, managers commence with the contract and the expert gets e-mail that the contract is formed and ready to be signed. All formalities are concluded and the expert gets remuneration for his work. The specificity of interaction of the examination officer with other experts will be presented in the report.

Keywords: expertise, management of research evaluation, method of expert evaluations, research evaluation

Procedia PDF Downloads 209
19583 Oil Extraction from Sunflower Seed Using Green Solvent 2-Methyltetrahydrofuran and Isoamyl Alcohol

Authors: Sergio S. De Jesus, Aline Santana, Rubens Maciel Filho

Abstract:

The objective of this study was to choose and determine a green solvent system with similar extraction efficiencies as the traditional Bligh and Dyer method. Sunflower seed oil was extracted using Bligh and Dyer method with 2-methyltetrahydrofuran and isoamyl using alcohol ratios of 1:1; 2:1; 3:1; 1:2; 3:1. At the same time comparative experiments was performed with chloroform and methanol ratios of 1:1; 2:1; 3:1; 1:2; 3:1. Comparison study was done using 5 replicates (n=5). Statistical analysis was performed using Microsoft Office Excel (Microsoft, USA) to determine means and Tukey’s Honestly Significant Difference test for comparison between treatments (α = 0.05). The results showed that using classic method with methanol and chloroform presented the extraction oil yield with the values of 31-44% (w/w) and values of 36-45% (w/w) using green solvents for extractions. Among the two extraction methods, 2 methyltetrahydrofuran and isoamyl alcohol ratio 2:1 provided the best results (45% w/w), while the classic method using chloroform and methanol with ratio of 3:1 presented a extraction oil yield of 44% (w/w). It was concluded that the proposed extraction method using 2-methyltetrahydrofuran and isoamyl alcohol in this work allowed the same efficiency level as chloroform and methanol.

Keywords: extraction, green solvent, lipids, sugarcane

Procedia PDF Downloads 388
19582 A Character Detection Method for Ancient Yi Books Based on Connected Components and Regressive Character Segmentation

Authors: Xu Han, Shanxiong Chen, Shiyu Zhu, Xiaoyu Lin, Fujia Zhao, Dingwang Wang

Abstract:

Character detection is an important issue for character recognition of ancient Yi books. The accuracy of detection directly affects the recognition effect of ancient Yi books. Considering the complex layout, the lack of standard typesetting and the mixed arrangement between images and texts, we propose a character detection method for ancient Yi books based on connected components and regressive character segmentation. First, the scanned images of ancient Yi books are preprocessed with nonlocal mean filtering, and then a modified local adaptive threshold binarization algorithm is used to obtain the binary images to segment the foreground and background for the images. Second, the non-text areas are removed by the method based on connected components. Finally, the single character in the ancient Yi books is segmented by our method. The experimental results show that the method can effectively separate the text areas and non-text areas for ancient Yi books and achieve higher accuracy and recall rate in the experiment of character detection, and effectively solve the problem of character detection and segmentation in character recognition of ancient books.

Keywords: CCS concepts, computing methodologies, interest point, salient region detections, image segmentation

Procedia PDF Downloads 137
19581 Investigate and Solving Analytically at Vibrational structures (In Arched Beam to Bridges) by New Method “AGM”

Authors: M. R. Akbari, P. Soleimani, R. Khalili, Sara Akbari

Abstract:

Analyzing and modeling the vibrational behavior of arched bridges during the earthquake in order to decrease the exerted damages to the structure is a very hard task to do. This item has been done analytically in the present paper for the first time. Due to the importance of building arched bridges as a great structure in the human being civilization and its specifications such as transferring vertical loads to its arcs and the lack of bending moments and shearing forces, this case study is devoted to this special issue. Here, the nonlinear vibration of arched bridges has been modeled and simulated by an arched beam with harmonic vertical loads and its behavior has been investigated by analyzing a nonlinear partial differential equation governing the system. It is notable that the procedure has been done analytically by AGM (Akbari, Ganji Method). Furthermore, comparisons have been made between the obtained results by numerical Method (rkf-45) and AGM in order to assess the scientific validity.

