Search results for: adaptable business models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9326

Search results for: adaptable business models

6146 Using Machine Learning to Build a Real-Time COVID-19 Mask Safety Monitor

Authors: Yash Jain

Abstract:

The US Center for Disease Control has recommended wearing masks to slow the spread of the virus. The research uses a video feed from a camera to conduct real-time classifications of whether or not a human is correctly wearing a mask, incorrectly wearing a mask, or not wearing a mask at all. Utilizing two distinct datasets from the open-source website Kaggle, a mask detection network had been trained. The first dataset that was used to train the model was titled 'Face Mask Detection' on Kaggle, where the dataset was retrieved from and the second dataset was titled 'Face Mask Dataset, which provided the data in a (YOLO Format)' so that the TinyYoloV3 model could be trained. Based on the data from Kaggle, two machine learning models were implemented and trained: a Tiny YoloV3 Real-time model and a two-stage neural network classifier. The two-stage neural network classifier had a first step of identifying distinct faces within the image, and the second step was a classifier to detect the state of the mask on the face and whether it was worn correctly, incorrectly, or no mask at all. The TinyYoloV3 was used for the live feed as well as for a comparison standpoint against the previous two-stage classifier and was trained using the darknet neural network framework. The two-stage classifier attained a mean average precision (MAP) of 80%, while the model trained using TinyYoloV3 real-time detection had a mean average precision (MAP) of 59%. Overall, both models were able to correctly classify stages/scenarios of no mask, mask, and incorrectly worn masks.

Keywords: datasets, classifier, mask-detection, real-time, TinyYoloV3, two-stage neural network classifier

Procedia PDF Downloads 147
6145 Development of Probability Distribution Models for Degree of Bending (DoB) in Chord Member of Tubular X-Joints under Bending Loads

Authors: Hamid Ahmadi, Amirreza Ghaffari

Abstract:

Fatigue life of tubular joints in offshore structures is not only dependent on the value of hot-spot stress, but is also significantly influenced by the through-the-thickness stress distribution characterized by the degree of bending (DoB). The DoB exhibits considerable scatter calling for greater emphasis in accurate determination of its governing probability distribution which is a key input for the fatigue reliability analysis of a tubular joint. Although the tubular X-joints are commonly found in offshore jacket structures, as far as the authors are aware, no comprehensive research has been carried out on the probability distribution of the DoB in tubular X-joints. What has been used so far as the probability distribution of the DoB in reliability analyses is mainly based on assumptions and limited observations, especially in terms of distribution parameters. In the present paper, results of parametric equations available for the calculation of the DoB have been used to develop probability distribution models for the DoB in the chord member of tubular X-joints subjected to four types of bending loads. Based on a parametric study, a set of samples was prepared and density histograms were generated for these samples using Freedman-Diaconis method. Twelve different probability density functions (PDFs) were fitted to these histograms. The maximum likelihood method was utilized to determine the parameters of fitted distributions. In each case, Kolmogorov-Smirnov test was used to evaluate the goodness of fit. Finally, after substituting the values of estimated parameters for each distribution, a set of fully defined PDFs have been proposed for the DoB in tubular X-joints subjected to bending loads.

Keywords: tubular X-joint, degree of bending (DoB), probability density function (PDF), Kolmogorov-Smirnov goodness-of-fit test

Procedia PDF Downloads 706
6144 Deep Learning-Based Classification of 3D CT Scans with Real Clinical Data; Impact of Image format

Authors: Maryam Fallahpoor, Biswajeet Pradhan

Abstract:

Background: Artificial intelligence (AI) serves as a valuable tool in mitigating the scarcity of human resources required for the evaluation and categorization of vast quantities of medical imaging data. When AI operates with optimal precision, it minimizes the demand for human interpretations and, thereby, reduces the burden on radiologists. Among various AI approaches, deep learning (DL) stands out as it obviates the need for feature extraction, a process that can impede classification, especially with intricate datasets. The advent of DL models has ushered in a new era in medical imaging, particularly in the context of COVID-19 detection. Traditional 2D imaging techniques exhibit limitations when applied to volumetric data, such as Computed Tomography (CT) scans. Medical images predominantly exist in one of two formats: neuroimaging informatics technology initiative (NIfTI) and digital imaging and communications in medicine (DICOM). Purpose: This study aims to employ DL for the classification of COVID-19-infected pulmonary patients and normal cases based on 3D CT scans while investigating the impact of image format. Material and Methods: The dataset used for model training and testing consisted of 1245 patients from IranMehr Hospital. All scans shared a matrix size of 512 × 512, although they exhibited varying slice numbers. Consequently, after loading the DICOM CT scans, image resampling and interpolation were performed to standardize the slice count. All images underwent cropping and resampling, resulting in uniform dimensions of 128 × 128 × 60. Resolution uniformity was achieved through resampling to 1 mm × 1 mm × 1 mm, and image intensities were confined to the range of (−1000, 400) Hounsfield units (HU). For classification purposes, positive pulmonary COVID-19 involvement was designated as 1, while normal images were assigned a value of 0. Subsequently, a U-net-based lung segmentation module was applied to obtain 3D segmented lung regions. The pre-processing stage included normalization, zero-centering, and shuffling. Four distinct 3D CNN models (ResNet152, ResNet50, DensNet169, and DensNet201) were employed in this study. Results: The findings revealed that the segmentation technique yielded superior results for DICOM images, which could be attributed to the potential loss of information during the conversion of original DICOM images to NIFTI format. Notably, ResNet152 and ResNet50 exhibited the highest accuracy at 90.0%, and the same models achieved the best F1 score at 87%. ResNet152 also secured the highest Area under the Curve (AUC) at 0.932. Regarding sensitivity and specificity, DensNet201 achieved the highest values at 93% and 96%, respectively. Conclusion: This study underscores the capacity of deep learning to classify COVID-19 pulmonary involvement using real 3D hospital data. The results underscore the significance of employing DICOM format 3D CT images alongside appropriate pre-processing techniques when training DL models for COVID-19 detection. This approach enhances the accuracy and reliability of diagnostic systems for COVID-19 detection.

