Search results for: membrane synthesis
51 Assessment of Antioxidant and Cholinergic Systems, and Liver Histopathologies in Lithobates catesbeianus Exposed to the Waters of an Urban Stream
Authors: Diego R. Boiarski, Camila M. Toigo, Thais M. Sobjak, Andrey F. P. Santos, Silvia Romao, Ana T. B. Guimaraes
Abstract:
Anthropogenic activities promote changes in the community’s structures and decrease the species abundance of amphibians. Biological communities of fluvial systems are assemblies of organisms that have adapted to regional conditions, including the physical environment and food resources, and are further refined through interactions with other species. The aim of this study was to assess neurotoxic alterations and in the antioxidant system on tadpoles of Lithobates catesbeianus exposed to waters from Cascavel River, in the south of Brazil. A total of 420 L of water was collected from the Cascavel River, 140 L from each of the three different locations: Site 1 – headwater; Site 2 – stretch of the stream that runs through an urbanized area; Site 3 – a stretch from the rural area. Twelve tadpoles were acclimated in each aquarium (100 L of water) for seven days. The water from each aquarium was replaced with the ones sampled from the river, except the one from the control aquarium. After seven days, a portion of the liver was removed and conditioned for ChE, SOD, CAT and LPO analysis; other part of the tissue was conditioned for histological analysis. The statistical analysis performed was one-way ANOVA, followed by post-hoc Tukey-HSD test, and the multivariate principal components analysis. It was not observed any neurotoxic effect, but a slight increase in SOD activity and elevation of CAT activity in both urban and rural environment. A decrease in LPO reaction was detected, mainly among the tadpoles exposed to the waters from the rural area. The results of the present study demonstrate the alteration of the antioxidant system, as well as liver histopathologies in tadpoles exposed mainly to waters collected in urban and rural environments. These alterations may cause the reduction in the velocity of the metamorphosis process from the tadpoles. Further, were observed histological alterations, highlighting necrotic areas mainly among the animals exposed to urban waters. Those damages can lead to metabolic dysfunction, interfering with survival capacity, diminishing not only individual fitness but for the whole population. In the interpretation synthesis of all biomarkers, the cellular damage gradient is perceptible, characterized by the variables related to the antioxidant system, due to the flow direction of the stream. This result is indicative that along the course of the creek occurs dumping of organic material, which promoted an acute response upon tadpoles of L. catesbeianus. and it was also observed the difference in tissue damage between the experimental groups and the control group, the latter presenting histological alterations, but to a lesser degree than the animals exposed to the waters of the Cascavel river. These damages, caused by reactive oxygen species possibly resulting from the contamination by organic compounds, can lead the animals to a series of metabolic dysfunctions, interfering with its metamorphosis capacity. Interruption of metamorphosis may affect survival, which may impair its growth, development and reproduction, diminishing not only the fitness of each individual but in a long-term, to the entire population.Keywords: American bullfrog, histopathology, oxidative stress, urban creeks pollution
Procedia PDF Downloads 18650 The Effectiveness of Prenatal Breastfeeding Education on Breastfeeding Uptake Postpartum: A Systematic Review.
Authors: Jennifer Kehinde, Claire O'donnell, Annmarie Grealish
Abstract:
Introduction: Breastfeeding has been shown to provide numerous health benefits for both infants and mothers. The decision to breastfeed is influenced by physiological, psychological, and emotional factors. However, the importance of equipping mothers with the necessary knowledge for successful breastfeeding practice cannot be ruled out. The decline in global breastfeeding rate can be linked to lack of adequate breastfeeding education during prenatal stage.This systematic review examined the effectiveness of prenatal breastfeeding education on breastfeeding uptake postpartum. Method: This review was undertaken and reported in conformity with the Preferred Reporting Items for Systemic Reviews and Meta-Analysis statement (PRISMA) and was registered on the international prospective register for systematic reviews (PROSPERO: CRD42020213853). A PICO analysis (population, intervention, comparison, outcome) was undertaken to inform the choice of keywords in the search strategy to formulate the review question which was aimed at determining the effectiveness of prenatal breastfeeding educational programs at improving breastfeeding uptake following birth. A systematic search of five databases (Cumulative Index to Nursing and Allied Health Literature, Medline, Psych INFO, and Applied Social Sciences Index and Abstracts) were searched between January 2014 until July 2021 to identify eligible studies. Quality