Search results for: network coding signature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5491

Search results for: network coding signature

2371 Performance Evaluation of the Classic seq2seq Model versus a Proposed Semi-supervised Long Short-Term Memory Autoencoder for Time Series Data Forecasting

Authors: Aswathi Thrivikraman, S. Advaith

Abstract:

The study is aimed at designing encoders for deciphering intricacies in time series data by redescribing the dynamics operating on a lower-dimensional manifold. A semi-supervised LSTM autoencoder is devised and investigated to see if the latent representation of the time series data can better forecast the data. End-to-end training of the LSTM autoencoder, together with another LSTM network that is connected to the latent space, forces the hidden states of the encoder to represent the most meaningful latent variables relevant for forecasting. Furthermore, the study compares the predictions with those of a traditional seq2seq model.

Keywords: LSTM, autoencoder, forecasting, seq2seq model

Procedia PDF Downloads 160
2370 A New Method Presentation for Locating Fault in Power Distribution Feeders Considering DG

Authors: Rahman Dashti, Ehsan Gord

Abstract:

In this paper, an improved impedance based fault location method is proposed. In this method, online fault locating is performed using voltage and current information at the beginning of the feeder. Determining precise fault location in a short time increases reliability and efficiency of the system. The proposed method utilizes information about main component of voltage and current at the beginning of the feeder and distributed generation unit (DGU) in order to precisely locate different faults in acceptable time. To evaluate precision and accuracy of the proposed method, a 13-node is simulated and tested using MATLAB.

Keywords: distribution network, fault section determination, distributed generation units, distribution protection equipment

Procedia PDF Downloads 406
2369 De Novo Assembly and Characterization of the Transcriptome from the Fluoroacetate Producing Plant, Dichapetalum Cymosum

Authors: Selisha A. Sooklal, Phelelani Mpangase, Shaun Aron, Karl Rumbold

Abstract:

Organically bound fluorine (C-F bond) is extremely rare in nature. Despite this, the first fluorinated secondary metabolite, fluoroacetate, was isolated from the plant Dichapetalum cymosum (commonly known as Gifblaar). However, the enzyme responsible for fluorination (fluorinase) in Gifblaar was never isolated and very little progress has been achieved in understanding this process in higher plants. Fluorinated compounds have vast applications in the pharmaceutical, agrochemical and fine chemicals industries. Consequently, an enzyme capable of catalysing a C-F bond has great potential as a biocatalyst in the industry considering that the field of fluorination is virtually synthetic. As with any biocatalyst, a range of these enzymes are required. Therefore, it is imperative to expand the exploration for novel fluorinases. This study aimed to gain molecular insights into secondary metabolite biosynthesis in Gifblaar using a high-throughput sequencing-based approach. Mechanical wounding studies were performed using Gifblaar leaf tissue in order to induce expression of the fluorinase. The transcriptome of the wounded and unwounded plant was then sequenced on the Illumina HiSeq platform. A total of 26.4 million short sequence reads were assembled into 77 845 transcripts using Trinity. Overall, 68.6 % of transcripts were annotated with gene identities using public databases (SwissProt, TrEMBL, GO, COG, Pfam, EC) with an E-value threshold of 1E-05. Sequences exhibited the greatest homology to the model plant, Arabidopsis thaliana (27 %). A total of 244 annotated transcripts were found to be differentially expressed between the wounded and unwounded plant. In addition, secondary metabolic pathways present in Gifblaar were successfully reconstructed using Pathway tools. Due to lack of genetic information for plant fluorinases, a transcript failed to be annotated as a fluorinating enzyme. Thus, a local database containing the 5 existing bacterial fluorinases was created. Fifteen transcripts having homology to partial regions of existing fluorinases were found. In efforts to obtain the full coding sequence of the Gifblaar fluorinase, primers were designed targeting the regions of homology and genome walking will be performed to amplify the unknown regions. This is the first genetic data available for Gifblaar. It has provided novel insights into the mechanisms of metabolite biosynthesis and will allow for the discovery of the first eukaryotic fluorinase.

Keywords: biocatalyst, fluorinase, gifblaar, transcriptome

Procedia PDF Downloads 278
2368 Block Mining: Block Chain Enabled Process Mining Database

Authors: James Newman

Abstract:

Process mining is an emerging technology that looks to serialize enterprise data in time series data. It has been used by many companies and has been the subject of a variety of research papers. However, the majority of current efforts have looked at how to best create process mining from standard relational databases. This paper is the first pass at outlining a database custom-built for the minimal viable product of process mining. We present Block Miner, a blockchain protocol to store process mining data across a distributed network. We demonstrate the feasibility of storing process mining data on the blockchain. We present a proof of concept and show how the intersection of these two technologies helps to solve a variety of issues, including but not limited to ransomware attacks, tax documentation, and conflict resolution.