Keywords: deep learning, COVID-19 detection, NIFTI format, DICOM format

Procedia PDF Downloads 68
6143 Developing a Framework for Assessing and Fostering the Sustainability of Manufacturing Companies

Authors: Ilaria Barletta, Mahesh Mani, Björn Johansson

Abstract:

The concept of sustainability encompasses economic, environmental, social and institutional considerations. Sustainable manufacturing (SM) is, therefore, a multi-faceted concept. It broadly implies the development and implementation of technologies, projects and initiatives that are concerned with the life cycle of products and services, and are able to bring positive impacts to the environment, company stakeholders and profitability. Because of this, achieving SM-related goals requires a holistic, life-cycle-thinking approach from manufacturing companies. Further, such an approach must rely on a logic of continuous improvement and ease of implementation in order to be effective. Currently, there exists in the academic literature no comprehensively structured frameworks that support manufacturing companies in the identification of the issues and the capabilities that can either hinder or foster sustainability. This scarcity of support extends to difficulties in obtaining quantifiable measurements in order to objectively evaluate solutions and programs and identify improvement areas within SM for standards conformance. To bridge this gap, this paper proposes the concept of a framework for assessing and continuously improving the sustainability of manufacturing companies. The framework addresses strategies and projects for SM and operates in three sequential phases: analysis of the issues, design of solutions and continuous improvement. A set of interviews, observations and questionnaires are the research methods to be used for the implementation of the framework. Different decision-support methods - either already-existing or novel ones - can be 'plugged into' each of the phases. These methods can assess anything from business capabilities to process maturity. In particular, the authors are working on the development of a sustainable manufacturing maturity model (SMMM) as decision support within the phase of 'continuous improvement'. The SMMM, inspired by previous maturity models, is made up of four maturity levels stemming from 'non-existing' to 'thriving'. Aggregate findings from the use of the framework should ultimately reveal to managers and CEOs the roadmap for achieving SM goals and identify the maturity of their companies’ processes and capabilities. Two cases from two manufacturing companies in Australia are currently being employed to develop and test the framework. The use of this framework will bring two main benefits: enable visual, intuitive internal sustainability benchmarking and raise awareness of improvement areas that lead companies towards an increasingly developed SM.

Keywords: life cycle management, continuous improvement, maturity model, sustainable manufacturing

Procedia PDF Downloads 244
6142 Sustainability of Photovoltaic Recycling Planning

Authors: Jun-Ki Choi

Abstract:

The usage of valuable resources and the potential for waste generation at the end of the life cycle of photovoltaic (PV) technologies necessitate a proactive planning for a PV recycling infrastructure. To ensure the sustainability of PV in large scales of deployment, it is vital to develop and institute low-cost recycling technologies and infrastructure for the emerging PV industry in parallel with the rapid commercialization of these new technologies. There are various issues involved in the economics of PV recycling and this research examine those at macro and micro levels, developing a holistic interpretation of the economic viability of the PV recycling systems. This study developed mathematical models to analyze the profitability of recycling technologies and to guide tactical decisions for allocating optimal location of PV take-back centers (PVTBC), necessary for the collection of end of life products. The economic decision is usually based on the level of the marginal capital cost of each PVTBC, cost of reverse logistics, distance traveled, and the amount of PV waste collected from various locations. Results illustrated that the reverse logistics costs comprise a major portion of the cost of PVTBC; PV recycling centers can be constructed in the optimally selected locations to minimize the total reverse logistics cost for transporting the PV wastes from various collection facilities to the recycling center. In the micro- process level, automated recycling processes should be developed to handle the large amount of growing PV wastes economically. The market price of the reclaimed materials are important factors for deciding the profitability of the recycling process and this illustrates the importance of the recovering the glass and expensive metals from PV modules.

Keywords: photovoltaic, recycling, mathematical models, sustainability

Procedia PDF Downloads 240
6141 Surface Modified Quantum Dots for Nanophotonics, Stereolithography and Hybrid Systems for Biomedical Studies

Authors: Redouane Krini, Lutz Nuhn, Hicham El Mard Cheol Woo Ha, Yoondeok Han, Kwang-Sup Lee, Dong-Yol Yang, Jinsoo Joo, Rudolf Zentel

Abstract:

To use Quantum Dots (QDs) in the two photon initiated polymerization technique (TPIP) for 3D patternings, QDs were modified on the surface with photosensitive end groups which are able to undergo a photopolymerization. We were able to fabricate fluorescent 3D lattice structures using photopatternable QDs by TPIP for photonic devices such as photonic crystals and metamaterials. The QDs in different diameter have different emission colors and through mixing of RGB QDs white light fluorescent from the polymeric structures has been created. Metamaterials are capable for unique interaction with the electrical and magnetic components of the electromagnetic radiation and for manipulating light it is crucial to have a negative refractive index. In combination with QDs via TPIP technique polymeric structures can be designed with properties which cannot be found in nature. This makes these artificial materials gaining a huge importance for real-life applications in photonic and optoelectronic. Understanding of interactions between nanoparticles and biological systems is of a huge interest in the biomedical research field. We developed a synthetic strategy of polymer functionalized nanoparticles for biomedical studies to obtain hybrid systems of QDs and copolymers with a strong binding network in an inner shell and which can be modified in the end through their poly(ethylene glycol) functionalized outer shell. These hybrid systems can be used as models for investigation of cell penetration and drug delivery by using measurements combination between CryoTEM and fluorescence studies.

Keywords: biomedical study models, lithography, photo induced polymerization, quantum dots

Procedia PDF Downloads 512
6140 Optimization Aluminium Design for the Facade Second Skin toward Visual Comfort: Case Studies & Dialux Daylighting Simulation Model

Authors: Yaseri Dahlia Apritasari

Abstract:

Visual comfort is important for the building occupants to need. Visual comfort can be fulfilled through natural lighting (daylighting) and artificial lighting. One strategy to optimize natural lighting can be achieved through the facade second skin design. This strategy can reduce glare, and fulfill visual comfort need. However, the design strategy cannot achieve light intensity for visual comfort. Because the materials, design and opening percentage of the facade of second skin blocked sunlight. This paper discusses aluminum material for the facade second skin design that can fulfill the optimal visual comfort with the case studies Multi Media Tower building. The methodology of the research is combination quantitative and qualitative through field study observed, lighting measurement and visual comfort questionnaire. Then it used too simulation modeling (DIALUX 4.13, 2016) for three facades second skin design model. Through following steps; (1) Measuring visual comfort factor: light intensity indoor and outdoor; (2) Taking visual comfort data from building occupants; (3) Making models with different facade second skin design; (3) Simulating and analyzing the light intensity value for each models that meet occupants visual comfort standard: 350 lux (Indonesia National Standard, 2010). The result shows that optimization of aluminum material for the facade second skin design can meet optimal visual comfort for building occupants. The result can give recommendation aluminum opening percentage of the facade second skin can meet optimal visual comfort for building occupants.

Keywords: aluminium material, Facade, second skin, visual comfort

Procedia PDF Downloads 343
6139 Resonant Tunnelling Diode Output Characteristics Dependence on Structural Parameters: Simulations Based on Non-Equilibrium Green Functions

Authors: Saif Alomari

Abstract:

The paper aims at giving physical and mathematical descriptions of how the structural parameters of a resonant tunnelling diode (RTD) affect its output characteristics. Specifically, the value of the peak voltage, peak current, peak to valley current ratio (PVCR), and the difference between peak and valley voltages and currents ΔV and ΔI. A simulation-based approach using the Non-Equilibrium Green Function (NEGF) formalism based on the Silvaco ATLAS simulator is employed to conduct a series of designed experiments. These experiments show how the doping concentration in the emitter and collector layers, their thicknesses, and the width of the barriers and the quantum well influence the above-mentioned output characteristics. Each of these parameters was systematically changed while holding others fixed in each set of experiments. Factorial experiments are outside the scope of this work and will be investigated in future. The physics involved in the operation of the device is thoroughly explained and mathematical models based on curve fitting and underlaying physical principles are deduced. The models can be used to design devices with predictable output characteristics. These models were found absent in the literature that the author acanned. Results show that the doping concentration in each region has an effect on the value of the peak voltage. It is found that increasing the carrier concentration in the collector region shifts the peak to lower values, whereas increasing it in the emitter shifts the peak to higher values. In the collector’s case, the shift is either controlled by the built-in potential resulting from the concentration gradient or the conductivity enhancement in the collector. The shift to higher voltages is found to be also related to the location of the Fermi-level. The thicknesses of these layers play a role in the location of the peak as well. It was found that increasing the thickness of each region shifts the peak to higher values until a specific characteristic length, afterwards the peak becomes independent of the thickness. Finally, it is shown that the thickness of the barriers can be optimized for a particular well width to produce the highest PVCR or the highest ΔV and ΔI. The location of the peak voltage is important in optoelectronic applications of RTDs where the operating point of the device is usually the peak voltage point. Furthermore, the PVCR, ΔV, and ΔI are of great importance for building RTD-based oscillators as they affect the frequency response and output power of the oscillator.

