Search results for: sodium carbonate surface
4433 Carbon Dioxide Removal from Off Gases in a Self-Priming Submerged Venturi Scrubber
Authors: Manisha Bal, Amit Verma, B. C. Meikap
Abstract:
Carbon dioxide (CO₂) is the most abundant waste produced by human activities. It is estimated to be one of the major contributors of greenhouse effect and also considered as a major air pollutant formed by burning of fossil fuels. The main sources of emissions are flue gas from thermal power plants and process industries. It is also a contributor of acid rain. Its exposure through inhalation can lead to health risks. Therefore, control of CO₂ emission in the environment is very necessary. The main focus of this study is on the removal of carbon dioxide from off gases using a self-priming venturi scrubber in submerged conditions using sodium hydroxide as the scrubbing liquid. A self-priming submerged venturi scrubber is an efficient device to remove gaseous pollutants. In submerged condition, venturi scrubber remains submerged in the liquid tank and the liquid enters at the throat section of venturi scrubber due to the pressure difference which includes the hydrostatic pressure of the liquid and static pressure of the gas. The inlet polluted air stream enters through converging section which moves at very high velocity in the throat section and atomizes the liquid droplets. This leads to absorption of CO₂ from the off gases in scrubbing liquid which resulted in removal of CO₂ gas from the off gases. Detailed investigation on the scrubbing of carbon dioxide has been done in this literature. Experiments were conducted at different throat gas velocities, liquid levels in outer cylinder and CO₂ inlet concentrations to study the carbon dioxide removal efficiency. Experimental results give more than 95% removal efficiency of CO₂ in the self priming venturi scrubber which can meet the environmental emission limit of CO₂ to save the human life.Keywords: carbon dioxide, scrubbing, pollution control, self-priming venturi scrubber
Procedia PDF Downloads 2234432 Effect of High-Energy Ball Milling on the Electrical and Piezoelectric Properties of (K0.5Na0.5)(Nb0.9Ta0.1)O3 Lead-Free Piezoceramics
Authors: Chongtham Jiten, K. Chandramani Singh, Radhapiyari Laishram
Abstract:
Nanocrystalline powders of the lead-free piezoelectric material, tantalum-substituted potassium sodium niobate (K0.5Na0.5)(Nb0.9Ta0.1)O3 (KNNT), were produced using a Retsch PM100 planetary ball mill by setting the milling time to 15h, 20h, 25h, 30h, 35h and 40h, at a fixed speed of 250rpm. The average particle size of the milled powders was found to decrease from 12nm to 3nm as the milling time increases from 15h to 25h, which is in agreement with the existing theoretical model. An anomalous increase to 98nm and then a drop to 3nm in the particle size were observed as the milling time further increases to 30h and 40h respectively. Various sizes of these starting KNNT powders were used to investigate the effect of milling time on the microstructure, dielectric properties, phase transitions and piezoelectric properties of the resulting KNNT ceramics. The particle size of starting KNNT was somewhat proportional to the grain size. As the milling time increases from 15h to 25h, the resulting ceramics exhibit enhancement in the values of relative density from 94.8% to 95.8%, room temperature dielectric constant (εRT) from 878 to 1213, and piezoelectric charge coefficient (d33) from 108pC/N to 128pC/N. For this range of ceramic samples, grain size refinement suppresses the maximum dielectric constant (εmax), shifts the Curie temperature (Tc) to a lower temperature and the orthorhombic-tetragonal phase transition (Tot) to a higher temperature. Further increase of milling time from 25h to 40h produces a gradual degradation in the values of relative density, εRT, and d33 of the resulting ceramics.Keywords: perovskite, dielectric, ceramics, high-energy milling
Procedia PDF Downloads 3264431 Sensitivity Enhancement of Photonic Crystal Fiber Biosensor
Authors: Mohamed Farhat O. Hameed, Yasamin K. A. Alrayk, A. A Shaalan, S. S. A. Obayya
Abstract:
The surface plasmon resonance (SPR) sensors are widely used due to its high sensitivity with molecular labels free. The commercial SPR sensors depend on the conventional prism-coupled configuration. However, this type of configuration suffers from miniaturization and integration. Therefore, the search for compact, portable and highly sensitive SPR sensors becomes mandatory.In this paper, sensitivity enhancement of a novel photonic crystal fiber biosensoris introduced and studied. The suggested design has microstructure of air holes in the core region surrounded by two large semicircular metallized channels filled with the analyte. The inner surfaces of the two channels are coated by a silver layer followed by a gold layer.The simulation results are obtained using full vectorial finite element methodwith perfect matched layer (PML) boundary conditions. The proposed design depends on bimetallic configuration to enhance the biosensor sensitivity. Additionally, the suggested biosensor can be used for multi-channel/multi-analyte sensing. In this study, the sensor geometrical parameters are studied to maximize the sensitivity for the two polarized modes. The numerical results show that high refractive index sensitivity of 4750 nm/RIU (refractive index unit) and 4300 nm/RIU can be achieved for the quasi (transverse magnetic) TM and quasi (transverse electric) TE modes of the proposed biosensor, respectively. The reportedbiosensor has advantages of integration of microfluidics setup, waveguide and metallic layers into a single structure. As a result, compact biosensor with better integration compared to conventional optical fiber SPR biosensors can be obtained.Keywords: photonic crystal fibers, gold, silver, surface plasmon, biosensor
Procedia PDF Downloads 3814430 Sensory Characteristics of White Chocolate Enriched with Encapsulated Raspberry Juice
Authors: Ivana Loncarevic, Biljana Pajin, Jovana Petrovic, Danica Zaric, Vesna Tumbas Saponjac, Aleksandar Fistes
Abstract:
Chocolate is a food that activates pleasure centers in the human brain. In comparison to black and milk chocolate, white chocolate does not contain fat-free cocoa solids and thus lacks bioactive components. The aim of this study was to examine the sensory characteristics of enriched white chocolate with the addition of 10% of raspberry juice encapsulated in maltodextrins (denoted as encapsulate). Chocolate is primarily intended for enjoyment, and therefore, the sensory expectation is a critical factor for consumers when selecting a new type of chocolate. Consumer acceptance of chocolate depends primarily on the appearance and taste, but also very much on the mouthfeel, which mainly depends on the particle size of chocolate. Chocolate samples were evaluated by a panel of 8 trained panelists, food technologists, trained according to ISO 8586 (2012). Panelists developed the list of attributes to be used in this study: intensity of red color (light to dark); glow on the surface (mat to shiny); texture on snap (appearance of cavities or holes on the snap surface that are seen - even to gritty); hardness (hardness felt during the first bite of chocolate sample in half by incisors - soft to hard); melting (the time needed to convert solid chocolate into a liquid state – slowly to quickly); smoothness (perception of evenness of chocolate during melting - very even to very granular); fruitiness (impression of fruity taste - light fruity notes to distinct fruity notes); sweetness (organoleptic characteristic of pure substance or mixture giving sweet taste - lightly sweet to very sweet). The chocolate evaluation was carried out 24 h after sample preparation in the sensory laboratory, in partitioned booths, which were illuminated with fluorescent lights (ISO 8589, 2007). Samples were served in white plastic plates labeled with three-digit codes from a random number table. Panelist scored the perceived intensity of each attribute using a 7-point scale (1 = the least intensity and 7 = the most intensity) (ISO 4121, 2002). The addition of 10% of encapsulate had a big influence on chocolate color, where enriched chocolate got a nice reddish color. At the same time, the enriched chocolate sample had less intensity of gloss on the surface. The panelists noticed that addition of encapsulate reduced the time needed to convert solid chocolate into a liquid state, increasing its hardness. The addition of encapsulate had a significant impact on chocolate flavor. It reduced the sweetness of white chocolate and contributed to the fruity raspberry flavor.Keywords: white chocolate, encapsulated raspberry juice, color, sensory characteristics
