Search results for: enhancing learning experience
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12629

Search results for: enhancing learning experience

9419 Driving What’s Next: The De La Salle Lipa Social Innovation in Quality Education Initiatives

Authors: Dante Jose R. Amisola, Glenford M. Prospero

Abstract:

'Driving What’s Next' is a strong campaign of the new administration of De La Salle Lipa in promoting social innovation in quality education. The new leadership directs social innovation in quality education in the institutional directions and initiatives to address real-world challenges with real-world solutions. This research under study aims to qualify the commitment of the institution to extend the Lasallian quality human and Christian education to all, as expressed in the Institution’s new mission-vision statement. The Classic Grounded Theory methodology is employed in the process of generating concepts in reference to the documents, a series of meetings, focus group discussions and other related activities that account for the conceptualization and formulation of the new mission-vision along with the new education innovation framework. Notably, Driving What’s Next is the emergent theory that encapsulates the commitment of giving quality human and Christian education to all. It directs the new leadership in driving social innovation in quality education initiatives. Correspondingly, Driving What’s Next is continually resolved through four interrelated strategies also termed as the institution's four strategic directions, namely: (1) driving social innovation in quality education, (2) embracing our shared humanity and championing social inclusion and justice initiatives, (3) creating sustainable futures and (4) engaging diverse stakeholders in our shared mission. Significantly, the four strategic directions capture and integrate the 17 UN sustainable development goals, making the innovative curriculum locally and globally relevant. To conclude, the main concern of the new administration and how it is continually resolved, provide meaningful and fun learning experiences and promote a new way of learning in the light of the 21st century skills among the members of the academic community including stakeholders and extended communities at large, which are defined as: learning together and by association (collaboration), learning through engagement (communication), learning by design (creativity) and learning with social impact (critical thinking).

Keywords: DLSL four strategic directions , DLSL Lipa mission-vision, driving what's next, social innovation in quality education

Procedia PDF Downloads 217
9418 The Correlation between Self-Regulated Learning Strategies and Reading Proficiency

Authors: Nguyen Thu Ha, Vu Viet Phuong, Do Thi Tieu Yen, Nguyen Thi Thanh Ha

Abstract:

This semi-experimental research investigated the correlation between 42 English as a foreign language (EFL) sophomores' self-regulated learning strategies (SRL) use and their reading comprehension in the Vietnamese context. The analysis from TOEIC reading tests with SPSS 25.0 indicated that there are substantial differences between the post-test reading scores between the experimental group and the control group; therefore, SRL impacts the reading comprehension of EFL participants. Contrary to the alternative hypothesis, teaching learners SRL approaches had a statistically significant influence on reading comprehension. The findings may aid educators in teaching reading comprehension as an essential skill and in using SRL to improve reading comprehension and achievement and enhance reading comprehension aids for language students and instructors. They should equip educators with a variety of instructional strategies which assist academics in preparing learners for lifetime language study and independence. Moreover, the results might encourage educators, administrators, and policymakers to capitalize on the effects of teaching SRL strategies by providing EFL teachers with preparation programs and experiences that help them improve their teaching methods and strategies, especially when teaching reading comprehension.

Keywords: correlation, reading proficiency, self-regulated learning strategies, SRL, TOEIC reading comprehension

Procedia PDF Downloads 95
9417 Water Body Detection and Estimation from Landsat Satellite Images Using Deep Learning

Authors: M. Devaki, K. B. Jayanthi

Abstract:

The identification of water bodies from satellite images has recently received a great deal of attention. Different methods have been developed to distinguish water bodies from various satellite images that vary in terms of time and space. Urban water identification issues body manifests in numerous applications with a great deal of certainty. There has been a sharp rise in the usage of satellite images to map natural resources, including urban water bodies and forests, during the past several years. This is because water and forest resources depend on each other so heavily that ongoing monitoring of both is essential to their sustainable management. The relevant elements from satellite pictures have been chosen using a variety of techniques, including machine learning. Then, a convolution neural network (CNN) architecture is created that can identify a superpixel as either one of two classes, one that includes water or doesn't from input data in a complex metropolitan scene. The deep learning technique, CNN, has advanced tremendously in a variety of visual-related tasks. CNN can improve classification performance by reducing the spectral-spatial regularities of the input data and extracting deep features hierarchically from raw pictures. Calculate the water body using the satellite image's resolution. Experimental results demonstrate that the suggested method outperformed conventional approaches in terms of water extraction accuracy from remote-sensing images, with an average overall accuracy of 97%.

Keywords: water body, Deep learning, satellite images, convolution neural network

Procedia PDF Downloads 89
9416 Bridging the Gap: Theoretical Challenges in Cognitive Translation Studies and the Language Industry

Authors: Alvaro Marin

Abstract:

This paper explores the challenges in Cognitive Translation Studies (CTS) conceptual development to accommodate professionals’ perceptions in the language industry into CTS established theoretical apparatus, empirical research projects, and university pedagogical proposals. A comparative conceptual assessment framework is developed from a pluralist epistemological stance that promotes interdisciplinary explorations of the translation process. The framework is used to review key notions such as expertise or feedback, as understood by language industry stakeholders. This review is followed by an analysis of how these notions can enrich research constructs to be applied in empirical investigations of translators’ cognitive processes from an embedded, situated cognition perspective. Thus, it will be proposed to apply the conceptual assessment framework as an effort towards strengthening the interpretative research tools and bridging the gap between industry and academia. The conclusions of this analysis will serve as a basis to further discuss how professional practices, combined with our current knowledge about expertise development in cognitive science and Expertise Studies, can enhance the learning experience of university translation students and help them better understand the processes and requirements of professional cross-linguistic mediation.