Keywords: blockchain, process mining, memory optimization, protocol

Procedia PDF Downloads 110
2367 Comparative Study of Ad Hoc Routing Protocols in Vehicular Ad-Hoc Networks for Smart City

Authors: Khadija Raissi, Bechir Ben Gouissem

Abstract:

In this paper, we perform the investigation of some routing protocols in Vehicular Ad-Hoc Network (VANET) context. Indeed, we study the efficiency of protocols like Dynamic Source Routing (DSR), Ad hoc On-demand Distance Vector Routing (AODV), Destination Sequenced Distance Vector (DSDV), Optimized Link State Routing convention (OLSR) and Vehicular Multi-hop algorithm for Stable Clustering (VMASC) in terms of packet delivery ratio (PDR) and throughput. The performance evaluation and comparison between the studied protocols shows that the VMASC is the best protocols regarding fast data transmission and link stability in VANETs. The validation of all results is done by the NS3 simulator.

Keywords: VANET, smart city, AODV, OLSR, DSR, OLSR, VMASC, routing protocols, NS3

Procedia PDF Downloads 302
2366 Knowledge Discovery from Production Databases for Hierarchical Process Control

Authors: Pavol Tanuska, Pavel Vazan, Michal Kebisek, Dominika Jurovata

Abstract:

The paper gives the results of the project that was oriented on the usage of knowledge discoveries from production systems for needs of the hierarchical process control. One of the main project goals was the proposal of knowledge discovery model for process control. Specifics data mining methods and techniques was used for defined problems of the process control. The gained knowledge was used on the real production system, thus, the proposed solution has been verified. The paper documents how it is possible to apply new discovery knowledge to be used in the real hierarchical process control. There are specified the opportunities for application of the proposed knowledge discovery model for hierarchical process control.

Keywords: hierarchical process control, knowledge discovery from databases, neural network, process control

Procedia PDF Downloads 484
2365 Care: A Cluster Based Approach for Reliable and Efficient Routing Protocol in Wireless Sensor Networks

Authors: K. Prasanth, S. Hafeezullah Khan, B. Haribalakrishnan, D. Arun, S. Jayapriya, S. Dhivya, N. Vijayarangan

Abstract:

The main goal of our approach is to find the optimum positions for the sensor nodes, reinforcing the communications in points where certain lack of connectivity is found. Routing is the major problem in sensor network’s data transfer between nodes. We are going to provide an efficient routing technique to make data signal transfer to reach the base station soon without any interruption. Clustering and routing are the two important key factors to be considered in case of WSN. To carry out the communication from the nodes to their cluster head, we propose a parameterizable protocol so that the developer can indicate if the routing has to be sensitive to either the link quality of the nodes or the their battery levels.

Keywords: clusters, routing, wireless sensor networks, three phases, sensor networks

Procedia PDF Downloads 508
2364 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems

Authors: P. W. Tsai, W. L. Hong, C. W. Chen, C. Y. Chen

Abstract:

In this paper, we present a neural network (NN) based approach represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.

Keywords: Lyapunov stability, parallel particle swarm optimization, linear differential inclusion, artificial intelligence

Procedia PDF Downloads 661
2363 Factors Affecting Harvested Rain Water Quality and Quantity in Yatta Area, Palestine

Authors: Nibal Al-Batsh, Issam Al-Khatib, Subha Ghannam

Abstract:

Yatta is the study area for this research, located 9 km south of Hebron City in the West Bank in Palestine. It has been connected to a water network since 1974 serving nearly 85% of the households. The water network is old and inadequate to meet the needs of the population. The water supply made available to the area is also very limited, estimated to be around 20 l/c.d. Residents are thus forced to rely on water vendors which supply water with a lower quality compared to municipal water while being 400% more expensive. As a cheaper and more reliable alternative, rainwater harvesting is a common practice in the area, with the majority of the households owning at least one cistern. Rainwater harvesting is of great socio-economic importance in areas where water sources are scarce or polluted. The quality of harvested rainwater used for drinking and domestic purposes in the Yatta area was assessed throughout a year long period. A total of 100 water samples were collected from (50 rainfed cisterns) with an average capacity of 69 m3, adjacent to cement-roof catchment with an average area of 145 m2. Samples were analyzed for a number of parameters including: pH, Alkalinity, Hardness, Turbidity, Total Dissolved Solids (TDS), NO3, NH4, chloride and salinity. Microbiological contents such as Total Coliforms (TC) and Fecal Coliforms (FC) bacteria were also analyzed. Results showed that most of the rainwater samples were within WHO and EPA guidelines set for chemical parameters while revealing biological contamination. The pH values of mixed water ranged from 6.9 to 8.74 with a mean value of 7.6. collected Rainwater had lower pH values than mixed water ranging from 7.00 to 7.57 with a mean of 7.21. Rainwater also had lower average values of conductivity (389.11 µScm-1) compared to that of mixed water (463.74 µScm-1) thus indicating lower values of salinity (0.75%). The largest TDS value measured in rainwater was 316 mg/l with a mean of 199.86 mg /l. As far as microbiological quality is concerned, TC and FC were detected in 99%, 52% of collected rainwater samples, respectively. The research also addressed the impact of different socio-economic attributes on rainwater harvesting using information collected through a survey from the area. Results indicated that the majority of homeowners have the primary knowledge necessary to collect and store water in cisterns. Most of the respondents clean both the cisterns and the catchment areas. However, the research also arrives at a conclusion that cleaning is not done in a proper manner. Results show that cisterns with an operating capacity of 69 m3 would provide sufficient water to get through the dry summer months. However, the catchment area must exceed 146 m2 to produce sufficient water to fill a cistern of this size in a year receiving average precipitation.