Keywords: peak to valley ratio, peak voltage shift, resonant tunneling diodes, structural parameters

Procedia PDF Downloads 133
6138 The Impact of Project-Based Learning under Representative Minorities Students

Authors: Shwadhin Sharma

Abstract:

As there has been increasing focus on the shorter attention span of the millennials students, there is a relative absence of instructional tools on behavioral assessments in learning information technology skills within the information systems field and textbooks. This study uses project-based learning in which students gain knowledge and skills related to information technology by working on an extended project that allows students to find a real business problem design information systems based on information collected from the company and develop an information system that solves the problem of the company. Eighty students from two sections of the same course engage in the project from the first week of the class till the sixteenth week of the class to deliver a small business information system that allows them to employ all the skills and knowledge that they learned in the class into the systems they are creating. Computer Information Systems related courses are often difficult to understand and process especially for the Under Representative Minorities students who have limited computer or information systems related (academic) experiences. Project-based learning demands constant attention of the students and forces them to apply knowledge learned in the class to a project that helps retaining knowledge. To make sure our assumption is correct, we started with a pre-test and post-test to test the students learning (of skills) based on the project. Our test showed that almost 90% of the students from the two sections scored higher in post-test as compared to pre-test. Based on this premise, we conducted a further survey that measured student’s job-search preparation, knowledge of data analysis, involved with the course, satisfaction with the course, student’s overall reaction the course and students' ability to meet the traditional learning goals related to the course.

Keywords: project-based learning, job-search preparation, satisfaction with course, traditional learning goals

Procedia PDF Downloads 197
6137 Exploring Closed-Loop Business Systems Which Eliminates Solid Waste in the Textile and Fashion Industry: A Systematic Literature Review Covering the Developments Occurred in the Last Decade

Authors: Bukra Kalayci, Geraldine Brennan

Abstract:

Introduction: Over the last decade, a proliferation of literature related to textile and fashion business in the context of sustainable production and consumption has emerged. However, the economic and environmental benefits of solid waste recovery have not been comprehensively searched. Therefore at the end-of-life or end-of-use textile waste management remains a gap. Solid textile waste reuse and recycling principles of the circular economy need to be developed to close the disposal stage of the textile supply chain. The environmental problems associated with the over-production and –consumption of textile products arise. Together with growing population and fast fashion culture the share of solid textile waste in municipal waste is increasing. Focusing on post-consumer textile waste literature, this research explores the opportunities, obstacles and enablers or success factors associated with closed-loop textile business systems. Methodology: A systematic literature review was conducted in order to identify best practices and gaps from the existing body of knowledge related to closed-loop post-consumer textile waste initiatives over the last decade. Selected keywords namely: ‘cradle-to-cradle ‘, ‘circular* economy* ‘, ‘closed-loop* ‘, ‘end-of-life* ‘, ‘reverse* logistic* ‘, ‘take-back* ‘, ‘remanufacture* ‘, ‘upcycle* ‘ with the combination of (and) ‘fashion* ‘, ‘garment* ‘, ‘textile* ‘, ‘apparel* ‘, clothing* ‘ were used and the time frame of the review was set between 2005 to 2017. In order to obtain a broad coverage, Web of Knowledge and Science Direct databases were used, and peer-reviewed journal articles were chosen. The keyword search identified 299 number of papers which was further refined into 54 relevant papers that form the basis of the in-depth thematic analysis. Preliminary findings: A key finding was that the existing literature is predominantly conceptual rather than applied or empirical work. Moreover, the enablers or success factors, obstacles and opportunities to implement closed-loop systems in the textile industry were not clearly articulated and the following considerations were also largely overlooked in the literature. While the circular economy suggests multiple cycles of discarded products, components or materials, most research has to date tended to focus on a single cycle. Thus the calculations of environmental and economic benefits of closed-loop systems are limited to one cycle which does not adequately explore the feasibility or potential benefits of multiple cycles. Additionally, the time period textile products spend between point of sale, and end-of-use/end-of-life return is a crucial factor. Despite past efforts to study closed-loop textile systems a clear gap in the literature is the lack of a clear evaluation framework which enables manufacturers to clarify the reusability potential of textile products through consideration of indicators related too: quality, design, lifetime, length of time between manufacture and product return, volume of collected disposed products, material properties, and brand segment considerations (e.g. fast fashion versus luxury brands).

Keywords: circular fashion, closed loop business, product service systems, solid textile waste elimination

Procedia PDF Downloads 188
6136 Single Pass Design of Genetic Circuits Using Absolute Binding Free Energy Measurements and Dimensionless Analysis

Authors: Iman Farasat, Howard M. Salis

Abstract:

Engineered genetic circuits reprogram cellular behavior to act as living computers with applications in detecting cancer, creating self-controlling artificial tissues, and dynamically regulating metabolic pathways. Phenemenological models are often used to simulate and design genetic circuit behavior towards a desired behavior. While such models assume that each circuit component’s function is modular and independent, even small changes in a circuit (e.g. a new promoter, a change in transcription factor expression level, or even a new media) can have significant effects on the circuit’s function. Here, we use statistical thermodynamics to account for the several factors that control transcriptional regulation in bacteria, and experimentally demonstrate the model’s accuracy across 825 measurements in several genetic contexts and hosts. We then employ our first principles model to design, experimentally construct, and characterize a family of signal amplifying genetic circuits (genetic OpAmps) that expand the dynamic range of cell sensors. To develop these models, we needed a new approach to measuring the in vivo binding free energies of transcription factors (TFs), a key ingredient of statistical thermodynamic models of gene regulation. We developed a new high-throughput assay to measure RNA polymerase and TF binding free energies, requiring the construction and characterization of only a few constructs and data analysis (Figure 1A). We experimentally verified the assay on 6 TetR-homolog repressors and a CRISPR/dCas9 guide RNA. We found that our binding free energy measurements quantitatively explains why changing TF expression levels alters circuit function. Altogether, by combining these measurements with our biophysical model of translation (the RBS Calculator) as well as other measurements (Figure 1B), our model can account for changes in TF binding sites, TF expression levels, circuit copy number, host genome size, and host growth rate (Figure 1C). Model predictions correctly accounted for how these 8 factors control a promoter’s transcription rate (Figure 1D). Using the model, we developed a design framework for engineering multi-promoter genetic circuits that greatly reduces the number of degrees of freedom (8 factors per promoter) to a single dimensionless unit. We propose the Ptashne (Pt) number to encapsulate the 8 co-dependent factors that control transcriptional regulation into a single number. Therefore, a single number controls a promoter’s output rather than these 8 co-dependent factors, and designing a genetic circuit with N promoters requires specification of only N Pt numbers. We demonstrate how to design genetic circuits in Pt number space by constructing and characterizing 15 2-repressor OpAmp circuits that act as signal amplifiers when within an optimal Pt region. We experimentally show that OpAmp circuits using different TFs and TF expression levels will only amplify the dynamic range of input signals when their corresponding Pt numbers are within the optimal region. Thus, the use of the Pt number greatly simplifies the genetic circuit design, particularly important as circuits employ more TFs to perform increasingly complex functions.

