Search results for: climatic niche modeling
1567 Modeling and Characterization of the SiC Single Crystal Growth Process
Authors: T. Wejrzanowski, M. Grybczuk, E. Tymicki, K. J. Kurzydlowski
Abstract:
In the present study numerical simulations silicon carbide single crystal growth process in Physical Vapor Transport reactor are addressed. Silicon Carbide is a perspective material for many applications in modern electronics. One of the main challenges for wider applications of SiC is high price of high quality mono crystals. Improvement of silicon carbide manufacturing process has a significant influence on the product price. Better understanding of crystal growth allows for optimization of the process, and it can be achieved by numerical simulations. In this work Virtual Reactor software was used to simulate the process. Predicted geometrical properties of the final product and information about phenomena occurring inside process reactor were obtained. The latter is especially valuable because reactor chamber is inaccessible during the process due to high temperature inside the reactor (over 2000˚C). Obtained data was used for improvement of the process and reactor geometry. Resultant crystal quality was also predicted basing on crystallization front shape evolution and threading dislocation paths. Obtained results were confronted with experimental data and the results are in good agreement.Keywords: Finite Volume Method, semiconductors, Physical Vapor Transport, silicon carbide
Procedia PDF Downloads 5311566 Characterization and Geochemical Modeling of Cu and Zn Sorption Using Mixed Mineral Systems Injected with Iron Sulfide under Sulfidic-Anoxic Conditions I: Case Study of Cwmheidol Mine Waste Water, Wales, United Kingdom
Authors: D. E. Egirani, J. E. Andrews, A. R. Baker
Abstract:
This study investigates sorption of Cu and Zn contained in natural mine wastewater, using mixed mineral systems in sulfidic-anoxic condition. The mine wastewater was obtained from disused mine workings at Cwmheidol in Wales, United Kingdom. These contaminants flow into water courses. These water courses include River Rheidol. In this River fishing activities exist. In an attempt to reduce Cu-Zn levels of fish intake in the watercourses, single mineral systems and 1:1 mixed mineral systems of clay and goethite were tested with the mine waste water for copper and zinc removal at variable pH. Modelling of hydroxyl complexes was carried out using phreeqc method. Reactions using batch mode technique was conducted at room temperature. There was significant differences in the behaviour of copper and zinc removal using mixed mineral systems when compared to single mineral systems. All mixed mineral systems sorb more Cu than Zn when tested with mine wastewater.Keywords: Cu- Zn, hydroxyl complexes, kinetics, mixed mineral systems, reactivity
Procedia PDF Downloads 4991565 The Circularity of Re-Refined Used Motor Oils: Measuring Impacts and Ensuring Responsible Procurement
Authors: Farah Kanani
Abstract:
Blue Tide Environmental is a company focused on developing a network of used motor oil recycling facilities across the U.S. They initiated the redesign of its recycling plant in Texas, and aimed to establish an updated carbon footprint of re-refined used motor oils compared to an equivalent product derived from virgin stock that is not re-refined. The aim was to quantify emissions savings of a circular alternative to conventional end-of-life combustion of used motor oil (UMO). To do so, they mandated an ISO-compliant carbon footprint, utilizing complex models requiring geographical and temporal accuracy to accommodate the U.S. refinery market. The quantification of linear and circular flows, proxies for fuel substitution and system expansion for multi-product outputs were all critical methodological choices and were tested through sensitivity analyses. The re-refined system consisted of continuous recycling of UMO and thus, end-of-life is considered non-existent. The unique perspective to this topic will be from a life cycle i.e. holistic one and essentially demonstrate using this example of how a cradle-to-cradle model can be used to quantify a comparative carbon footprint. The intended audience is lubricant manufacturers as the consumers, motor oil industry professionals and other industry members interested in performing a cradle-to-cradle modeling.Keywords: circularity, used motor oil, re-refining, systems expansion
Procedia PDF Downloads 311564 Bamboo Resilience: Mentoring Asian Students to Develop their Self-Leadership via Online Seminars
Authors: Tam Nguyen
Abstract:
Self-leadership is strongly tied to the ability to be resilient in the face of adversity. This study aims to demonstrate how a strategy based on a culturally relevant "bamboo metaphor" enables Asian students to cross cultural boundaries and to engage in online discussions to unlock their self-leadership potential. Asian students are influenced to varying degrees by the Confucian heritage culture, which educates students to respect authority, maintain harmony, and avoid public confrontations. This has a significant impact on the cultural readiness of Asian students to express their development as self-leaders. In this research project, researchers as mentors individually assist students, cultivate cognitive progress, encourage and personally ask students to join a process of mentorship program. This study analyzes and interprets the data from a large online seminar in Ho Chi Minh City, Vietnam, where students were trained in self-leadership skills. Focus-group interviews were implemented among 90 students in the program. Findings reveal the emotional needs of Asian students and suggest a cognitive model for developing students' self-awareness, self-confidence, and self-efficacy. The research results are anticipated to be applicable to a broader Asian population with a comparable cultural environment to Vietnam.Keywords: self-leadership, bamboo resilience, cognitive modeling, Asian culture
Procedia PDF Downloads 881563 An Approach to Consumption of Exhaustible Resources Based on Islamic Justice and Hartwick Criteria
Authors: Hamed Najafi, Ghasem Nikjou
Abstract:
Nowadays, there is an increasing attention to the resources scarcity issues. Because of failure in present patterns in the field of the allocation of exhaustible resources between generations and the challenges related to economic justice supply, it is supposed, to present a pattern from the Islamic perspective in this essay. By using content analysis of religious texts, we conclude that governments should remove the gap which is exists between the per capita income of the poor and their minimum consumption (necessary consumption). In order to preserve the exhaustible resources for poor people) not for all), between all generations, government should invest exhaustible resources on endless resources according to Hartwick’s criteria and should spend these benefits for poor people. But, if benefits did not cover the gap between minimum consumption and per capita income of poor levels in one generation, in this case, the government is responsible for covering this gap through the direct consumption of exhaustible resources. For an exact answer to this question, ‘how much of exhaustible resources should expense to maintain justice between generations?’ The theoretical and mathematical modeling has been used and proper function has been provided. The consumption pattern is presented for economic policy makers in Muslim countries, and non-Muslim even, it can be useful.Keywords: exhaustible resources, Islamic justice, intergenerational justice, distribution of resources, Hartwick criteria
Procedia PDF Downloads 1891562 Management of Urine Recovery at the Building Level
Authors: Joao Almeida, Ana Azevedo, Myriam Kanoun-Boule, Maria Ines Santos, Antonio Tadeu
Abstract:
The effects of the increasing expansion of cities and climate changes have encouraged European countries and regions to adopt nature-based solutions with ability to mitigate environmental issues and improve life in cities. Among these strategies, green roofs and urban gardens have been considered ingenious solutions, since they have the desirable potential to improve air quality, prevent floods, reduce the heat island effect and restore biodiversity in cities. However, an additional consumption of fresh water and mineral nutrients is necessary to sustain larger green urban areas. This communication discusses the main technical features of a new system to manage urine recovery at the building level and its application in green roofs. The depletion of critical nutrients like phosphorus constitutes an emergency. In turn, their elimination through urine is one of the principal causes for their loss. Thus, urine recovery in buildings may offer numerous advantages, constituting a valuable fertilizer abundantly available in cities and reducing the load on wastewater treatment plants. Although several urine-diverting toilets have been developed for this purpose and some experiments using urine directly in agriculture have already been carried out in Europe, several challenges have emerged with this practice concerning collection, sanitization, storage and application of urine in buildings. To our best knowledge, current buildings are not designed to receive these systems and integrated solutions with ability to self-manage the whole process of urine recovery, including separation, maturation and storage phases, are not known. Additionally, if from a hygiene point of view human urine may be considered a relatively safe fertilizer, the risk of disease transmission needs to be carefully analysed. A reduction in microorganisms can be achieved by storing the urine in closed tanks. However, several factors may affect this process, which may result in a higher survival rate for some pathogens. In this work, urine effluent was collected under real conditions, stored in closed containers and kept in climatic chambers under variable conditions simulating cold, temperate and tropical climates. These samples were subjected to a first physicochemical and microbiological control, which was repeated over time. The results obtained so far suggest that maturation conditions were reached for all the three temperatures and that a storage period of less than three months is required to achieve a strong depletion of microorganisms. The authors are grateful for the Project WashOne (POCI-01-0247-FEDER-017461) funded by the Operational Program for Competitiveness and Internationalization (POCI) of Portugal 2020, with the support of the European Regional Development Fund (FEDER).Keywords: sustainable green roofs and urban gardens, urban nutrient cycle, urine-based fertilizers, urine recovery in buildings
Procedia PDF Downloads 1661561 Determination of the Optimum Size of Building Stone Blocks: Case Study of Delichai Travertine Mine
Authors: Hesam Sedaghat Nejad, Navid Hosseini, Arash Nikvar Hassani
Abstract:
Determination of the optimum block size with high profitability is one of the significant parameters in designation of the building stone mines. The aim of this study was to determine the optimum dimensions of building stone blocks in Delichai travertine mine of Damavand in Tehran province through combining the effective parameters proven in determination of the optimum dimensions in building stones such as the spacing of joints and gaps, extraction tools constraints with the help of modeling by Gemcom software. To this end, following simulation of the topography of the mine, the block model was prepared and then in order to use spacing joints and discontinuities as a limiting factor, the existing joints set was added to the model. Since only one almost horizontal joint set with a slope of 5 degrees was available, this factor was effective only in determining the optimum height of the block, and thus to determine the longitudinal and transverse optimum dimensions of the extracted block, the power of available loader in the mine was considered as the secondary limiting factor. According to the aforementioned factors, the optimal block size in this mine was measured as 3.4×4×7 meter.Keywords: building stone, optimum block size, Delichay travertine mine, loader power
Procedia PDF Downloads 3651560 Loop Heat Pipe Two-Phase Heat Transports: Guidelines for Technology Utilization
Authors: Triem T. Hoang
Abstract:
Loop heat pipes (LHPs) are two-phase capillary-pumped heat transports. An appropriate working fluid is selected for the intended application temperature range. A closed-loop is evacuated to a high vacuum, back-filled partially with the working fluid, and then hermetically sealed under the fluid own pressure. Heat from a heat source conducts through the evaporator casing to vaporize liquid on the outer surface of the wick structure inside the evaporator. The generated vapor is compelled to vent out of the evaporator and into the vapor line for transport to the condenser assembly. There, heat is removed and rejected to a heat sink to condensed vapor back to liquid. The liquid exits the condenser and travels in the liquid line to return to the evaporator to complete the cycle. The circulation of fluid, and thus the heat transport in the LHP, is accomplished entirely by capillary action. The LHP contains no mechanical moving part to wear out or break down and, therefore possesses, reliability and a long life even without maintenance. In this paper, the author not only attempts to introduce the LHP technology in simplistic terms to those who are not familiar with it but also provides necessary technical information to potential users for the proper design and analysis of the LHP system.Keywords: two-phase heat transfer, loop heat pipe, capillary pumped technology, thermal-fluid modeling
Procedia PDF Downloads 1401559 The Impact of Sustainable Packaging on Customers’ Willingness to Buy: A Study Based in Rwanda
Authors: Nirere Martine
Abstract:
Purpose –The purpose of this study aims to understand the intention of customers to adopt sustainable packaging and the impact of sustainable packaging on customers’ willingness to buy a product using sustainable packaging. Design/methodology/approach – A new research model based on the technology acceptance model (TAM) and structural equation modeling are used to examine causality and test relationship based on the data collected from 251 Rwanda samples. Findings – The findings indicated that perceived ease of use positively affects perceived usefulness. However, perceived usefulness and perceived ease of use positively affect the intention to adopt sustainable packaging. However, perceived risk and perceived cost negatively affect the intention to adopt sustainable packaging. The intention to adopt sustainable packaging positively affects the willingness to buy a product using sustainable packaging. Originality/value – Many researchers have investigated the issue of a consumers’ behavior to purchase a product. In particular, they have examined whether customers are willing to pay extra for a packaging product. There has been no study that has examined the impact of sustainable packaging on customers’ willingness to buy. The results of this study can help manufacturers form a better understanding of customers’ willingness to purchase a product using sustainable packaging.Keywords: consumers’ behavioral, sustainable packaging, TAM, Rwanda
Procedia PDF Downloads 1961558 Comparative Analysis of the Computer Methods' Usage for Calculation of Hydrocarbon Reserves in the Baltic Sea
Authors: Pavel Shcherban, Vlad Golovanov
Abstract:
Nowadays, the depletion of hydrocarbon deposits on the land of the Kaliningrad region leads to active geological exploration and development of oil and natural gas reserves in the southeastern part of the Baltic Sea. LLC 'Lukoil-Kaliningradmorneft' implements a comprehensive program for the development of the region's shelf in 2014-2023. Due to heterogeneity of reservoir rocks in various open fields, as well as with ambiguous conclusions on the contours of deposits, additional geological prospecting and refinement of the recoverable oil reserves are carried out. The key element is use of an effective technique of computer stock modeling at the first stage of processing of the received data. The following step uses information for the cluster analysis, which makes it possible to optimize the field development approaches. The article analyzes the effectiveness of various methods for reserves' calculation and computer modelling methods of the offshore hydrocarbon fields. Cluster analysis allows to measure influence of the obtained data on the development of a technical and economic model for mining deposits. The relationship between the accuracy of the calculation of recoverable reserves and the need of modernization of existing mining infrastructure, as well as the optimization of the scheme of opening and development of oil deposits, is observed.Keywords: cluster analysis, computer modelling of deposits, correction of the feasibility study, offshore hydrocarbon fields
Procedia PDF Downloads 1661557 Developing and Evaluating Clinical Risk Prediction Models for Coronary Artery Bypass Graft Surgery
Authors: Mohammadreza Mohebbi, Masoumeh Sanagou
Abstract:
The ability to predict clinical outcomes is of great importance to physicians and clinicians. A number of different methods have been used in an effort to accurately predict these outcomes. These methods include the development of scoring systems based on multivariate statistical modelling, and models involving the use of classification and regression trees. The process usually consists of two consecutive phases, namely model development and external validation. The model development phase consists of building a multivariate model and evaluating its predictive performance by examining calibration and discrimination, and internal validation. External validation tests the predictive performance of a model by assessing its calibration and discrimination in different but plausibly related patients. A motivate example focuses on prediction modeling using a sample of patients undergone coronary artery bypass graft (CABG) has been used for illustrative purpose and a set of primary considerations for evaluating prediction model studies using specific quality indicators as criteria to help stakeholders evaluate the quality of a prediction model study has been proposed.Keywords: clinical prediction models, clinical decision rule, prognosis, external validation, model calibration, biostatistics
Procedia PDF Downloads 2971556 Mathematical Modeling of Thin Layer Drying Behavior of Bhimkol (Musa balbisiana) Pulp
Authors: Ritesh Watharkar, Sourabh Chakraborty, Brijesh Srivastava
Abstract:
Reduction of water from the fruits and vegetables using different drying techniques is widely employed to prolong the shelf life of these food commodities. Heat transfer occurs inside the sample by conduction and mass transfer takes place by diffusion in accordance with temperature and moisture concentration gradient respectively during drying. This study was undertaken to study and model the thin layer drying behavior of Bhimkol pulp. The drying was conducted in a tray drier at 500c temperature with 5, 10 and 15 % concentrations of added maltodextrin. The drying experiments were performed at 5mm thickness of the thin layer and the constant air velocity of 0.5 m/s.Drying data were fitted to different thin layer drying models found in the literature. Comparison of fitted models was based on highest R2(0.9917), lowest RMSE (0.03201), and lowest SSE (0.01537) revealed Middle equation as the best-fitted model for thin layer drying with 10% concentration of maltodextrin. The effective diffusivity was estimated based on the solution of Fick’s law of diffusion which is found in the range of 3.0396 x10-09 to 5.0661 x 10-09. There was a reduction in drying time with the addition of maltodextrin as compare to the raw pulp.Keywords: Bhimkol, diffusivity, maltodextrine, Midilli model
Procedia PDF Downloads 2111555 Support Vector Regression Combined with Different Optimization Algorithms to Predict Global Solar Radiation on Horizontal Surfaces in Algeria
Authors: Laidi Maamar, Achwak Madani, Abdellah El Ahdj Abdellah
Abstract:
The aim of this work is to use Support Vector regression (SVR) combined with dragonfly, firefly, Bee Colony and particle swarm Optimization algorithm to predict global solar radiation on horizontal surfaces in some cities in Algeria. Combining these optimization algorithms with SVR aims principally to enhance accuracy by fine-tuning the parameters, speeding up the convergence of the SVR model, and exploring a larger search space efficiently; these parameters are the regularization parameter (C), kernel parameters, and epsilon parameter. By doing so, the aim is to improve the generalization and predictive accuracy of the SVR model. Overall, the aim is to leverage the strengths of both SVR and optimization algorithms to create a more powerful and effective regression model for various cities and under different climate conditions. Results demonstrate close agreement between predicted and measured data in terms of different metrics. In summary, SVM has proven to be a valuable tool in modeling global solar radiation, offering accurate predictions and demonstrating versatility when combined with other algorithms or used in hybrid forecasting models.Keywords: support vector regression (SVR), optimization algorithms, global solar radiation prediction, hybrid forecasting models
Procedia PDF Downloads 351554 The Use of the TRIGRS Model and Geophysics Methodologies to Identify Landslides Susceptible Areas: Case Study of Campos do Jordao-SP, Brazil
Authors: Tehrrie Konig, Cassiano Bortolozo, Daniel Metodiev, Rodolfo Mendes, Marcio Andrade, Marcio Moraes
Abstract:
Gravitational mass movements are recurrent events in Brazil, usually triggered by intense rainfall. When these events occur in urban areas, they end up becoming disasters due to the economic damage, social impact, and loss of human life. To identify the landslide-susceptible areas, it is important to know the geotechnical parameters of the soil, such as cohesion, internal friction angle, unit weight, hydraulic conductivity, and hydraulic diffusivity. The measurement of these parameters is made by collecting soil samples to analyze in the laboratory and by using geophysical methodologies, such as Vertical Electrical Survey (VES). The geophysical surveys analyze the soil properties with minimal impact in its initial structure. Statistical analysis and mathematical models of physical basis are used to model and calculate the Factor of Safety for steep slope areas. In general, such mathematical models work from the combination of slope stability models and hydrological models. One example is the mathematical model TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope- Stability Model) which calculates the variation of the Factor of Safety of a determined study area. The model relies on changes in pore-pressure and soil moisture during a rainfall event. TRIGRS was written in the Fortran programming language and associates the hydrological model, which is based on the Richards Equation, with the stability model based on the principle of equilibrium limit. Therefore, the aims of this work are modeling the slope stability of Campos do Jordão with TRIGRS, using geotechnical and geophysical methodologies to acquire the soil properties. The study area is located at southern-east of Sao Paulo State in the Mantiqueira Mountains and has a historic landslide register. During the fieldwork, soil samples were collected, and the VES method applied. These procedures provide the soil properties, which were used as input data in the TRIGRS model. The hydrological data (infiltration rate and initial water table height) and rainfall duration and intensity, were acquired from the eight rain gauges installed by Cemaden in the study area. A very high spatial resolution digital terrain model was used to identify the slopes declivity. The analyzed period is from March 6th to March 8th of 2017. As results, the TRIGRS model calculates the variation of the Factor of Safety within a 72-hour period in which two heavy rainfall events stroke the area and six landslides were registered. After each rainfall, the Factor of Safety declined, as expected. The landslides happened in areas identified by the model with low values of Factor of Safety, proving its efficiency on the identification of landslides susceptible areas. This study presents a critical threshold for landslides, in which an accumulated rainfall higher than 80mm/m² in 72 hours might trigger landslides in urban and natural slopes. The geotechnical and geophysics methods are shown to be very useful to identify the soil properties and provide the geological characteristics of the area. Therefore, the combine geotechnical and geophysical methods for soil characterization and the modeling of landslides susceptible areas with TRIGRS are useful for urban planning. Furthermore, early warning systems can be developed by combining the TRIGRS model and weather forecast, to prevent disasters in urban slopes.Keywords: landslides, susceptibility, TRIGRS, vertical electrical survey
Procedia PDF Downloads 1731553 Constitutive Modeling of Different Types of Concrete under Uniaxial Compression
Authors: Mostafa Jafarian Abyaneh, Khashayar Jafari, Vahab Toufigh
Abstract:
The cost of experiments on different types of concrete has raised the demand for prediction of their behavior with numerical analysis. In this research, an advanced numerical model has been presented to predict the complete elastic-plastic behavior of polymer concrete (PC), high-strength concrete (HSC), high performance concrete (HPC) along with different steel fiber contents under uniaxial compression. The accuracy of the numerical response was satisfactory as compared to other conventional simple models such as Mohr-Coulomb and Drucker-Prager. In order to predict the complete elastic-plastic behavior of specimens including softening behavior, disturbed state concept (DSC) was implemented by nonlinear finite element analysis (NFEA) and hierarchical single surface (HISS) failure criterion, which is a failure surface without any singularity.Keywords: disturbed state concept (DSC), hierarchical single surface (HISS) failure criterion, high performance concrete (HPC), high-strength concrete (HSC), nonlinear finite element analysis (NFEA), polymer concrete (PC), steel fibers, uniaxial compression test
Procedia PDF Downloads 3111552 A Multi-Criteria Model for Scheduling of Stochastic Single Machine Problem with Outsourcing and Solving It through Application of Chance Constrained
Authors: Homa Ghave, Parmis Shahmaleki
Abstract:
This paper presents a new multi-criteria stochastic mathematical model for a single machine scheduling with outsourcing allowed. There are multiple jobs processing in batch. For each batch, all of job or a quantity of it can be outsourced. The jobs have stochastic processing time and lead time and deterministic due dates arrive randomly. Because of the stochastic inherent of processing time and lead time, we use the chance constrained programming for modeling the problem. First, the problem is formulated in form of stochastic programming and then prepared in a form of deterministic mixed integer linear programming. The objectives are considered in the model to minimize the maximum tardiness and outsourcing cost simultaneously. Several procedures have been developed to deal with the multi-criteria problem. In this paper, we utilize the concept of satisfaction functions to increases the manager’s preference. The proposed approach is tested on instances where the random variables are normally distributed.Keywords: single machine scheduling, multi-criteria mathematical model, outsourcing strategy, uncertain lead times and processing times, chance constrained programming, satisfaction function
Procedia PDF Downloads 2641551 Printing Imperfections: Development of Buckling Patterns to Improve Strength of 3D Printed Steel Plated Elements
Authors: Ben Chater, Jingbang Pan, Mark Evernden, Jie Wang
Abstract:
Traditional structural steel manufacturing routes normally produce prismatic members with flat plate elements. In these members, plate instability in the lowest buckling mode often dominates failure. It is proposed in the current study to use a new technology of metal 3D printing to print steel-plated elements with predefined imperfection patterns that can lead to higher modes of failure with increased buckling resistances. To this end, a numerical modeling program is carried out to explore various combinations of predefined buckling waves with different amplitudes in stainless steel square hollow section stub columns. Their stiffness, strength, and material consumption against the traditional structural steel members with the same nominal dimensions are assessed. It is found that depending on the slenderness of the plate elements; it is possible for an ‘imperfect’ steel member to achieve up to a 30% increase in strength with just a 3% increase in the material consumption. The obtained results shed some light on the significant potential of the new metal 3D printing technology in achieving unprecedented material efficiency and economical design in the future steel construction industry.Keywords: 3D printing, additive manufacturing, buckling resistance, steel plate buckling, structural optimisation
Procedia PDF Downloads 1441550 Spatially Distributed Rainfall Prediction Based on Automated Kriging for Landslide Early Warning Systems
Authors: Ekrem Canli, Thomas Glade
Abstract:
The precise prediction of rainfall in space and time is a key element to most landslide early warning systems. Unfortunately, the spatial variability of rainfall in many early warning applications is often disregarded. A common simplification is to use uniformly distributed rainfall to characterize aerial rainfall intensity. With spatially differentiated rainfall information, real-time comparison with rainfall thresholds or the implementation in process-based approaches might form the basis for improved landslide warnings. This study suggests an automated workflow from the hourly, web-based collection of rain gauge data to the generation of spatially differentiated rainfall predictions based on kriging. Because the application of kriging is usually a labor intensive task, a simplified and consequently automated variogram modeling procedure was applied to up-to-date rainfall data. The entire workflow was carried out purely with open source technology. Validation results, albeit promising, pointed out the challenges that are involved in pure distance based, automated geostatistical interpolation techniques for ever-changing environmental phenomena over short temporal and spatial extent.Keywords: kriging, landslide early warning system, spatial rainfall prediction, variogram modelling, web scraping
Procedia PDF Downloads 2801549 Cryogenic Separation of CO2 from Molten Carbonate Fuel Cell Anode Outlet—Experimental Guidelines
Authors: Jarosław Milewski, Rafał Bernat
Abstract:
This paper presents an analysis of using cryogenic separation unit for recovering fuel from anode off gas of molten carbonate fuel cells (MCFCs) in order to upgrade the efficiently of the unit. In the proposed solution, the CSU is used for condensing water and carbon dioxide from anode off gas, and re-cycling the rest of the stream to the anode, saving certain amount of fuel (at least 30%). The resulting system efficiency is increased considerably. CSU, virtually consumes power, thus this solution has energy penalty as well, on the other hand, MCFC generates large amount of heat at elevated temperature, thus part of the CSU can be based on absorption chiller. In all cases, a high amount of fuel is obtained after condensation of water and carbon dioxide and re-cycled to the anode inlet. Based on mathematical modeling done previously, the concept and guidelines for forthcoming experimental investigations are presented in this paper. During planned experiments, an existing single cell laboratory stand will be equipped with re-cycle device (a fan, a peristaltic pump, etc.). Parallel, a mixture of anode off gas will be cooled down for determining the proper temperature for the separation of water and carbon dioxide.Keywords: cryogenic separation, experiments, fuel cells, molten carbonate fuel cells