Keywords: rainwater harvesting, runoff coefficient, water quality, microbiological contamination

Procedia PDF Downloads 289
2362 ELectromagnetic-Thermal Coupled Analysis of PMSM with Cooling Channel

Authors: Hyun-Woo Jun, Tae-Chul Jeong, Huai-Cong Liu, Ju Lee

Abstract:

The paper presents the electromagnetic-thermal flow coupled analysis of permanent magnet synchronous motor (PMSM) which has cooling channel in stator core for forced air cooling. Unlike the general PMSM design, to achieve ohmic loss reduction for high efficiency, cooling channel actively used in the stator core. Equivalent thermal network model was made to analyze the effect of the formation of the additional flow path in the core. According to the shape and position changing of the channel design, electromagnetic-thermal coupled analysis results were reviewed.

Keywords: coupled problems, electric motors, equivalent circuits, fluid flow, thermal analysis

Procedia PDF Downloads 622
2361 Analysis of Storm Flood in Typical Sewer Networks in High Mountain Watersheds of Colombia Based on SWMM

Authors: J. C. Hoyos, J. Zambrano Nájera

Abstract:

Increasing urbanization has led to changes in the natural dynamics of watersheds, causing problems such as increases in volumes of runoff, peak flow rates, and flow rates so that the risk of storm flooding increases. Sewerage networks designed 30 – 40 years ago don’t account for these increases in flow volumes and velocities. Besides, Andean cities with high slopes worsen the problem because velocities are even higher not allowing sewerage network work and causing cities less resilient to landscape changes and climatic change. In Latin America, especially Colombia, this is a major problem because urban population at late XX century was more than 70% is in urban areas increasing approximately in 790% in 1940-1990 period. Thus, it becomes very important to study how changes in hydrological behavior affect hydraulic capacity of sewerage networks in Andean Urban Watersheds. This research aims to determine the impact of urbanization in high-sloped urban watersheds in its hydrology. To this end it will be used as study area experimental urban watershed named Palogrande-San Luis watershed, located in the city of Manizales, Colombia. Manizales is a city in central western Colombia, located in Colombian Central Mountain Range (part of Los Andes Mountains) with an abrupt topography (average altitude is 2.153 m). The climate in Manizales is quite uniform, but due to its high altitude it presents high precipitations (1.545 mm/year average) with high humidity (83% average). Behavior of the current sewerage network will be reviewed by the hydraulic model SWMM (Storm Water Management Model). Based on SWMM the hydrological response of urban watershed selected will be evaluated under the design storm with different frequencies in the region, such as drainage effect and water-logging, overland flow on roads, etc. Cartographic information was obtained from a Geographic Information System (GIS) thematic maps of the Institute of Environmental Studies of the Universidad Nacional de Colombia and the utility Aguas de Manizales S.A. Rainfall and streamflow data is obtained from 4 rain gages and 1 stream gages. This information will allow determining critical issues on drainage systems design in urban watershed with very high slopes, and which practices will be discarded o recommended.

Keywords: land cover changes, storm sewer system, urban hydrology, urban planning

Procedia PDF Downloads 266
2360 Postmortem Genetic Testing to Sudden and Unexpected Deaths Using the Next Generation Sequencing

Authors: Eriko Ochiai, Fumiko Satoh, Keiko Miyashita, Yu Kakimoto, Motoki Osawa

Abstract:

Sudden and unexpected deaths from unknown causes occur in infants and youths. Recently, molecular links between a part of these deaths and several genetic diseases are examined in the postmortem. For instance, hereditary long QT syndrome and Burgada syndrome are occasionally fatal through critical ventricular tachyarrhythmia. There are a large number of target genes responsible for such diseases, the conventional analysis using the Sanger’s method has been laborious. In this report, we attempted to analyze sudden deaths comprehensively using the next generation sequencing (NGS) technique. Multiplex PCR to subject’s DNA was performed using Ion AmpliSeq Library Kits 2.0 and Ion AmpliSeq Inherited Disease Panel (Life Technologies). After the library was constructed by emulsion PCR, the amplicons were sequenced 500 flows on Ion Personal Genome Machine System (Life Technologies) according to the manufacture instruction. SNPs and indels were analyzed to the sequence reads that were mapped on hg19 of reference sequences. This project has been approved by the ethical committee of Tokai University School of Medicine. As a representative case, the molecular analysis to a 40 years old male who received a diagnosis of Brugada syndrome demonstrated a total of 584 SNPs or indels. Non-synonymous and frameshift nucleotide substitutions were selected in the coding region of heart disease related genes of ANK2, AKAP9, CACNA1C, DSC2, KCNQ1, MYLK, SCN1B, and STARD3. In particular, c.629T-C transition in exon 3 of the SCN1B gene, resulting in a leu210-to-pro (L210P) substitution is predicted “damaging” by the SIFT program. Because the mutation has not been reported, it was unclear if the substitution was pathogenic. Sudden death that failed in determining the cause of death constitutes one of the most important unsolved subjects in forensic pathology. The Ion AmpliSeq Inherited Disease Panel can amplify the exons of 328 genes at one time. We realized the difficulty in selection of the true source from a number of candidates, but postmortem genetic testing using NGS analysis deserves of a diagnostic to date. We now extend this analysis to SIDS suspected subjects and young sudden death victims.