Procedia PDF Downloads 1604429 Prevalence of Antibiotic Resistant Enterococci in Treated Wastewater Effluent in Durban, South Africa and Characterization of Vancomycin and High-Level Gentamicin-Resistant Strains
Authors: S. H. Gasa, L. Singh, B. Pillay, A. O. Olaniran
Abstract:
Wastewater treatment plants (WWTPs) have been implicated as the leading reservoir for antibiotic resistant bacteria (ARB), including Enterococci spp. and antibiotic resistance genes (ARGs), worldwide. Enterococci are a group of clinically significant bacteria that have gained much attention as a result of their antibiotic resistance. They play a significant role as the principal cause of nosocomial infections and dissemination of antimicrobial resistance genes in the environment. The main objective of this study was to ascertain the role of WWTPs in Durban, South Africa as potential reservoirs for antibiotic resistant Enterococci (ARE) and their related ARGs. Furthermore, the antibiogram and resistance gene profile of Enterococci species recovered from treated wastewater effluent and receiving surface water in Durban were also investigated. Using membrane filtration technique, Enterococcus selective agar and selected antibiotics, ARE were enumerated in samples (influent, activated sludge, before chlorination and final effluent) collected from two WWTPs, as well as from upstream and downstream of the receiving surface water. Two hundred Enterococcus isolates recovered from the treated effluent and receiving surface water were identified by biochemical and PCR-based methods, and their antibiotic resistance profiles determined by the Kirby-Bauer disc diffusion assay, while PCR-based assays were used to detect the presence of resistance and virulence genes. High prevalence of ARE was obtained at both WWTPs, with values reaching a maximum of 40%. The influent and activated sludge samples contained the greatest prevalence of ARE with lower values observed in the before and after chlorination samples. Of the 44 vancomycin and high-level gentamicin-resistant isolates, 11 were identified as E. faecium, 18 as E. faecalis, 4 as E. hirae while 11 are classified as “other” Enterococci species. High-level aminoglycoside resistance for gentamicin (39%) and vancomycin (61%) was recorded in species tested. The most commonly detected virulence gene was the gelE (44%), followed by asa1 (40%), while cylA and esp were detected in only 2% of the isolates. The most prevalent aminoglycoside resistance genes were aac(6')-Ie-aph(2''), aph(3')-IIIa, and ant(6')-Ia detected in 43%, 45% and 41% of the isolates, respectively. Positive correlation was observed between resistant phenotypes to high levels of aminoglycosides and presence of all aminoglycoside resistance genes. Resistance genes for glycopeptide: vanB (37%) and vanC-1 (25%), and macrolide: ermB (11%) and ermC (54%) were detected in the isolates. These results show the need for more efficient wastewater treatment and disposal in order to prevent the release of virulent and antibiotic resistant Enterococci species and safeguard public health.Keywords: antibiogram, enterococci, gentamicin, vancomycin, virulence signatures
Procedia PDF Downloads 2204428 The Complex Relationship Between IQ and Attention Deficit Hyperactivity Disorder Symptoms: Insights From Behaviors, Cognition, and Brain in 5,138 Children With Attention Deficit Hyperactivity Disorder
Authors: Ningning Liu, Gaoding Jia, Yinshan Wang, Haimei Li, Xinian Zuo, Yufeng Wang, Lu Liu, Qiujin Qian
Abstract:
Background: There has been speculation that a high IQ may not necessarily provide protection against attention deficit hyperactivity disorder (ADHD), and there may be a U-shaped correlation between IQ and ADHD symptoms. However, this speculation has not been validated in the ADHD population in any study so far. Method: We conducted a study with 5,138 children who have been professionally diagnosed with ADHD and have a wide range of IQ levels. General Linear Models were used to determine the optimal model between IQ and ADHD core symptoms with sex and age as covariates. The ADHD symptoms we looked at included the total scores (TO), inattention (IA) and hyperactivity/impulsivity (HI). Wechsler Intelligence scale were used to assess IQ [Full-Scale IQ (FSIQ), Verbal IQ (VIQ), and Performance IQ (PIQ)]. Furthermore, we examined the correlation between IQ and the execution function [Behavior Rating Inventory of Executive Function (BRIEF)], as well as between IQ and brain surface area, to determine if the associations between IQ and ADHD symptoms are reflected in executive functions and brain structure. Results: Consistent with previous research, the results indicated that FSIQ and VIQ both showed a linear negative correlation with the TO and IA scores of ADHD. However, PIQ showed an inverted U-shaped relationship with the TO and HI scores of ADHD, with 103 as the peak point. These findings were also partially reflected in the relationship between IQ and executive functions, as well as IQ and brain surface area. Conclusion: To sum up, the relationship between IQ and ADHD symptoms is not straightforward. Our study confirms long-standing academic hypotheses and finds that PIQ exhibits an inverted U-shaped relationship with ADHD symptoms. This study enhances our understanding of symptoms and behaviors of ADHD with varying IQ characteristics and provides some evidence for targeted clinical intervention.Keywords: ADHD, IQ, execution function, brain imaging
Procedia PDF Downloads 664427 Quince Seed Mucilage (QSD)/ Multiwall Carbonano Tube Hybrid Hydrogels as Novel Controlled Drug Delivery Systems
Authors: Raouf Alizadeh, Kadijeh Hemmati
Abstract:
The aim of this study is to synthesize several series of hydrogels from combination of a natural based polymer (Quince seed mucilage QSD), a synthetic copolymer contained methoxy poly ethylene glycol -polycaprolactone (mPEG-PCL) in the presence of different amount of multi-walled carbon nanotube (f-MWNT). Mono epoxide functionalized mPEG (mP EG-EP) was synthesized and reacted with sodium azide in the presence of NH4Cl to afford mPEG- N3(-OH). Then ring opening polymerization (ROP) of ε–caprolactone (CL) in the presence of mPEG- N3(-OH) as initiator and Sn(Oct)2 as catalyst led to preparation of mPEG-PCL- N3(-OH ) which was grafted onto propagylated f-MWNT by the click reaction to obtain mPEG-PCL- f-MWNT (-OH ). In the presence of mPEG- N3(-Br) and mixture of NHS/DCC/ QSD, hybrid hydrogels were successfully synthesized. The copolymers and hydrogels were characterized using different techniques such as, scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The gel content of hydrogels showed dependence on the weight ratio of QSD:mPEG-PCL:f-MWNT. The swelling behavior of the prepared hydrogels was also studied under variation of pH, immersion time, and temperature. According to the results, the swelling behavior of the prepared hydrogels showed significant dependence in the gel content, pH, immersion time and temperature. The highest swelling was observed at room temperature, in 60 min and at pH 8. The loading and in-vitro release of quercetin as a model drug were investigated at pH of 2.2 and 7.4, and the results showed that release rate at pH 7.4 was faster than that at pH 2.2. The total loading and release showed dependence on the network structure of hydrogels and were in the range of 65- 91%. In addition, the cytotoxicity and release kinetics of the prepared hydrogels were also investigated.Keywords: antioxidant, drug delivery, Quince Seed Mucilage(QSD), swelling behavior
Procedia PDF Downloads 3214426 Bioelectronic System for Continuous Monitoring of Cardiac Activity of Benthic Invertebrates for the Assessment of a Surface Water Quality
Authors: Sergey Kholodkevich, Tatiana Kuznetsova
Abstract:
The objective assessment of ecological state of water ecosystems is impossible without the use of biological methods of the environmental monitoring capable in the integrated look to reveal negative for biota changes of quality of water as habitats. Considerable interest for the development of such methods of environmental quality control represents biomarker approach. Measuring systems, by means of which register cardiac activity characteristics, received the name of bioelectronic. Bioelectronic systems are information and measuring systems in which animals (namely, benthic invertebrates) are directly included in structure of primary converters, being an integral part of electronic system of registration of these or those physiological or behavioural biomarkers. As physiological biomarkers various characteristics of cardiac activity of selected invertebrates have been used in bioelectronic system.lChanges in cardiac activity are considered as integrative measures of the physiological condition of organisms, which reflect the state of the environment of their dwelling. Greatest successes in the development of tools of biological methods and technologies of an assessment of surface water quality in real time. Essential advantage of bioindication of water quality by such tool is a possibility of an integrated assessment of biological effects of pollution on biota and also the expressness of such method and used approaches. In the report the practical experience of authors in biomonitoring and bioindication of an ecological condition of sea, brackish- and freshwater areas is discussed. Authors note that the method of non-invasive cardiac activity monitoring of selected invertebrates can be used not only for the advancement of biomonitoring, but also is useful in decision of general problems of comparative physiology of the invertebrates.Keywords: benthic invertebrates, physiological state, heart rate monitoring, water quality assessment
Procedia PDF Downloads 7194425 Benefits of Monitoring Acid Sulfate Potential of Coffee Rock (Indurated Sand) across Entire Dredge Cycle in South East Queensland
Authors: S. Albert, R. Cossu, A. Grinham, C. Heatherington, C. Wilson
Abstract:
Shipping trends suggest increasing vessel size and draught visiting Australian ports highlighting potential challenges to port infrastructure and requiring optimization of shipping channels to ensure safe passage for vessels. The Port of Brisbane in Queensland, Australia has an 80 km long access shipping channel which vessels must transit 15 km of relatively shallow coffee rock (generic class of indurated sands where sand grains are bound within an organic clay matrix) outcrops towards the northern passage in Moreton Bay. This represents a risk to shipping channel deepening and maintenance programs as the dredgeability of this material is more challenging due to its high cohesive strength compared with the surrounding marine sands and potential higher acid sulfate risk. In situ assessment of acid sulfate sediment for dredge spoil control is an important tool in mitigating ecological harm. The coffee rock in an anoxic undisturbed state does not pose any acid sulfate risk, however when disturbed via dredging it’s vital to ensure that any present iron sulfides are either insignificant or neutralized. To better understand the potential risk we examined the reduction potential of coffee rock across the entire dredge cycle in order to accurately portray the true outcome of disturbed acid sulfate sediment in dredging operations in Moreton Bay. In December 2014 a dredge trial was undertaken with a trailing suction hopper dredger. In situ samples were collected prior to dredging revealed acid sulfate potential above threshold guidelines which could lead to expensive dredge spoil management. However, potential acid sulfate risk was then monitored in the hopper and subsequent discharge, both showing a significant reduction in acid sulfate potential had occurred. Additionally, the acid neutralizing capacity significantly increased due to the inclusion of shell fragments (calcium carbonate) from the dredge target areas. This clearly demonstrates the importance of assessing potential acid sulfate risk across the entire dredging cycle and highlights the need to carefully evaluate sources of acidity.Keywords: acid sulfate, coffee rock, indurated sand, dredging, maintenance dredging
Procedia PDF Downloads 3684424 Clinical Profile and Outcome of Type I Diabetes Mellitus at a Tertiary Care-Centre in Eastern Nepal
Authors: Gauri Shankar Shah
Abstract:
Objectives: The Type I diabetes mellitus in children is frequently a missed diagnosis and children presents in emergency with diabetic ketoacidosis having significant morbidity and mortality. The present study was done to find out the clinical presentation and outcome at a tertiary-care centre. Methods: This was retrospective analysis of data of Type I diabetes mellitus reporting to our centre during last one year (2012-2013). Results: There were 12 patients (8 males) and the age group was 4-14 years (mean ± 3.7). The presenting symptoms were fever, vomiting, altered sensorium and fast breathing in 8 (66.6%), 6 (50%), 4 (33.3%), and 4 (33.3%) cases, respectively. The classical triad of polyuria, polydypsia, and polyphagia were present only in two patients (33.2%). Seizures and epigastric pain were found in two cases each (33.2%). The four cases (33.3%) presented with diabetic ketoacidosis due to discontinuation of insulin doses, while 2 had hyperglycemia alone. The hemogram revealed mean hemoglobin of 12.1± 1.6 g/dL and total leukocyte count was 22,883.3 ± 10,345.9 per mm3, with polymorphs percentage of 73.1 ± 9.0%. The mean blood sugar at presentation was 740 ± 277 mg/ dl (544–1240). HbA1c ranged between 7.1-8.8 with mean of 8.1±0.6 %. The mean sodium, potassium, blood ph, pCO2, pO2 and bicarbonate were 140.8 ± 6.9 mEq/L, 4.4 ± 1.8mEq/L, 7.0 ± 0.2, 20.2 ± 10.8 mmHg, 112.6 ± 46.5 mmHg and 9.2 ± 8.8 mEq/L, respectively. All the patients were managed in pediatric intensive care unit as per our protocol, recovered and discharged on intermediate insulin given twice daily. Conclusions: Thus, it shows that these patients have uncontrolled hyperglycemia and often presents in emergency with ketoacidosis and deranged biochemical profile. The regular administration of insulin, frequent monitoring of blood sugar and health education are required to have better metabolic control and good quality of life.Keywords: type I diabetes mellitus, hyperglycemia, outcome, glycemic control
Procedia PDF Downloads 2554423 Prolonged Synthesis of Chitin Polysaccharide from Chlorovirus System
Authors: Numfon Rakkhumkaew, Takeru Kawasaki, Makoto Fujie, Takashi Yamada
Abstract:
Chlorella viruses or chloroviruses contain a gene that encodes a function for chitin synthesis, which is expressed early in viral infection to produce chitin polysaccharide, a polymer of β-1, 4-linked GlcNAc, on the outside of Chlorella cell wall. Interestingly, chlorovirus system is an eco-friendly system which converses CO2 and solar energy from the environment into useful materials. However, infected Chlorella cells are lysed at the final stage of viral infection, and this phenomenon is caused the breaking down of polysaccharide. To postpone the lysing period and prolong the synthesis of chitin polysaccharide on cells, the slow growing virus incorporated with aphidicolin treatment, an inhibitor of DNA synthesis, was investigated. In this study, a total of 25 virus isolates from water samples in Japan region were analyzed for CHS (the gene for CH synthase) gene by PCR (polymerase chain reaction). The accumulation and appearance of chitin polysaccharide on infected cells were detected by biotinylated chitin-binding proteins WGA (wheat germ agglutinin)-biotin for chitin in conjunction with avidin-Cy 2 or Cy 3 and investigated by fluorescence microscopy, observed as green or yellow fluorescence over the cell surface. Among all chlorovirus isolates, cells infected with CNF1 revealed the accumulation of chitin over the cell surface within 30 min p.i. and continued to accumulate on cells until 4 h p.i. before cell lyses which was 1.6 times longer accumulation period than cells infected with CVK2 (prototype virus). Furthermore, addition of aphidicolin could extend the chitin accumulation on cells infected with CNF1 until 8 h p.i. before cell lyses. Whereas, CVK2-infected cells treated with aphidicolin could prolong the chitin synthesis only for 6 h p.i. before cell lyses. Therefore, chitin synthesis by Chlorella-virus system could be prolonged by using slow-growing viral isolates and with aphidicolin.Keywords: chitin, chlorovirus, Chlorella virus, aphidicolin
Procedia PDF Downloads 2144422 Explanatory Analysis the Effect of Urban Form and Monsoon on Cooling Effect of Blue-Green Spaces: A Case Study in Singapore
Authors: Yangyang Zhou
Abstract:
Rapid urbanization has caused the urban heat island effect, which will threaten the physical and mental health of urban dwellers, and blue-green spaces can mitigate the thermal environment effectively. In this study, we calculated the average LST from 2013 to 2022, Northeastmonsoon and Southwestmonsoon of Singapore, and compared the cooling effect differences of the four blue-green spaces. Then, spatial correlation and spatial autoregression model were conducted between cooling distance intensity (CDI) and 11 independent variables. The results reveal that (1) the highest mean land surface temperature (LST) in all years, Northeast monsoon and Southwest monsoon can reach 42.8 ℃, 41.6 ℃, and 42.9 ℃, respectively. (2) the temperature-changing tendency in the three time periods is similar to each other, while the overall LST changing trends of the Southwest monsoon are lower than all year and Northeast monsoon. (3) the cooling distance of the sea can reach 1200 m, and CEI is highly positively correlated with NDBI and BuildD and highly negatively correlated with SVF, NDVI and TreeH. LISA maps showed that the zones that passed the significance test between CDI, NDBI and BuildD were nearly the same locations; the same phenomenon also happened between CDI and SVF, NDVI and TreeH. (4) SLM had better regression results than SEM in all the regions; only 3 independent variables passed the significance test in region 1, and most independent variables can pass the significance test in other regions. Variables DIST and NDBI were significantly affecting the CDI in all the regions. In the whole region, all the variables passed the significance test, and NDBI (1.61), SVF (0.95) and NDVI (0.5) had the strongest influence on CDI.Keywords: cooling effect, land surface temperature, thermal environment mitigation, spatial autoregression model
Procedia PDF Downloads 284421 Synergistic Effect of Curcumin and Insulin on GLUT4 Translocation in C2C12 Cell
Authors: Javad Mohiti-Ardekani, Shabodin Asadii, Ali Moradi
Abstract:
Introduction: Curcumin, the yellow pigment in turmeric, has been shown as an anti-diabetic agent for centuries but only in recent few years, its mechanism of action has been under investigation. Some studies showed that curcumin might exert its anti-diabetic effect via increasing glucose transporter isotype-4 (GLUT4) gene and glycoprotein contents in cells. To investigate this possibility, we investigate the effects of extract and commercial curcumin with and without insulin on GLUT4 translocation from intracellular compartments of nuclear or endoplasmic reticulum membranes (N/ER) into the cytoplasmic membrane (CM). Methods and Material: C2C12 myoblastic cell line were seeded in DMEM plus 20 % FBS and differentiated to myotubes using 2 % horse serum. After myotubes formation, 40 µmolar Extract and Commercial curcumin, with or without insulin as intervention, and as control 1 % DMSO were added for 3 h. Cells were washed and homogenized followed by ultracentrifuge fractionation, protein separation by SDS-PAGE and GLUT4 detection using semi-quantitative Western blotting. Data analysis was done by two independent samples t-test for comparison of mean ± SD of GLUT4 percent in categories. GLUT4 contents were higher in CM groups curcumin and curcumin with insulin in comparison to 1 % DMSO-treated myotubes control group. Results: As our results have shown extract and commercial curcumin induces GLUT4 translocation from intra-cell into cell surface. The results have also shown synergic effect of curcumin on translocation of GLUT4 from intra-cell into cell surface in the presence of 100 nm insulin. Discussion: We conclude that curcumin may be a choice of type-2 diabetes mellitus treatment because its extract and commercial enhances GLUT4 contents in CM where it facilitates glucose entrance into the cell. However, it is necessary to trace the signaling pathways which are activated by curcumin.Keywords: Curcumin, insulin, Diabetes type-2, GLUT4
Procedia PDF Downloads 2444420 Sedimentary, Diagenesis and Evaluation of High Quality Reservoir of Coarse Clastic Rocks in Nearshore Deep Waters in the Dongying Sag; Bohai Bay Basin
Authors: Kouassi Louis Kra
Abstract:
The nearshore deep-water gravity flow deposits in the Northern steep slope of Dongying depression, Bohai Bay basin, have been acknowledged as important reservoirs in the rift lacustrine basin. These deep strata term as coarse clastic sediment, deposit at the root of the slope have complex depositional processes and involve wide diagenetic events which made high-quality reservoir prediction to be complex. Based on the integrated study of seismic interpretation, sedimentary analysis, petrography, cores samples, wireline logging data, 3D seismic and lithological data, the reservoir formation mechanism deciphered. The Geoframe software was used to analyze 3-D seismic data to interpret the stratigraphy and build a sequence stratigraphic framework. Thin section identification, point counts were performed to assess the reservoir characteristics. The software PetroMod 1D of Schlumberger was utilized for the simulation of burial history. CL and SEM analysis were performed to reveal diagenesis sequences. Backscattered electron (BSE) images were recorded for definition of the textural relationships between diagenetic phases. The result showed that the nearshore steep slope deposits mainly consist of conglomerate, gravel sandstone, pebbly sandstone and fine sandstone interbedded with mudstone. The reservoir is characterized by low-porosity and ultra-low permeability. The diagenesis reactions include compaction, precipitation of calcite, dolomite, kaolinite, quartz cement and dissolution of feldspars and rock fragment. The main types of reservoir space are primary intergranular pores, residual intergranular pores, intergranular dissolved pores, intergranular dissolved pores, and fractures. There are three obvious anomalous high-porosity zones in the reservoir. Overpressure and early hydrocarbon filling are the main reason for abnormal secondary pores development. Sedimentary facies control the formation of high-quality reservoir, oil and gas filling preserves secondary pores from late carbonate cementation.Keywords: Bohai Bay, Dongying Sag, deep strata, formation mechanism, high-quality reservoir
Procedia PDF Downloads 1364419 A Sustainable Pt/BaCe₁₋ₓ₋ᵧZrₓGdᵧO₃ Catalyst for Dry Reforming of Methane-Derived from Recycled Primary Pt
Authors: Alessio Varotto, Lorenzo Freschi, Umberto Pasqual Laverdura, Anastasia Moschovi, Davide Pumiglia, Iakovos Yakoumis, Marta Feroci, Maria Luisa Grilli
Abstract:
Dry reforming of Methane (DRM) is considered one of the most valuable technologies for green-house gas valorization thanks to the fact that through this reaction, it is possible to obtain syngas, a mixture of H₂ and CO in an H₂/CO ratio suitable for utilization in the Fischer-Tropsch process of high value-added chemicals and fuels. Challenges of the DRM process are the reduction of costs due to the high temperature of the process and the high cost of precious metals of the catalyst, the metal particles sintering, and carbon deposition on the catalysts’ surface. The aim of this study is to demonstrate the feasibility of the synthesis of catalysts using a leachate solution containing Pt coming directly from the recovery of spent diesel oxidation catalysts (DOCs) without further purification. An unusual perovskite support for DRM, the BaCe₁₋ₓ₋ᵧZrₓGdᵧO₃ (BCZG) perovskite, has been chosen as the catalyst support because of its high thermal stability and capability to produce oxygen vacancies, which suppress the carbon deposition and enhance the catalytic activity of the catalyst. BCZG perovskite has been synthesized by a sol-gel modified Pechini process and calcinated in air at 1100 °C. BCZG supports have been impregnated with a Pt-containing leachate solution of DOC, obtained by a mild hydrometallurgical recovery process, as reported elsewhere by some of the authors of this manuscript. For comparison reasons, a synthetic solution obtained by digesting commercial Pt-black powder in aqua regia was used for BCZG support impregnation. Pt nominal content was 2% in both BCZG-based catalysts formed by real and synthetic solutions. The structure and morphology of catalysts were characterized by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Thermogravimetric Analysis (TGA) was used to study the thermal stability of the catalyst’s samples. Brunauer-Emmett-Teller (BET) analysis provided a high surface area of the catalysts. H₂-TPR (Temperature Programmed Reduction) analysis was used to study the consumption of hydrogen for reducibility, and it was associated with H₂-TPD characterization to study the dispersion of Pt on the surface of the support and calculate the number of active sites used by the precious metal. Dry reforming of methane (DRM) reaction, carried out in a fixed bed reactor, showed a high conversion efficiency of CO₂ and CH4. At 850°C, CO₂ and CH₄ conversion were close to 100% for the catalyst obtained with the aqua regia-based solution of commercial Pt-black, and ~70% (for CH₄) and ~80 % (for CO₂) in the case of real HCl-based leachate solution. H₂/CO ratios were ~0.9 and ~0.70 in the first and latter cases, respectively. As far as we know, this is the first pioneering work in which a BCGZ catalyst and a real Pt-containing leachate solution were successfully employed for DRM reaction.Keywords: dry reforming of methane, perovskite, PGM, recycled Pt, syngas