Keywords: transcription factor, synthetic biology, genetic circuit, biophysical model, binding energy measurement

Procedia PDF Downloads 462
6135 Time Series Analysis the Case of China and USA Trade Examining during Covid-19 Trade Enormity of Abnormal Pricing with the Exchange rate

Authors: Md. Mahadi Hasan Sany, Mumenunnessa Keya, Sharun Khushbu, Sheikh Abujar

Abstract:

Since the beginning of China's economic reform, trade between the U.S. and China has grown rapidly, and has increased since China's accession to the World Trade Organization in 2001. The US imports more than it exports from China, reducing the trade war between China and the U.S. for the 2019 trade deficit, but in 2020, the opposite happens. In international and U.S. trade, Washington launched a full-scale trade war against China in March 2016, which occurred a catastrophic epidemic. The main goal of our study is to measure and predict trade relations between China and the U.S., before and after the arrival of the COVID epidemic. The ML model uses different data as input but has no time dimension that is present in the time series models and is only able to predict the future from previously observed data. The LSTM (a well-known Recurrent Neural Network) model is applied as the best time series model for trading forecasting. We have been able to create a sustainable forecasting system in trade between China and the US by closely monitoring a dataset published by the State Website NZ Tatauranga Aotearoa from January 1, 2015, to April 30, 2021. Throughout the survey, we provided a 180-day forecast that outlined what would happen to trade between China and the US during COVID-19. In addition, we have illustrated that the LSTM model provides outstanding outcome in time series data analysis rather than RFR and SVR (e.g., both ML models). The study looks at how the current Covid outbreak affects China-US trade. As a comparative study, RMSE transmission rate is calculated for LSTM, RFR and SVR. From our time series analysis, it can be said that the LSTM model has given very favorable thoughts in terms of China-US trade on the future export situation.

Keywords: RFR, China-U.S. trade war, SVR, LSTM, deep learning, Covid-19, export value, forecasting, time series analysis

Procedia PDF Downloads 184
6134 USBware: A Trusted and Multidisciplinary Framework for Enhanced Detection of USB-Based Attacks

Authors: Nir Nissim, Ran Yahalom, Tomer Lancewiki, Yuval Elovici, Boaz Lerner

Abstract:

Background: Attackers increasingly take advantage of innocent users who tend to use USB devices casually, assuming these devices benign when in fact they may carry an embedded malicious behavior or hidden malware. USB devices have many properties and capabilities that have become the subject of malicious operations. Many of the recent attacks targeting individuals, and especially organizations, utilize popular and widely used USB devices, such as mice, keyboards, flash drives, printers, and smartphones. However, current detection tools, techniques, and solutions generally fail to detect both the known and unknown attacks launched via USB devices. Significance: We propose USBWARE, a project that focuses on the vulnerabilities of USB devices and centers on the development of a comprehensive detection framework that relies upon a crucial attack repository. USBWARE will allow researchers and companies to better understand the vulnerabilities and attacks associated with USB devices as well as providing a comprehensive platform for developing detection solutions. Methodology: The framework of USBWARE is aimed at accurate detection of both known and unknown USB-based attacks by a process that efficiently enhances the framework's detection capabilities over time. The framework will integrate two main security approaches in order to enhance the detection of USB-based attacks associated with a variety of USB devices. The first approach is aimed at the detection of known attacks and their variants, whereas the second approach focuses on the detection of unknown attacks. USBWARE will consist of six independent but complimentary detection modules, each detecting attacks based on a different approach or discipline. These modules include novel ideas and algorithms inspired from or already developed within our team's domains of expertise, including cyber security, electrical and signal processing, machine learning, and computational biology. The establishment and maintenance of the USBWARE’s dynamic and up-to-date attack repository will strengthen the capabilities of the USBWARE detection framework. The attack repository’s infrastructure will enable researchers to record, document, create, and simulate existing and new USB-based attacks. This data will be used to maintain the detection framework’s updatability by incorporating knowledge regarding new attacks. Based on our experience in the cyber security domain, we aim to design the USBWARE framework so that it will have several characteristics that are crucial for this type of cyber-security detection solution. Specifically, the USBWARE framework should be: Novel, Multidisciplinary, Trusted, Lightweight, Extendable, Modular and Updatable and Adaptable. Major Findings: Based on our initial survey, we have already found more than 23 types of USB-based attacks, divided into six major categories. Our preliminary evaluation and proof of concepts showed that our detection modules can be used for efficient detection of several basic known USB attacks. Further research, development, and enhancements are required so that USBWARE will be capable to cover all of the major known USB attacks and to detect unknown attacks. Conclusion: USBWARE is a crucial detection framework that must be further enhanced and developed.

Keywords: USB, device, cyber security, attack, detection

Procedia PDF Downloads 381
6133 Real-Time Generative Architecture for Mesh and Texture

Authors: Xi Liu, Fan Yuan

Abstract:

In the evolving landscape of physics-based machine learning (PBML), particularly within fluid dynamics and its applications in electromechanical engineering, robot vision, and robot learning, achieving precision and alignment with researchers' specific needs presents a formidable challenge. In response, this work proposes a methodology that integrates neural transformation with a modified smoothed particle hydrodynamics model for generating transformed 3D fluid simulations. This approach is useful for nanoscale science, where the unique and complex behaviors of viscoelastic medium demand accurate neurally-transformed simulations for materials understanding and manipulation. In electromechanical engineering, the method enhances the design and functionality of fluid-operated systems, particularly microfluidic devices, contributing to advancements in nanomaterial design, drug delivery systems, and more. The proposed approach also aligns with the principles of PBML, offering advantages such as multi-fluid stylization and consistent particle attribute transfer. This capability is valuable in various fields where the interaction of multiple fluid components is significant. Moreover, the application of neurally-transformed hydrodynamical models extends to manufacturing processes, such as the production of microelectromechanical systems, enhancing efficiency and cost-effectiveness. The system's ability to perform neural transfer on 3D fluid scenes using a deep learning algorithm alongside physical models further adds a layer of flexibility, allowing researchers to tailor simulations to specific needs across scientific and engineering disciplines.