Procedia PDF Downloads 2471548 Modeling of Carbon Monoxide Distribution under the Sky-Train Stations
Authors: Suranath Chomcheon, Nathnarong Khajohnsaksumeth, Benchawan Wiwatanapataphee
Abstract:
Carbon monoxide is one of the harmful gases which have colorless, odorless, and tasteless. Too much carbon monoxide taken into the human body causes the reduction of oxygen transportation within human body cells leading to many symptoms including headache, nausea, vomiting, loss of consciousness, and death. Carbon monoxide is considered as one of the air pollution indicators. It is mainly released as soot from the exhaust pipe of the incomplete combustion of the vehicle engine. Nowadays, the increase in vehicle usage and the slowly moving of the vehicle struck by the traffic jam has created a large amount of carbon monoxide, which accumulated in the street canyon area. In this research, we study the effect of parameters such as wind speed and aspect ratio of the height building affecting the ventilation. We consider the model of the pollutant under the Bangkok Transit System (BTS) stations in a two-dimensional geometrical domain. The convention-diffusion equation and Reynolds-averaged Navier-stokes equation is used to describe the concentration and the turbulent flow of carbon monoxide. The finite element method is applied to obtain the numerical result. The result shows that our model can describe the dispersion patterns of carbon monoxide for different wind speeds.Keywords: air pollution, carbon monoxide, finite element, street canyon
Procedia PDF Downloads 1261547 Analytical Modelling of Surface Roughness during Compacted Graphite Iron Milling Using Ceramic Inserts
Authors: Ş. Karabulut, A. Güllü, A. Güldaş, R. Gürbüz
Abstract:
This study investigates the effects of the lead angle and chip thickness variation on surface roughness during the machining of compacted graphite iron using ceramic cutting tools under dry cutting conditions. Analytical models were developed for predicting the surface roughness values of the specimens after the face milling process. Experimental data was collected and imported to the artificial neural network model. A multilayer perceptron model was used with the back propagation algorithm employing the input parameters of lead angle, cutting speed and feed rate in connection with chip thickness. Furthermore, analysis of variance was employed to determine the effects of the cutting parameters on surface roughness. Artificial neural network and regression analysis were used to predict surface roughness. The values thus predicted were compared with the collected experimental data, and the corresponding percentage error was computed. Analysis results revealed that the lead angle is the dominant factor affecting surface roughness. Experimental results indicated an improvement in the surface roughness value with decreasing lead angle value from 88° to 45°.Keywords: CGI, milling, surface roughness, ANN, regression, modeling, analysis
Procedia PDF Downloads 4481546 Regional Flood-Duration-Frequency Models for Norway
Authors: Danielle M. Barna, Kolbjørn Engeland, Thordis Thorarinsdottir, Chong-Yu Xu
Abstract:
Design flood values give estimates of flood magnitude within a given return period and are essential to making adaptive decisions around land use planning, infrastructure design, and disaster mitigation. Often design flood values are needed at locations with insufficient data. Additionally, in hydrologic applications where flood retention is important (e.g., floodplain management and reservoir design), design flood values are required at different flood durations. A statistical approach to this problem is a development of a regression model for extremes where some of the parameters are dependent on flood duration in addition to being covariate-dependent. In hydrology, this is called a regional flood-duration-frequency (regional-QDF) model. Typically, the underlying statistical distribution is chosen to be the Generalized Extreme Value (GEV) distribution. However, as the support of the GEV distribution depends on both its parameters and the range of the data, special care must be taken with the development of the regional model. In particular, we find that the GEV is problematic when developing a GAMLSS-type analysis due to the difficulty of proposing a link function that is independent of the unknown parameters and the observed data. We discuss these challenges in the context of developing a regional QDF model for Norway.Keywords: design flood values, bayesian statistics, regression modeling of extremes, extreme value analysis, GEV
Procedia PDF Downloads 721545 Modeling of Daily Global Solar Radiation Using Ann Techniques: A Case of Study
Authors: Said Benkaciali, Mourad Haddadi, Abdallah Khellaf, Kacem Gairaa, Mawloud Guermoui
Abstract:
In this study, many experiments were carried out to assess the influence of the input parameters on the performance of multilayer perceptron which is one the configuration of the artificial neural networks. To estimate the daily global solar radiation on the horizontal surface, we have developed some models by using seven combinations of twelve meteorological and geographical input parameters collected from a radiometric station installed at Ghardaïa city (southern of Algeria). For selecting of best combination which provides a good accuracy, six statistical formulas (or statistical indicators) have been evaluated, such as the root mean square errors, mean absolute errors, correlation coefficient, and determination coefficient. We noted that multilayer perceptron techniques have the best performance, except when the sunshine duration parameter is not included in the input variables. The maximum of determination coefficient and correlation coefficient are equal to 98.20 and 99.11%. On the other hand, some empirical models were developed to compare their performances with those of multilayer perceptron neural networks. Results obtained show that the neural networks techniques give the best performance compared to the empirical models.Keywords: empirical models, multilayer perceptron neural network, solar radiation, statistical formulas