Procedia PDF Downloads 404418 Effect of Substrate Temperature on Some Physical Properties of Doubly doped Tin Oxide Thin Films
Authors: Ahmet Battal, Demet Tatar, Bahattin Düzgün
Abstract:
Various transparent conducting oxides (TCOs) are mostly used much applications due to many properties such as cheap, high transmittance/electrical conductivity etc. One of the clearest among TCOs, indium tin oxide (ITO), is the most widely used in many areas. However, as ITO is expensive and very low regarding reserve, other materials with suitable properties (especially SnO2 thin films) are be using instead of it. In this report, tin oxide thin films doubly doped with antimony and fluorine (AFTO) were deposited by spray at different substrate temperatures on glass substrate. It was investigated their structural, optical, electrical and luminescence properties. The substrate temperature was varied from 320 to 480 ˚C at the interval of 40 (±5) ºC. X-ray results were shown that the films are polycrystalline with tetragonal structure and oriented preferentially along (101), (200) and (210) directions. It was observed that the preferential orientations of crystal growth are not dependent on substrate temperature, but the intensity of preferential orientation was increased with increasing substrate temperature until 400 ºC. After this substrate temperature, they decreased. So, substrate temperature impact structure of these thin films. It was known from SEM analysis, the thin films have rough and homogenous and the surface of the films was affected by the substrate temperature i.e. grain size are increasing with increasing substrate temperature until 400 ºC. Also, SEM and AFM studies revealed the surface of AFTO thin films to be made of nanocrystalline particles. The average transmittance of the films in the visible range is 70-85%. Eg values of the films were investigated using the absorption spectra and found to be in the range 3,20-3,93 eV. The electrical resistivity decreases with increasing substrate temperature, then the electrical resistivity increases. PL spectra were found as a function of substrate temperature. With increasing substrate temperature, emission spectra shift a little bit to a UV region. Finally, tin oxide thin films were successfully prepared by this method and a spectroscopic characterization of the obtained films was performed. It was found that the films have very good physical properties. It was concluded that substrate temperature impacts thin film structure.Keywords: thin films, spray pyrolysis, SnO2, doubly doped
Procedia PDF Downloads 4774417 The Phenomenon of Rockfall in the Traceca Corridor and the Choice of Engineering Measures to Combat It
Authors: I. Iremashvili, I. Pirtskhalaishvili, K. Kiknadze, F. Lortkipanidze
Abstract:
The paper deals with the causes of rockfall and its possible consequences on slopes adjacent to motorways and railways. A list of measures is given that hinder rockfall; these measures are directed at protecting roads from rockfalls, and not preventing them. From the standpoint of local stability of slopes the main effective measure is perhaps strengthening their surface by the method of filling, which will check or end (or both) the process of deformation, local slipping off, sliding off and development of erosion.Keywords: rockfall, concrete spraying, heliodevices, railways
Procedia PDF Downloads 3774416 Effect of Dietary Organic Zinc Supplementation on Immunocompetance and Reproductive Performance in Rats
Authors: D. Nagalakshmi, S. Parashuramulu K. Sadasiva Rao, G. Aruna, L. Vikram
Abstract:
The zinc (Zn) is the second most abundant trace element in mammals and birds, forming structural component of over 300 enzymes, playing an important role in anti-oxidant defense, immune response and reproduction. Organic trace minerals are more readily absorbed from the digestive tract and more biologically available compared with its inorganic salt. Thus, the present study was undertaken on 60 adult female Sprague Dawley rats (275±2.04 g) for experimental duration of 12 weeks to investigate the effect of dietary Zn supplementation from various organic sources on immunity, reproduction, oxidative defense mechanism and blood biochemical profile. The rats were randomly allotted to 30 replicates (2 per replicate) which were in turn randomly allotted to 5 dietary treatments varying in Zn source i.e., one inorganic source (Zn carbonate) and 4 organic sources (Zn-proteinate, Zn-propionate, Zn-amino acid complex and Zn-methionine) so as to supply NRC recommended Zn concentration (12 ppm Zn). Supplementation of organic Zn had no effect on various haematological and serum biochemical constituents compared to inorganic Zn fed rats. The TBARS and protein carbonyls concentration in liver indicative of oxidative stress was comparable between various organic and inorganic groups. The glutathione reductase activity in haemolysate (P<0.05) and reduced glutathione concentration in liver (P<0.01) was higher when fed organic Zn and RBC catalase activity was higher (P<0.01) on Zn methionine compared to other organic sources tested and the inorganic source. The humoral immune response assessed as antibody titres against sheep RBC was higher (P<0.05) when fed organic sources of zinc compared to inorganic source. The cell mediated immune response expressed as delayed type hypersensitivity reaction was higher (P<0.05) in rats fed Zn propionate with no effect of other organic Zn sources. The serum progesterone concentration was higher (P<0.05) in rats fed organic Zn sources compared to inorganic zinc. The data on ovarian folliculogenesis indicated that organic Zn supplementation increased (P<0.05) the number of graafian follicles and corpus luteum with no effect on primary, secondary and tertiary follicle number. The study indicated that rats fed organic sources of Zn had higher antioxidant enzyme activities, immune response and serum progesterone concentration with higher number of mature follicles. Though the effect of feeding various organic sources were comparable, rats fed zinc methionine had higher antioxidant activity and cell mediated immune response was higher in rats on Zn propionate.Keywords: organic zinc, immune, rats, reproductive
Procedia PDF Downloads 2874415 Oil Water Treatment by Nutshell and Dates Pits
Authors: Abdalrahman D. Alsulaili, Sheikha Y. Aljeraiwi, Athba N. Almanaie, Raghad Y. Alhajeri, Mariam Z. Almijren
Abstract:
The water accompanying oil in the oil production process is increasing and due to its increasing rates a problem with handling it occurred. Current solutions like discharging into the environment, dumping water in evaporation pits, usage in the industry and reinjection in oil reservoirs to enhance oil production are used worldwide. The water injection method has been introduced to the oil industry with a process that either immediately injects water to the reservoir or goes to the filtration process before injection all depending on the porosity of the soil. Reinjection of unfiltered effluent water with high Total Suspended Solid (TSS) and Oil in Water (O/W) into soils with low porosity cause a blockage of pores, whereas soils with high porosity do not need high water quality. Our study mainly talks about the filtration and adsorption of the water using organic media as the adsorbent. An adsorbent is a substance that has the ability to physically hold another substance in its surface. Studies were done on nutshell and date pits with different surface areas and flow rates by using a 10inch filter connected with three tanks to perform as one system for the filtration process. Our approach in the filtration process using different types of medias went as follow: starting first with crushed nutshell, second with ground nutshell, and third using carbonized date pits with medium flow rate then high flow rate to compare different results. The result came out nearly as expected from our study where both O/W and TSS were reduced from our oily water sample by using this organic material. The effect of specific area was noticed when using nutshell as the filter media, where the crushed nutshell gave us better results than ground nutshell. The effect of flow rate was noticed when using carbonized date pits as the filter media whereas the treated water became more acceptable when the flow rate was on the medium level.Keywords: date pits, nutshell, oil water, TSS