Keywords: postmortem genetic testing, sudden death, SIDS, next generation sequencing

Procedia PDF Downloads 362
2359 Modelling Vehicle Fuel Consumption Utilising Artificial Neural Networks

Authors: Aydin Azizi, Aburrahman Tanira

Abstract:

The main source of energy used in this modern age is fossil fuels. There is a myriad of problems that come with the use of fossil fuels, out of which the issues with the greatest impact are its scarcity and the cost it imposes on the planet. Fossil fuels are the only plausible option for many vital functions and processes; the most important of these is transportation. Thus, using this source of energy wisely and as efficiently as possible is a must. The aim of this work was to explore utilising mathematical modelling and artificial intelligence techniques to enhance fuel consumption in passenger cars by focusing on the speed at which cars are driven. An artificial neural network with an error less than 0.05 was developed to be applied practically as to predict the rate of fuel consumption in vehicles.

Keywords: mathematical modeling, neural networks, fuel consumption, fossil fuel

Procedia PDF Downloads 408
2358 Promoting Innovation Pedagogy in a Capacity Building Project in Indonesia

Authors: Juha Kettunen

Abstract:

This study presents a project that tests and adjusts active European learning and teaching methods in Indonesian universities to increase their external impact on enterprises and other organizations; it also assesses the implementation of the Erasmus+ projects funded by the European Union. The project is based on the approach of innovation pedagogy that responds to regional development needs and integrates applied research and development projects into education to create capabilities for students to participate in development work after graduation. The assessment of the Erasmus+ project resulted in many improvements that can be made to achieve higher quality and innovativeness. The results of this study are useful for those who want to improve the applied research and development projects of higher education institutions.

Keywords: higher education, innovations, social network, project management

Procedia PDF Downloads 288
2357 The Role of Group Size, Public Employees’ Wages and Control Corruption Institutions in a Game-Theoretical Model of Public Corruption

Authors: Pablo J. Valverde, Jaime E. Fernandez

Abstract:

This paper shows under which conditions public corruption can emerge. The theoretical model includes variables such as the public employee wage (w), a control corruption parameter (c), and the group size of interactions (GS) between clusters of public officers and contractors. The system behavior is analyzed using phase diagrams based on combinations of such parameters (c, w, GS). Numerical simulations are implemented in order to contrast analytic results based on Nash equilibria of the theoretical model. Major findings include the functional relationship between wages and network topology, which attempts to reduce the emergence of corrupt behavior.

Keywords: public corruption, game theory, complex systems, Nash equilibrium.

Procedia PDF Downloads 247
2356 Proposal for a Web System for the Control of Fungal Diseases in Grapes in Fruits Markets

Authors: Carlos Tarmeño Noriega, Igor Aguilar Alonso

Abstract:

Fungal diseases are common in vineyards; they cause a decrease in the quality of the products that can be sold, generating distrust of the customer towards the seller when buying fruit. Currently, technology allows the classification of fruits according to their characteristics thanks to artificial intelligence. This study proposes the implementation of a control system that allows the identification of the main fungal diseases present in the Italia grape, making use of a convolutional neural network (CNN), OpenCV, and TensorFlow. The methodology used was based on a collection of 20 articles referring to the proposed research on quality control, classification, and recognition of fruits through artificial vision techniques.

Keywords: computer vision, convolutional neural networks, quality control, fruit market, OpenCV, TensorFlow

Procedia PDF Downloads 87
2355 Emerging Technology for 6G Networks

Authors: Yaseein S. Hussein, Victor P. Gil Jiménez, Abdulmajeed Al-Jumaily

Abstract:

Due to the rapid advancement of technology, there is an increasing demand for wireless connections that are both fast and reliable, with minimal latency. New wireless communication standards are developed every decade, and the year 2030 is expected to see the introduction of 6G. The primary objectives of 6G network and terminal designs are focused on sustainability and environmental friendliness. The International Telecommunication Union-Recommendation division (ITU-R) has established the minimum requirements for 6G, with peak and user data rates of 1 Tbps and 10-100 Gbps, respectively. In this context, Light Fidelity (Li-Fi) technology is the most promising candidate to meet these requirements. This article will explore the various advantages, features, and potential applications of Li-Fi technology, and compare it with 5G networking, to showcase its potential impact among other emerging technologies that aim to enable 6G networks.