assessment and narrative synthesis were subsequently undertaken. Results: Fourteen studies were included. All 14 studies used different types of breastfeeding programs; eight used a combination of curriculum based breastfeeding education program, group prenatal breastfeeding counselling and one-to-one breastfeeding educational programs which were all delivered in person; four studies used web-based learning platforms to deliver breastfeeding education prenatally which were both delivered online and face to face over a period of 3 weeks to 2 months with follow-up periods ranging from 3 weeks to 6 months; one study delivered breastfeeding educational intervention using mother-to-mother breastfeeding support groups in promoting exclusive breastfeeding and one study disseminated breastfeeding education to participants based on the theory of planned behaviour. The most effective interventions were those that included both theory and hands-on demonstrations. Results showed an increase in breastfeeding uptake, breastfeeding knowledge, increase in positive attitude to breastfeeding and an increase in maternal breastfeeding self-efficacy among mothers who participated in breastfeeding educational programs during prenatal care. Conclusion: Prenatal breastfeeding education increases women’s knowledge of breastfeeding. Mothers who are knowledgeable about breastfeeding and hold a positive approach towards breastfeeding have the tendency to initiate breastfeeding and continue for a lengthened period. Findings demonstrates a general correlation between prenatal breastfeeding education and increased breastfeeding uptake postpartum. The high level of positive breastfeeding outcome inherent in all the studies can be attributed to prenatal breastfeeding education. This review provides rigorous contemporary evidence that healthcare professionals and policymakers can apply when developing effective strategies to improve breastfeeding rates and ultimately improve the health outcomes of mothers and infants.Keywords: breastfeeding, breastfeeding programs, breastfeeding self-efficacy, prenatal breastfeedng education
Procedia PDF Downloads 6549 The Effect of Metabolites of Fusarium solani on the Activity of the PR-Proteins (Chitinase, β-1,3-Glucanase and Peroxidases) of Potato Tubers
Authors: A. K. Tursunova, O. V. Chebonenko, A. Zh. Amirkulova, A. O. Abaildayev, O. A. Sapko, Y. M. Dyo, A. Sh. Utarbaeva
Abstract:
Fusarium solani and its variants cause root and stem rot of plants. Dry rot is the most common disease of potato tubers during storage. The causative agents of fusariosis in contact with plants behave as antagonists, growth stimulants or parasites. The diversity of host-parasite relationships is explained by the parasite’s ability to produce a wide spectrum of biologically active compounds including toxins, enzymes, oligosaccharides, antibiotic substances, enniatins and gibberellins. Many of these metabolites contribute to the creation of compatible relations; others behave as elicitors, inducing various protective responses in plants. An important part of the strategy for developing plant resistance against pathogens is the activation of protein synthesis to produce protective ‘pathogenesis-related’ proteins. The family of PR-proteins known to confer the most protective response is chitinases (EC 3.2.1.14, Cht) and β-1,3-glucanases (EC 3.2.1.39, Glu). PR-proteins also include a large multigene family of peroxidases (EC 1.11.1.7, Pod), and increased activity of Pod and expression of the Pod genes leads to the development of resistance to a broad class of pathogens. Despite intensive research on the role of PR-proteins, the question of their participation in the mechanisms of formation of the F.solani–S.tuberosum pathosуstem is not sufficiently studied. Our aim was to investigate the effect of different classes of F. solani metabolites on the activity of chitinase, β-1,3-glucanases and peroxidases in tubers of Solanum tuberosum. Metabolite culture filtrate (CF) and cytoplasmic components were fractionated by extraction of the mycelium with organic solvents, salting out techniques, dialysis, column chromatography and ultrafiltration. Protein, lipid, carbohydrate and polyphenolic fractions of fungal metabolites were derived. Using enzymatic hydrolysis we obtained oligo glycans from fungal cell walls with different molecular weights. The activity of the metabolites was tested using potato tuber discs (d = 16mm, h = 5mm). The activity of PR-proteins of tubers was analyzed in a time course of 2–24 hours. The involvement of the analysed metabolites in the modulation of both early non-specific and late related to pathogenesis reactions was demonstrated. The most effective inducer was isolated from the CF (fraction of total phenolic compounds including naphtazarins). Induction of PR-activity by this fraction was: chitinase - 340-360%, glucanase - 435-450%, soluble forms of peroxidase - 400-560%, related forms of peroxidase - 215-237%. High-inducing activity was observed by the chloroform and acetonitrile extracts of the mycelium (induction of chitinase and glucanase activity was 176-240%, of soluble and bound forms of peroxidase - 190-400%). The fraction of oligo glycans mycelium cell walls of 1.2 kDa induced chitinase and β-1,3-glucanase to 239-320%; soluble forms and related peroxidase to 198-426%. Oligo glycans cell walls of 5-10 kDa had a weak suppressor effect - chitinase (21-25%) and glucanase (25-28%) activity; had no effect on soluble forms of peroxidase, but induced to 250-270% activity related forms. The CF polysaccharides of 8.5 kDa and 3.1 kDa inhibited synchronously the glucanase and chitinase specific response in step (after 24 hours at 42-50%) and the step response induced nonspecific peroxidase activity: soluble forms 4.8 -5.2 times, associated forms 1.4-1.6 times.Keywords: fusarium solani, PR-proteins, peroxidase, solanum tuberosum
