Search results for: insurance firms and efficiency
4509 The Impact of Social Customer Relationship Management on Brand Loyalty and Reducing Co-Destruction of Value by Customers
Authors: Sanaz Farhangi, Habib Alipour
Abstract:
The main objective of this paper is to explore how social media as a critical platform would increase the interactions between the tourism sector and stakeholders. Nowadays, human interactions through social media in many areas, especially in tourism, provide various experiences and information that users share and discuss. Organizations and firms can gain customer loyalty through social media platforms, albeit consumers' negative image of the product or services. Such a negative image can be reduced through constant communication between produces and consumers, especially with the availability of the new technology. Therefore, effective management of customer relationships in social media creates an extraordinary opportunity for organizations to enhance value and brand loyalty. In this study, we seek to develop a conceptual model for addressing factors such as social media, SCRM, and customer engagement affecting brand loyalty and diminish co-destruction. To support this model, we scanned the relevant literature using a comprehensive category of ideas in the context of marketing and customer relationship management. This will allow exploring whether there is any relationship between social media, customer engagement, social customer relationship management (SCRM), co-destruction, and brand loyalty. SCRM has been explored as a moderating factor in the relationship between customer engagement and social media to secure brand loyalty and diminish co-destruction of the company’s value. Although numerous studies have been conducted on the impact of social media on customers and marketing behavior, there are limited studies for investigating the relationship between SCRM, brand loyalty, and negative e-WOM, which results in the reduction of the co-destruction of value by customers. This study is an important contribution to the tourism and hospitality industry in orienting customer behavior in social media using SCRM. This study revealed that through social media platforms, management can generate discussion and engagement about the product and services, which facilitates customers feeling in an appositive way towards the firm and its product. Study has also revealed that customers’ complaints through social media have a multi-purpose effect; it can degrade the value of the product, but at the same time, it will motivate the firm to overcome its weaknesses and correct its shortcomings. This study has also implications for the managers and practitioners, especially in the tourism and hospitality sector. Future research direction and limitations of the research were also discussed.Keywords: brand loyalty, co-destruction, customer engagement, SCRM, tourism and hospitality
Procedia PDF Downloads 1164508 Design a Network for Implementation a Hospital Information System
Authors: Abdulqader Rasool Feqi Mohammed, Ergun Erçelebi̇
Abstract:
A large number of hospitals from developed countries are adopting hospital information system to bring efficiency in hospital information system. The purpose of this project is to research on new network security techniques in order to enhance the current network security structure of save a hospital information system (HIS). This is very important because, it will avoid the system from suffering any attack. Security architecture was optimized but there are need to keep researching on best means to protect the network from future attacks. In this final project research, security techniques were uncovered to produce best network security results when implemented in an integrated framework.Keywords: hospital information system, HIS, network security techniques, internet protocol, IP, network
Procedia PDF Downloads 4404507 Review of Modern Gas turbine Blade Cooling Technologies used in Aircraft
Authors: Arun Prasath Subramanian
Abstract:
The turbine Inlet Temperature is an important parameter which determines the efficiency of a gas turbine engine. The increase in this parameter is limited by material constraints of the turbine blade.The modern Gas turbine blade has undergone a drastic change from a simple solid blade to a modern multi-pass blade with internal and external cooling techniques. This paper aims to introduce the reader the concept of turbine blade cooling, the classification of techniques and further explain some of the important internal cooling technologies used in a modern gas turbine blade along with the various factors that affect the cooling effectiveness.Keywords: gas turbine blade, cooling technologies, internal cooling, pin-fin cooling, jet impingement cooling, rib turbulated cooling, metallic foam cooling
Procedia PDF Downloads 3194506 Sensitivity Analysis of the Heat Exchanger Design in Net Power Oxy-Combustion Cycle for Carbon Capture
Authors: Hirbod Varasteh, Hamidreza Gohari Darabkhani
Abstract:
The global warming and its impact on climate change is one of main challenges for current century. Global warming is mainly due to the emission of greenhouse gases (GHG) and carbon dioxide (CO2) is known to be the major contributor to the GHG emission profile. Whilst the energy sector is the primary source for CO2 emission, Carbon Capture and Storage (CCS) are believed to be the solution for controlling this emission. Oxyfuel combustion (Oxy-combustion) is one of the major technologies for capturing CO2 from power plants. For gas turbines, several Oxy-combustion power cycles (Oxyturbine cycles) have been investigated by means of thermodynamic analysis. NetPower cycle is one of the leading oxyturbine power cycles with almost full carbon capture capability from a natural gas fired power plant. In this manuscript, sensitivity analysis of the heat exchanger design in NetPower cycle is completed by means of process modelling. The heat capacity variation and supercritical CO2 with gaseous admixtures are considered for multi-zone analysis with Aspen Plus software. It is found that the heat exchanger design has a major role to increase the efficiency of NetPower cycle. The pinch-point analysis is done to extract the composite and grand composite curve for the heat exchanger. In this paper, relationship between the cycle efficiency and the minimum approach temperature (∆Tmin) of the heat exchanger has also been evaluated. Increase in ∆Tmin causes a decrease in the temperature of the recycle flue gases (RFG) and an overall decrease in the required power for the recycled gas compressor. The main challenge in the design of heat exchangers in power plants is a tradeoff between the capital and operational costs. To achieve lower ∆Tmin, larger size of heat exchanger is required. This means a higher capital cost but leading to a better heat recovery and lower operational cost. To achieve this, ∆Tmin is selected from the minimum point in the diagrams of capital and operational costs. This study provides an insight into the NetPower Oxy-combustion cycle’s performance analysis and operational condition based on its heat exchanger design.Keywords: carbon capture and storage, oxy-combustion, netpower cycle, oxy turbine cycles, zero emission, heat exchanger design, supercritical carbon dioxide, oxy-fuel power plant, pinch point analysis