Keywords: new method (AGM), arched beam bridges, angular frequency, harmonic loads

Procedia PDF Downloads 303
19580 Classification of Hyperspectral Image Using Mathematical Morphological Operator-Based Distance Metric

Authors: Geetika Barman, B. S. Daya Sagar

Abstract:

In this article, we proposed a pixel-wise classification of hyperspectral images using a mathematical morphology operator-based distance metric called “dilation distance” and “erosion distance”. This method involves measuring the spatial distance between the spectral features of a hyperspectral image across the bands. The key concept of the proposed approach is that the “dilation distance” is the maximum distance a pixel can be moved without changing its classification, whereas the “erosion distance” is the maximum distance that a pixel can be moved before changing its classification. The spectral signature of the hyperspectral image carries unique class information and shape for each class. This article demonstrates how easily the dilation and erosion distance can measure spatial distance compared to other approaches. This property is used to calculate the spatial distance between hyperspectral image feature vectors across the bands. The dissimilarity matrix is then constructed using both measures extracted from the feature spaces. The measured distance metric is used to distinguish between the spectral features of various classes and precisely distinguish between each class. This is illustrated using both toy data and real datasets. Furthermore, we investigated the role of flat vs. non-flat structuring elements in capturing the spatial features of each class in the hyperspectral image. In order to validate, we compared the proposed approach to other existing methods and demonstrated empirically that mathematical operator-based distance metric classification provided competitive results and outperformed some of them.

Keywords: dilation distance, erosion distance, hyperspectral image classification, mathematical morphology

Procedia PDF Downloads 91
19579 Design, Shielding and Infrastructure of an X-Ray Diagnostic Imaging Area

Authors: D. Diaz, C. Guevara, P. Rey

Abstract:

This paper contains information about designing, shielding and protocols building in order to avoid ionizing radiation in X-Rays imaging areas as generated by X-Ray, mammography equipment, computed tomography equipment and digital subtraction angiography equipment, according to global standards. Furthermore, tools and elements about infrastructure to improve protection over patients, physicians and staff involved in a diagnostic imaging area are presented. In addition, technical parameters about each machine and the architecture designs and maps are described.

Keywords: imaging area, X-ray, shielding, dose

Procedia PDF Downloads 453
19578 A Two-Phase Flow Interface Tracking Algorithm Using a Fully Coupled Pressure-Based Finite Volume Method

Authors: Shidvash Vakilipour, Scott Ormiston, Masoud Mohammadi, Rouzbeh Riazi, Kimia Amiri, Sahar Barati

Abstract:

Two-phase and multi-phase flows are common flow types in fluid mechanics engineering. Among the basic and applied problems of these flow types, two-phase parallel flow is the one that two immiscible fluids flow in the vicinity of each other. In this type of flow, fluid properties (e.g. density, viscosity, and temperature) are different at the two sides of the interface of the two fluids. The most challenging part of the numerical simulation of two-phase flow is to determine the location of interface accurately. In the present work, a coupled interface tracking algorithm is developed based on Arbitrary Lagrangian-Eulerian (ALE) approach using a cell-centered, pressure-based, coupled solver. To validate this algorithm, an analytical solution for fully developed two-phase flow in presence of gravity is derived, and then, the results of the numerical simulation of this flow are compared with analytical solution at various flow conditions. The results of the simulations show good accuracy of the algorithm despite using a nearly coarse and uniform grid. Temporal variations of interface profile toward the steady-state solution show that a greater difference between fluids properties (especially dynamic viscosity) will result in larger traveling waves. Gravity effect studies also show that favorable gravity will result in a reduction of heavier fluid thickness and adverse gravity leads to increasing it with respect to the zero gravity condition. However, the magnitude of variation in favorable gravity is much more than adverse gravity.

Keywords: coupled solver, gravitational force, interface tracking, Reynolds number to Froude number, two-phase flow

Procedia PDF Downloads 318
19577 An Accelerated Stochastic Gradient Method with Momentum

Authors: Liang Liu, Xiaopeng Luo

Abstract:

In this paper, we propose an accelerated stochastic gradient method with momentum. The momentum term is the weighted average of generated gradients, and the weights decay inverse proportionally with the iteration times. Stochastic gradient descent with momentum (SGDM) uses weights that decay exponentially with the iteration times to generate the momentum term. Using exponential decay weights, variants of SGDM with inexplicable and complicated formats have been proposed to achieve better performance. However, the momentum update rules of our method are as simple as that of SGDM. We provide theoretical convergence analyses, which show both the exponential decay weights and our inverse proportional decay weights can limit the variance of the parameter moving directly to a region. Experimental results show that our method works well with many practical problems and outperforms SGDM.