Procedia PDF Downloads 3451544 Safety Culture Implementation Based on Occupational Health and Safety Assessment
Authors: Nyambayar Davaadorj, Ichiro Koshijima
Abstract:
Safety or the state of being safe can be described as a condition of being not dangerous or not harmful. It is necessary for an individual to avoid dangerous situations every day. Also, an organization is subject to legal requirements for the health and safety of persons inside and around the immediate workplace, or who are exposed to the workplace activities. Although it might be difficult to keep a situation where complete safety is ensured, efforts must nonetheless be made to consider ways of removing any potential danger within an organization. In order to ensure a safe working environment, the capability of responding (i.e., resilience) to signals (i.e., information concerning events that could pose future problems that must be taken into account) that occur in and around corporations is necessary. The ability to evaluate this essential point is thus one way in which safety and security can be managed. This study focuses on OHSAS18001, an internationally applied standard for the construction and operation of occupational health and safety management systems, by using IDEF0 for Function Modeling (IDEF0) and the Resilience Matrix originally made by Bracco. Further, this study discusses a method for evaluating a manner in which Occupational Health and Safety Assessment Series (OHSAS) systematically functions within corporations. Based on the findings, this study clarifies the potential structural objection for corporations when implementing and operating the OHSAS standard.Keywords: OHSAS18001, IDEF0, resilience engineering, safety culture
Procedia PDF Downloads 2401543 Sustainable Engineering: Synergy of BIM and Environmental Assessment Tools in Hong Kong Construction Industry
Authors: Kwok Tak Kit
Abstract:
The construction industry plays an important role in environmental and carbon emissions as it consumes a huge amount of natural resources and energy. Sustainable engineering involves the process of planning, design, procurement, construction and delivery in which the whole building and construction process resulting from building and construction can be effectively and sustainability managed to achieve the use of natural resources. Implementation of sustainable technology development and innovation, adoption of the advanced construction process and facilitate the facilities management to implement the energy and waste control more accurately and effectively. Study and research in the relationship of BIM and environment assessment tools lack a clear discussion. In this paper, we will focus on the synergy of BIM technology and sustainable engineering in the AEC industry and outline the key factors which enhance the use of advanced innovation, technology and method and define the role of stakeholders to achieve zero-carbon emission toward the Paris Agreement to limit global warming to well below 2ᵒC above pre-industrial levels. A case study of the adoption of Building Information Modeling (BIM) and environmental assessment tools in Hong Kong will be discussed in this paper.Keywords: sustainability, sustainable engineering, BIM, LEED
Procedia PDF Downloads 1501542 Correlation of Building Density toward Land Surface Temperature 2018 in Medan City
Authors: Andi Syahputra, R. H. Jatmiko, D. R. Hizbaron
Abstract:
Land surface temperature (LST) in an area is influenced by conditions of vegetation density, building density, and the number of inhabitants who live in the area. Medan City is one of the largest cities in Indonesia, with a high rate of change from vegetation to developed land. This study aims to identify the relationship between the percentage of building density and land surface temperature in Medan City. Pixel image analysis method is carried out to obtain the value of building density in pixel images of Landsat 8 images with the help of WorldView-2 satellite imagery. The results showed the highest land surface temperature in 2018 of 35, 4°C was found in Medan Perjuangan District, and the lowest was 22.5°C in Medan Belawan District. Building density samples with a density level of 889.17 m were also found in Medan Perjuangan District, while the lowest building density sample was found in Medan Timur District. Linear regression analysis of the effect of building density with land surface temperature obtained a correlation (R) was 0.64, and a coefficient of determination (R²) was 0.411 and modeling of building density based on the LST has a correlation (R), and a coefficient of determination (R²) was 0.72 with The RMSE obtained 0.853.Keywords: land surface temperature, Landsat, imagery, building density, vegetation, density
Procedia PDF Downloads 1521541 Role of Social Capital on Consumer Attitudes, Peer Influence and Behavioral Intentions: A Social Media Perspective
Authors: Qazi Mohammed Ahmed, Osman Sadiq Paracha, Iftikhar Hussain
Abstract:
The study aims to explore the unaddressed relationship between social capital and consumers’ underlying behavioral intentions. The study postulates that this association is mediated by the role of attitudes and peer influence. The research attains evidence from a usable sample of 673 responses. The majority consists of the young and energetic social media users of Pakistan that utilize virtual communities as a way of life. A variance based structural equation modeling has been applied through SmartPLS 3. The results reveal that social capital exerts a statistically supportive association with both attitudes and peer influence. Contrastingly, this predictor variable shows an insignificant linkage with behavioral intentions but this relationship is fully mediated by consumer attitudes and peer influence. The paper enhances marketing literature with respect to an unexplored society of Pakistan. It also provides a lens for the contemporary advertisers, in terms of supporting their social media campaigns with affiliative and cohesive elements. The study also identifies a series of predictor variables that could further be tested with attitudes, subjective norms and behavioral responses.Keywords: social capital, consumer attitudes, peer influence, behavioral intentions
Procedia PDF Downloads 1351540 Contemplating Charge Transport by Modeling of DNA Nucleobases Based Nano Structures