Procedia PDF Downloads 20348 Integration of Rapid Generation Technology in Pulse Crop Breeding
Authors: Saeid H. Mobini, Monika Lulsdorf, Thomas D. Warkentin
Abstract:
The length of the breeding cycle from seed to seed is a limiting factor in the development of improved homozygous lines for breeding or recombinant inbred lines (RILs) for genetic analysis. The objective of this research was to accelerate the production of field pea RILs through application of rapid generation technology (RGT). RGT is based on the principle of growing miniature plants in an artificial medium under controlled conditions, and allowing them to produce a few flowers which develop seeds that are harvested prior to normal seed maturity. We aimed to maintain population size and genetic diversity in regeneration cycles. The effects of flurprimidol (a gibberellin synthesis inhibitor), plant density, hydroponic system, scheduled fertilizer applications, artificial light spectrum, photoperiod, and light/dark temperature were evaluated in the development of RILs from a cross between cultivars CDC Dakota and CDC Amarillo. The main goal was to accelerate flowering while reducing maintenance and space costs. In addition, embryo rescue of immature seeds was tested for shortening the seed fill period. Data collected over seven generations included plant height, the percentage of plant survival, flowering rate, seed setting rate, the number of seeds per plant, and time from seed to seed. Applying 0.6 µM flurprimidol reduced the internode length. Plant height was decreased to approximately 32 cm allowing for higher plant density without a delay in flowering and seed setting rate. The three light systems (T5 fluorescent bulbs, LEDs, and High Pressure Sodium +Metal-halide lamp) evaluated did not differ significantly in terms of flowering time in field pea. Collectively, the combination of 0.6 µM flurprimidol, 217 plant. m-2, 20 h photoperiod, 21/16 oC light/dark temperature in a hydroponic system with vermiculite substrate, applying scheduled fertilizer application based on growth stage, and 500 µmole.m-2.s-1 light intensity using T5 bulbs resulted in 100% of plants flowering within 34 ± 3 days and 96.5% of plants completed seed setting in 68.2 ± 3.6 days, i.e., 30-45 days/generation faster than conventional single seed descent (SSD) methods. These regeneration cycles were reproducible consistently. Hence, RGT could double (5.3) generations per year, using 3% occupying space, compared to SSD (2-3 generation/year). Embryo rescue of immature seeds at 7-8 mm stage, using commercial fertilizer solutions (Holland’s Secret™) showed seed setting rate of 95%, while younger embryos had lower germination rate. Mature embryos had a seed setting rate of 96.5% without either hormones or sugar added. So, considering the higher cost of embryo rescue using a procedure which requires skill, additional materials, and expenses, it could be removed from RGT with a further cost saving, and the process could be stopped between generations if required.Keywords: field pea, flowering, rapid regeneration, recombinant inbred lines, single seed descent
Procedia PDF Downloads 36247 Asparagus racemosus Willd for Enhanced Medicinal Properties
Authors: Ashok Kumar, Parveen Parveen
Abstract:
India is bestowed with an extremely high population of plant species with medicinal value and even has two biodiversity hotspots. Indian systems of medicine including Ayurveda, Siddha and Unani have historically been serving humankind across the world since time immemorial. About 1500 plant species have well been documented in Ayurvedic Nighantus as official medicinal plants. Additionally, several hundred species of plants are being routinely used as medicines by local people especially tribes living in and around forests. The natural resources for medicinal plants have unscientifically been over-exploited forcing rapid depletion in their genetic diversity. Moreover, renewed global interest in herbal medicines may even lead to additional depletion of medicinal plant wealth of the country, as about 95% collection of medicinal plants for pharmaceutical preparation is being carried out from natural forests. On the other hand, huge export market of medicinal and aromatic plants needs to be seriously tapped for enhancing inflow of foreign currency. Asparagus racemosus Willd., a member of family Liliaceae, is one of thirty-two plant species that have been identified as priority species for cultivation