Keywords: exponential decay rate weight, gradient descent, inverse proportional decay rate weight, momentum

Procedia PDF Downloads 167
19576 Nonuniformity Correction Technique in Infrared Video Using Feedback Recursive Least Square Algorithm

Authors: Flavio O. Torres, Maria J. Castilla, Rodrigo A. Augsburger, Pedro I. Cachana, Katherine S. Reyes

Abstract:

In this paper, we present a scene-based nonuniformity correction method using a modified recursive least square algorithm with a feedback system on the updates. The feedback is designed to remove impulsive noise contamination images produced by a recursive least square algorithm by measuring the output of the proposed algorithm. The key advantage of the method is based on its capacity to estimate detectors parameters and then compensate for impulsive noise contamination image in a frame by frame basics. We define the algorithm and present several experimental results to demonstrate the efficacy of the proposed method in comparison to several previously published recursive least square-based methods. We show that the proposed method removes impulsive noise contamination image.

Keywords: infrared focal plane arrays, infrared imaging, least mean square, nonuniformity correction

Procedia PDF Downloads 147
19575 Failure Simulation of Small-scale Walls with Chases Using the Lattic Discrete Element Method

Authors: Karina C. Azzolin, Luis E. Kosteski, Alisson S. Milani, Raquel C. Zydeck

Abstract:

This work aims to represent Numerically tests experimentally developed in reduced scale walls with horizontal and inclined cuts by using the Lattice Discrete Element Method (LDEM) implemented On de Abaqus/explicit environment. The cuts were performed with depths of 20%, 30%, and 50% On the walls subjected to centered and eccentric loading. The parameters used to evaluate the numerical model are its strength, the failure mode, and the in-plane and out-of-plane displacements.

Keywords: structural masonry, wall chases, small scale, numerical model, lattice discrete element method

Procedia PDF Downloads 181
19574 BTEX (Benzene, Toluene, Ethylbenzene and Xylene) Degradation by Cold Plasma

Authors: Anelise Leal Vieira Cubas, Marina de Medeiros Machado, Marília de Medeiros Machado

Abstract:

The volatile organic compounds - BTEX (Benzene, Toluene, Ethylbenzene, and Xylene) petroleum derivatives, have high rates of toxicity, which may carry consequences for human health, biota and environment. In this direction, this paper proposes a method of treatment of these compounds by using corona discharge plasma technology. The efficiency of the method was tested by analyzing samples of BTEX after going through a plasma reactor by gas chromatography method. The results show that the optimal residence time of the sample in the reactor was 8 minutes.

Keywords: BTEX, degradation, cold plasma, ecological sciences

Procedia PDF Downloads 320
19573 Determine the Optimal Path of Content Adaptation Services with Max Heap Tree

Authors: Shilan Rahmani Azr, Siavash Emtiyaz

Abstract:

Recent development in computing and communicative technologies leads to much easier mobile accessibility to the information. Users can access to the information in different places using various deceives in which the care variety of abilities. Meanwhile, the format and details of electronic documents are changing each day. In these cases, a mismatch is created between content and client’s abilities. Recently the service-oriented content adaption has been developed which the adapting tasks are dedicated to some extended services. In this method, the main problem is to choose the best appropriate service among accessible and distributed services. In this paper, a method for determining the optimal path to the best services, based on the quality control parameters and user preferences, is proposed using max heap tree. The efficiency of this method in contrast to the other previous methods of the content adaptation is related to the determining the optimal path of the best services which are measured. The results show the advantages and progresses of this method in compare of the others.

Keywords: service-oriented content adaption, QoS, max heap tree, web services

Procedia PDF Downloads 263
19572 Ground Deformation Module for the New Laboratory Methods

Authors: O. Giorgishvili

Abstract:

For calculation of foundations one of the important characteristics is the module of deformation (E0). As we all know, the main goal of calculation of the foundations of buildings on deformation is to arrange the base settling and difference in settlings in such limits that do not cause origination of cracks and changes in design levels that will be dangerous to standard operation in the buildings and their individual structures. As is known from the literature and the practical application, the modulus of deformation is determined by two basic methods: laboratory method, soil test on compression (without the side widening) and soil test in field conditions. As we know, the deformation modulus of soil determined by field method is closer to the actual modulus deformation of soil, but the complexity of the tests to be carried out and the financial concerns did not allow determination of ground deformation modulus by field method. Therefore, we determine the ground modulus of deformation by compression method without side widening. Concerning this, we introduce a new way for determination of ground modulus of deformation by laboratory order that occurs by side widening and more accurately reflects the ground modulus of deformation and more accurately reflects the actual modulus of deformation and closer to the modulus of deformation determined by the field method. In this regard, we bring a new approach on the ground deformation detection laboratory module, which is done by widening sides. The tests and the results showed that the proposed method of ground deformation modulus is closer to the results that are obtained in the field, which reflects the foundation's work in real terms more accurately than the compression of the ground deformation module.