Keywords: language industry, cognitive translation studies, translation cognitive theory, translation teaching

Procedia PDF Downloads 158
9415 MIMIC: A Multi Input Micro-Influencers Classifier

Authors: Simone Leonardi, Luca Ardito

Abstract:

Micro-influencers are effective elements in the marketing strategies of companies and institutions because of their capability to create an hyper-engaged audience around a specific topic of interest. In recent years, many scientific approaches and commercial tools have handled the task of detecting this type of social media users. These strategies adopt solutions ranging from rule based machine learning models to deep neural networks and graph analysis on text, images, and account information. This work compares the existing solutions and proposes an ensemble method to generalize them with different input data and social media platforms. The deployed solution combines deep learning models on unstructured data with statistical machine learning models on structured data. We retrieve both social media accounts information and multimedia posts on Twitter and Instagram. These data are mapped into feature vectors for an eXtreme Gradient Boosting (XGBoost) classifier. Sixty different topics have been analyzed to build a rule based gold standard dataset and to compare the performances of our approach against baseline classifiers. We prove the effectiveness of our work by comparing the accuracy, precision, recall, and f1 score of our model with different configurations and architectures. We obtained an accuracy of 0.91 with our best performing model.

Keywords: deep learning, gradient boosting, image processing, micro-influencers, NLP, social media

Procedia PDF Downloads 183
9414 Designing Effective Serious Games for Learning and Conceptualization Their Structure

Authors: Zahara Abdulhussan Al-Awadai

Abstract:

Currently, serious games play a significant role in education, sparking an increasing interest in using games for purposes beyond mere entertainment. In this research, we investigate the main requirements and aspects of designing and developing effective serious games for learning and developing a conceptual model to describe the structure of serious games with a focus on both aspects of serious games. The main contributions of this approach are to facilitate the design and development of serious games in a flexible and easy-to-use way and also to support the cooperative work between the multidisciplinary developer team.

Keywords: game development, game design, requirements, serious games, serious game model.

Procedia PDF Downloads 62
9413 Research on Optimization Strategies for the Negative Space of Urban Rail Transit Based on Urban Public Art Planning

Authors: Kexin Chen

Abstract:

As an important method of transportation to solve the demand and supply contradiction generated in the rapid urbanization process, urban rail traffic system has been rapidly developed over the past ten years in China. During the rapid development, the space of urban rail Transit has encountered many problems, such as space simplification, sensory experience dullness, and poor regional identification, etc. This paper, focus on the study of the negative space of subway station and spatial softening, by comparing and learning from foreign cases. The article sorts out cases at home and abroad, make a comparative study of the cases, analysis more diversified setting of public art, and sets forth propositions on the domestic type of public art in the space of urban rail transit for reference, then shows the relationship of the spatial attribute in the space of urban rail transit and public art form. In this foundation, it aims to characterize more diverse setting ways for public art; then suggests the three public art forms corresponding properties, such as static presenting mode, dynamic image mode, and spatial softening mode; finds out the method of urban public art to optimize negative space.

Keywords: diversification, negative space, optimization strategy, public art planning

Procedia PDF Downloads 207
9412 Recommendation Systems for Cereal Cultivation using Advanced Casual Inference Modeling

Authors: Md Yeasin, Ranjit Kumar Paul

Abstract:

In recent years, recommendation systems have become indispensable tools for agricultural system. The accurate and timely recommendations can significantly impact crop yield and overall productivity. Causal inference modeling aims to establish cause-and-effect relationships by identifying the impact of variables or factors on outcomes, enabling more accurate and reliable recommendations. New advancements in causal inference models have been found in the literature. With the advent of the modern era, deep learning and machine learning models have emerged as efficient tools for modeling. This study proposed an innovative approach to enhance recommendation systems-based machine learning based casual inference model. By considering the causal effect and opportunity cost of covariates, the proposed system can provide more reliable and actionable recommendations for cereal farmers. To validate the effectiveness of the proposed approach, experiments are conducted using cereal cultivation data of eastern India. Comparative evaluations are performed against existing correlation-based recommendation systems, demonstrating the superiority of the advanced causal inference modeling approach in terms of recommendation accuracy and impact on crop yield. Overall, it empowers farmers with personalized recommendations tailored to their specific circumstances, leading to optimized decision-making and increased crop productivity.

Keywords: agriculture, casual inference, machine learning, recommendation system

Procedia PDF Downloads 80
9411 Applying Serious Game Design Frameworks to Existing Games for Integration of Custom Learning Objectives

Authors: Jonathan D. Moore, Mark G. Reith, David S. Long

Abstract:

Serious games (SGs) have been shown to be an effective teaching tool in many contexts. Because of the success of SGs, several design frameworks have been created to expedite the process of making original serious games to teach specific learning objectives (LOs). Even with these frameworks, the time required to create a custom SG from conception to implementation can range from months to years. Furthermore, it is even more difficult to design a game framework that allows an instructor to create customized game variants supporting multiple LOs within the same field. This paper proposes a refactoring methodology to apply the theoretical principles from well-established design frameworks to a pre-existing serious game. The expected result is a generalized game that can be quickly customized to teach LOs not originally targeted by the game. This methodology begins by describing the general components in a game, then uses a combination of two SG design frameworks to extract the teaching elements present in the game. The identified teaching elements are then used as the theoretical basis to determine the range of LOs that can be taught by the game. This paper evaluates the proposed methodology by presenting a case study of refactoring the serious game Battlespace Next (BSN) to teach joint military capabilities. The range of LOs that can be taught by the generalized BSN are identified, and examples of creating custom LOs are given. Survey results from users of the generalized game are also provided. Lastly, the expected impact of this work is discussed and a road map for future work and evaluation is presented.