and conservation by the National Medicinal Plant Board (NMPB), Government of India. Though attention is being focused on standardization of agro-techniques and extraction methods, little has been designed on genetic improvement and selection of desired types with higher root production and saponin content, a basic ingredient of medicinal value. The saponin not only improves defense mechanisms and controls diabetes but the roots of this species promote secretion of breast milk, improved lost body weight and considered as an aphrodisiac. There is ample scope for genetic improvement of this species for enhancing productivity substantially, qualitatively and quantitatively. It is emphasized to select desired genotypes with sufficient genetic diversity for important economic traits. Hybridization between two genetically divergent genotypes could result in the synthesis of new F1 hybrids consisting of useful traits of both the parents. The evaluation of twenty seed sources of Asparagus racemosus assembled different geographical locations of India revelled high degree of variability for traits of economic importance. The maximum genotypic and phenotypic variance was observed for shoot height among shoot related traits and for root length among root related traits. The shoot height, genotypic variance, phenotypic variance, genotypic coefficient of variance, the phenotypic coefficient of variance was recorded to be 231.80, 3924.80, 61.26 and 1037.32, respectively, where those of the root length were 9.55, 16.80, 23.46 and 41.27, respectively. The maximum genetic advance and genetic gain were obtained for shoot height among shoot-related traits and root length among root-related traits. Index values were developed for all seed sources based on the four most important traits, and Panthnagar (Uttrakhand), Jodhpur (Rajasthan), Dehradun (Uttarakhand), Chandigarh (Punjab), Jammu (Jammu & Kashmir) and Solan (Himachal Pradesh) were found to be promising seed sources.Keywords: asparagus, genetic, genotypes, variance
Procedia PDF Downloads 13446 A Review of Data Visualization Best Practices: Lessons for Open Government Data Portals
Authors: Bahareh Ansari
Abstract:
Background: The Open Government Data (OGD) movement in the last decade has encouraged many government organizations around the world to make their data publicly available to advance democratic processes. But current open data platforms have not yet reached to their full potential in supporting all interested parties. To make the data useful and understandable for everyone, scholars suggested that opening the data should be supplemented by visualization. However, different visualizations of the same information can dramatically change an individual’s cognitive and emotional experience in working with the data. This study reviews the data visualization literature to create a list of the methods empirically tested to enhance users’ performance and experience in working with a visualization tool. This list can be used in evaluating the OGD visualization practices and informing the future open data initiatives. Methods: Previous reviews of visualization literature categorized the visualization outcomes into four categories including recall/memorability, insight/comprehension, engagement, and enjoyment. To identify the papers, a search for these outcomes was conducted in the abstract of the publications of top-tier visualization venues including IEEE Transactions for Visualization and Computer Graphics, Computer Graphics, and proceedings of the CHI Conference on Human Factors in Computing Systems. The search results are complemented with a search in the references of the identified articles, and a search for 'open data visualization,' and 'visualization evaluation' keywords in the IEEE explore and ACM digital libraries. Articles are included if they provide empirical evidence through conducting controlled user experiments, or provide a review of these empirical studies. The qualitative synthesis of the studies focuses on identification and classifying the methods, and the conditions under which they are examined to positively affect the visualization outcomes. Findings: The keyword search yields 760 studies, of which 30 are included after the title/abstract review. The classification of the included articles shows five distinct methods: interactive design, aesthetic (artistic) style, storytelling, decorative elements that do not provide extra information including text, image, and embellishment on the graphs), and animation. Studies on decorative elements show consistency on the positive effects of these elements on user engagement and recall but are less consistent in their examination of the user performance. This inconsistency could be attributable to the particular data type or specific design method used in each study. The interactive design studies are consistent in their findings of the positive effect on the outcomes. Storytelling studies show some inconsistencies regarding the design effect on user engagement, enjoyment, recall, and performance, which could be indicative of the specific conditions required for the use of this method. Last two methods, aesthetics and animation, have been less frequent in the included articles, and provide consistent positive results on some of the outcomes. Implications for e-government: Review of the visualization best-practice methods show that each of these methods is beneficial under specific conditions. By using these methods in a potentially beneficial condition, OGD practices can promote a wide range of individuals to involve and work with the government data and ultimately engage in government policy-making procedures.Keywords: best practices, data visualization, literature review, open government data