Keywords: physics-based machine learning, robot vision, robot learning, hydrodynamics

Procedia PDF Downloads 56
6132 The Need for Innovation Management in the Context of Integrated Management Systems

Authors: Adela Mariana Vadastreanu, Adrian Bot, Andreea Maier, Dorin Maier

Abstract:

This paper approaches the need for innovation management in the context of an existing integrated management system implemented in an organization. The road to success for companies in today’s economic environment is more demanding than ever and the capacity of adapting to the rapid changes is compensatory in order to resist on the market. The managers struggle, daily, with increasingly complex problems, caused by fierce competition in the market but also from the rising demands of customers. Innovation seems to be the solution for these problems. During the last decade almost all companies have been certificated according to various management systems, like quality management system, environmental management system, health and safety management system and others; furthermore many companies have implemented an integrated management system, by integrating two or more management systems. The problem rising today is how to integrate innovation in this integrated management systems. The challenge of the problem is that the development of an innovation management system is in the early phase. In this paper we have studied the possibility of integrating some of the innovation request in an existing management system, we have identify the innovation performance request and we proposed some recommendations regarding innovation management and its implementation as a part of an integrated management system. This paper lies down the bases for developing an model of integration management systems that include innovation as a main part of it. Organizations are becoming more aware of the importance of Integrated Management Systems (IMS). Integrating two or more management systems into an integrated management system can have much advantages.This paper examines various models of management systems integration in accordance with professional references ISO 9001, ISO 18001 and OHSAS 18001, highlighting strengths and weaknesses, creating a basis for future development of integrated management systems, and their involvement in various other processes within the organization, such as innovation management. The more and more demanding economic context emphasizes the awareness of the importance of innovation for organizations. This paper highlights the importance of the innovation for an organization and also gives some practical solution in order to improve the overall success of the business through a better approach of innovation. Various standards have been developed in order to certificate organizations that they respect the requirements. Applying an integrated standards model is shown to be a more effective way then applying the standards independently. The problem that arises is that in order to adopt the integrated version of standards there have to be made some changes at the organizational level. Every change that needs to be done has an effect on its activity, and in this sense the paper tries to deal with the changes needed for adopting an integrated management system and if those changes have an influence over the performance. After the analysis of the results, we can conclude that in order to improve the performance a necessary step is the implementation of innovation in the existing integrated management system.

Keywords: innovation, integrated management systems, innovation management, quality

Procedia PDF Downloads 301
6131 An Application of Quantile Regression to Large-Scale Disaster Research

Authors: Katarzyna Wyka, Dana Sylvan, JoAnn Difede

Abstract:

Background and significance: The following disaster, population-based screening programs are routinely established to assess physical and psychological consequences of exposure. These data sets are highly skewed as only a small percentage of trauma-exposed individuals develop health issues. Commonly used statistical methodology in post-disaster mental health generally involves population-averaged models. Such models aim to capture the overall response to the disaster and its aftermath; however, they may not be sensitive enough to accommodate population heterogeneity in symptomatology, such as post-traumatic stress or depressive symptoms. Methods: We use an archival longitudinal data set from Weill-Cornell 9/11 Mental Health Screening Program established following the World Trade Center (WTC) terrorist attacks in New York in 2001. Participants are rescue and recovery workers who participated in the site cleanup and restoration (n=2960). The main outcome is the post-traumatic stress symptoms (PTSD) severity score assessed via clinician interviews (CAPS). For a detailed understanding of response to the disaster and its aftermath, we are adapting quantile regression methodology with particular focus on predictors of extreme distress and resilience to trauma. Results: The response variable was defined as the quantile of the CAPS score for each individual under two different scenarios specifying the unconditional quantiles based on: 1) clinically meaningful CAPS cutoff values and 2) CAPS distribution in the population. We present graphical summaries of the differential effects. For instance, we found that the effect of the WTC exposures, namely seeing bodies and feeling that life was in danger during rescue/recovery work was associated with very high PTSD symptoms. A similar effect was apparent in individuals with prior psychiatric history. Differential effects were also present for age and education level of the individuals. Conclusion: We evaluate the utility of quantile regression in disaster research in contrast to the commonly used population-averaged models. We focused on assessing the distribution of risk factors for post-traumatic stress symptoms across quantiles. This innovative approach provides a comprehensive understanding of the relationship between dependent and independent variables and could be used for developing tailored training programs and response plans for different vulnerability groups.

Keywords: disaster workers, post traumatic stress, PTSD, quantile regression

Procedia PDF Downloads 271
6130 IoT and Deep Learning approach for Growth Stage Segregation and Harvest Time Prediction of Aquaponic and Vermiponic Swiss Chards

Authors: Praveen Chandramenon, Andrew Gascoyne, Fideline Tchuenbou-Magaia

Abstract:

Aquaponics offers a simple conclusive solution to the food and environmental crisis of the world. This approach combines the idea of Aquaculture (growing fish) to Hydroponics (growing vegetables and plants in a soilless method). Smart Aquaponics explores the use of smart technology including artificial intelligence and IoT, to assist farmers with better decision making and online monitoring and control of the system. Identification of different growth stages of Swiss Chard plants and predicting its harvest time is found to be important in Aquaponic yield management. This paper brings out the comparative analysis of a standard Aquaponics with a Vermiponics (Aquaponics with worms), which was grown in the controlled environment, by implementing IoT and deep learning-based growth stage segregation and harvest time prediction of Swiss Chards before and after applying an optimal freshwater replenishment. Data collection, Growth stage classification and Harvest Time prediction has been performed with and without water replenishment. The paper discusses the experimental design, IoT and sensor communication with architecture, data collection process, image segmentation, various regression and classification models and error estimation used in the project. The paper concludes with the results comparison, including best models that performs growth stage segregation and harvest time prediction of the Aquaponic and Vermiponic testbed with and without freshwater replenishment.

Keywords: aquaponics, deep learning, internet of things, vermiponics

Procedia PDF Downloads 55
6129 Multidimensional Modeling of Solidification Process of Multi-Crystalline Silicon under Magnetic Field for Solar Cell Technology

Authors: Mouhamadou Diop, Mohamed I. Hassan

Abstract:

Molten metallic flow in metallurgical plant is highly turbulent and presents a complex coupling with heat transfer, phase transfer, chemical reaction, momentum transport, etc. Molten silicon flow has significant effect in directional solidification of multicrystalline silicon by affecting the temperature field and the emerging crystallization interface as well as the transport of species and impurities during casting process. Owing to the complexity and limits of reliable measuring techniques, computational models of fluid flow are useful tools to study and quantify these problems. The overall objective of this study is to investigate the potential of a traveling magnetic field for an efficient operating control of the molten metal flow. A multidimensional numerical model will be developed for the calculations of Lorentz force, molten metal flow, and the related phenomenon. The numerical model is implemented in a laboratory-scale silicon crystallization furnace. This study presents the potential of traveling magnetic field approach for an efficient operating control of the molten flow. A numerical model will be used to study the effects of magnetic force applied on the molten flow, and their interdependencies. In this paper, coupled and decoupled, steady and unsteady models of molten flow and crystallization interface will be compared. This study will allow us to retrieve the optimal traveling magnetic field parameter range for crystallization furnaces and the optimal numerical simulations strategy for industrial application.