Keywords: serious games, learning objectives, game design, learning theory, game framework

Procedia PDF Downloads 115
9410 Educational Infrastructure a Barrier for Teaching and Learning Architecture

Authors: Alejandra Torres-Landa López

Abstract:

Introduction: Can architecture students be creative in spaces conformed by an educational infrastructure build with paradigms of the past?, this question and others related are answered in this paper as it presents the PhD research: An anthropic conflict in Mexican Higher Education Institutes, problems and challenges of the educational infrastructure in teaching and learning History of Architecture. This research was finished in 2013 and is one of the first studies conducted nationwide in Mexico that analysis the educational infrastructure impact in learning architecture; its objective was to identify which elements of the educational infrastructure of Mexican Higher Education Institutes where architects are formed, hinder or contribute to the teaching and learning of History of Architecture; how and why it happens. The methodology: A mixed methodology was used combining quantitative and qualitative analysis. Different resources and strategies for data collection were used, such as questionnaires for students and teachers, interviews to architecture research experts, direct observations in Architecture classes, among others; the data collected was analyses using SPSS and MAXQDA. The veracity of the quantitative data was supported by the Cronbach’s Alpha Coefficient, obtaining a 0.86, figure that gives the data enough support. All the above enabled to certify the anthropic conflict in which Mexican Universities are. Major findings of the study: Although some of findings were probably not unknown, they haven’t been systematized and analyzed with the depth to which it’s done in this research. So, it can be said, that the educational infrastructure of most of the Higher Education Institutes studied, is a barrier to the educational process, some of the reasons are: the little morphological variation of space, the inadequate control of lighting, noise, temperature, equipment and furniture, the poor or none accessibility for disable people; as well as the absence, obsolescence and / or insufficiency of information technologies are some of the issues that generate an anthropic conflict understanding it as the trouble that teachers and students have to relate between them, in order to achieve significant learning). It is clear that most of the educational infrastructure of Mexican Higher Education Institutes is anchored to paradigms of the past; it seems that they respond to the previous era of industrialization. The results confirm that the educational infrastructure of Mexican Higher Education Institutes where architects are formed, is perceived as a "closed container" of people and data; infrastructure that becomes a barrier to teaching and learning process. Conclusion: The research results show it's time to change the paradigm in which we conceive the educational infrastructure, it’s time to stop seen it just only as classrooms, workshops, laboratories and libraries, as it must be seen from a constructive, urban, architectural and human point of view, taking into account their different dimensions: physical, technological, documental, social, among others; so the educational infrastructure can become a set of elements that organize and create spaces where ideas and thoughts can be shared; to be a social catalyst where people can interact between each other and with the space itself.

Keywords: educational infrastructure, impact of space in learning architecture outcomes, learning environments, teaching architecture, learning architecture

Procedia PDF Downloads 412
9409 Structure of Tourists’ Shopping Behavior: From the Tyranny of Hotels to Public Markets

Authors: Asmaa M. Marzouk, Abdallah M. Elshaer

Abstract:

Despite the well-recognized value of shopping as a revenue-generating resource, little effort was made to investigate what is the structure of tourists’ shopping behavior, which in turn, affect their travel experience. The purpose of this paper is to study the structure of tourists’ shopping process to better understand their shopping behavior by investigating factors that influence this activity other than hotels tyranny. This study specifically aims to propose a model incorporating those all variables. This empirical study investigates the shopping experience of international tourists using a questionnaire aimed to examine multinational samples selected from the tourist population visiting a specific destination in Egypt. This study highlights the various stakeholders that make tourists do shop independent of hotels. The results, therefore, demonstrate the relationship between the shopping process entities involved and configure the variables within the model in a way that provides a viable solution for visitors to avoid the tyranny of hotel facilities and amenities on the public markets.

Keywords: hotels’ amenities, shopping process, tourist behavior, tourist satisfaction

Procedia PDF Downloads 131
9408 The Effectiveness of a Courseware in 7th Grade Chemistry Lesson

Authors: Oguz Ak

Abstract:

In this study a courseware for the learning unit of `Properties of matters` in chemistry course is developed. The courseware is applied to 15 7th grade (about age 14) students in real settings. As a result of the study it is found that the students` grade in the learning unit significantly increased when they study the courseware themselves. In addition, the score improvements of the students who found the courseware is usable is not significantly higher than the score improvements of the students who did not found it usable.