Keywords: 6G networks, artificial intelligence (AI), Li-Fi technology, Terahertz (THz) communication, visible light communication (VLC)

Procedia PDF Downloads 96
2354 Dynamic Simulation of IC Engine Bearings for Fault Detection and Wear Prediction

Authors: M. D. Haneef, R. B. Randall, Z. Peng

Abstract:

Journal bearings used in IC engines are prone to premature failures and are likely to fail earlier than the rated life due to highly impulsive and unstable operating conditions and frequent starts/stops. Vibration signature extraction and wear debris analysis techniques are prevalent in the industry for condition monitoring of rotary machinery. However, both techniques involve a great deal of technical expertise, time and cost. Limited literature is available on the application of these techniques for fault detection in reciprocating machinery, due to the complex nature of impact forces that confounds the extraction of fault signals for vibration based analysis and wear prediction. This work is an extension of a previous study, in which an engine simulation model was developed using a MATLAB/SIMULINK program, whereby the engine parameters used in the simulation were obtained experimentally from a Toyota 3SFE 2.0 litre petrol engines. Simulated hydrodynamic bearing forces were used to estimate vibrations signals and envelope analysis was carried out to analyze the effect of speed, load and clearance on the vibration response. Three different loads 50/80/110 N-m, three different speeds 1500/2000/3000 rpm, and three different clearances, i.e., normal, 2 times and 4 times the normal clearance were simulated to examine the effect of wear on bearing forces. The magnitude of the squared envelope of the generated vibration signals though not affected by load, but was observed to rise significantly with increasing speed and clearance indicating the likelihood of augmented wear. In the present study, the simulation model was extended further to investigate the bearing wear behavior, resulting as a consequence of different operating conditions, to complement the vibration analysis. In the current simulation, the dynamics of the engine was established first, based on which the hydrodynamic journal bearing forces were evaluated by numerical solution of the Reynold’s equation. Also, the essential outputs of interest in this study, critical to determine wear rates are the tangential velocity and oil film thickness between the journal and bearing sleeve, which if not maintained appropriately, have a detrimental effect on the bearing performance. Archard’s wear prediction model was used in the simulation to calculate the wear rate of bearings with specific location information as all determinative parameters were obtained with reference to crank rotation. Oil film thickness obtained from the model was used as a criterion to determine if the lubrication is sufficient to prevent contact between the journal and bearing thus causing accelerated wear. A limiting value of 1 µm was used as the minimum oil film thickness needed to prevent contact. The increased wear rate with growing severity of operating conditions is analogous and comparable to the rise in amplitude of the squared envelope of the referenced vibration signals. Thus on one hand, the developed model demonstrated its capability to explain wear behavior and on the other hand it also helps to establish a correlation between wear based and vibration based analysis. Therefore, the model provides a cost-effective and quick approach to predict the impending wear in IC engine bearings under various operating conditions.

Keywords: condition monitoring, IC engine, journal bearings, vibration analysis, wear prediction

Procedia PDF Downloads 313
2353 Prototyping a Portable, Affordable Sign Language Glove

Authors: Vidhi Jain

Abstract:

Communication between speakers and non-speakers of American Sign Language (ASL) can be problematic, inconvenient, and expensive. This project attempts to bridge the communication gap by designing a portable glove that captures the user’s ASL gestures and outputs the translated text on a smartphone. The glove is equipped with flex sensors, contact sensors, and a gyroscope to measure the flexion of the fingers, the contact between fingers, and the rotation of the hand. The glove’s Arduino UNO microcontroller analyzes the sensor readings to identify the gesture from a library of learned gestures. The Bluetooth module transmits the gesture to a smartphone. Using this device, one day speakers of ASL may be able to communicate with others in an affordable and convenient way.

Keywords: sign language, morse code, convolutional neural network, American sign language, gesture recognition

Procedia PDF Downloads 67
2352 Optimizing Inanda Dam Using Water Resources Models

Authors: O. I. Nkwonta, B. Dzwairo, J. Adeyemo, A. Jaiyola, N. Sawyerr, F. Otieno

Abstract:

The effective management of water resources is of great importance to ensure the supply of water resources to support changing water requirements over a selected planning horizon and in a sustainable and cost-effective way. Essentially, the purpose of the water resources planning process is to balance the available water resources in a system with the water requirements and losses to which the system is subjected. In such situations, Water resources yield and planning model can be used to solve those difficulties. It has an advantage over other models by managing model runs, developing a representative system network, modelling incremental sub-catchments, creating a variety of standard system features, special modelling features, and run result output options.