Keywords: multidimensional, numerical simulation, solidification, multicrystalline, traveling magnetic field

Procedia PDF Downloads 235
6128 An Experimental Investigation on Productivity and Performance of an Improved Design of Basin Type Solar Still

Authors: Mahmoud S. El-Sebaey, Asko Ellman, Ahmed Hegazy, Tarek Ghonim

Abstract:

Due to population growth, the need for drinkable healthy water is highly increased. Consequently, and since the conventional sources of water are limited, researchers devoted their efforts to oceans and seas for obtaining fresh drinkable water by thermal distillation. The current work is dedicated to the design and fabrication of modified solar still model, as well as conventional solar still for the sake of comparison. The modified still is single slope double basin solar still. The still consists of a lower basin with a dimension of 1000 mm x 1000 mm which contains the sea water, as well as the top basin that made with 4 mm acrylic, was temporarily kept on the supporting strips permanently fixed with the side walls. Equally ten spaced vertical glass strips of 50 mm height and 3 mm thickness were provided at the upper basin for the stagnancy of the water. Window glass of 3 mm was used as the transparent cover with 23° inclination at the top of the still. Furthermore, the performance evaluation and comparison of these two models in converting salty seawater into drinkable freshwater are introduced, analyzed and discussed. The experiments were performed during the period from June to July 2018 at seawater depths of 2, 3, 4 and 5 cm. Additionally, the solar still models were operated simultaneously in the same climatic conditions to analyze the influence of the modifications on the freshwater output. It can be concluded that the modified design of double basin single slope solar still shows the maximum freshwater output at all water depths tested. The results showed that the daily productivity for modified and conventional solar still was 2.9 and 1.8 dm³/m² day, indicating an increase of 60% in fresh water production.

Keywords: freshwater output, solar still, solar energy, thermal desalination

Procedia PDF Downloads 128
6127 Food Processing Technology and Packaging: A Case Study of Indian Cashew-Nut Industry

Authors: Parashram Jakappa Patil

Abstract:

India is the global leader in world cashew business and cashew-nut industry is one of the important food processing industries in world. However India is the largest producer, processor, exporter and importer eschew in the world. India is providing cashew to the rest of the world. India is meeting world demand of cashew. India has a tremendous potential of cashew production and export to other countries. Every year India earns more than 2000 cores rupees through cashew trade. Cashew industry is one of the important small scale industries in the country which is playing significant role in rural development. It is generating more than 400000 jobs at remote area and 95% cashew worker are women, it is giving income to poor cashew farmers, majority cashew processing units are small and cottage, it is helping to stop migration from young farmers for employment opportunities, it is motivation rural entrepreneurship development and it is also helping to environment protection etc. Hence India cashew business is very important agribusiness in India which has potential make inclusive development. World Bank and IMF recognized cashew-nut industry is one the important tool for poverty eradication at global level. It shows important of cashew business and its strong existence in India. In spite of such huge potential cashew processing industry is facing different problems such as lack of infrastructure ability, lack of supply of raw cashew, lack of availability of finance, collection of raw cashew, unavailability of warehouse, marketing of cashew kernels, lack of technical knowledge and especially processing technology and packaging of finished products. This industry has great prospects such as scope for more cashew cultivation and cashew production, employment generation, formation of cashew processing units, alcohols production from cashew apple, shield oil production, rural development, poverty elimination, development of social and economic backward class and environment protection etc. This industry has domestic as well as foreign market; India has tremendous potential in this regard. The cashew is a poor men’s crop but rich men’s food. The cashew is a source of income and livelihood for poor farmers. Cashew-nut industry may play very important role in the development of hilly region. The objectives of this paper are to identify problems of cashew processing and use of processing technology, problems of cashew kernel packaging, evolving of cashew processing technology over the year and its impact on final product and impact of good processing by adopting appropriate technology packaging on international trade of cashew-nut. The most important problem of cashew processing industry is that is processing and packaging. Bad processing reduce the quality of cashew kernel at large extent especially broken of cashew kernel which has very less price in market compare to whole cashew kernel and not eligible for export. On the other hand if there is no good packaging of cashew kernel will get moisture which destroy test of it. International trade of cashew-nut is depend of two things one is cashew processing and other is packaging. This study has strong relevance because cashew-nut industry is the labour oriented, where processing technology is not playing important role because 95% processing work is manual. Hence processing work was depending on physical performance of worker which makes presence of large workforce inevitable. There are many cashew processing units closed because they are not getting sufficient work force. However due to advancement in technology slowly this picture is changing and processing work get improve. Therefore it is interesting to explore all the aspects in context of cashew processing and packaging of cashew business.

Keywords: cashew, processing technology, packaging, international trade, change

Procedia PDF Downloads 408
6126 A Novel Hybrid Deep Learning Architecture for Predicting Acute Kidney Injury Using Patient Record Data and Ultrasound Kidney Images

Authors: Sophia Shi

Abstract:

Acute kidney injury (AKI) is the sudden onset of kidney damage in which the kidneys cannot filter waste from the blood, requiring emergency hospitalization. AKI patient mortality rate is high in the ICU and is virtually impossible for doctors to predict because it is so unexpected. Currently, there is no hybrid model predicting AKI that takes advantage of two types of data. De-identified patient data from the MIMIC-III database and de-identified kidney images and corresponding patient records from the Beijing Hospital of the Ministry of Health were collected. Using data features including serum creatinine among others, two numeric models using MIMIC and Beijing Hospital data were built, and with the hospital ultrasounds, an image-only model was built. Convolutional neural networks (CNN) were used, VGG and Resnet for numeric data and Resnet for image data, and they were combined into a hybrid model by concatenating feature maps of both types of models to create a new input. This input enters another CNN block and then two fully connected layers, ending in a binary output after running through Softmax and additional code. The hybrid model successfully predicted AKI and the highest AUROC of the model was 0.953, achieving an accuracy of 90% and F1-score of 0.91. This model can be implemented into urgent clinical settings such as the ICU and aid doctors by assessing the risk of AKI shortly after the patient’s admission to the ICU, so that doctors can take preventative measures and diminish mortality risks and severe kidney damage.