Keywords: computer based instruction, effect of courseware and usability of courseware, 7th grade

Procedia PDF Downloads 460
9407 Enhancing Power System Resilience: An Adaptive Under-Frequency Load Shedding Scheme Incorporating PV Generation and Fast Charging Stations

Authors: Sami M. Alshareef

Abstract:

In the rapidly evolving energy landscape, the integration of renewable energy sources and the electrification of transportation are essential steps toward achieving sustainability goals. However, these advancements introduce new challenges, particularly in maintaining frequency stability due to variable photovoltaic (PV) generation and the growing demand for fast charging stations. The variability of photovoltaic (PV) generation due to weather conditions can disrupt the balance between generation and load, resulting in frequency deviations. To ensure the stability of power systems, it is imperative to develop effective under frequency load-shedding schemes. This research proposal presents an adaptive under-frequency load shedding scheme based on the power swing equation, designed explicitly for the IEEE-9 Bus Test System, that includes PV generation and fast charging stations. This research aims to address these challenges by developing an advanced scheme that dynamically disconnects fast charging stations based on power imbalances. The scheme prioritizes the disconnection of stations near affected areas to expedite system frequency stabilization. To achieve these goals, the research project will leverage the power swing equation, a widely recognized model for analyzing system dynamics during under-frequency events. By utilizing this equation, the proposed scheme will adaptively adjust the load-shedding process in real-time to maintain frequency stability and prevent power blackouts. The research findings will support the transition towards sustainable energy systems by ensuring a reliable and uninterrupted electricity supply while enhancing the resilience and stability of power systems during under-frequency events.

Keywords: load shedding, fast charging stations, pv generation, power system resilience

Procedia PDF Downloads 81
9406 Transnational Initiatives, Local Perspectives: The Potential of Australia-Asia BRIDGE School Partnerships Project to Support Teacher Professional Development in India

Authors: Atiya Khan

Abstract:

Recent research on the condition of school education in India has reaffirmed the importance of quality teacher professional development, especially in light of the rapid changes in teaching methods, learning theories, curriculum, and major shifts in information and technology that education systems are experiencing around the world. However, the quality of programs of teacher professional development in India is often uneven, in some cases non-existing. The educational authorities in India have long recognized this and have developed a range of programs to assist in-service teacher education. But, these programs have been mostly inadequate at improving the quality of teachers in India. Policy literature and reports indicate that the unevenness of these programs and more generally the lack of quality teacher professional development in India are due to factors such as a large number of teachers, budgetary constraints, top-down decision making, teacher overload, lack of infrastructure, and little or no follow-up. The disparity between the government stated goals for quality teacher professional development in India and its inability to meet the learning needs of teachers suggests that new interventions are needed. The realization that globalization has brought about an increase in the social, cultural, political and economic interconnectedness between countries has also given rise to transnational opportunities for education systems, such as India’s, aiming to build their capacity to support teacher professional development. Moreover, new developments in communication technologies seem to present a plausible means of achieving high-quality professional development for teachers through the creation of social learning spaces, such as transnational learning networks. This case study investigates the potential of one such transnational learning network to support the quality of teacher professional development in India, namely the Australia-Asia BRIDGE School Partnerships Project. It explores the participation of some fifteen teachers and their principals from BRIDGE participating schools in Delhi region of India; focusing on their professional development expectations from the BRIDGE program and account for their experiences in the program, in order to determine the program’s potential for the professional development of teachers in this study.

Keywords: case study, Australia-Asia BRIDGE Project, teacher professional development, transnational learning networks

Procedia PDF Downloads 266
9405 University of Sciences and Technology of Oran Mohamed Boudiaf (USTO-MB)

Authors: Patricia Mikchaela D. L. Feliciano, Ciela Kadeshka A. Fuentes, Bea Trixia B. Gales, Ethel Princess A. Gepulango, Martin R. Hernandez, Elina Andrea S. Lantion, Jhoe Cynder P. Legaspi, Peter F. Quilala, Gina C. Castro

Abstract:

Propolis is a resin-like material used by bees to fill large gap holes in the beehive. It has been found to possess anti-inflammatory property, which stimulates hair growth in rats by inducing hair keratinocytes proliferation, causing water retention and preventing damage caused by heat, ultraviolet rays, and other microorganisms without abnormalities in hair follicles. The present study aimed to formulate 10% and 30% Propolis Hair Cream for use in enhancing hair properties. Raw propolis sample was tested for heavy metals using Atomic Absorption Spectroscopy; zinc and chromium were found to be present. Likewise, propolis was extracted in a percolator using 70% ethanol and concentrated under vacuum using a rotary evaporator. The propolis extract was analyzed for total flavonoid content. Compatibility of the propolis extract with excipients was evaluated using Differential Scanning Calorimetry (DSC). No significant changes in organoleptic properties, pH and viscosity of the formulated creams were noted after four weeks of storage at 2-8°C, 30°C, and 40°C. The formulated creams were found to be non-irritating based on the Modified Draize Rabbit Test. In vivo efficacy was evaluated based on thickness and tensile strength of hair grown on previously shaved rat skin. Results show that the formulated 30% propolis-based cream had greater hair enhancing properties than the 10% propolis cream, which had a comparable effect with minoxidil.