Keywords: build, deformation modulus, foundations, ground, laboratory research

Procedia PDF Downloads 372
19571 On the Accuracy of Basic Modal Displacement Method Considering Various Earthquakes

Authors: Seyed Sadegh Naseralavi, Sadegh Balaghi, Ehsan Khojastehfar

Abstract:

Time history seismic analysis is supposed to be the most accurate method to predict the seismic demand of structures. On the other hand, the required computational time of this method toward achieving the result is its main deficiency. While being applied in optimization process, in which the structure must be analyzed thousands of time, reducing the required computational time of seismic analysis of structures makes the optimization algorithms more practical. Apparently, the invented approximate methods produce some amount of errors in comparison with exact time history analysis but the recently proposed method namely, Complete Quadratic Combination (CQC) and Sum Root of the Sum of Squares (SRSS) drastically reduces the computational time by combination of peak responses in each mode. In the present research, the Basic Modal Displacement (BMD) method is introduced and applied towards estimation of seismic demand of main structure. Seismic demand of sampled structure is estimated by calculation of modal displacement of basic structure (in which the modal displacement has been calculated). Shear steel sampled structures are selected as case studies. The error applying the introduced method is calculated by comparison of the estimated seismic demands with exact time history dynamic analysis. The efficiency of the proposed method is demonstrated by application of three types of earthquakes (in view of time of peak ground acceleration).

Keywords: time history dynamic analysis, basic modal displacement, earthquake-induced demands, shear steel structures

Procedia PDF Downloads 360
19570 Descent Algorithms for Optimization Algorithms Using q-Derivative

Authors: Geetanjali Panda, Suvrakanti Chakraborty

Abstract:

In this paper, Newton-like descent methods are proposed for unconstrained optimization problems, which use q-derivatives of the gradient of an objective function. First, a local scheme is developed with alternative sufficient optimality condition, and then the method is extended to a global scheme. Moreover, a variant of practical Newton scheme is also developed introducing a real sequence. Global convergence of these schemes is proved under some mild conditions. Numerical experiments and graphical illustrations are provided. Finally, the performance profiles on a test set show that the proposed schemes are competitive to the existing first-order schemes for optimization problems.

Keywords: Descent algorithm, line search method, q calculus, Quasi Newton method

Procedia PDF Downloads 401
19569 End-to-End Pyramid Based Method for Magnetic Resonance Imaging Reconstruction

Authors: Omer Cahana, Ofer Levi, Maya Herman

Abstract:

Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction.

Keywords: magnetic resonance imaging, image reconstruction, pyramid network, deep learning

Procedia PDF Downloads 96
19568 Evaluation of the Spatial Performance of Ancient Cities in the Context of Landscape Architecture

Authors: Elvan Ender Altay, Zeynep Pirselimoglu Batman, Murat Zencirkiran

Abstract:

Ancient cities are, according to United Nations Educational, Scientific and Cultural Organization (UNESCO), landscape areas designed and created by people, at the same time naturally developing and constantly changing sustainable cultural landscapes. Ancient cities are the urban settlements where we can see the reflection of public lifestyle existed thousands of years ago. The conceptual and spatial traces in ancient cities, are crucial for examining the city history and its preservation. This study is intended to demonstrate the impacts of human life and physical environment on the cultural landscape. This research aims to protect and maintain cultural continuity of the ancient cities in Bursa which contain archeological and historical elements and could not majorly reach to the day because of not being protected and to show importance of landscape architecture to ensure this protection. In this context, ancient cities in Bursa were researched and a total of 7 ancient cities were identified. These ancient cities are; Apollonia, Lopadion, Nicaea, Myrleia, Cius, Daskyleion and Basilinopolis. In the next stage, the spatial performances of ancient cities were assessed by weighted criteria method. The highest score is the Nicaea Ancient City. Considering current situation of the ancient cities in Bursa, it is seen that most of them could not survive until our day due to lack of interest in these areas. As a result, according to the findings, it is a priority to create a protective band with green areas around the archaeological sites, thus adapting to nearby areas and emphasizing culture. In addition, proposals have been made to provide a transportation network that does not harm the ancient cities and the cultural landscape.