Procedia PDF Downloads 10545 Genomic and Proteomic Variability in Glycine Max Genotypes in Response to Salt Stress
Authors: Faheema Khan
Abstract:
To investigate the ability of sensitive and tolerant genotype of Glycine max to adapt to a saline environment in a field, we examined the growth performance, water relation and activities of antioxidant enzymes in relation to photosynthetic rate, chlorophyll a fluorescence, photosynthetic pigment concentration, protein and proline in plants exposed to salt stress. Ten soybean genotypes (Pusa-20, Pusa-40, Pusa-37, Pusa-16, Pusa-24, Pusa-22, BRAGG, PK-416, PK-1042, and DS-9712) were selected and grown hydroponically. After 3 days of proper germination, the seedlings were transferred to Hoagland’s solution (Hoagland and Arnon 1950). The growth chamber was maintained at a photosynthetic photon flux density of 430 μmol m−2 s−1, 14 h of light, 10 h of dark and a relative humidity of 60%. The nutrient solution was bubbled with sterile air and changed on alternate days. Ten-day-old seedlings were given seven levels of salt in the form of NaCl viz., T1 = 0 mM NaCl, T2=25 mM NaCl, T3=50 mM NaCl, T4=75 mM NaCl, T5=100 mM NaCl, T6=125 mM NaCl, T7=150 mM NaCl. The investigation showed that genotype Pusa-24, PK-416 and Pusa-20 appeared to be the most salt-sensitive. genotypes as inferred from their significantly reduced length, fresh weight and dry weight in response to the NaCl exposure. Pusa-37 appeared to be the most tolerant genotype since no significant effect of NaCl treatment on growth was found. We observed a greater decline in the photosynthetic variables like photosynthetic rate, chlorophyll fluorescence and chlorophyll content, in salt-sensitive (Pusa-24) genotype than in salt-tolerant Pusa-37 under high salinity. Numerous primers were verified on ten soybean genotypes obtained from Operon technologies among which 30 RAPD primers shown high polymorphism and genetic variation. The Jaccard’s similarity coefficient values for each pairwise comparison between cultivars were calculated and similarity coefficient matrix was constructed. The closer varieties in the cluster behaved similar in their response to salinity tolerance. Intra-clustering within the two clusters precisely grouped the 10 genotypes in sub-cluster as expected from their physiological findings.Salt tolerant genotype Pusa-37, was further analysed by 2-Dimensional gel electrophoresis to analyse the differential expression of proteins at high salt stress. In the Present study, 173 protein spots were identified. Of these, 40 proteins responsive to salinity were either up- or down-regulated in Pusa-37. Proteomic analysis in salt-tolerant genotype (Pusa-37) led to the detection of proteins involved in a variety of biological processes, such as protein synthesis (12 %), redox regulation (19 %), primary and secondary metabolism (25 %), or disease- and defence-related processes (32 %). In conclusion, the soybean plants in our study responded to salt stress by changing their protein expression pattern. The photosynthetic, biochemical and molecular study showed that there is variability in salt tolerance behaviour in soybean genotypes. Pusa-24 is the salt-sensitive and Pusa-37 is the salt-tolerant genotype. Moreover this study gives new insights into the salt-stress response in soybean and demonstrates the power of genomic and proteomic approach in plant biology studies which finally could help us in identifying the possible regulatory switches (gene/s) controlling the salt tolerant genotype of the crop plants and their possible role in defence mechanism.Keywords: glycine max, salt stress, RAPD, genomic and proteomic variability
Procedia PDF Downloads 42244 A High-Throughput Enzyme Screening Method Using Broadband Coherent Anti-stokes Raman Spectroscopy
Authors: Ruolan Zhang, Ryo Imai, Naoko Senda, Tomoyuki Sakai
Abstract:
Enzymes have attracted increasing attentions in industrial manufacturing for their applicability in catalyzing complex chemical reactions under mild conditions. Directed evolution has become a powerful approach to optimize enzymes and exploit their full potentials under the circumstance of insufficient structure-function knowledge. With the incorporation of cell-free synthetic biotechnology, rapid enzyme synthesis can be realized because no cloning procedure such as transfection is needed. Its open environment also enables direct enzyme measurement. These properties of cell-free biotechnology lead to excellent throughput of enzymes generation. However, the capabilities of current screening methods have limitations. Fluorescence-based assay needs applicable fluorescent label, and the reliability of acquired enzymatic activity is influenced by fluorescent label’s binding affinity and photostability. To acquire the natural activity of an enzyme, another method is to combine pre-screening step and high-performance liquid chromatography (HPLC) measurement. But its throughput is limited by necessary time investment. Hundreds of variants are selected from libraries, and their enzymatic activities are then identified one by one by HPLC. The turn-around-time is 30 minutes for one sample by HPLC, which limits the acquirable enzyme improvement within reasonable time. To achieve the real high-throughput enzyme screening, i.e., obtain reliable enzyme improvement within reasonable time, a widely applicable high-throughput measurement of enzymatic reactions is highly demanded. Here, a high-throughput screening method using broadband coherent anti-Stokes Raman spectroscopy (CARS) was proposed. CARS is one of coherent Raman spectroscopy, which can identify label-free chemical components specifically from their inherent molecular vibration. These characteristic vibrational signals are generated from different vibrational modes of chemical bonds. With the broadband CARS, chemicals in one sample can be identified from their signals in one broadband CARS spectrum. Moreover, it can magnify the signal levels to several orders of magnitude greater than spontaneous Raman systems, and therefore has the potential to evaluate chemical's concentration rapidly. As a demonstration of screening with CARS, alcohol dehydrogenase, which converts ethanol and nicotinamide adenine dinucleotide oxidized form (NAD+) to acetaldehyde and nicotinamide adenine dinucleotide reduced form (NADH), was used. The signal of NADH at 1660 cm⁻¹, which is generated from nicotinamide in NADH, was utilized to measure the concentration of it. The evaluation time for CARS signal of NADH was determined to be as short as 0.33 seconds while having a system sensitivity of 2.5 mM. The time course of alcohol dehydrogenase reaction was successfully measured from increasing signal intensity of NADH. This measurement result of CARS was consistent with the result of a conventional method, UV-Vis. CARS is expected to have application in high-throughput enzyme screening and realize more reliable enzyme improvement within reasonable time.Keywords: Coherent Anti-Stokes Raman Spectroscopy, CARS, directed evolution, enzyme screening, Raman spectroscopy
Procedia PDF Downloads 14143 Magnetic Solid-Phase Separation of Uranium from Aqueous Solution Using High Capacity Diethylenetriamine Tethered Magnetic Adsorbents
Authors: Amesh P, Suneesh A S, Venkatesan K A
Abstract:
The magnetic solid-phase extraction is a relatively new method among the other solid-phase extraction techniques for the separating of metal ions from aqueous solutions, such as mine water and groundwater, contaminated wastes, etc. However, the bare magnetic particles (Fe3O4) exhibit poor selectivity due to the absence of target-specific functional groups for sequestering the metal ions. The selectivity of these magnetic particles can be remarkably improved by covalently tethering the task-specific ligands on magnetic surfaces. The magnetic particles offer a number of advantages such as quick phase separation aided by the external magnetic field. As a result, the solid adsorbent can be prepared with the particle size ranging from a few micrometers to the nanometer, which again offers the advantages such as enhanced kinetics of extraction, higher extraction capacity, etc. Conventionally, the magnetite (Fe3O4) particles were prepared by the hydrolysis and co-precipitation of ferrous and ferric salts in aqueous ammonia solution. Since the covalent linking of task-specific functionalities on Fe3O4 was difficult, and it is also susceptible to redox reaction in the presence of acid or alkali, it is necessary to modify the surface of Fe3O4 by silica coating. This silica coating is usually carried out by hydrolysis and condensation of tetraethyl orthosilicate over the surface of magnetite to yield a thin layer of silica-coated magnetite particles. Since the silica-coated magnetite particles amenable for further surface modification, it can be reacted with task-specific functional groups to obtain the functionalized magnetic particles. The surface area exhibited by such magnetic particles usually falls in the range of 50 to 150 m2.g-1, which offer advantage such as quick phase separation, as compared to the other solid-phase extraction systems. In addition, the magnetic (Fe3O4) particles covalently linked on mesoporous silica matrix (MCM-41) and task-specific ligands offer further advantages in terms of extraction kinetics, high stability, longer reusable cycles, and metal extraction capacity, due to the large surface area, ample porosity and enhanced number of functional groups per unit area on these adsorbents. In view of this, the present paper deals with the synthesis of uranium specific diethylenetriamine ligand (DETA) ligand anchored on silica-coated magnetite (Fe-DETA) as well as on magnetic mesoporous silica (MCM-Fe-DETA) and studies on the extraction of uranium