Procedia PDF Downloads 2044505 An Exploration of Lighting Quality on Sleep Quality of Children in Elementary Schools
Authors: Mohamed Boubekri, Kristen Bub, Jaewook Lee, Kate Kurry
Abstract:
In this study, we explored the impact of light, particularly daylight on sleep time and quality of elementary school children. Sleep actigraphy was used to measure objectively sleep time and sleep efficiency. Our data show a good correlation between light levels and sleep. In some cases, differences of up to 36 minutes were found between students in low light levels and those in high light level classrooms. We recommend, therefore, that classroom design need to pay attention to the daily daylight exposures elementary school children are receiving.Keywords: light, daylight, actigraphy, sleep, circadian rhythm, sustainable architecture, elementary school, children
Procedia PDF Downloads 1424504 A Method for Processing Unwanted Target Caused by Reflection in Secondary Surveillance Radar
Authors: Khanh D.Do, Loi V.Nguyen, Thanh N.Nguyen, Thang M.Nguyen, Vu T.Tran
Abstract:
Along with the development of Secondary surveillance radar (SSR) in air traffic surveillance systems, the Multipath phenomena has always been a noticeable problem. This following article discusses the geometrical aspect and power aspect of the Multipath interference caused by reflection in SSR and proposes a method to deal with these unwanted multipath targets (ghosts) by false-target position predicting and adaptive target suppressing. A field-experiment example is mentioned at the end of the article to demonstrate the efficiency of this measure.Keywords: multipath, secondary surveillance radar, digital signal processing, reflection
Procedia PDF Downloads 1624503 Heat Transfer Enhancement via Using Al2O3/Water Nanofluid in Car Radiator
Authors: S. Movafagh, Y. Bakhshan
Abstract:
In this study, effect of adding Al2O3 nanoparticle to base fluid (water) in car radiator is investigated numerically. Radiators are compact heat exchangers optimized and evaluated by considering different working conditions. The cooling system of a car plays an important role in vehicle's performance, consists of two main parts, known as radiator and fan. Improving thermal efficiency of engine leads to increase the engine's performance, decline the fuel consumption and decrease the pollution emissions. In this study, the effects of fluid inlet flow rate and nanoparticle volume fraction on heat transfer and pressure drop of acar radiator are studied.Keywords: forced convection, nanofluid, radiator, CFD simulation
Procedia PDF Downloads 3444502 Development of an Integrated Methodology for Fouling Control in Membrane Bioreactors
Authors: Petros Gkotsis, Anastasios Zouboulis, Manasis Mitrakas, Dimitrios Zamboulis, E. Peleka
Abstract:
The most serious drawback in wastewater treatment using membrane bioreactors (MBRs) is membrane fouling which gradually leads to membrane permeability decrease and efficiency deterioration. This work is part of a research project that aims to develop an integrated methodology for membrane fouling control, using specific chemicals which will enhance the coagulation and flocculation of compounds responsible for fouling, hence reducing biofilm formation on the membrane surface and limiting the fouling rate acting as a pre-treatment step. For this purpose, a pilot-scale plant with fully automatic operation achieved by means of programmable logic controller (PLC) has been constructed and tested. The experimental set-up consists of four units: wastewater feed unit, bioreactor, membrane (side-stream) filtration unit and permeate collection unit. Synthetic wastewater was fed as the substrate for the activated sludge. The dissolved oxygen (DO) concentration of the aerobic tank was maintained in the range of 2-3 mg/L during the entire operation by using an aerator below the membrane module. The membranes were operated at a flux of 18 LMH while membrane relaxation steps of 1 min were performed every 10 min. Both commercial and composite coagulants are added in different concentrations in the pilot-scale plant and their effect on the overall performance of the ΜΒR system is presented. Membrane fouling was assessed in terms of TMP, membrane permeability, sludge filterability tests, total resistance and the unified modified fouling index (UMFI). Preliminary tests showed that particular attention should be paid to the addition of the coagulant solution, indicating that pipe flocculation effectively increases hydraulic retention time and leads to voluminous sludge flocs. The most serious drawback in wastewater treatment using MBRs is membrane fouling, which gradually leads to membrane permeability decrease and efficiency deterioration. This results in increased treatment cost, due to high energy consumption and the need for frequent membrane cleaning and replacement. Due to the widespread application of MBR technology over the past few years, it becomes clear that the development of a methodology to mitigate membrane fouling is of paramount importance. The present work aims to develop an integrated technique for membrane fouling control in MBR systems and, thus, contribute to sustainable wastewater treatment.Keywords: coagulation, membrane bioreactor, membrane fouling, pilot plant
Procedia PDF Downloads 3104501 An Overview of Thermal Storage Techniques for Solar Thermal Applications
Authors: Talha Shafiq
Abstract:
The traditional electricity operation in solar thermal plants is designed to operate on a single path initiating at power plant and executes at the consumer. Due to lack of energy storage facilities during this operation, a decrease in the efficiency is often observed with the power plant performance. This paper reviews the significance of energy storage in supply design and elaborates various methods that can be adopted in this regard which are equally cost effective and environmental friendly. Moreover, various parameters in thermal storage technique are also critically analyzed to clarify the pros and cons in this facility. Discussing the different thermal storage system, their technical and economical evaluation has also been reviewed.Keywords: thermal energy storage, sensible heat storage, latent heat storage, thermochemical heat storage
Procedia PDF Downloads 5644500 An Architecture Based on Capsule Networks for the Identification of Handwritten Signature Forgery
Authors: Luisa Mesquita Oliveira Ribeiro, Alexei Manso Correa Machado
Abstract:
Handwritten signature is a unique form for recognizing an individual, used to discern documents, carry out investigations in the criminal, legal, banking areas and other applications. Signature verification is based on large amounts of biometric data, as they are simple and easy to acquire, among other characteristics. Given this scenario, signature forgery is a worldwide recurring problem and fast and precise techniques are needed to prevent crimes of this nature from occurring. This article carried out a study on the efficiency of the Capsule Network in analyzing and recognizing signatures. The chosen architecture achieved an accuracy of 98.11% and 80.15% for the CEDAR and GPDS databases, respectively.Keywords: biometrics, deep learning, handwriting, signature forgery
Procedia PDF Downloads 834499 Dynamic Facades: A Literature Review on Double-Skin Façade with Lightweight Materials
Authors: Victor Mantilla, Romeu Vicente, António Figueiredo, Victor Ferreira, Sandra Sorte
Abstract:
Integrating dynamic facades into contemporary building design is shaping a new era of energy efficiency and user comfort. These innovative facades, often constructed using lightweight construction systems and materials, offer an opportunity to have a responsive and adaptive nature to the dynamic behavior of the outdoor climate. Therefore, in regions characterized by high fluctuations in daily temperatures, the ability to adapt to environmental changes is of paramount importance and a challenge. This paper presents a thorough review of the state of the art on double-skin facades (DSF), focusing on lightweight solutions for the external envelope. Dynamic facades featuring elements like movable shading devices, phase change materials, and advanced control systems have revolutionized the built environment. They offer a promising path for reducing energy consumption while enhancing occupant well-being. Lightweight construction systems are increasingly becoming the choice for the constitution of these facade solutions, offering benefits such as reduced structural loads and reduced construction waste, improving overall sustainability. However, the performance of dynamic facades based on low thermal inertia solutions in climatic contexts with high thermal amplitude is still in need of research since their ability to adapt is traduced in variability/manipulation of the thermal transmittance coefficient (U-value). Emerging technologies can enable such a dynamic thermal behavior through innovative materials, changes in geometry and control to optimize the facade performance. These innovations will allow a facade system to respond to shifting outdoor temperature, relative humidity, wind, and solar radiation conditions, ensuring that energy efficiency and occupant comfort are both met/coupled. This review addresses the potential configuration of double-skin facades, particularly concerning their responsiveness to seasonal variations in temperature, with a specific focus on addressing the challenges posed by winter and summer conditions. Notably, the design of a dynamic facade is significantly shaped by several pivotal factors, including the choice of materials, geometric considerations, and the implementation of effective monitoring systems. Within the realm of double skin facades, various configurations are explored, encompassing exhaust air, supply air, and thermal buffering mechanisms. According to the review places a specific emphasis on the thermal dynamics at play, closely examining the impact of factors such as the color of the facade, the slat angle's dimensions, and the positioning and type of shading devices employed in these innovative architectural structures.This paper will synthesize the current research trends in this field, with the presentation of case studies and technological innovations with a comprehensive understanding of the cutting-edge solutions propelling the evolution of building envelopes in the face of climate change, namely focusing on double-skin lightweight solutions to create sustainable, adaptable, and responsive building envelopes. As indicated in the review, flexible and lightweight systems have broad applicability across all building sectors, and there is a growing recognition that retrofitting existing buildings may emerge as the predominant approach.Keywords: adaptive, control systems, dynamic facades, energy efficiency, responsive, thermal comfort, thermal transmittance
Procedia PDF Downloads 804498 Inhibiting Effects of Zwitterionic Surfactant on the Erosion-Corrosion of API X52 Steel in Oil Sands Slurry
Authors: M. A. Deyab
Abstract:
The effect of zwitterionic surfactant (ZS) on erosion-corrosion of API X52 steel in oil sands slurry was studied using Tafel polarization and anodic polarization measurements. The surface morphology of API X52 steel was examined with scanning electron microscopy (SEM) and atomic force microscopy (AFM). ZS inhibited the erosion-corrosion of API X52 steel in oil sands' slurry, and the inhibition efficiency increased with increasing ZS concentration but decreased with increasing temperature. Polarization curves indicate that ZS act as a mixed type of inhibitor. Inhibition efficiencies of ZS in the dynamic condition are not as effective as that obtained in the static condition.Keywords: corrosion, surfactant, oil sands slurry, erosion-corrosion
Procedia PDF Downloads 1664497 Estimation of Ribb Dam Catchment Sediment Yield and Reservoir Effective Life Using Soil and Water Assessment Tool Model and Empirical Methods
Authors: Getalem E. Haylia
Abstract:
The Ribb dam is one of the irrigation projects in the Upper Blue Nile basin, Ethiopia, to irrigate the Fogera plain. Reservoir sedimentation is a major problem because it reduces the useful reservoir capacity by the accumulation of sediments coming from the watersheds. Estimates of sediment yield are needed for studies of reservoir sedimentation and planning of soil and water conservation measures. The objective of this study was to simulate the Ribb dam catchment sediment yield using SWAT model and to estimate Ribb reservoir effective life according to trap efficiency methods. The Ribb dam catchment is found in North Western part of Ethiopia highlands, and it belongs to the upper Blue Nile and Lake Tana basins. Soil and Water Assessment Tool (SWAT) was selected to simulate flow and sediment yield in the Ribb dam catchment. The model sensitivity, calibration, and validation analysis at Ambo Bahir site were performed with Sequential Uncertainty Fitting (SUFI-2). The flow data at this site was obtained by transforming the Lower Ribb gauge station (2002-2013) flow data using Area Ratio Method. The sediment load was derived based on the sediment concentration yield curve of Ambo site. Stream flow results showed that the Nash-Sutcliffe efficiency coefficient (NSE) was 0.81 and the coefficient of determination (R²) was 0.86 in calibration period (2004-2010) and, 0.74 and 0.77 in validation period (2011-2013), respectively. Using the same periods, the NS and R² for the sediment load calibration were 0.85 and 0.79 and, for the validation, it became 0.83 and 0.78, respectively. The simulated average daily flow rate and sediment yield generated from Ribb dam watershed were 3.38 m³/s and 1772.96 tons/km²/yr, respectively. The effective life of Ribb reservoir was estimated using the developed empirical methods of the Brune (1953), Churchill (1948) and Brown (1958) methods and found to be 30, 38 and 29 years respectively. To conclude, massive sediment comes from the steep slope agricultural areas, and approximately 98-100% of this incoming annual sediment loads have been trapped by the Ribb reservoir. In Ribb catchment, as well as reservoir systematic and thorough consideration of technical, social, environmental, and catchment managements and practices should be made to lengthen the useful life of Ribb reservoir.Keywords: catchment, reservoir effective life, reservoir sedimentation, Ribb, sediment yield, SWAT model
Procedia PDF Downloads 1874496 The Knowledge-Behavior Gap in the Online Information Seeking Process
Authors: Yen-Mei Lee
Abstract:
The concept of a knowledge-behavior gap has been discussed for several years. It is addressed that an individual’s knowledge does not sufficiently transfer to his or her actual actions. This concept is mostly focused on fields related to medicine or applied to health care issues to explain how people or patients connect their personal knowledge to actual health care behaviors. To our knowledge, seldomly has this research been applied to discuss people’s online information seeking behavior. In the current study, the main purpose is to investigate the relationship between web users’ personal values and their actual performances when seeking information on the Internet. The total number of twenty-eight participants, divided into one experienced group (n=14) and one novice group (n=14), were recruited and asked to complete a self-report questionnaire of fifty items related to information seeking actions and behaviors. During the execution, participants needed to rate the importance level (how important each item is) and the performance level (how often they actually do each item) from 1 to 10 points on each item. In this paper, the mean scores of the importance and the performance level are analyzed and discussed. The results show that there is a gap between web user’s knowledge and their actual online seeking behaviors. Both experienced group and novice group have higher average scores of the importance level (experienced group = 7.57, novice group = 6.01) than the actual performance level (experienced group = 6.89, novice group = 5.00) in terms of the fifty online information seeking actions. On the other hand, the experienced group perceives more importance of the fifty online seeking actions and performs actual behaviors better than the novice group. Moreover, experienced participants express a consistent result between their concept knowledge and actual behaviors. For instance, they feel extending a seeking strategy is important and frequently perform this action when seeking online. However, novice participants do not have a consistency between their knowledge and behaviors. For example, though they perceive browsing and judging information are less important than they get lost in the online information seeking process. However, in the actual behavior rating, the scores show that novices do browsing and judge information more often than they get lost when seeking information online. These results, therefore, help scholars and educators have a better understanding of the difference between experienced and novice web users regarding their concept knowledge and actual behaviors. In future study, figuring out how to narrow down the knowledge-behavior gap and create practical guidance for novice users to increase their online seeking efficiency is crucial. Not only could it help experienced users be aware of their actual information seeking behaviors, but also help the novice become mastery to concisely obtain information on the Internet.Keywords: experienced web user, information seeking behavior, knowledge-behavior gap, novice, online seeking efficiency
Procedia PDF Downloads 1204495 Development of the Web-Based Multimedia N-Screen Service System for Cross Platform
Authors: S. Bae, J. Shin, S. Lee
Abstract:
As the development of smart devices such as Smart TV, Smartphone, Tablet PC, Laptop, the interest in N-Screen Services that can be cross-linked with heterogeneous devices is increasing. N-Screen means User-centric services that can share and constantly watch multimedia contents anytime and anywhere. However, the existing N-Screen system has the limitation that N-Screen system has to implement the application for each platform and device to provide multimedia service. To overcome this limitation, Multimedia N-Screen Service System is proposed through the web, and it is independent of different environments. The combination of Web and cloud computing technologies from this study results in increasing efficiency and reduction in costs.Keywords: N-screen, web, cloud, multimedia