Keywords: ancient cities, Bursa, landscape, spatial performance

Procedia PDF Downloads 204
19567 Disease Level Assessment in Wheat Plots Using a Residual Deep Learning Algorithm

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

The assessment of disease levels in crop fields is an important and time-consuming task that generally relies on expert knowledge of trained individuals. Image classification in agriculture problems historically has been based on classical machine learning strategies that make use of hand-engineered features in the top of a classification algorithm. This approach tends to not produce results with high accuracy and generalization to the classes classified by the system when the nature of the elements has a significant variability. The advent of deep convolutional neural networks has revolutionized the field of machine learning, especially in computer vision tasks. These networks have great resourcefulness of learning and have been applied successfully to image classification and object detection tasks in the last years. The objective of this work was to propose a new method based on deep learning convolutional neural networks towards the task of disease level monitoring. Common RGB images of winter wheat were obtained during a growing season. Five categories of disease levels presence were produced, in collaboration with agronomists, for the algorithm classification. Disease level tasks performed by experts provided ground truth data for the disease score of the same winter wheat plots were RGB images were acquired. The system had an overall accuracy of 84% on the discrimination of the disease level classes.

Keywords: crop disease assessment, deep learning, precision agriculture, residual neural networks

Procedia PDF Downloads 340
19566 Development, Optimization, and Validation of a Synchronous Fluorescence Spectroscopic Method with Multivariate Calibration for the Determination of Amlodipine and Olmesartan Implementing: Experimental Design

Authors: Noha Ibrahim, Eman S. Elzanfaly, Said A. Hassan, Ahmed E. El Gendy

Abstract:

Objectives: The purpose of the study is to develop a sensitive synchronous spectrofluorimetric method with multivariate calibration after studying and optimizing the different variables affecting the native fluorescence intensity of amlodipine and olmesartan implementing an experimental design approach. Method: In the first step, the fractional factorial design used to screen independent factors affecting the intensity of both drugs. The objective of the second step was to optimize the method performance using a Central Composite Face-centred (CCF) design. The optimal experimental conditions obtained from this study were; a temperature of (15°C ± 0.5), the solvent of 0.05N HCl and methanol with a ratio of (90:10, v/v respectively), Δλ of 42 and the addition of 1.48 % surfactant providing a sensitive measurement of amlodipine and olmesartan. The resolution of the binary mixture with a multivariate calibration method has been accomplished mainly by using partial least squares (PLS) model. Results: The recovery percentage for amlodipine besylate and atorvastatin calcium in tablets dosage form were found to be (102 ± 0.24, 99.56 ± 0.10, for amlodipine and Olmesartan, respectively). Conclusion: Method is valid according to some International Conference on Harmonization (ICH) guidelines, providing to be linear over a range of 200-300, 500-1500 ng mL⁻¹ for amlodipine and Olmesartan. The methods were successful to estimate amlodipine besylate and olmesartan in bulk powder and pharmaceutical preparation.

Keywords: amlodipine, central composite face-centred design, experimental design, fractional factorial design, multivariate calibration, olmesartan

Procedia PDF Downloads 153
19565 An Event Relationship Extraction Method Incorporating Deep Feedback Recurrent Neural Network and Bidirectional Long Short-Term Memory

Authors: Yin Yuanling

Abstract:

A Deep Feedback Recurrent Neural Network (DFRNN) and Bidirectional Long Short-Term Memory (BiLSTM) are designed to address the problem of low accuracy of traditional relationship extraction models. This method combines a deep feedback-based recurrent neural network (DFRNN) with a bi-directional long short-term memory (BiLSTM) approach. The method combines DFRNN, which extracts local features of text based on deep feedback recurrent mechanism, BiLSTM, which better extracts global features of text, and Self-Attention, which extracts semantic information. Experiments show that the method achieves an F1 value of 76.69% on the CEC dataset, which is 0.0652 better than the BiLSTM+Self-ATT model, thus optimizing the performance of the deep learning method in the event relationship extraction task.