Keywords: atomic absorption spectroscopy, differential scanning calorimetry (DSC), modified draize rabbit test, propolis

Procedia PDF Downloads 344
9404 A New Measurement for Assessing Constructivist Learning Features in Higher Education: Lifelong Learning in Applied Fields (LLAF) Tempus Project

Authors: Dorit Alt, Nirit Raichel

Abstract:

Although university teaching is claimed to have a special task to support students in adopting ways of thinking and producing new knowledge anchored in scientific inquiry practices, it is argued that students' habits of learning are still overwhelmingly skewed toward passive acquisition of knowledge from authority sources rather than from collaborative inquiry activities.This form of instruction is criticized for encouraging students to acquire inert knowledge that can be used in instructional settings at best, however cannot be transferred into real-life complex problem settings. In order to overcome this critical inadequacy between current educational goals and instructional methods, the LLAF consortium (including 16 members from 8 countries) is aimed at developing updated instructional practices that put a premium on adaptability to the emerging requirements of present society. LLAF has created a practical guide for teachers containing updated pedagogical strategies and assessment tools, based on the constructivist approach for learning that put a premium on adaptability to the emerging requirements of present society. This presentation will be limited to teachers' education only and to the contribution of the project in providing a scale designed to measure the extent to which the constructivist activities are efficiently applied in the learning environment. A mix-method approach was implemented in two phases to construct the scale: The first phase included a qualitative content analysis involving both deductive and inductive category applications of students' observations. The results foregrounded eight categories: knowledge construction, authenticity, multiple perspectives, prior knowledge, in-depth learning, teacher- student interaction, social interaction and cooperative dialogue. The students' descriptions of their classes were formulated as 36 items. The second phase employed structural equation modeling (SEM). The scale was submitted to 597 undergraduate students. The goodness of fit of the data to the structural model yielded sufficient fit results. This research elaborates the body of literature by adding a category of in-depth learning which emerged from the content analysis. Moreover, the theoretical category of social activity has been extended to include two distinctive factors: cooperative dialogue and social interaction. Implications of these findings for the LLAF project are discussed.

Keywords: constructivist learning, higher education, mix-methodology, structural equation modeling

Procedia PDF Downloads 315
9403 Language Services as a Means of Language Repository for Tuition Support and Facilitation of Learning in Institution of Higher Learning

Authors: Mzamani Aaron Mabasa

Abstract:

The research study examines the reality that the Language Services Directorate can be considered a language repository hub. The study postulates that multilingual education guided by language policy implementation can improve student performance and pass rate. Various documents in the form of style guides, glossaries and tutorial letters may be used to enable students to understand complex words, sentences, phrases and paragraphs when technical vocabularies are used. This paper addresses the way in which quality assurance can transform South African official languages, including Sign Language, as mandated by the Language Policy for Higher Education. The paper further emphasizes that Language Services is unique in the sense that it involves all South African officials as tools for student support and facilitation of learning. This is in line with the Constitution of the Republic of South Africa (1996) and the Unisa Language Policy of 2023, which declares the status, parity and esteem of these official languages regarding usage in formal function domains, namely education, economy, social and politics. The aim of this paper is to ensure that quality assurance is ultimately accomplished in terms of teaching and learning standards. Eventually, all South African languages can be used for official domains to achieve functional multilingualism. This paper furthermore points out that content analysis as a research instrument as far as a qualitative approach is concerned may be used as a data collection technique.

Keywords: repository, multilingualism, policy, education

Procedia PDF Downloads 31
9402 Using Indigenous Knowledge Systems in Teaching Early Literacy: A Case Study of Zambian Public Preschools

Authors: Ronald L. Kaunda

Abstract:

The education system in Zambia still bears scars of colonialism in the area of policy, curriculum and implementation. This historical context resulted in the failure by the Government of the Republic of Zambia to achieve literacy goals expected among school going children. Specifically, research shows that the use of English for initial literacy and Western based teaching methods to engage learners in literacy activities at lower levels of education including preschool has exacerbated this situation. In 2014, the Government of the Republic of Zambia implemented a new curriculum that, among others things, required preschool teachers to use local and cultural materials and familiar languages for early literacy teaching from preschool to grade 4. This paper presents findings from a study that sought to establish ways in which preschool teachers use Zambian Indigenous knowledge systems and Indigenous teaching strategies to support literacy development among preschool children. The study used Indigenous research methodology for data collection and iterative feature of Constructivist Grounded Theory (CGT) in the data collection process and analysis. This study established that, as agents of education, preschool teachers represented community adult educators because of some roles which they played beyond their academic mandate. The study further found that classrooms as venues of learning were equipped with learning corners reflecting Indigenous literacy materials and Indigenous ways of learning. Additionally, the study found that learners were more responsive to literacy lessons because of the use of familiar languages and local contextualized environments that supported their own cultural ways of learning. The study recommended that if the education system in Zambia is to be fully inclusive of Indigenous knowledge systems and cultural ways of learning, the education policy and curriculum should include conscious steps on how this should be implemented at the classroom level. The study further recommended that more diverse local literacy materials and teaching aids should be produced for use in the classroom.