Procedia PDF Downloads 3014494 Modulating Photoelectrochemical Water-Splitting Activity by Charge-Storage Capacity of Electrocatalysts
Authors: Yawen Dai, Ping Cheng, Jian Ru Gong
Abstract:
Photoelctrochemical (PEC) water splitting using semiconductors (SCs) provides a convenient way to convert sustainable but intermittent solar energy into clean hydrogen energy, and it has been regarded as one of most promising technology to solve the energy crisis and environmental pollution in modern society. However, the record energy conversion efficiency of a PEC cell (~3%) is still far lower than the commercialization requirement (~10%). The sluggish kinetics of oxygen evolution reaction (OER) half reaction on photoanodes is a significant limiting factor of the PEC device efficiency, and electrocatalysts (ECs) are always deposited on SCs to accelerate the hole injection for OER. However, an active EC cannot guarantee enhanced PEC performance, since the newly emerged SC-EC interface complicates the interfacial charge behavior. Herein, α-Fe2O3 photoanodes coated with Co3O4 and CoO ECs are taken as the model system to glean fundamental understanding on the EC-dependent interfacial charge behavior. Intensity modulated photocurrent spectroscopy and electrochemical impedance spectroscopy were used to investigate the competition between interfacial charge transfer and recombination, which was found to be dominated by the charge storage capacities of ECs. The combined results indicate that both ECs can store holes and increase the hole density on photoanode surface. It is like a double-edged sword that benefit the multi-hole participated OER, as well as aggravate the SC-EC interfacial charge recombination due to the Coulomb attraction, thus leading to a nonmonotonic PEC performance variation trend with the increasing surface hole density. Co3O4 has low hole storage capacity which brings limited interfacial charge recombination, and thus the increased surface holes can be efficiently utilized for OER to generate enhanced photocurrent. In contrast, CoO has overlarge hole storage capacity that causes severe interfacial charge recombination, which hinders hole transfer to electrolyte for OER. Therefore, the PEC performance of α-Fe2O3 is improved by Co3O4 but decreased by CoO despite the similar electrocatalytic activity of the two ECs. First-principle calculation was conducted to further reveal how the charge storage capacity depends on the EC’s intrinsic property, demonstrating that the larger hole storage capacity of CoO than that of Co3O4 is determined by their Co valence states and original Fermi levels. This study raises up a new strategy to manipulate interfacial charge behavior and the resultant PEC performance by the charge storage capacity of ECs, providing insightful guidance for the interface design in PEC devices.Keywords: charge storage capacity, electrocatalyst, interfacial charge behavior, photoelectrochemistry, water-splitting
Procedia PDF Downloads 1414493 Integrated Human Resources and Work Environment Management System
Authors: Loreta Kaklauskiene, Arturas Kaklauskas
Abstract:
The Integrated Human Resources and Work Environment Management (HOWE) System optimises employee productivity, improves the work environment, and, at the same time, meets the employer’s strategic goals. The HOWE system has been designed to ensure an organisation can successfully compete in the global market, thanks to the high performance of its employees. The HOWE system focuses on raising workforce productivity and improving work conditions to boost employee performance and motivation. The methods used in our research are linear correlation, INVAR multiple criteria analysis, digital twin, and affective computing. The HOWE system is based on two patents issued in Lithuania (LT 6866, LT 6841) and one European Patent application (No: EP 4 020 134 A1). Our research analyses ways to make human resource management more efficient and boost labour productivity by improving and adapting a personalised work environment. The efficiency of human capital and labour productivity can be increased by applying personalised workplace improvement systems that can optimise lighting colours and intensity, scents, data, information, knowledge, activities, media, games, videos, music, air pollution, humidity, temperature, vibrations, and other workplace aspects. HOWE generates and maintains a personalised workspace for an employee, taking into account the person’s affective, physiological and emotional (APSE) states. The purpose of this project was to create a HOWE for the customisation of quality control in smart workspaces taking into account the user’s APSE states in an integrated manner as a single unit. This customised management of quality control covers the levels of lighting and colour intensities, scents, media, information, activities, learning materials, games, music, videos, temperature, energy efficiency, the carbon footprint of a workspace, humidity, air pollution, vibrations and other aspects of smart spaces. The system is based on Digital Twins technology, seen as a logical extension of BIM.Keywords: human resource management, health economics, work environment, organizational behaviour and employee productivity, prosperity in work, smart system
Procedia PDF Downloads 754492 BTEX (Benzene, Toluene, Ethylbenzene and Xylene) Degradation by Cold Plasma
Authors: Anelise Leal Vieira Cubas, Marina de Medeiros Machado, Marília de Medeiros Machado
Abstract:
The volatile organic compounds - BTEX (Benzene, Toluene, Ethylbenzene, and Xylene) petroleum derivatives, have high rates of toxicity, which may carry consequences for human health, biota and environment. In this direction, this paper proposes a method of treatment of these compounds by using corona discharge plasma technology. The efficiency of the method was tested by analyzing samples of BTEX after going through a plasma reactor by gas chromatography method. The results show that the optimal residence time of the sample in the reactor was 8 minutes.Keywords: BTEX, degradation, cold plasma, ecological sciences
Procedia PDF Downloads 3174491 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing
Authors: Tolulope Aremu
Abstract:
The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods
Procedia PDF Downloads 194490 Evaluating the Impact of Cloud Computing on Collaboration Service in Knowledge Management Systems
Authors: Hamid Reza Nikkhah, Abbas Toloei Eshlaghi, Hossein Ali Momeni
Abstract:
One of the most important services of Knowledge Management Systems (KMS) is collaboration service which plays a decisive role in organization efficiency. Cloud computing as one of the latest IT technologies has brought a new paradigm in delivering services and communications. In this research, we evaluate the impact of cloud computing on the collaboration service of KMS and for doing so, four variables of cloud computing and three variables of the collaboration service were detected to be assessed.It was found that cloud computing has a far-fetching direct impact on the collaboration service.Keywords: cloud computing, collaboration service, knowledge management systems, cloud computing
Procedia PDF Downloads 5214489 An Online 3D Modeling Method Based on a Lossless Compression Algorithm
Authors: Jiankang Wang, Hongyang Yu
Abstract:
This paper proposes a portable online 3D modeling method. The method first utilizes a depth camera to collect data and compresses the depth data using a frame-by-frame lossless data compression method. The color image is encoded using the H.264 encoding format. After the cloud obtains the color image and depth image, a 3D modeling method based on bundlefusion is used to complete the 3D modeling. The results of this study indicate that this method has the characteristics of portability, online, and high efficiency and has a wide range of application prospects.Keywords: 3D reconstruction, bundlefusion, lossless compression, depth image
Procedia PDF Downloads 824488 Electric Power Generation by Thermoelectric Cells and Parabolic Solar Concentrators
Authors: A. Kianifar, M. Afzali, I. Pishbin
Abstract:
In this paper, design details, theoretical analysis and thermal performance analysis of a solar energy concentrator suited to combined heat and thermoelectric power generation are presented. The thermoelectric device is attached to the absorber plate to convert concentrated solar energy directly into electric energy at the focus of the concentrator. A cooling channel (water cooled heat sink) is fitted to the cold side of the thermoelectric device to remove the waste heat and maintain a high temperature gradient across the device to improve conversion efficiency.Keywords: concentrator thermoelectric generator, CTEG, solar energy, thermoelectric cells
Procedia PDF Downloads 3054487 How to Modernise the European Competition Network (ECN)
Authors: Dorota Galeza
Abstract:
This paper argues that networks, such as the ECN and the American network, are affected by certain small events which are inherent to path dependence and preclude the full evolution towards efficiency. It is advocated that the American network is superior to the ECN in many respects due to its greater flexibility and longer history. This stems in particular from the creation of the American network, which was based on a small number of cases. Such a structure encourages further changes and modifications which are not necessarily radical. The ECN, by contrast, was established by legislative action, which explains its rigid structure and resistance to change. This paper is an attempt to transpose the superiority of the American network on to the ECN. It looks at concepts such as judicial cooperation, harmonisation of procedure, peer review and regulatory impact assessments (RIAs), and dispute resolution procedures.Keywords: antitrust, competition, networks, path dependence
Procedia PDF Downloads 3154486 Public Participation for an Effective Flood Risk Management: Building Social Capacities in Ribera Alta Del Ebro, Spain
Authors: Alba Ballester Ciuró, Marc Pares Franzi
Abstract:
While coming decades are likely to see a higher flood risk in Europe and greater socio-economic damages, traditional flood risk management has become inefficient. In response to that, new approaches such as capacity building and public participation have recently been incorporated in natural hazards mitigation policy (i.e. Sendai Framework for Action, Intergovernmental Panel on Climate Change reports and EU Floods Directive). By integrating capacity building and public participation, we present a research concerning the promotion of participatory social capacity building actions for flood risk mitigation at the local level. Social capacities have been defined as the resources and abilities available at individual and collective level that can be used to anticipate, respond to, cope with, recover from and adapt to external stressors. Social capacity building is understood as a process of identifying communities’ social capacities and of applying collaborative strategies to improve them. This paper presents a proposal of systematization of participatory social capacity building process for flood risk mitigation, and its implementation in a high risk of flooding area in the Ebro river basin: Ribera Alta del Ebro. To develop this process, we designed and tested a tool that allows measuring and building five types of social capacities: knowledge, motivation, networks, participation and finance. The tool implementation has allowed us to assess social capacities in the area. Upon the results of the assessment we have developed a co-decision process with stakeholders and flood risk management authorities on which participatory activities could be employed to improve social capacities for flood risk mitigation. Based on the results of this process, and focused on the weaker social capacities, we developed a set of participatory actions in the area oriented to general public and stakeholders: informative sessions on flood risk management plan and flood insurances, interpretative river descents on flood risk management (with journalists, teachers, and general public), interpretative visit to the floodplain, workshop on agricultural insurance, deliberative workshop on project funding, deliberative workshops in schools on flood risk management (playing with a flood risk model). The combination of obtaining data through a mixed-methods approach of qualitative inquiry and quantitative surveys, as well as action research through co-decision processes and pilot participatory activities, show us the significant impact of public participation on social capacity building for flood risk mitigation and contributes to the understanding of which main factors intervene in this process.Keywords: flood risk management, public participation, risk reduction, social capacities, vulnerability assessment
Procedia PDF Downloads 2114485 Mining Diagnostic Investigation Process
Authors: Sohail Imran, Tariq Mahmood