Keywords: event relations, deep learning, DFRNN models, bi-directional long and short-term memory networks

Procedia PDF Downloads 151
19564 Terrestrial Laser Scans to Assess Aerial LiDAR Data

Authors: J. F. Reinoso-Gordo, F. J. Ariza-López, A. Mozas-Calvache, J. L. García-Balboa, S. Eddargani

Abstract:

The DEMs quality may depend on several factors such as data source, capture method, processing type used to derive them, or the cell size of the DEM. The two most important capture methods to produce regional-sized DEMs are photogrammetry and LiDAR; DEMs covering entire countries have been obtained with these methods. The quality of these DEMs has traditionally been evaluated by the national cartographic agencies through punctual sampling that focused on its vertical component. For this type of evaluation there are standards such as NMAS and ASPRS Positional Accuracy Standards for Digital Geospatial Data. However, it seems more appropriate to carry out this evaluation by means of a method that takes into account the superficial nature of the DEM and, therefore, its sampling is superficial and not punctual. This work is part of the Research Project "Functional Quality of Digital Elevation Models in Engineering" where it is necessary to control the quality of a DEM whose data source is an experimental LiDAR flight with a density of 14 points per square meter to which we call Point Cloud Product (PCpro). In the present work it is described the capture data on the ground and the postprocessing tasks until getting the point cloud that will be used as reference (PCref) to evaluate the PCpro quality. Each PCref consists of a patch 50x50 m size coming from a registration of 4 different scan stations. The area studied was the Spanish region of Navarra that covers an area of 10,391 km2; 30 patches homogeneously distributed were necessary to sample the entire surface. The patches have been captured using a Leica BLK360 terrestrial laser scanner mounted on a pole that reached heights of up to 7 meters; the position of the scanner was inverted so that the characteristic shadow circle does not exist when the scanner is in direct position. To ensure that the accuracy of the PCref is greater than that of the PCpro, the georeferencing of the PCref has been carried out with real-time GNSS, and its accuracy positioning was better than 4 cm; this accuracy is much better than the altimetric mean square error estimated for the PCpro (<15 cm); The kind of DEM of interest is the corresponding to the bare earth, so that it was necessary to apply a filter to eliminate vegetation and auxiliary elements such as poles, tripods, etc. After the postprocessing tasks the PCref is ready to be compared with the PCpro using different techniques: cloud to cloud or after a resampling process DEM to DEM.

Keywords: data quality, DEM, LiDAR, terrestrial laser scanner, accuracy

Procedia PDF Downloads 104
19563 Bi-Directional Evolutionary Topology Optimization Based on Critical Fatigue Constraint

Authors: Khodamorad Nabaki, Jianhu Shen, Xiaodong Huang

Abstract:

This paper develops a method for considering the critical fatigue stress as a constraint in the Bi-directional Evolutionary Structural Optimization (BESO) method. Our aim is to reach an optimal design in which high cycle fatigue failure does not occur for a specific life time. The critical fatigue stress is calculated based on modified Goodman criteria and used as a stress constraint in our topology optimization problem. Since fatigue generally does not occur for compressive stresses, we use the p-norm approach of the stress measurement that considers the highest tensile principal stress in each point as stress measure to calculate the sensitivity numbers. The BESO method has been extended to minimize volume an object subjected to the critical fatigue stress constraint. The optimization results are compared with the results from the compliance minimization problem which shows clearly the merits of our newly developed approach.

Keywords: topology optimization, BESO method, p-norm, fatigue constraint

Procedia PDF Downloads 302
19562 Comparative Study of Free Vibrational Analysis and Modes Shapes of FSAE Car Frame Using Different FEM Modules

Authors: Rajat Jain, Himanshu Pandey, Somesh Mehta, Pravin P. Patil

Abstract:

Formula SAE cars are the student designed and fabricated formula prototype cars, designed according to SAE INTERNATIONAL design rules which compete in the various national and international events. This paper shows a FEM based comparative study of free vibration analysis of different mode shapes of a formula prototype car chassis frame. Tubing sections of different diameters as per the design rules are designed in such a manner that the desired strength can be achieved. Natural frequency of first five mode was determined using finite element analysis method. SOLIDWORKS is used for designing the frame structure and SOLIDWORKS SIMULATION and ANSYS WORKBENCH 16.2 are used for the modal analysis. Mode shape results of ANSYS and SOLIDWORKS were compared. Fixed –fixed boundary conditions are used for fixing the A-arm wishbones. The simulation results were compared for the validation of the study. First five modes were compared and results were found within the permissible limits. The AISI4130 (CROMOLY- chromium molybdenum steel) material is used and the chassis frame is discretized with fine quality QUAD mesh followed by Fixed-fixed boundary conditions. The natural frequency of the chassis frame is 53.92-125.5 Hz as per the results of ANSYS which is found within the permissible limits. The study is concluded with the light weight and compact chassis frame without compensation with strength. This design allows to fabricate an extremely safe driver ergonomics, compact, dynamically stable, simple and light weight tubular chassis frame with higher strength.