Procedia PDF Downloads 1584414 Nanostructure Formation and Characterization of Eco-Friendly Banana Peels Nanosorbent
Authors: Opeyemi Atiba-Oyewo, Maurice S. Onya, Christian Wolkersdorfer
Abstract:
Nanostructure formation and characterization of eco-friendly banana peels nanosorbent are thoroughly described in this paper. The transformation of material during mechanical milling to enhance certain properties such as changes in microstructure and surface area to solve the current problems involving water pollution and water quality were studied. The mechanical milling was employed using planetary continuous milling machine and ethanol as process control agent, the sample were taken at time interval between 10 h to 30 h to examine the structural changes. The samples were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR), Transmission electron microscopy (TEM) and Brunauer Emmett and teller (BET). Results revealed that the three typical structures with different grain-size, lattice strain and shapes were observed, and the deformation mechanisms in these structures were found to be different, further particles fracturing results to surface area increment which was confirmed by Brunauer Emmett and teller (BET) analysis. X-ray diffraction (XRD) shows high densities of dislocations in large crystallites, implying that dislocation slip is the dominant deformation mechanism. Scanning electron microscopy revealed the morphological properties of the materials at different milling time, nanostructure of the particles and fibres were confirmed by Transmission electron microscopy and FT-IR identified the functional groups responsible for its capacity to coordinate and remove metal ions, such as the carboxylic and amine groups at absorption bands of 1730 and 889 cm-1, respectively. However, the choice of this sorbent material for the sorption of any contaminants will depend on the composition of the effluent to be treated.Keywords: banana peels, eco-friendly, mechanical milling, nanosorbent, nanostructure water quality
Procedia PDF Downloads 2584413 Intelligent Control of Bioprocesses: A Software Application
Authors: Mihai Caramihai, Dan Vasilescu
Abstract:
The main research objective of the experimental bioprocess analyzed in this paper was to obtain large biomass quantities. The bioprocess is performed in 100 L Bioengineering bioreactor with 42 L cultivation medium made of peptone, meat extract and sodium chloride. The reactor was equipped with pH, temperature, dissolved oxygen, and agitation controllers. The operating parameters were 37 oC, 1.2 atm, 250 rpm and air flow rate of 15 L/min. The main objective of this paper is to present a case study to demonstrate that intelligent control, describing the complexity of the biological process in a qualitative and subjective manner as perceived by human operator, is an efficient control strategy for this kind of bioprocesses. In order to simulate the bioprocess evolution, an intelligent control structure, based on fuzzy logic has been designed. The specific objective is to present a fuzzy control approach, based on human expert’ rules vs. a modeling approach of the cells growth based on bioprocess experimental data. The kinetic modeling may represent only a small number of bioprocesses for overall biosystem behavior while fuzzy control system (FCS) can manipulate incomplete and uncertain information about the process assuring high control performance and provides an alternative solution to non-linear control as it is closer to the real world. Due to the high degree of non-linearity and time variance of bioprocesses, the need of control mechanism arises. BIOSIM, an original developed software package, implements such a control structure. The simulation study has showed that the fuzzy technique is quite appropriate for this non-linear, time-varying system vs. the classical control method based on a priori model.Keywords: intelligent, control, fuzzy model, bioprocess optimization
Procedia PDF Downloads 3284412 Garnet-based Bilayer Hybrid Solid Electrolyte for High-Voltage Cathode Material Modified with Composite Interface Enabler on Lithium-Metal Batteries
Authors: Kumlachew Zelalem Walle, Chun-Chen Yang
Abstract:
Solid-state lithium metal batteries (SSLMBs) are considered promising candidates for next-generation energy storage devices due to their superior energy density and excellent safety. However, recent findings have shown that the formation of lithium (Li) dendrites in SSLMBs still exhibits a terrible growth ability, which makes the development of SSLMBs have to face the challenges posed by the Li dendrite problem. In this work, an inorganic/organic mixture coating material (g-C3N4/ZIF-8/PVDF) was used to modify the surface of lithium metal anode (LMA). Then the modified LMA (denoted as g-C₃N₄@Li) was assembled with lithium nafion (LiNf) coated commercial NCM811 (LiNf@NCM811) using a bilayer hybrid solid electrolyte (Bi-HSE) that incorporated 20 wt.% (vs. polymer) LiNf coated Li6.05Ga0.25La3Zr2O11.8F0.2 ([email protected]) filler faced to the positive electrode and the other layer with 80 wt.% (vs. polymer) filler content faced to the g-C₃N₄@Li. The garnet-type Li6.05Ga0.25La3Zr2O11.8F0.2 (LG0.25LZOF) solid electrolyte was prepared via co-precipitation reaction process from Taylor flow reactor and modified using lithium nafion (LiNf), a Li-ion conducting polymer. The Bi-HSE exhibited high ionic conductivity of 6.8 10–4 S cm–1 at room temperature, and a wide electrochemical window (0–5.0 V vs. Li/Li+). The coin cell was charged between 2.8 to 4.5 V at 0.2C and delivered an initial specific discharge capacity of 194.3 mAh g–1 and after 100 cycles it maintained 81.8% of its initial capacity at room temperature. The presence of a nano-sheet g-C3N4/ZIF-8/PVDF as a composite coating material on the LMA surface suppress the dendrite growth and enhance the compatibility as well as the interfacial contact between anode/electrolyte membrane. The g-C3N4@Li symmetrical cells incorporating this hybrid electrolyte possessed excellent interfacial stability over 1000 h at 0.1 mA cm–2 and a high critical current density (1 mA cm–2). Moreover, the in-situ formation of Li3N on the solid electrolyte interface (SEI) layer as depicted from the XPS result also improves the ionic conductivity and interface contact during the charge/discharge process. Therefore, these novel multi-layered fabrication strategies of hybrid/composite solid electrolyte membranes and modification of the LMA surface using mixed coating materials have potential applications in the preparation of highly safe high-voltage cathodes for SSLMBs.Keywords: high-voltage cathodes, hybrid solid electrolytes, garnet, graphitic-carbon nitride (g-C3N4), ZIF-8 MOF
Procedia PDF Downloads 714411 Influence of a Cationic Membrane in a Double Compartment Filter-Press Reactor on the Atenolol Electro-Oxidation
Authors: Alan N. A. Heberle, Salatiel W. Da Silva, Valentin Perez-Herranz, Andrea M. Bernardes
Abstract:
Contaminants of emerging concern are substances widely used, such as pharmaceutical products. These compounds represent risk for both wild and human life since they are not completely removed from wastewater by conventional wastewater treatment plants. In the environment, they can be harm even in low concentration (µ or ng/L), causing bacterial resistance, endocrine disruption, cancer, among other harmful effects. One of the most common taken medicine to treat cardiocirculatory diseases is the Atenolol (ATL), a β-Blocker, which is toxic to aquatic life. In this way, it is necessary to implement a methodology, which is capable to promote the degradation of the ATL, to avoid the environmental detriment. A very promising technology is the advanced electrochemical oxidation (AEO), which mechanisms are based on the electrogeneration of reactive radicals (mediated oxidation) and/or on the direct substance discharge by electron transfer from contaminant to electrode surface (direct oxidation). The hydroxyl (HO•) and sulfate (SO₄•⁻) radicals can be generated, depending on the reactional medium. Besides that, at some condition, the peroxydisulfate (S₂O₈²⁻) ion is also generated from the SO₄• reaction in pairs. Both radicals, ion, and the direct contaminant discharge can break down the molecule, resulting in the degradation and/or mineralization. However, ATL molecule and byproducts can still remain in the treated solution. On this wise, some efforts can be done to implement the AEO process, being one of them the use of a cationic membrane to separate the cathodic (reduction) from the anodic (oxidation) reactor compartment. The aim of this study is investigate the influence of the implementation of a cationic membrane (Nafion®-117) to separate both cathodic and anodic, AEO reactor compartments. The studied reactor was a filter-press, with bath recirculation mode, flow 60 L/h. The anode was an Nb/BDD2500 and the cathode a stainless steel, both bidimensional, geometric surface area 100 cm². The solution feeding the anodic compartment was prepared with ATL 100 mg/L using Na₂SO₄ 4 g/L as support electrolyte. In the cathodic compartment, it was used a solution containing Na₂SO₄ 71 g/L. Between both solutions was placed the membrane. The applied currents densities (iₐₚₚ) of 5, 20 and 40 mA/cm² were studied over 240 minutes treatment time. Besides that, the ATL decay was analyzed by ultraviolet spectroscopy (UV/Vis). The mineralization was determined performing total organic carbon (TOC) in TOC-L CPH Shimadzu. In the cases without membrane, the iₐₚₚ 5, 20 and 40 mA/cm² resulted in 55, 87 and 98 % ATL degradation at the end of treatment time, respectively. However, with membrane, the degradation, for the same iₐₚₚ, was 90, 100 and 100 %, spending 240, 120, 40 min for the maximum degradation, respectively. The mineralization, without membrane, for the same studied iₐₚₚ, was 40, 55 and 72 %, respectively at 240 min, but with membrane, all tested iₐₚₚ reached 80 % of mineralization, differing only in the time spent, 240, 150 and 120 min, for the maximum mineralization, respectively. The membrane increased the ATL oxidation, probably due to avoid oxidant ions (S₂O₈²⁻) reduction on the cathode surface.Keywords: contaminants of emerging concern, advanced electrochemical oxidation, atenolol, cationic membrane, double compartment reactor
Procedia PDF Downloads 1384410 Analysing the Mesoscale Variations of 7Be and 210Pb Concentrations in a Complex Orography, Guadalquivir Valley, Southern Spain
Authors: M. A. Hernández-Ceballos, E. G. San Miguel, C. Galán, J. P. Bolívar
Abstract:
The evolution of 7Be and 210Pb activity concentrations in surface air along the Guadalquivir valley (southern Iberian Peninsula) is presented in this study. Samples collected for 48 h, every fifteen days, from September 2012 to November 2013 at two sampling sites (Huelva city in the mouth and Cordoba city in the middle (located 250 km far away)), are used to 1) analysing the spatial variability and 2) understanding the influence of wind conditions on 7Be and 210Pb. Similar average concentrations were registered along the valley. The mean 7Be activity concentration was 4.46 ± 0.21 mBq/m3 at Huelva and 4.33 ± 0.20 mBq/m3 at Cordoba, although registering higher maximum and minimum values at Cordoba (9.44 mBq/m3 and 1.80 mBq/m3) than at Huelva (7.95 mBq/m3 and 1.04 mBq/m3). No significant differences were observed in the 210Pb mean activity concentrations between Cordoba (0.40 ± 0.04 mBq/m3) and Huelva (0.35 ± 0.04 mBq/m3), although the maximum (1.10 mBq/m3 and 0.87 mBq/m3) and minimum (0.02 mBq/m3 and 0.04 mBq/m3) values were recorded in Cordoba. Although similar average concentrations were obtained in both sites, the temporal evolution of both natural radionuclides presents differences between them. The meteorological analysis of two sampling periods, in which large differences on 7Be and 210Pb concentrations are observed, indicates the different impact of surface and upper wind dynamics. The analysis reveals the different impact of the two sea-land breeze patterns usually observed along the valley (pure and non-pure) and the corresponding air masses at higher layers associated with each one. The pure, with short development (around 30 km inland) and increasing accumulation process, favours high concentrations of both radionuclides in Huelva (coastal site), while the non-pure, with winds sweeping the valley until arrive to Cordoba (250 km far away), causes high activity values at this site. These results reveal the impact of mesoscale conditions on these two natural radionuclides, and the importance of these circulations on its spatial and temporal variability.Keywords: 7Be, 210Pb, air masses, mesoscale process
Procedia PDF Downloads 4104409 Learning Aid for Kids in India
Authors: Prabir Mukhopadhyay, Atul Kohale
Abstract:
Going to school for Indian kids is a panic situation. Many of them are unable to adjust themselves to the confinement of the school building and this problem is compounded by other factors like unknown people in the vicinity, absence of either parents etc. This project aims at addressing these issues by exposing the kids at home to the learning environment. The purpose is to design a physical model with interfaces at each surface. The model would be like a cube with interactive surfaces where the child would be able to draw, paint, complete a picture and do such fun activities.Keywords: interface, kids, play, computer systems engineering
Procedia PDF Downloads 2144408 Assessment and Control for Oil Aerosol
Authors: Chane-Yu Lai, Xiang-Yu Huang
Abstract:
This study conducted an assessment of sampling result by using the new development rotation filtration device (RFD) filled with porous media filters integrating the method of cyclone centrifugal spins. The testing system established for the experiment used corn oil and potassium sodium tartrate tetrahydrate (PST) as challenge aerosols and were produced by using an Ultrasonic Atomizing Nozzle, a Syringe Pump, and a Collison nebulizer. The collection efficiency of RFD for oil aerosol was assessed by using an Aerodynamic Particle Sizer (APS) and a Fidas® Frog. The results of RFD for the liquid particles condition indicated the cutoff size was 1.65 µm and 1.02 µm for rotation of 0 rpm and 9000 rpm, respectively, under an 80 PPI (pores per inch)foam with a thickness of 80 mm, and sampling velocity of 13.5 cm/s. As the experiment increased the foam thickness of RFD, the cutoff size reduced from 1.62 µm to 1.02 µm. However, when increased the foam porosity of RFD, the cutoff size reduced from 1.26 µm to 0.96 µm. Moreover, as increased the sampling velocity of RFD, the cutoff size reduced from 1.02 µm to 0.76 µm. These discrepancies of above cutoff sizes of RFD all had statistical significance (P < 0.05). The cutoff size of RFD for three experimental conditions of generated liquid oil particles, solid PST particles or both liquid oil and solid PST particles was 1.03 µm, 1.02 µm, or 0.99 µm, respectively, under a 80 PPI foam with thickness of 80 mm, rotation of 9000 rpm, and sampling velocity of 13.5 cm/s. In addition, under the best condition of the experiment, two hours of sampling loading, the RFD had better collection efficiency for particle diameter greater than 0.45 µm, under a 94 PPI nickel mesh with a thickness of 68 mm, rotation of 9000 rpm, and sampling velocity of 108.3 cm/s. The experiment concluded that increased the thickness of porous media, face velocity, and porosity of porous media of RFD could increase the collection efficiency of porous media for sampling oil particles. Moreover, increased the rotation speed of RFD also increased the collection efficiency for sampling oil particles. Further investigation is required for those above operation parameters for RFD in this study in the future.Keywords: oil aerosol, porous media filter, rotation, filtration
Procedia PDF Downloads 4064407 Development and Characterization of Cobalt Metal Loaded ZSM-5 and H-ZSM-5 Catalyst for Fischer -Tropsch Synthesis
Authors: Shashank Bahri, Divyanshu Arya, Rajni Jain, Sreedevi Upadhyayula
Abstract:
Petroleum products can be obtained from syngas catalytic conversion using Fischer Tropsch Reaction. The liquid fuels obtained from FTS are sulphur and nitrogen free and thus may easily meet the increasing stringent environment regulations. In the present work we have synthesized Meso porous ZSM-5 supported catalyst. Meso structure were created in H-ZSM-5 crystallites by demetalation via subsequent base and acid treatment. Desilication through base treatment provides H-ZSM-5 with pore size and volumes similar to amorphous SiO2 (Conventional Carrier). Modifying the zeolite texture and surface chemistry by Desilication and acid washing alters its accessibility and interactions with metal phase and consequently the CO adsorption behavior and hydrocarbon product distribution. Increasing the mesoporosity via desilication provides the micro porous zeolite with essential surface area to support optimally sized metal crystallites. This improves the metal dispersion and hence improve the activity of the catalyst. Transition metal (Co) was loaded using wet impregnation method. Synthesized catalysts were characterized by Infrared Spectroscopy, Powdered X-Ray Diffraction, Scanning Electron Microscopy (SEM), BET Method analytical techniques. Acidity of the catalyst which plays an important role in FTS reaction was measured by DRIFT setup pyridine adsorption instead of NH3 Temperature Programmed Desorption. The major difference is that, Pyridine Adsorption can distinguish between Lewis acidity and Bronsted Acidity, thus giving their relative strengths in the catalyst sample, whereas TPD gives total acidity including Lewis and Bronsted ones.Keywords: mesopourus, fischer tropsch reaction, pyridine adsorrption, drift study
Procedia PDF Downloads 3014406 Geostatistical Simulation of Carcinogenic Industrial Effluent on the Irrigated Soil and Groundwater, District Sheikhupura, Pakistan
Authors: Asma Shaheen, Javed Iqbal
Abstract:
The water resources are depleting due to an intrusion of industrial pollution. There are clusters of industries including leather tanning, textiles, batteries, and chemical causing contamination. These industries use bulk quantity of water and discharge it with toxic effluents. The penetration of heavy metals through irrigation from industrial effluent has toxic effect on soil and groundwater. There was strong positive significant correlation between all the heavy metals in three media of industrial effluent, soil and groundwater (P < 0.001). The metal to the metal association was supported by dendrograms using cluster analysis. The geospatial variability was assessed by using geographically weighted regression (GWR) and pollution model to identify the simulation of carcinogenic elements in soil and groundwater. The principal component analysis identified the metals source, 48.8% variation in factor 1 have significant loading for sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), chromium (Cr), nickel (Ni), lead (Pb) and zinc (Zn) of tannery effluent-based process. In soil and groundwater, the metals have significant loading in factor 1 representing more than half of the total variation with 51.3 % and 53.6 % respectively which showed that pollutants in soil and water were driven by industrial effluent. The cumulative eigen values for the three media were also found to be greater than 1 representing significant clustering of related heavy metals. The results showed that heavy metals from industrial processes are seeping up toxic trace metals in the soil and groundwater. The poisonous pollutants from heavy metals turned the fresh resources of groundwater into unusable water. The availability of fresh water for irrigation and domestic use is being alarming.Keywords: groundwater, geostatistical, heavy metals, industrial effluent
Procedia PDF Downloads 2294405 Optimization of Samarium Extraction via Nanofluid-Based Emulsion Liquid Membrane Using Cyanex 272 as Mobile Carrier
Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari
Abstract:
Samarium as a rare-earth element is playing a growing important role in high technology. Traditional methods for extraction of rare earth metals such as ion exchange and solvent extraction have disadvantages of high investment and high energy consumption. Emulsion liquid membrane (ELM) as an improved solvent extraction technique is an effective transport method for separation of various compounds from aqueous solutions. In this work, the extraction of samarium from aqueous solutions by ELM was investigated using response surface methodology (RSM). The organic membrane phase of the ELM was a nanofluid consisted of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as mobile carrier, and kerosene as base fluid. 1 M nitric acid solution was used as internal aqueous phase. The effects of the important process parameters on samarium extraction were investigated, and the values of these parameters were optimized using the Central Composition Design (CCD) of RSM. These parameters were the concentration of MWCNT in nanofluid, the carrier concentration, and the volume ratio of organic membrane phase to internal phase (Roi). The three-dimensional (3D) response surfaces of samarium extraction efficiency were obtained to visualize the individual and interactive effects of the process variables. A regression model for % extraction was developed, and its adequacy was evaluated. The result shows that % extraction improves by using MWCNT nanofluid in organic membrane phase and extraction efficiency of 98.92% can be achieved under the optimum conditions. In addition, demulsification was successfully performed and the recycled membrane phase was proved to be effective in the optimum condition.Keywords: Cyanex 272, emulsion liquid membrane, MWCNT nanofluid, response surface methology, Samarium
Procedia PDF Downloads 4264404 Synthesis of Methanol through Photocatalytic Conversion of CO₂: A Green Chemistry Approach
Authors: Sankha Chakrabortty, Biswajit Ruj, Parimal Pal
Abstract:
Methanol is one of the most important chemical products and intermediates. It can be used as a solvent, intermediate or raw material for a number of higher valued products, fuels or additives. From the last one decay, the total global demand of methanol has increased drastically which forces the scientists to produce a large amount of methanol from a renewable source to meet the global demand with a sustainable way. Different types of non-renewable based raw materials have been used for the synthesis of methanol on a large scale which makes the process unsustainable. In this circumstances, photocatalytic conversion of CO₂ into methanol under solar/UV excitation becomes a viable approach to give a sustainable production approach which not only meets the environmental crisis by recycling CO₂ to fuels but also reduces CO₂ amount from the atmosphere. Development of such sustainable production approach for CO₂ conversion into methanol still remains a major challenge in the current research comparing with conventional energy expensive processes. In this backdrop, the development of environmentally friendly materials, like photocatalyst has taken a great perspective for methanol synthesis. Scientists in this field are always concerned about finding an improved photocatalyst to enhance the photocatalytic performance. Graphene-based hybrid and composite materials with improved properties could be a better nanomaterial for the selective conversion of CO₂ to methanol under visible light (solar energy) or UV light. The present invention relates to synthesis an improved heterogeneous graphene-based photocatalyst with improved catalytic activity and surface area. Graphene with enhanced surface area is used as coupled material of copper-loaded titanium oxide to improve the electron capture and transport properties which substantially increase the photoinduced charge transfer and extend the lifetime of photogenerated charge carriers. A fast reduction method through H₂ purging has been adopted to synthesis improved graphene whereas ultrasonication based sol-gel method has been applied for the preparation of graphene coupled copper loaded titanium oxide with some enhanced properties. Prepared photocatalysts were exhaustively characterized using different characterization techniques. Effects of catalyst dose, CO₂ flow rate, reaction temperature and stirring time on the efficacy of the system in terms of methanol yield and productivity have been studied in the present study. The study shown that the newly synthesized photocatalyst with an enhanced surface resulting in a sustained productivity and yield of methanol 0.14 g/Lh, and 0.04 g/gcat respectively, after 3 h of illumination under UV (250W) at an optimum catalyst dosage of 10 g/L having 1:2:3 (Graphene: TiO₂: Cu) weight ratio.Keywords: renewable energy, CO₂ capture, photocatalytic conversion, methanol
Procedia PDF Downloads 110