Abstract:
In complex healthcare diagnostic investigation process, medical practitioners have to focus on ways to standardize their processes to perform high quality care and optimize the time and costs. Process mining techniques can be applied to extract process related knowledge from data without considering causal and dynamic dependencies in business domain and processes. The application of process mining is effective in diagnostic investigation. It is very helpful where a treatment gives no dispositive evidence favoring it. In this paper, we applied process mining to discover important process flow of diagnostic investigation for hepatitis patients. This approach has some benefits which can enhance the quality and efficiency of diagnostic investigation processes.Keywords: process mining, healthcare, diagnostic investigation process, process flow
Procedia PDF Downloads 5234484 Integrating Virtual Reality and Building Information Model-Based Quantity Takeoffs for Supporting Construction Management
Authors: Chin-Yu Lin, Kun-Chi Wang, Shih-Hsu Wang, Wei-Chih Wang
Abstract:
A construction superintendent needs to know not only the amount of quantities of cost items or materials completed to develop a daily report or calculate the daily progress (earned value) in each day, but also the amount of quantities of materials (e.g., reinforced steel and concrete) to be ordered (or moved into the jobsite) for performing the in-progress or ready-to-start construction activities (e.g., erection of reinforced steel and concrete pouring). These daily construction management tasks require great effort in extracting accurate quantities in a short time (usually must be completed right before getting off work every day). As a result, most superintendents can only provide these quantity data based on either what they see on the site (high inaccuracy) or the extraction of quantities from two-dimension (2D) construction drawings (high time consumption). Hence, the current practice of providing the amount of quantity data completed in each day needs improvement in terms of more accuracy and efficiency. Recently, a three-dimension (3D)-based building information model (BIM) technique has been widely applied to support construction quantity takeoffs (QTO) process. The capability of virtual reality (VR) allows to view a building from the first person's viewpoint. Thus, this study proposes an innovative system by integrating VR (using 'Unity') and BIM (using 'Revit') to extract quantities to support the above daily construction management tasks. The use of VR allows a system user to be present in a virtual building to more objectively assess the construction progress in the office. This VR- and BIM-based system is also facilitated by an integrated database (consisting of the information and data associated with the BIM model, QTO, and costs). In each day, a superintendent can work through a BIM-based virtual building to quickly identify (via a developed VR shooting function) the building components (or objects) that are in-progress or finished in the jobsite. And he then specifies a percentage (e.g., 20%, 50% or 100%) of completion of each identified building object based on his observation on the jobsite. Next, the system will generate the completed quantities that day by multiplying the specified percentage by the full quantities of the cost items (or materials) associated with the identified object. A building construction project located in northern Taiwan is used as a case study to test the benefits (i.e., accuracy and efficiency) of the proposed system in quantity extraction for supporting the development of daily reports and the orders of construction materials.Keywords: building information model, construction management, quantity takeoffs, virtual reality
Procedia PDF Downloads 1324483 Logistical Optimization of Nuclear Waste Flows during Decommissioning
Authors: G. Dottavio, M. F. Andrade, F. Renard, V. Cheutet, A.-L. Ladier, S. Vercraene, P. Hoang, S. Briet, R. Dachicourt, Y. Baizet
Abstract:
An important number of technological equipment and high-skilled workers over long periods of time have to be mobilized during nuclear decommissioning processes. The related operations generate complex flows of waste and high inventory levels, associated to information flows of heterogeneous types. Taking into account that more than 10 decommissioning operations are on-going in France and about 50 are expected toward 2025: A big challenge is addressed today. The management of decommissioning and dismantling of nuclear installations represents an important part of the nuclear-based energy lifecycle, since it has an environmental impact as well as an important influence on the electricity cost and therefore the price for end-users. Bringing new technologies and new solutions into decommissioning methodologies is thus mandatory to improve the quality, cost and delay efficiency of these operations. The purpose of our project is to improve decommissioning management efficiency by developing a decision-support framework dedicated to plan nuclear facility decommissioning operations and to optimize waste evacuation by means of a logistic approach. The target is to create an easy-to-handle tool capable of i) predicting waste flows and proposing the best decommissioning logistics scenario and ii) managing information during all the steps of the process and following the progress: planning, resources, delays, authorizations, saturation zones, waste volume, etc. In this article we present our results from waste nuclear flows simulation during decommissioning process, including discrete-event simulation supported by FLEXSIM 3-D software. This approach was successfully tested and our works confirms its ability to improve this type of industrial process by identifying the critical points of the chain and optimizing it by identifying improvement actions. This type of simulation, executed before the start of the process operations on the basis of a first conception, allow ‘what-if’ process evaluation and help to ensure quality of the process in an uncertain context. The simulation of nuclear waste flows before evacuation from the site will help reducing the cost and duration of the decommissioning process by optimizing the planning and the use of resources, transitional storage and expensive radioactive waste containers. Additional benefits are expected for the governance system of the waste evacuation since it will enable a shared responsibility of the waste flows.Keywords: nuclear decommissioning, logistical optimization, decision-support framework, waste management