Keywords: complex, water resources, planning, cost effective and management

Procedia PDF Downloads 576
2351 Deepfake Detection for Compressed Media

Authors: Sushil Kumar Gupta, Atharva Joshi, Ayush Sonawale, Sachin Naik, Rajshree Khande

Abstract:

The usage of artificially created videos and audio by deep learning is a major problem of the current media landscape, as it pursues the goal of misinformation and distrust. In conclusion, the objective of this work targets generating a reliable deepfake detection model using deep learning that will help detect forged videos accurately. In this work, CelebDF v1, one of the largest deepfake benchmark datasets in the literature, is adopted to train and test the proposed models. The data includes authentic and synthetic videos of high quality, therefore allowing an assessment of the model’s performance against realistic distortions.

Keywords: deepfake detection, CelebDF v1, convolutional neural network (CNN), xception model, data augmentation, media manipulation

Procedia PDF Downloads 15
2350 Detect QOS Attacks Using Machine Learning Algorithm

Authors: Christodoulou Christos, Politis Anastasios

Abstract:

A large majority of users favoured to wireless LAN connection since it was so simple to use. A wireless network can be the target of numerous attacks. Class hijacking is a well-known attack that is fairly simple to execute and has significant repercussions on users. The statistical flow analysis based on machine learning (ML) techniques is a promising categorization methodology. In a given dataset, which in the context of this paper is a collection of components representing frames belonging to various flows, machine learning (ML) can offer a technique for identifying and characterizing structural patterns. It is possible to classify individual packets using these patterns. It is possible to identify fraudulent conduct, such as class hijacking, and take necessary action as a result. In this study, we explore a way to use machine learning approaches to thwart this attack.

Keywords: wireless lan, quality of service, machine learning, class hijacking, EDCA remapping

Procedia PDF Downloads 65
2349 Radar-Based Classification of Pedestrian and Dog Using High-Resolution Raw Range-Doppler Signatures

Authors: C. Mayr, J. Periya, A. Kariminezhad

Abstract:

In this paper, we developed a learning framework for the classification of vulnerable road users (VRU) by their range-Doppler signatures. The frequency-modulated continuous-wave (FMCW) radar raw data is first pre-processed to obtain robust object range-Doppler maps per coherent time interval. The complex-valued range-Doppler maps captured from our outdoor measurements are further fed into a convolutional neural network (CNN) to learn the classification. This CNN has gone through a hyperparameter optimization process for improved learning. By learning VRU range-Doppler signatures, the three classes 'pedestrian', 'dog', and 'noise' are classified with an average accuracy of almost 95%. Interestingly, this classification accuracy holds for a combined longitudinal and lateral object trajectories.

Keywords: machine learning, radar, signal processing, autonomous driving

Procedia PDF Downloads 250
2348 QCARNet: Networks for Quality-Adaptive Compression Artifact

Authors: Seung Ho Park, Young Su Moon, Nam Ik Cho

Abstract:

We propose a convolution neural network (CNN) for quality adaptive compression artifact reduction named QCARNet. The proposed method is different from the existing discriminative models that learn a specific model at a certain quality level. The method is composed of a quality estimation CNN (QECNN) and a compression artifact reduction CNN (CARCNN), which are two functionally separate CNNs. By connecting the QECNN and CARCNN, each CARCNN layer is able to adaptively reduce compression artifacts and preserve details depending on the estimated quality level map generated by the QECNN. We experimentally demonstrate that the proposed method achieves better performance compared to other state-of-the-art blind compression artifact reduction methods.

Keywords: compression artifact reduction, deblocking, image denoising, image restoration

Procedia PDF Downloads 146
2347 Differentially Expressed Genes in Atopic Dermatitis: Bioinformatics Analysis Of Pooled Microarray Gene Expression Datasets In Gene Expression Omnibus

Authors: Danna Jia, Bin Li

Abstract:

Background: Atopic dermatitis (AD) is a chronic and refractory inflammatory skin disease characterized by relapsing eczematous and pruritic skin lesions. The global prevalence of AD ranges from 1~ 20%, and its incidence rates are increasing. It affects individuals from infancy to adulthood, significantly impacting their daily lives and social activities. Despite its major health burden, the precise mechanisms underlying AD remain unknown. Understanding the genetic differences associated with AD is crucial for advancing diagnosis and targeted treatment development. This study aims to identify candidate genes of AD by using bioinformatics analysis. Methods: We conducted a comprehensive analysis of four pooled transcriptomic datasets (GSE16161, GSE32924, GSE130588, and GSE120721) obtained from the Gene Expression Omnibus (GEO) database. Differential gene expression analysis was performed using the R statistical language. The differentially expressed genes (DEGs) between AD patients and normal individuals were functionally analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Furthermore, a protein-protein interaction (PPI) network was constructed to identify candidate genes. Results: Among the patient-level gene expression datasets, we identified 114 shared DEGs, consisting of 53 upregulated genes and 61 downregulated genes. Functional analysis using GO and KEGG revealed that the DEGs were mainly associated with the negative regulation of transcription from RNA polymerase II promoter, membrane-related functions, protein binding, and the Human papillomavirus infection pathway. Through the PPI network analysis, we identified eight core genes: CD44, STAT1, HMMR, AURKA, MKI67, and SMARCA4. Conclusion: This study elucidates key genes associated with AD, providing potential targets for diagnosis and treatment. The identified genes have the potential to contribute to the understanding and management of AD. The bioinformatics analysis conducted in this study offers new insights and directions for further research on AD. Future studies can focus on validating the functional roles of these genes and exploring their therapeutic potential in AD. While these findings will require further verification as achieved with experiments involving in vivo and in vitro models, these results provided some initial insights into dysfunctional inflammatory and immune responses associated with AD. Such information offers the potential to develop novel therapeutic targets for use in preventing and treating AD.