Authors: Rajan Vohra, Ravinder Singh Sawhney, Kunwar Partap Singh
Abstract:
Electrical charge transport through two basic strands thymine and adenine of DNA have been investigated and analyzed using the jellium model approach. The FFT-2D computations have been performed for semi-empirical Extended Huckel Theory using atomistic tool kit to contemplate the charge transport metrics like current and conductance. The envisaged data is further evaluated in terms of transmission spectrum, HOMO-LUMO Gap and number of electrons. We have scrutinized the behavior of the devices in the range of -2V to 2V for a step size of 0.2V. We observe that both thymine and adenine can act as molecular devices when sandwiched between two gold probes. A prominent observation is a drop in HLGs of adenine and thymine when working as a device as compared to their intrinsic values and this is comparative more visible in case of adenine. The current in the thymine based device exhibit linear increase with voltage in spite of having low conductance. Further, the broader transmission peaks represent the strong coupling of electrodes to the scattering molecule (thymine). Moreover, the observed current in case of thymine is almost 3-4 times than that of observed for adenine. The NDR effect has been perceived in case of adenine based device for higher bias voltages and can be utilized in various future electronics applications.Keywords: adenine, DNA, extended Huckel, thymine, transmission spectra
Procedia PDF Downloads 1551539 Use of Artificial Neural Networks to Estimate Evapotranspiration for Efficient Irrigation Management
Authors: Adriana Postal, Silvio C. Sampaio, Marcio A. Villas Boas, Josué P. Castro
Abstract:
This study deals with the estimation of reference evapotranspiration (ET₀) in an agricultural context, focusing on efficient irrigation management to meet the growing interest in the sustainable management of water resources. Given the importance of water in agriculture and its scarcity in many regions, efficient use of this resource is essential to ensure food security and environmental sustainability. The methodology used involved the application of artificial intelligence techniques, specifically Multilayer Perceptron (MLP) Artificial Neural Networks (ANNs), to predict ET₀ in the state of Paraná, Brazil. The models were trained and validated with meteorological data from the Brazilian National Institute of Meteorology (INMET), together with data obtained from a producer's weather station in the western region of Paraná. Two optimizers (SGD and Adam) and different meteorological variables, such as temperature, humidity, solar radiation, and wind speed, were explored as inputs to the models. Nineteen configurations with different input variables were tested; amidst them, configuration 9, with 8 input variables, was identified as the most efficient of all. Configuration 10, with 4 input variables, was considered the most effective, considering the smallest number of variables. The main conclusions of this study show that MLP ANNs are capable of accurately estimating ET₀, providing a valuable tool for irrigation management in agriculture. Both configurations (9 and 10) showed promising performance in predicting ET₀. The validation of the models with cultivator data underlined the practical relevance of these tools and confirmed their generalization ability for different field conditions. The results of the statistical metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²), showed excellent agreement between the model predictions and the observed data, with MAE as low as 0.01 mm/day and 0.03 mm/day, respectively. In addition, the models achieved an R² between 0.99 and 1, indicating a satisfactory fit to the real data. This agreement was also confirmed by the Kolmogorov-Smirnov test, which evaluates the agreement of the predictions with the statistical behavior of the real data and yields values between 0.02 and 0.04 for the producer data. In addition, the results of this study suggest that the developed technique can be applied to other locations by using specific data from these sites to further improve ET₀ predictions and thus contribute to sustainable irrigation management in different agricultural regions. The study has some limitations, such as the use of a single ANN architecture and two optimizers, the validation with data from only one producer, and the possible underestimation of the influence of seasonality and local climate variability. An irrigation management application using the most efficient models from this study is already under development. Future research can explore different ANN architectures and optimization techniques, validate models with data from multiple producers and regions, and investigate the model's response to different seasonal and climatic conditions.Keywords: agricultural technology, neural networks in agriculture, water efficiency, water use optimization
Procedia PDF Downloads 491538 Development of Geo-computational Model for Analysis of Lassa Fever Dynamics and Lassa Fever Outbreak Prediction
Authors: Adekunle Taiwo Adenike, I. K. Ogundoyin
Abstract:
Lassa fever is a neglected tropical virus that has become a significant public health issue in Nigeria, with the country having the greatest burden in Africa. This paper presents a Geo-Computational Model for Analysis and Prediction of Lassa Fever Dynamics and Outbreaks in Nigeria. The model investigates the dynamics of the virus with respect to environmental factors and human populations. It confirms the role of the rodent host in virus transmission and identifies how climate and human population are affected. The proposed methodology is carried out on a Linux operating system using the OSGeoLive virtual machine for geographical computing, which serves as a base for spatial ecology computing. The model design uses Unified Modeling Language (UML), and the performance evaluation uses machine learning algorithms such as random forest, fuzzy logic, and neural networks. The study aims to contribute to the control of Lassa fever, which is achievable through the combined efforts of public health professionals and geocomputational and machine learning tools. The research findings will potentially be more readily accepted and utilized by decision-makers for the attainment of Lassa fever elimination.Keywords: geo-computational model, lassa fever dynamics, lassa fever, outbreak prediction, nigeria
Procedia PDF Downloads 94