Keywords: FEM, modal analysis, formula SAE cars, chassis frame, Ansys

Procedia PDF Downloads 353
19561 Artificial Intelligence Based Method in Identifying Tumour Infiltrating Lymphocytes of Triple Negative Breast Cancer

Authors: Nurkhairul Bariyah Baharun, Afzan Adam, Reena Rahayu Md Zin

Abstract:

Tumor microenvironment (TME) in breast cancer is mainly composed of cancer cells, immune cells, and stromal cells. The interaction between cancer cells and their microenvironment plays an important role in tumor development, progression, and treatment response. The TME in breast cancer includes tumor-infiltrating lymphocytes (TILs) that are implicated in killing tumor cells. TILs can be found in tumor stroma (sTILs) and within the tumor (iTILs). TILs in triple negative breast cancer (TNBC) have been demonstrated to have prognostic and potentially predictive value. The international Immune-Oncology Biomarker Working Group (TIL-WG) had developed a guideline focus on the assessment of sTILs using hematoxylin and eosin (H&E)-stained slides. According to the guideline, the pathologists use “eye balling” method on the H&E stained- slide for sTILs assessment. This method has low precision, poor interobserver reproducibility, and is time-consuming for a comprehensive evaluation, besides only counted sTILs in their assessment. The TIL-WG has therefore recommended that any algorithm for computational assessment of TILs utilizing the guidelines provided to overcome the limitations of manual assessment, thus providing highly accurate and reliable TILs detection and classification for reproducible and quantitative measurement. This study is carried out to develop a TNBC digital whole slide image (WSI) dataset from H&E-stained slides and IHC (CD4+ and CD8+) stained slides. TNBC cases were retrieved from the database of the Department of Pathology, Hospital Canselor Tuanku Muhriz (HCTM). TNBC cases diagnosed between the year 2010 and 2021 with no history of other cancer and available block tissue were included in the study (n=58). Tissue blocks were sectioned approximately 4 µm for H&E and IHC stain. The H&E staining was performed according to a well-established protocol. Indirect IHC stain was also performed on the tissue sections using protocol from Diagnostic BioSystems PolyVue™ Plus Kit, USA. The slides were stained with rabbit monoclonal, CD8 antibody (SP16) and Rabbit monoclonal, CD4 antibody (EP204). The selected and quality-checked slides were then scanned using a high-resolution whole slide scanner (Pannoramic DESK II DW- slide scanner) to digitalize the tissue image with a pixel resolution of 20x magnification. A manual TILs (sTILs and iTILs) assessment was then carried out by the appointed pathologist (2 pathologists) for manual TILs scoring from the digital WSIs following the guideline developed by TIL-WG 2014, and the result displayed as the percentage of sTILs and iTILs per mm² stromal and tumour area on the tissue. Following this, we aimed to develop an automated digital image scoring framework that incorporates key elements of manual guidelines (including both sTILs and iTILs) using manually annotated data for robust and objective quantification of TILs in TNBC. From the study, we have developed a digital dataset of TNBC H&E and IHC (CD4+ and CD8+) stained slides. We hope that an automated based scoring method can provide quantitative and interpretable TILs scoring, which correlates with the manual pathologist-derived sTILs and iTILs scoring and thus has potential prognostic implications.

Keywords: automated quantification, digital pathology, triple negative breast cancer, tumour infiltrating lymphocytes

Procedia PDF Downloads 121
19560 Antioxidant Properties and Nutritive Value of Raw and Cooked Pool barb (Puntius sophore) of Eastern Himalayas

Authors: Chungkham Sarojnalini, Wahengbam Sarjubala Devi

Abstract:

Antioxidant properties and nutritive values of raw and cooked Pool barb, Puntius sophore (Hamilton-Buchanan) of Eastern Himalayas, India were determined. Antioxidant activity of the methanol extract of the raw, steamed, fried and curried Pool barb was evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay. In DPPH scavenging assay the IC50 value of the raw, steamed, fried and curried Pool barb was 1.66 microgram/ml, 16.09 microgram/ml, 8.99 microgram/ml, 0.59 microgram/ml whereas the IC50 of the reference ascorbic acid was 46.66 microgram/ml. This results shows that the fish have high antioxidant activity. Protein content was found highest in raw (20.50±0.08%) and lowest in curried (18.66±0.13%). Moisture content in raw, fried and curried was 76.35±0.09, 46.27±0.14 and 57.46±0.24 respectively. Lipid content was recorded 2.46±0.14% in raw and 21.76±0.10% in curried. Ash content varies from 12.57±0.11 to 22.53±0.07%. The total aminoacids were varied from 36.79±0.02 and 288.43±0.12 mg/100 g. Eleven essential mineral elements were found abundant in all the samples. The samples had a considerable amount of Fe ranging from 152.17 to 320.39 milligram/100 gram, Ca 902.06 to 1356.02 milligram/100 gram, Zn 91.07 to 138.14 milligram/100 gram, K 193.25 to 261.56 milligram/100 gram, Mg 225.06 to 229.10 milligram/100 gram. Ni was not detected in the curried fish. The Mg and K contents were significantly decreased in frying method; however the Fe, Cu, Ca, Co and Mn content were increased significantly in all the cooked samples. The Mg and Na contents were significantly increased in curried sample and the Cr content was decreased significantly (p<0.05) in all the cooked samples.