Keywords: agents of learning, early literacy, indigenous knowledge systems, venues of education

Procedia PDF Downloads 166
9401 The Role of Urban Agriculture in Enhancing Food Supply and Export Potential: A Case Study of Neishabour, Iran

Authors: Mohammadreza Mojtahedi

Abstract:

Rapid urbanization presents multifaceted challenges, including environmental degradation and public health concerns. As the inevitability of urban sprawl continues, it becomes essential to devise strategies to alleviate its pressures on natural ecosystems and elevate socio-economic benchmarks within cities. This research investigates urban agriculture's economic contributions, emphasizing its pivotal role in food provisioning and export potential. Adopting a descriptive-analytical approach, field survey data was primarily collected via questionnaires. The tool's validity was affirmed by expert opinions, and its reliability secured by achieving a Cronbach's alpha score over 0.70 from 30 preliminary questionnaires. The research encompasses Neishabour's populace of 264,375, extracting a sample size of 384 via Cochran's formula. Findings reveal the significance of urban agriculture in food supply and its potential for exports, underlined by a p-value < 0.05. Neishabour's urban farming can augment the export of organic commodities, fruits, vegetables, ornamental plants, and foster product branding. Moreover, it supports the provision of fresh produce, bolstering dietary quality. Urban agriculture further impacts urban development metrics—enhancing environmental quality, job opportunities, income levels, and aesthetics, while promoting rainwater utilization. Popular cultivations include peaches, Damask roses, and poultry, tailored to available spaces. Structural equation modeling indicates urban agriculture's overarching influence, accounting for a 56% variance, predominantly in food sufficiency and export proficiency.

Keywords: urban agriculture, food supply, export potential, urban development, environmental health, structural equation modeling

Procedia PDF Downloads 56
9400 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles

Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi

Abstract:

Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.

Keywords: artificial neural networks, fuel consumption, friedman test, machine learning, statistical hypothesis testing

Procedia PDF Downloads 178
9399 Braille Lab: A New Design Approach for Social Entrepreneurship and Innovation in Assistive Tools for the Visually Impaired

Authors: Claudio Loconsole, Daniele Leonardis, Antonio Brunetti, Gianpaolo Francesco Trotta, Nicholas Caporusso, Vitoantonio Bevilacqua

Abstract:

Unfortunately, many people still do not have access to communication, with specific regard to reading and writing. Among them, people who are blind or visually impaired, have several difficulties in getting access to the world, compared to the sighted. Indeed, despite technology advancement and cost reduction, nowadays assistive devices are still expensive such as Braille-based input/output systems which enable reading and writing texts (e.g., personal notes, documents). As a consequence, assistive technology affordability is fundamental in supporting the visually impaired in communication, learning, and social inclusion. This, in turn, has serious consequences in terms of equal access to opportunities, freedom of expression, and actual and independent participation to a society designed for the sighted. Moreover, the visually impaired experience difficulties in recognizing objects and interacting with devices in any activities of daily living. It is not a case that Braille indications are commonly reported only on medicine boxes and elevator keypads. Several software applications for the automatic translation of written text into speech (e.g., Text-To-Speech - TTS) enable reading pieces of documents. However, apart from simple tasks, in many circumstances TTS software is not suitable for understanding very complicated pieces of text requiring to dwell more on specific portions (e.g., mathematical formulas or Greek text). In addition, the experience of reading\writing text is completely different both in terms of engagement, and from an educational perspective. Statistics on the employment rate of blind people show that learning to read and write provides the visually impaired with up to 80% more opportunities of finding a job. Especially in higher educational levels, where the ability to digest very complex text is key, accessibility and availability of Braille plays a fundamental role in reducing drop-out rate of the visually impaired, thus affecting the effectiveness of the constitutional right to get access to education. In this context, the Braille Lab project aims at overcoming these social needs by including affordability in designing and developing assistive tools for visually impaired people. In detail, our awarded project focuses on a technology innovation of the operation principle of existing assistive tools for the visually impaired leaving the Human-Machine Interface unchanged. This can result in a significant reduction of the production costs and consequently of tool selling prices, thus representing an important opportunity for social entrepreneurship. The first two assistive tools designed within the Braille Lab project following the proposed approach aims to provide the possibility to personally print documents and handouts and to read texts written in Braille using refreshable Braille display, respectively. The former, named ‘Braille Cartridge’, represents an alternative solution for printing in Braille and consists in the realization of an electronic-controlled dispenser printing (cartridge) which can be integrated within traditional ink-jet printers, in order to leverage the efficiency and cost of the device mechanical structure which are already being used. The latter, named ‘Braille Cursor’, is an innovative Braille display featuring a substantial technology innovation by means of a unique cursor virtualizing Braille cells, thus limiting the number of active pins needed for Braille characters.

Keywords: Human rights, social challenges and technology innovations, visually impaired, affordability, assistive tools

Procedia PDF Downloads 273
9398 Survey Study of Integrative and Instrumental Motivation in English Language Learning of First Year Students at Naresuan University International College (NUIC), Thailand

Authors: Don August G. Delgado

Abstract:

Foreign Language acquisition without enough motivation is tough because it is the force that drives students’ interest or enthusiasm to achieve learning. In addition, it also serves as the students’ beacon to achieve their goals, desires, dreams, and aspirations in life. Since it plays an integral factor in language learning acquisition, this study focuses on the integrative and instrumental motivation levels of all the first year students of Naresuan University International College. The identification of their motivation level and inclination in learning the English language will greatly help all NUIC lecturers and administrators to create a project or activities that they will truly enjoy and find worth doing. However, if the findings of this study will say otherwise, this study can also show to NUIC lecturers and administrators how they can help and transform NUIC freshmen on becoming motivated learners to enhance their English proficiency levels. All respondents in this study received an adopted and developed questionnaire from different researches in the same perspective. The questionnaire has 24 questions that were randomly arranged; 12 for integrative motivation and 12 for instrumental motivation. The questionnaire employed the five-point Likert scale. The tabulated data were analyzed according to its means and standard deviations using the Standard Deviation Calculator. In order to interpret the motivation level of the respondents, the Interpretation of Mean Scores was utilized. Thus, this study concludes that majority of the NUIC freshmen are neither integratively motivated nor instrumentally motivated students.