Keywords: atopic dermatitis, bioinformatics, biomarkers, genes

Procedia PDF Downloads 87
2346 AI-Enabled Smart Contracts for Reliable Traceability in the Industry 4.0

Authors: Harris Niavis, Dimitra Politaki

Abstract:

The manufacturing industry was collecting vast amounts of data for monitoring product quality thanks to the advances in the ICT sector and dedicated IoT infrastructure is deployed to track and trace the production line. However, industries have not yet managed to unleash the full potential of these data due to defective data collection methods and untrusted data storage and sharing. Blockchain is gaining increasing ground as a key technology enabler for Industry 4.0 and the smart manufacturing domain, as it enables the secure storage and exchange of data between stakeholders. On the other hand, AI techniques are more and more used to detect anomalies in batch and time-series data that enable the identification of unusual behaviors. The proposed scheme is based on smart contracts to enable automation and transparency in the data exchange, coupled with anomaly detection algorithms to enable reliable data ingestion in the system. Before sensor measurements are fed to the blockchain component and the smart contracts, the anomaly detection mechanism uniquely combines artificial intelligence models to effectively detect unusual values such as outliers and extreme deviations in data coming from them. Specifically, Autoregressive integrated moving average, Long short-term memory (LSTM) and Dense-based autoencoders, as well as Generative adversarial networks (GAN) models, are used to detect both point and collective anomalies. Towards the goal of preserving the privacy of industries' information, the smart contracts employ techniques to ensure that only anonymized pointers to the actual data are stored on the ledger while sensitive information remains off-chain. In the same spirit, blockchain technology guarantees the security of the data storage through strong cryptography as well as the integrity of the data through the decentralization of the network and the execution of the smart contracts by the majority of the blockchain network actors. The blockchain component of the Data Traceability Software is based on the Hyperledger Fabric framework, which lays the ground for the deployment of smart contracts and APIs to expose the functionality to the end-users. The results of this work demonstrate that such a system can increase the quality of the end-products and the trustworthiness of the monitoring process in the smart manufacturing domain. The proposed AI-enabled data traceability software can be employed by industries to accurately trace and verify records about quality through the entire production chain and take advantage of the multitude of monitoring records in their databases.

Keywords: blockchain, data quality, industry4.0, product quality

Procedia PDF Downloads 194
2345 How Does Spirituality Manifest in the Lives of Jordanian Patients in End Stage Renal Failure: A Phenomenological Study

Authors: A. Tamimi, S. Greatrex-White, A. Narayanasamy

Abstract:

Background: Spirituality has been increasingly acknowledged in the nursing literature as an important element of holistic patient care. To date there have been numerous studies investigating the meaning of spirituality in Western cultures. Spirituality in Middle Eastern countries however remains under-researched. We will present a study which aimed to address this gap. Aim: The study aimed to explore how spirituality manifests in the lives of Jordanian End Stage Renal Failure (ESRF) patients. Methodology and Method: A hermeneutic phenomenological approach was adopted informed by the philosophy of Martin Heidegger. Participants (n=27) were recruited from four different dialysis units: in a public hospital, a private hospital, an educational hospital and a refugee’s hospital in Jordan. Data was collected through in-depth unstructured interviews. Data Analysis: Analysis was guided by the tenets of hermeneutic phenomenology namely: gaining immediate sense of what was said both during and after each interview, transcribing data verbatim, translating interviews into the English language, intensive reading and re-reading, seeking meaning units by line to line coding, developing situated structures (how spirituality was manifest in each text), developing a general structure from the individual situated structures (how the phenomenon ‘spirituality’ comes into being). Findings: Three major themes emerged from analysis: Religion, Relationships and Desperation. We will argue that a ‘secular’ concept of spirituality had no meaning for the participants in the study. Spirituality is fundamentally part of religion and vice versa. Discussion: The findings may have consequences for the use of spirituality in multi-cultural settings in Western countries. Additionally, findings highlighted an important emphasis on the practice of spirituality, often underestimated in previous literature for Arab-Muslim Jordanian patients. Conclusion: The study findings contribute to the existing gap in knowledge regarding how Arab-Muslim Jordanian ESRF patients experience spirituality during their illness. It provides valuable insights into the importance of spirituality for this patient group and suggests how nurses, educators and policy makers might help address ESRF patients’ spiritual needs and provide appropriate spiritual care. We suggest the findings may have relevance beyond the Jordanian context in educating nurses’ on the importance of appreciating the religious dimension of spirituality.