Keywords: Acute kidney injury, Convolutional neural network, Hybrid deep learning, Patient record data, ResNet, Ultrasound kidney images, VGG

Procedia PDF Downloads 117
6125 Health Care using Queuing Theory

Authors: S. Vadivukkarasi, K. Karthi, M. Karthick, C. Dinesh, S. Santhosh, A. Yogaraj

Abstract:

The appointment system was designed to minimize patient’s idle time overlooking patients waiting time in hospitals. This is no longer valid in today’s consumer oriented society. Long waiting times for treatment in the outpatient department followed by short consultations has long been a complaint. Nowadays, customers use waiting time as a decisive factor in choosing a service provider. Queuing theory constitutes a very powerful tool because queuing models require relatively little data and are simple and fast to use. Because of this simplicity and speed, modelers can be used to quickly evaluate and compare various alternatives for providing service. The application of queuing models in the analysis of health care systems is increasingly accepted by health care decision makers. Timely access to care is a key component of high-quality health care. However, patient delays are prevalent throughout health care systems, resulting in dissatisfaction and adverse clinical consequences for patients as well as potentially higher costs and wasted capacity for providers. Arguably, the most critical delays for health care are the ones associated with health care emergencies. The allocation of resources can be divided into three general areas: bed management, staff management, and room facility management. Effective and efficient patient flow is indicated by high patient throughput, low patient waiting times, a short length of stay at the hospital and overtime, while simultaneously maintaining adequate staff utilization rates and low patient’s idle times.

Keywords: appointment system, patient scheduling, bed management, queueing calculation, system analysis

Procedia PDF Downloads 287
6124 Managing Student Internationalization during the COVID-19 Pandemic: Three Approaches That Should Endure beyond the Present

Authors: David Cobham

Abstract:

In higher education, a great degree of importance is placed on the internationalization of the student experience. This is seen as a valuable contributor to elements such as building confidence, broadening knowledge, creating networks and connections, and enhancing employability for current students who will become the next generation of managers in technology and business. The COVID-19 pandemic has affected all areas of people’s lives. The limitations of travel coupled with the fears and concerns generated by the health risks have dramatically reduced the opportunity for students to engage with this agenda. Institutions of higher education have been required to rethink fundamental aspects of their business model from recruitment and enrolment through learning approaches, assessment methods, and the pathway to employment. This paper presents a case study which focuses on student mobility and how the physical experience of being in another country, either to study, to work, to volunteer or to gain cultural and social enhancement, has of necessity been replaced by alternative approaches. It considers trans-national education as an alternative to physical study overseas, virtual mobility and internships as an alternative to international work experience, and adopting collaborative online projects as an alternative to in-person encounters. The paper concludes that although these elements have been adopted to address the current situation, the lessons learned and the feedback gained suggests that they have contributed successfully in new and sometimes unexpected ways and that they will persist beyond the present to become part of the 'new normal' for the future. That being the case, senior leaders of institutions of higher education will be required to revisit their international plans and to rewrite their international strategies to take account of and build upon these changes.

Keywords: higher education management, internationalization, transnational education, virtual mobility

Procedia PDF Downloads 94
6123 Integrating Radar Sensors with an Autonomous Vehicle Simulator for an Enhanced Smart Parking Management System

Authors: Mohamed Gazzeh, Bradley Null, Fethi Tlili, Hichem Besbes

Abstract:

The burgeoning global ownership of personal vehicles has posed a significant strain on urban infrastructure, notably parking facilities, leading to traffic congestion and environmental concerns. Effective parking management systems (PMS) are indispensable for optimizing urban traffic flow and reducing emissions. The most commonly deployed systems nowadays rely on computer vision technology. This paper explores the integration of radar sensors and simulation in the context of smart parking management. We concentrate on radar sensors due to their versatility and utility in automotive applications, which extends to PMS. Additionally, radar sensors play a crucial role in driver assistance systems and autonomous vehicle development. However, the resource-intensive nature of radar data collection for algorithm development and testing necessitates innovative solutions. Simulation, particularly the monoDrive simulator, an internal development tool used by NI the Test and Measurement division of Emerson, offers a practical means to overcome this challenge. The primary objectives of this study encompass simulating radar sensors to generate a substantial dataset for algorithm development, testing, and, critically, assessing the transferability of models between simulated and real radar data. We focus on occupancy detection in parking as a practical use case, categorizing each parking space as vacant or occupied. The simulation approach using monoDrive enables algorithm validation and reliability assessment for virtual radar sensors. It meticulously designed various parking scenarios, involving manual measurements of parking spot coordinates, orientations, and the utilization of TI AWR1843 radar. To create a diverse dataset, we generated 4950 scenarios, comprising a total of 455,400 parking spots. This extensive dataset encompasses radar configuration details, ground truth occupancy information, radar detections, and associated object attributes such as range, azimuth, elevation, radar cross-section, and velocity data. The paper also addresses the intricacies and challenges of real-world radar data collection, highlighting the advantages of simulation in producing radar data for parking lot applications. We developed classification models based on Support Vector Machines (SVM) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), exclusively trained and evaluated on simulated data. Subsequently, we applied these models to real-world data, comparing their performance against the monoDrive dataset. The study demonstrates the feasibility of transferring models from a simulated environment to real-world applications, achieving an impressive accuracy score of 92% using only one radar sensor. This finding underscores the potential of radar sensors and simulation in the development of smart parking management systems, offering significant benefits for improving urban mobility and reducing environmental impact. The integration of radar sensors and simulation represents a promising avenue for enhancing smart parking management systems, addressing the challenges posed by the exponential growth in personal vehicle ownership. This research contributes valuable insights into the practicality of using simulated radar data in real-world applications and underscores the role of radar technology in advancing urban sustainability.

Keywords: autonomous vehicle simulator, FMCW radar sensors, occupancy detection, smart parking management, transferability of models

Procedia PDF Downloads 66
6122 Empowering Transformers for Evidence-Based Medicine

Authors: Jinan Fiaidhi, Hashmath Shaik

Abstract:

Breaking the barrier for practicing evidence-based medicine relies on effective methods for rapidly identifying relevant evidence from the body of biomedical literature. An important challenge confronted by medical practitioners is the long time needed to browse, filter, summarize and compile information from different medical resources. Deep learning can help in solving this based on automatic question answering (Q&A) and transformers. However, Q&A and transformer technologies are not trained to answer clinical queries that can be used for evidence-based practice, nor can they respond to structured clinical questioning protocols like PICO (Patient/Problem, Intervention, Comparison and Outcome). This article describes the use of deep learning techniques for Q&A that are based on transformer models like BERT and GPT to answer PICO clinical questions that can be used for evidence-based practice extracted from sound medical research resources like PubMed. We are reporting acceptable clinical answers that are supported by findings from PubMed. Our transformer methods are reaching an acceptable state-of-the-art performance based on two staged bootstrapping processes involving filtering relevant articles followed by identifying articles that support the requested outcome expressed by the PICO question. Moreover, we are also reporting experimentations to empower our bootstrapping techniques with patch attention to the most important keywords in the clinical case and the PICO questions. Our bootstrapped patched with attention is showing relevancy of the evidence collected based on entropy metrics.