Keywords: antioxidant property, pool barb, minerals, aminoacids, proximate composition, cooking methods

Procedia PDF Downloads 224
19559 An Analysis of L1 Effects on the Learning of EFL: A Case Study of Undergraduate EFL Learners at Universities in Pakistan

Authors: Nadir Ali Mugheri, Shaukat Ali Lohar

Abstract:

In a multilingual society like Pakistan, code switching is commonly observed in different contexts. Mostly people use L1 (Native Languages) and L2 for common communications and L3 (i.e. English, Urdu, Sindhi) in formal contexts and for academic writings. Such a frequent code switching does affect EFL learners' acquisition of grammar and lexis of the target language which in the long run result in different types of errors in their writings. The current study is to investigate and identify common elements of L1 and L2 (spoken by students of the Universities in Pakistan) which create hindrances for EFL learners. Case study method was used for this research. Formal writings of 400 EFL learners (as participants from various Universities of the country) were observed. Among 400 participants, 200 were female and 200 were male EFL learners having different academic backgrounds. Errors found were categorized into different types according to grammatical items, the difference in meanings, structure of sentences and identifiers of tenses of L1 or L2 in comparison with those of the target language. The findings showed that EFL learners in Pakistani varsities have serious problems in their writings and they committed serious errors related to the grammar and meanings of the target language. After analysis of the committed errors, the results were found in the affirmation of the hypothesis that L1 or L2 does affect EFL learners. The research suggests in the end to adopt natural ways in pedagogy like task-based learning or communicative methods using contextualized material so as to avoid impediments of L1 or L2 in acquisition the target language.

Keywords: multilingualism, L2 acquisition, code switching, language acquisition, communicative language teaching

Procedia PDF Downloads 297
19558 Role of Artificial Intelligence in Nano Proteomics

Authors: Mehrnaz Mostafavi

Abstract:

Recent advances in single-molecule protein identification (ID) and quantification techniques are poised to revolutionize proteomics, enabling researchers to delve into single-cell proteomics and identify low-abundance proteins crucial for biomedical and clinical research. This paper introduces a different approach to single-molecule protein ID and quantification using tri-color amino acid tags and a plasmonic nanopore device. A comprehensive simulator incorporating various physical phenomena was designed to predict and model the device's behavior under diverse experimental conditions, providing insights into its feasibility and limitations. The study employs a whole-proteome single-molecule identification algorithm based on convolutional neural networks, achieving high accuracies (>90%), particularly in challenging conditions (95–97%). To address potential challenges in clinical samples, where post-translational modifications affecting labeling efficiency, the paper evaluates protein identification accuracy under partial labeling conditions. Solid-state nanopores, capable of processing tens of individual proteins per second, are explored as a platform for this method. Unlike techniques relying solely on ion-current measurements, this approach enables parallel readout using high-density nanopore arrays and multi-pixel single-photon sensors. Convolutional neural networks contribute to the method's versatility and robustness, simplifying calibration procedures and potentially allowing protein ID based on partial reads. The study also discusses the efficacy of the approach in real experimental conditions, resolving functionally similar proteins. The theoretical analysis, protein labeler program, finite difference time domain calculation of plasmonic fields, and simulation of nanopore-based optical sensing are detailed in the methods section. The study anticipates further exploration of temporal distributions of protein translocation dwell-times and the impact on convolutional neural network identification accuracy. Overall, the research presents a promising avenue for advancing single-molecule protein identification and quantification with broad applications in proteomics research. The contributions made in methodology, accuracy, robustness, and technological exploration collectively position this work at the forefront of transformative developments in the field.

Keywords: nano proteomics, nanopore-based optical sensing, deep learning, artificial intelligence

Procedia PDF Downloads 110