Procedia PDF Downloads 3234482 An Investigation of Entrepreneurial Intentions, Drivers, and Challenges among Final Year Students in Jigawa State Polytechnic, Nigeria
Authors: Muhammad Umar Usman
Abstract:
This study investigates the entrepreneurial intentions, drivers and challenges of starting a business among final year students in Jigawa State polytechnic. Nigeria. Final year students of Jigawa State Polytechnic from the department of accounting, business administration and management and public administration were used as a case study. The study became necessary due to the alarming rate of graduate unemployment in Nigeria. The study adopted a holistic case study approach involving a multiple methods of questionnaires involving (182) Higher National Diploma (HND) and National Diploma (ND) final year students and a telephone interview with two lecturers teaching entrepreneurship in the college. The findings clearly indicate that exposer to entrepreneurship education increases students’ entrepreneurial intentions. The result found that desire for independence, confidence and strong intention are the most important factors that influence students’ entrepreneurial intention. The study identified 3 key drivers of students’ entrepreneurial intentions. These are to earn a living, to seek job security and provision of employment. The result again identified 4 factors namely lack of support, finance, insecurity and erratic power supply as the major challenges in starting a business in Nigeria. It was also revealed that the current entrepreneurship education programme prepares students on how to open up a business not becoming an entrepreneur. The study concluded entrepreneurship helps students toward building and driving their intention to venture into business. However, the challenges of entrepreneurship in Nigeria need to be addressed in order to enable individuals to become an entrepreneur and create employment opportunities that will lead to the development of Nigerian economy. Thus, the government should provide adequate support particularly the issue of infrastructures. The Federal Government of Nigeria in collaboration with the National Board for Technical Education should fashion out the curriculum thereby making it more practically-oriented so that students may become more interested. Polytechnics should develop an internship programme for students to work in firms so as to put theory learnt in the class to practice. Students should try to align the theory learnt in college with the practical application in dynamic economic environment. Hence, this will help in building their capabilities toward entrepreneurship development in Nigeria.Keywords: entrepreneurial intention, entrepreneurial drivers, challenges, entrepreneurial education
Procedia PDF Downloads 3014481 Synthesis of Nanoparticle Mordenite Zeolite for Dimethyl Ether Carbonylation
Authors: Zhang Haitao
Abstract:
The different size of nanoparticle mordenite zeolites were prepared by adding different soft template during hydrothermal process for carbonylation of dimethyl ether (DME) to methyl acetate (MA). The catalysts were characterized by X-ray diffraction, Ar adsorption-desorption, high-resolution transmission electron microscopy, NH3-temperature programmed desorption, scanning electron microscopy and Thermogravimetric. The characterization results confirmed that mordenite zeolites with small nanoparticle showed more strong acid sites which was the active site for carbonylation thus promoting conversion of DME and MA selectivity. Furthermore, the nanoparticle mordenite had increased the mass transfer efficiency which could suppress the formation of coke.Keywords: nanoparticle mordenite, carbonylation, dimethyl ether, methyl acetate
Procedia PDF Downloads 1394480 Perovskite Nanocrystals and Quantum Dots: Advancements in Light-Harvesting Capabilities for Photovoltaic Technologies
Authors: Mehrnaz Mostafavi
Abstract:
Perovskite nanocrystals and quantum dots have emerged as leaders in the field of photovoltaic technologies, demonstrating exceptional light-harvesting abilities and stability. This study investigates the substantial progress and potential of these nano-sized materials in transforming solar energy conversion. The research delves into the foundational characteristics and production methods of perovskite nanocrystals and quantum dots, elucidating their distinct optical and electronic properties that render them well-suited for photovoltaic applications. Specifically, it examines their outstanding light absorption capabilities, enabling more effective utilization of a wider solar spectrum compared to traditional silicon-based solar cells. Furthermore, this paper explores the improved durability achieved in perovskite nanocrystals and quantum dots, overcoming previous challenges related to degradation and inconsistent performance. Recent advancements in material engineering and techniques for surface passivation have significantly contributed to enhancing the long-term stability of these nanomaterials, making them more commercially feasible for solar cell usage. The study also delves into the advancements in device designs that incorporate perovskite nanocrystals and quantum dots. Innovative strategies, such as tandem solar cells and hybrid structures integrating these nanomaterials with conventional photovoltaic technologies, are discussed. These approaches highlight synergistic effects that boost efficiency and performance. Additionally, this paper addresses ongoing challenges and research endeavors aimed at further improving the efficiency, stability, and scalability of perovskite nanocrystals and quantum dots in photovoltaics. Efforts to mitigate concerns related to material degradation, toxicity, and large-scale production are actively pursued, paving the way for broader commercial application. In conclusion, this paper emphasizes the significant role played by perovskite nanocrystals and quantum dots in advancing photovoltaic technologies. Their exceptional light-harvesting capabilities, combined with increased stability, promise a bright future for next-generation solar cells, ushering in an era of highly efficient and cost-effective solar energy conversion systems.Keywords: perovskite nanocrystals, quantum dots, photovoltaic technologies, light-harvesting, solar energy conversion, stability, device designs
Procedia PDF Downloads 98