Keywords: automatic question answering, PICO questions, evidence-based medicine, generative models, LLM transformers

Procedia PDF Downloads 24
6121 Modeling and Numerical Simulation of Heat Transfer and Internal Loads at Insulating Glass Units

Authors: Nina Penkova, Kalin Krumov, Liliana Zashcova, Ivan Kassabov

Abstract:

The insulating glass units (IGU) are widely used in the advanced and renovated buildings in order to reduce the energy for heating and cooling. Rules for the choice of IGU to ensure energy efficiency and thermal comfort in the indoor space are well known. The existing of internal loads - gage or vacuum pressure in the hermetized gas space, requires additional attention at the design of the facades. The internal loads appear at variations of the altitude, meteorological pressure and gas temperature according to the same at the process of sealing. The gas temperature depends on the presence of coatings, coating position in the transparent multi-layer system, IGU geometry and space orientation, its fixing on the facades and varies with the climate conditions. An algorithm for modeling and numerical simulation of thermal fields and internal pressure in the gas cavity at insulating glass units as function of the meteorological conditions is developed. It includes models of the radiation heat transfer in solar and infrared wave length, indoor and outdoor convection heat transfer and free convection in the hermetized gas space, assuming the gas as compressible. The algorithm allows prediction of temperature and pressure stratification in the gas domain of the IGU at different fixing system. The models are validated by comparison of the numerical results with experimental data obtained by Hot-box testing. Numerical calculations and estimation of 3D temperature, fluid flow fields, thermal performances and internal loads at IGU in window system are implemented.

Keywords: insulating glass units, thermal loads, internal pressure, CFD analysis

Procedia PDF Downloads 260
6120 The Use of Social Media by Companies Operating on the Polish Market in the Context of the Corporate Reputation Management

Authors: Danuta Szwajca

Abstract:

Reputation The exponential growth of the Internet and social media (SM) in the recent years has contributed to changing the communication environment, in which stakeholders: customers, investors, business partners, employees, like their users, may post and distribute their opinions about the company and its products. This generates a number of potential threats to the image and reputation of both people and organizations. Social media create new opportunities not only for rapid and interactive communication but also for organizing themselves into strong pressure groups which may effectively affect the decisions of various organized bodies. Companies cannot ignore this fact and should use SM not only as an additional communication marketing channel but in a broader context - as a tool to build and protect their reputation. This article aims to identify the extent, scope, and directions of the use of SM in the activities of companies operating in the Polish market, as well as to identify threats and opportunities generated by the media in the area of reputation management. The results of research presented in the article showed that Polish companies recognize the potential of SM and try to apply them in their marketing efforts. However, his activity is limited only to maintain communication with customers through two portals: Facebook and Twitter. In the approach to the SM as a communication channel, the traditional way of thinking dominates, in which they are treated as just another promotional tool used by two departments: marketing and PR. This approach is called "silo" and is not integrated. This way of using SM does not allow effective building and protecting reputation in the Internet environment. To achieve this goal, the following research methods were used: the critical analysis of literature, analysis of secondary sources in a form of the report from the research conducted by Harvard Business Review Poland together with Capgemini Poland and case study.

Keywords: corporate reputation, reputation management, social media, risk reputation

Procedia PDF Downloads 184
6119 Managing Data from One Hundred Thousand Internet of Things Devices Globally for Mining Insights

Authors: Julian Wise

Abstract:

Newcrest Mining is one of the world’s top five gold and rare earth mining organizations by production, reserves and market capitalization in the world. This paper elaborates on the data acquisition processes employed by Newcrest in collaboration with Fortune 500 listed organization, Insight Enterprises, to standardize machine learning solutions which process data from over a hundred thousand distributed Internet of Things (IoT) devices located at mine sites globally. Through the utilization of software architecture cloud technologies and edge computing, the technological developments enable for standardized processes of machine learning applications to influence the strategic optimization of mineral processing. Target objectives of the machine learning optimizations include time savings on mineral processing, production efficiencies, risk identification, and increased production throughput. The data acquired and utilized for predictive modelling is processed through edge computing by resources collectively stored within a data lake. Being involved in the digital transformation has necessitated the standardization software architecture to manage the machine learning models submitted by vendors, to ensure effective automation and continuous improvements to the mineral process models. Operating at scale, the system processes hundreds of gigabytes of data per day from distributed mine sites across the globe, for the purposes of increased improved worker safety, and production efficiency through big data applications.

Keywords: mineral technology, big data, machine learning operations, data lake

Procedia PDF Downloads 99
6118 Evaluation of Heat Transfer and Entropy Generation by Al2O3-Water Nanofluid

Authors: Houda Jalali, Hassan Abbassi

Abstract:

In this numerical work, natural convection and entropy generation of Al2O3–water nanofluid in square cavity have been studied. A two-dimensional steady laminar natural convection in a differentially heated square cavity of length L, filled with a nanofluid is investigated numerically. The horizontal walls are considered adiabatic. Vertical walls corresponding to x=0 and x=L are respectively maintained at hot temperature, Th and cold temperature, Tc. The resolution is performed by the CFD code "FLUENT" in combination with GAMBIT as mesh generator. These simulations are performed by maintaining the Rayleigh numbers varied as 103 ≤ Ra ≤ 106, while the solid volume fraction varied from 1% to 5%, the particle size is fixed at dp=33 nm and a range of the temperature from 20 to 70 °C. We used models of thermophysical nanofluids properties based on experimental measurements for studying the effect of adding solid particle into water in natural convection heat transfer and entropy generation of nanofluid. Such as models of thermal conductivity and dynamic viscosity which are dependent on solid volume fraction, particle size and temperature. The average Nusselt number is calculated at the hot wall of the cavity in a different solid volume fraction. The most important results is that at low temperatures (less than 40 °C), the addition of nanosolids Al2O3 into water leads to a decrease in heat transfer and entropy generation instead of the expected increase, whereas at high temperature, heat transfer and entropy generation increase with the addition of nanosolids. This behavior is due to the contradictory effects of viscosity and thermal conductivity of the nanofluid. These effects are discussed in this work.

Keywords: entropy generation, heat transfer, nanofluid, natural convection

Procedia PDF Downloads 258
6117 Research the Causes of Defects and Injuries of Reinforced Concrete and Stone Construction

Authors: Akaki Qatamidze

Abstract:

Implementation of the project will be a step forward in terms of reliability in Georgia and the improvement of the construction and the development of construction. Completion of the project is expected to result in a complete knowledge, which is expressed in concrete and stone structures of assessing the technical condition of the processing. This method is based on a detailed examination of the structure, in order to establish the injuries and the elimination of the possibility of changing the structural scheme of the new requirements and architectural preservationists. Reinforced concrete and stone structures research project carried out in a systematic analysis of the important approach is to optimize the process of research and development of new knowledge in the neighboring areas. In addition, the problem of physical and mathematical models of rational consent, the main pillar of the physical (in-situ) data and mathematical calculation models and physical experiments are used only for the calculation model specification and verification. Reinforced concrete and stone construction defects and failures the causes of the proposed research to enhance the effectiveness of their maximum automation capabilities and expenditure of resources to reduce the recommended system analysis of the methodological concept-based approach, as modern science and technology major particularity of one, it will allow all family structures to be identified for the same work stages and procedures, which makes it possible to exclude subjectivity and addresses the problem of the optimal direction. It discussed the methodology of the project and to establish a major step forward in the construction trades and practical assistance to engineers, supervisors, and technical experts in the construction of the settlement of the problem.

Keywords: building, reinforced concrete, expertise, stone structures

Procedia PDF Downloads 321