Keywords: motivation, integrative, foreign language acquisition, instrumental

Procedia PDF Downloads 228
9397 A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs Based on Machine Learning Algorithms

Authors: Kottaridi Klimentia, Demopoulos Vasilis, Sidiropoulos Anastasios, Ihara Diego, Nikolaidis Vasileios, Antonopoulos Dimitrios

Abstract:

Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity, and aflatoxinogenic capacity of the strains, topography, soil, and climate parameters of the fig orchards, are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive, and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), the concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P, and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques, i.e., dimensionality reduction on the original dataset (principal component analysis), metric learning (Mahalanobis metric for clustering), and k-nearest neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson correlation coefficient (PCC) between observed and predicted values.

Keywords: aflatoxins, Aspergillus spp., dried figs, k-nearest neighbors, machine learning, prediction

Procedia PDF Downloads 184
9396 Indigenous Learning of Animal Metaphors: The ‘Big Five’ in King Shaka’s Praise-Poems

Authors: Ntandoni Gloria Biyela

Abstract:

During traditional times, there were no formal institutions of learning as they are today, where children attend classes to acquire or develop knowledge. This does not mean that there was no learning in indigenous African societies. Grandparents used to tell their grandchildren stories or teach them educational games around the fireplace, which this study refers to as a ‘traditional classroom’. A story recreated in symbolic or allegorical way, forms a base for a society’s beliefs, customs, accepted norms and language learning. Through folklore narratives, a society develops its own self awareness and education. So narrative characters, especially animals may be mythical products of the pre-literate folklore world and thus show the closeness that the Zulu society had with the wildlife. Oral cultures strive to create new facets of meaning by the use of animal metaphors to reflect the relationship of humans with the animal realm and to contribute to the language learning or literature in cross-cultural studies. Although animal metaphors are widespread in Zulu language because of the Zulu nation’s traditional closeness to wildlife, little field-research has been conducted on the social behavior of animals on the way in which their characteristics were transferred with precision to depictions of King Shaka’s behavior and activities during the amalgamation of Nguni clans into a Zulu kingdom. This study attempts to fill the gap by using first-hand interviews with local informants in areas traditionally linked to the king in KwaZulu-Natal province, South Africa. Departing from the conceptual metaphor theory, the study concentrates on King Shaka’s praise-poems in which the praise-poet describes his physical and dispositional characteristics through bold animal metaphors of the ‘Big Five’; namely, the lion, the leopard, the buffalo, the rhinoceros and the elephant, which are often referred to as Zulu royal favorites. These metaphors are still learnt by young and old in the 21st century because they reflect the responsibilities, status, and integrity of the king and the respect in which he is held by his people. They also project the crescendo growth of the Zulu nation, which, through the fulfillment of his ambitions, grew from a small clan to a mighty kingdom.

Keywords: animal, indigenous, learning, metaphor

Procedia PDF Downloads 266
9395 Identifying Degradation Patterns of LI-Ion Batteries from Impedance Spectroscopy Using Machine Learning

Authors: Yunwei Zhang, Qiaochu Tang, Yao Zhang, Jiabin Wang, Ulrich Stimming, Alpha Lee

Abstract:

Forecasting the state of health and remaining useful life of Li-ion batteries is an unsolved challenge that limits technologies such as consumer electronics and electric vehicles. Here we build an accurate battery forecasting system by combining electrochemical impedance spectroscopy (EIS) -- a real-time, non-invasive and information-rich measurement that is hitherto underused in battery diagnosis -- with Gaussian process machine learning. We collect over 20,000 EIS spectra of commercial Li-ion batteries at different states of health, states of charge and temperatures -- the largest dataset to our knowledge of its kind. Our Gaussian process model takes the entire spectrum as input, without further feature engineering, and automatically determines which spectral features predict degradation. Our model accurately predicts the remaining useful life, even without complete knowledge of past operating conditions of the battery. Our results demonstrate the value of EIS signals in battery management systems.

Keywords: battery degradation, machine learning method, electrochemical impedance spectroscopy, battery diagnosis

Procedia PDF Downloads 148
9394 Summer STEM Camp for Elementary Students: A Conduit to Pre-Service Teacher Training to Learn How to Include a Makerspace for an Inclusive Classroom

Authors: Jennifer Gallup, Beverly Ray, Esther Ntuli

Abstract:

Many students such as students from linguistically or culturally diverse backgrounds and those with a disability remain chronically underrepresented in higher level science and mathematics disciplines as well as many hands-on-lab-based activities due to the need for remedial reading and mathematics instruction. Makerspace labs can be a conduit for supporting inclusive learning for these students through hands-on active learning strategies that support equitable access to STEM disciplines. Makerspace is a physical space where individuals gather to create, invent, innovate, and learn while using hands-on materials such as 2D and 3D printers, software programs, electronics, and other tools and supplies. Makerspaces are emerging across many P-12 settings; however, many teachers enter the field not prepared to harness the power inherent in a makerspace, especially for those with disabilities and differing needs. This paper offers suggestions on teaching pre-service teachers and practicing teachers how to incorporate a makerspace into their professional practice through guided instruction and hands-on practice. Recommendations for interested stakeholders are included as well.