Keywords: spirituality, nursing, muslim, Jordan

Procedia PDF Downloads 448
2344 The Use of Social Networking Sites in eLearning

Authors: Clifford De Raffaele, Luana Bugeja, Serengul Smith

Abstract:

The adaptation of social networking sites within higher education has garnered significant interest in the recent years with numerous researches considering it as a possible shift from the traditional classroom based learning paradigm. Notwithstanding this increase in research and conducted studies however, the adaption of SNS based modules have failed to proliferate within Universities. This paper, commences its contribution by analyzing the various models and theories proposed in literature and amalgamates together various effective aspects for the inclusion of social technology within e-Learning. A three phased framework is further proposed which details the necessary considerations for the successful adaptation of SNS in enhancing the students learning experience. This proposal outlines the theoretical foundations which will be analyzed in practical implementation across international university campuses.

Keywords: eLearning, higher education, social network sites, student learning

Procedia PDF Downloads 342
2343 Preparedness and Control of Mosquito-Borne Diseases: Experiences from Northwestern Italy

Authors: Federica Verna, Alessandra Pautasso, Maria Caramelli, Cristiana Maurella, Walter Mignone, Cristina Casalone

Abstract:

Mosquito-Borne Diseases (MBDs) are dangerously increasing in prevalence, geographical distribution and severity, representing an emerging threat for both humans and animals. Interaction between multiple disciplines is needed for an effective early warning, surveillance and control of MBDs, according to the One Health concept. This work reports the integrated surveillance system enforced by IZSPLV in Piedmont, Liguria and Valle d’Aosta regions (Northwestern Italy) in order to control MDBs spread. Veterinary services and local human health authority are involved in an information network, to connect the surveillance of human clinical cases with entomological surveillance and veterinary monitoring in order to implement control measures in case of outbreak. A systematic entomological surveillance is carried out during the vector season using mosquitoes traps located in sites selected according to risk factors. Collected mosquitoes are counted, identified to species level by morphological standard classification keys and pooled by collection site, date and species with a maximum of 100 individuals. Pools are analyzed, after RNA extraction, by Real Time RT-PCR distinctive for West Nile Virus (WNV) Lineage 1 and Lineage 2, Real Time RT-PCR USUTU virus (USUV) and a traditional flavivirus End-point RT-PCR. Positive pools are sequenced and the related sequences employed to perform a basic local alignment search tool (BLAST) in the GenBank library. Positive samples are sent to the National Reference Centre for Animal Exotic Diseases (CESME, Teramo) for confirmation. With particular reference to WNV, after the confirmation, as provided by national legislation, control measures involving both local veterinary and human health services are activated: equine sera are randomly sampled within a 4 km radius from the positive collection sites and tested with ELISA kit and WNV NAT screening of blood donors is introduced. This surveillance network allowed to detect since 2011 USUV circulation in this area of Italy. WNV was detected in Piedmont and Liguria for the first time in 2014 in mosquitoes. During the 2015 vector season, we observed the expansion of its activity in Piedmont. The virus was detected in almost all Provinces both in mosquitoes (6 pools) and animals (19 equine sera, 4 birds). No blood bag tested resulted infected. The first neuroinvasive human case occurred too. Competent authorities should be aware of a potentially increased risk of MBDs activity during the 2016 vector season. This work shows that this surveillance network allowed to early detect the presence of MBDs in humans and animals, and provided useful information to public authorities, in order to apply control measures. Finally, an additional value of our diagnostic protocol is the ability to detect all viruses belonging to the Flaviviridae family, considering the emergence caused by other Flaviviruses in humans such as the recent Zika virus infection in South America. Italy has climatic and environmental features conducive to Zika virus transmission, the competent vector and many travellers from Brazil reported every year.

Keywords: integrated surveillance, mosquito borne disease, West Nile virus, Zika virus

Procedia PDF Downloads 366
2342 Power Line Communication Integrated in a Wireless Power Transfer System: Feasibility of Surveillance Movement

Authors: M. Hemnath, S. Kannan, R. Kiran, K. Thanigaivelu

Abstract:

This paper is based on exploring the possible opportunities and applications using Power Line Communication (PLC) for security and surveillance operations. Various research works are done for introducing PLC into onboard vehicle communication and networking (CAN, LIN etc.) and various international standards have been developed. Wireless power transfer (WPT) is also an emerging technology which is studied and tested for recharging purposes. In this work we present a system which embeds the detection and the response into one which eliminates the need for dedicated network for data transmission. Also we check the feasibility for integrating wireless power transfer system into this proposed security system for transmission of power to detection unit wirelessly from the response unit.

Keywords: power line communication, wireless power transfer, surveillance

Procedia PDF Downloads 537