Keywords: STEM learning, technology, autism, students with disabilities, makerspace

Procedia PDF Downloads 95
9393 R Data Science for Technology Management

Authors: Sunghae Jun

Abstract:

Technology management (TM) is important issue in a company improving the competitiveness. Among many activities of TM, technology analysis (TA) is important factor, because most decisions for management of technology are decided by the results of TA. TA is to analyze the developed results of target technology using statistics or Delphi. TA based on Delphi is depended on the experts’ domain knowledge, in comparison, TA by statistics and machine learning algorithms use objective data such as patent or paper instead of the experts’ knowledge. Many quantitative TA methods based on statistics and machine learning have been studied, and these have been used for technology forecasting, technological innovation, and management of technology. They applied diverse computing tools and many analytical methods case by case. It is not easy to select the suitable software and statistical method for given TA work. So, in this paper, we propose a methodology for quantitative TA using statistical computing software called R and data science to construct a general framework of TA. From the result of case study, we also show how our methodology is applied to real field. This research contributes to R&D planning and technology valuation in TM areas.

Keywords: technology management, R system, R data science, statistics, machine learning

Procedia PDF Downloads 458
9392 Songwriting in the Postdigital Age: Using TikTok and Instagram as Online Informal Learning Technologies

Authors: Matthias Haenisch, Marc Godau, Julia Barreiro, Dominik Maxelon

Abstract:

In times of ubiquitous digitalization and the increasing entanglement of humans and technologies in musical practices in the 21st century, it is to be asked, how popular musicians learn in the (post)digital Age. Against the backdrop of the increasing interest in transferring informal learning practices into formal settings of music education the interdisciplinary research association »MusCoDA – Musical Communities in the (Post)Digital Age« (University of Erfurt/University of Applied Sciences Clara Hoffbauer Potsdam, funded by the German Ministry of Education and Research, pursues the goal to derive an empirical model of collective songwriting practices from the study of informal lelearningf songwriters and bands that can be translated into pedagogical concepts for music education in schools. Drawing on concepts from Community of Musical Practice and Actor Network Theory, lelearnings considered not only as social practice and as participation in online and offline communities, but also as an effect of heterogeneous networks composed of human and non-human actors. Learning is not seen as an individual, cognitive process, but as the formation and transformation of actor networks, i.e., as a practice of assembling and mediating humans and technologies. Based on video stimulated recall interviews and videography of online and offline activities, songwriting practices are followed from the initial idea to different forms of performance and distribution. The data evaluation combines coding and mapping methods of Grounded Theory Methodology and Situational Analysis. This results in network maps in which both the temporality of creative practices and the material and spatial relations of human and technological actors are reconstructed. In addition, positional analyses document the power relations between the participants that structure the learning process of the field. In the area of online informal lelearninginitial key research findings reveal a transformation of the learning subject through the specific technological affordances of TikTok and Instagram and the accompanying changes in the learning practices of the corresponding online communities. Learning is explicitly shaped by the material agency of online tools and features and the social practices entangled with these technologies. Thus, any human online community member can be invited to directly intervene in creative decisions that contribute to the further compositional and structural development of songs. At the same time, participants can provide each other with intimate insights into songwriting processes in progress and have the opportunity to perform together with strangers and idols. Online Lelearnings characterized by an increase in social proximity, distribution of creative agency and informational exchange between participants. While it seems obvious that traditional notions not only of lelearningut also of the learning subject cannot be maintained, the question arises, how exactly the observed informal learning practices and the subject that emerges from the use of social media as online learning technologies can be transferred into contexts of formal learning

Keywords: informal learning, postdigitality, songwriting, actor-network theory, community of musical practice, social media, TikTok, Instagram, apps

Procedia PDF Downloads 126
9391 Improved Computational Efficiency of Machine Learning Algorithm Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK

Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick

Abstract:

The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning archetypal that could forecast COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organisation (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data is split into 8:2 ratio for training and testing purposes to forecast future new COVID cases. Support Vector Machines (SVM), Random Forests, and linear regression algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID cases is evaluated. Random Forest outperformed the other two Machine Learning algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n=30. The mean square error obtained for Random Forest is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis Random Forest algorithm can perform more effectively and efficiently in predicting the new COVID cases, which could help the health sector to take relevant control measures for the spread of the virus.

Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest

Procedia PDF Downloads 121
9390 Measurement and Evaluation Patterns Practiced by Physical Education Teachers in North Badia in Jordan

Authors: Aman Kasawneh, Wasfi Khazalah, Abedalbasit Abedalhafiz

Abstract:

This study aimed to identify the patterns of measurement and evaluation practiced by physical education in the schools of North Badia in Jordan, as well as identifying the statistical differences according to gender, educational qualification, and the experience. The sample consisted of 118 physical education teachers 58 males and 60 females chosen randomly from the schools of North Badia in Jordan. The completed a questionnaire developed by the researchers after verifying its validity and reliability. The results indicated a clear weakness in the practice of measurement and evaluation patterns by physical education teachers. Also no significant differences were found between male and female teachers, however, significant differences were found between bachelor degree holders and their counter parts and between teachers with less than eight years of experience. The researchers recommended the necessity of preparing the P.E teachers regarding the patterns of measurement and evaluation within the sport field as one of the essentials for improving and developing physical education at schools.

Keywords: evaluation, measurement, evaluation, physical education teacher, Jordanian

Procedia PDF Downloads 461