from aqueous solution spiked with uranium to mimic the mine water or groundwater contaminated with uranium. The synthesized solid-phase adsorbents were characterized by FT-IR, Raman, TG-DTA, XRD, and SEM. The extraction behavior of uranium on the solid-phase was studied under several conditions like the effect of pH, initial concentration of uranium, rate of extraction and its variation with pH and initial concentration of uranium, effect of interference ions like CO32-, Na+, Fe+2, Ni+2, and Cr+3, etc. The maximum extraction capacity of 233 mg.g-1 was obtained for Fe-DETA, and a huge capacity of 1047 mg.g-1 was obtained for MCM-Fe-DETA. The mechanism of extraction, speciation of uranium, extraction studies, reusability, and the other results obtained in the present study suggests Fe-DETA and MCM-Fe-DETA are the potential candidates for the extraction of uranium from mine water, and groundwater.Keywords: diethylenetriamine, magnetic mesoporous silica, magnetic solid-phase extraction, uranium extraction, wastewater treatment
Procedia PDF Downloads 16842 A Systematic Review Regarding Caregiving Relationships of Adolescents Orphaned by Aids and Primary Caregivers
Authors: M. Petunia Tsweleng
Abstract:
Statement of the Problem: Research and aid organisations report that children and adolescents orphaned due to HIV and AIDS are particularly vulnerable as they are often exposed to negative effects of both HIV and AIDS and orphanhood. Without much-needed parental love, care, and support, these children and adolescents are at risk of poor developmental outcomes. A cursory look at the available literature on AIDS-orphaned adolescents, and the quality of caregiving relationships with caregivers, shows that this is a relatively under-researched terrain. This article is a review of the literature on caregiving relationships of adolescents orphaned due to AIDS and their current primary caregivers. It aims to inform community programmes and policymakers by providing insight into the qualities of these relationships. Methodology: A comprehensive search of both peer-reviewed and non-peer-reviewed literature was conducted through EBSCOhost, SpringLINK, PsycINFO, SAGE, PubMed, Elsevier ScienceDirect, JSTOR, Wiley Online Library databases, and Google Scholar. The combination of keywords used for the search were: (caregiving relationships); (orphans OR AIDS orphaned children OR AIDS orphaned adolescents); (primary caregivers); and (quality caregiving); (orphans); (HIV and AIDS). The search took place between 24 January and 28 February 2022. Both qualitative and quantitative research studies published between 2010 and 2020 were reviewed. However, only qualitative studies were selected in the end -as they presented more profound findings concerning orphan-caregiver relationships. The following three stages of meta-synthesis analysis were used to analyse data: refutational syntheses, reciprocal syntheses, and line of argument. Results: The search resulted in a total of 2090 titles, of which 750 were duplicates and therefore subtracted. The researcher reviewed all the titles and abstracts of the remaining 1340 articles. 329 articles were identified as relevant, and full texts were reviewed. Following the review of the full texts, 313 studies were excluded for relevance and 4 for methodology. Twelve articles representing 11 studies fulfilled the inclusion criteria and were selected. These studies, representing different countries across the globe, reported similar forms of hardships experienced by caregivers economically, psychosocially, and healthwise. However, the studies also show that the majority of caregivers found contentment in caring for orphans, particularly grandmother carers, and were thus enabled to provide love, care, and support despite hardships. This resulted in positive caregiving relationships -as orphans fared well emotionally and psychosocially. Some relationships, however, were found negative due to unhealed emotional wounds suffered by both caregivers and orphans and others due to the caregiver’s lack of interest in providing care. These findings were based on self-report data from both orphans and caregivers. Conclusion: Findings suggest that intervention efforts need to be intensified to: alleviate poverty in households that are affected by HIV and AIDS pandemic, strengthen the community psychosocial support programmes for orphans and their caregivers; and integrate clinical services with community programmes for the healing of emotional and psychological wounds. Contributions: Findings inform community programmes and policymakers by providing insight into the qualities of the mentioned relationships as well as identifying factors commonly associated with high-quality caregiving and poor-quality caregiving.Keywords: systematic review, caregiving relationships, orphans and primary caregivers, AIDS
Procedia PDF Downloads 18041 Electrochemical Activity of NiCo-GDC Cermet Anode for Solid Oxide Fuel Cells Operated in Methane
Authors: Kamolvara Sirisuksakulchai, Soamwadee Chaianansutcharit, Kazunori Sato
Abstract:
Solid Oxide Fuel Cells (SOFCs) have been considered as one of the most efficient large unit power generators for household and industrial applications. The efficiency of an electronic cell depends mainly on the electrochemical reactions in the anode. The development of anode materials has been intensely studied to achieve higher kinetic rates of redox reactions and lower internal resistance. Recent studies have introduced an efficient cermet (ceramic-metallic) material for its ability in fuel oxidation and oxide conduction. This could expand the reactive site, also known as the triple-phase boundary (TPB), thus increasing the overall performance. In this study, a bimetallic catalyst Ni₀.₇₅Co₀.₂₅Oₓ was combined with Gd₀.₁Ce₀.₉O₁.₉₅ (GDC) to be used as a cermet anode (NiCo-GDC) for an anode-supported type SOFC. The synthesis of Ni₀.₇₅Co₀.₂₅Oₓ was carried out by ball milling NiO and Co3O4 powders in ethanol and calcined at 1000 °C. The Gd₀.₁Ce₀.₉O₁.₉₅ was prepared by a urea co-precipitation method. Precursors of Gd(NO₃)₃·6H₂O and Ce(NO₃)₃·6H₂O were dissolved in distilled water with the addition of urea and were heated subsequently. The heated mixture product was filtered and rinsed thoroughly, then dried and calcined at 800 °C and 1500 °C, respectively. The two powders were combined followed by pelletization and sintering at 1100 °C to form an anode support layer. The fabrications of an electrolyte layer and cathode layer were conducted. The electrochemical performance in H₂ was measured from 800 °C to 600 °C while for CH₄ was from 750 °C to 600 °C. The maximum power density at 750 °C in H₂ was 13% higher than in CH₄. The difference in performance was due to higher polarization resistances confirmed by the impedance spectra. According to the standard enthalpy, the dissociation energy of C-H bonds in CH₄ is slightly higher than the H-H bond H₂. The dissociation of CH₄ could be the cause of resistance within the anode material. The results from lower temperatures showed a descending trend of power density in relevance to the increased polarization resistance. This was due to lowering conductivity when the temperature decreases. The long-term stability was measured at 750 °C in CH₄ monitoring at 12-hour intervals. The maximum power density tends to increase gradually with time while the resistances were maintained. This suggests the enhanced stability from charge transfer activities in doped ceria due to the transition of Ce⁴⁺ ↔ Ce³⁺ at low oxygen partial pressure and high-temperature atmosphere. However, the power density started to drop after 60 h, and the cell potential also dropped from 0.3249 V to 0.2850 V. These phenomena was confirmed by a shifted impedance spectra indicating a higher ohmic resistance. The observation by FESEM and EDX-mapping suggests the degradation due to mass transport of ions in the electrolyte while the anode microstructure was still maintained. In summary, the electrochemical test and stability test for 60 h was achieved by NiCo-GDC cermet anode. Coke deposition was not detected after operation in CH₄, hence this confirms the superior properties of the bimetallic cermet anode over typical Ni-GDC.Keywords: bimetallic catalyst, ceria-based SOFCs, methane oxidation, solid oxide fuel cell
Procedia PDF Downloads 15440 Transition Metal Bis(Dicarbollide) Complexes in Design of Molecular Switches
Authors: Igor B. Sivaev
Abstract:
Design of molecular machines is an extraordinary growing and very important area of research that it was recognized by awarding Sauvage, Stoddart and Feringa the Nobel Prize in Chemistry in 2016 'for the design and synthesis of molecular machines'. Based on the type of motion being performed, molecular machines can be divided into two main types: molecular motors and molecular switches. Molecular switches are molecules or supramolecular complexes having bistability, i.e., the ability to exist in two or more stable forms, among which may be reversible transitions under external influence (heating, lighting, changing the medium acidity, the action of chemicals, exposure to magnetic or electric field). Molecular switches are the main structural element of any molecular electronics devices. Therefore, the design and the study of molecules and supramolecular systems capable of performing mechanical movement is an important and urgent problem of modern chemistry. There is growing interest in molecular switches and other devices of molecular electronics based on transition metal complexes; therefore choice of suitable stable organometallic unit is of great importance. An example of such unit is bis(dicarbollide) complexes of transition metals [3,3’-M(1,2-C₂B₉H₁₁)₂]ⁿ⁻. The control on the ligand rotation in such complexes can be reached by introducing substituents which could provide stabilization of certain rotamers due to specific interactions between the ligands, on the one hand, and which can participate as Lewis bases in complex formation with external metals resulting in a change in the rotation angle of the ligands, on the other hand. A series of isomeric methyl sulfide derivatives of cobalt bis(dicarbollide) complexes containing methyl sulfide substituents at boron atoms in different positions of the pentagonal face of the dicarbollide ligands [8,8’-(MeS)₂-3,3’-Co(1,2-C₂B₉H₁₀)₂]⁻, rac-[4,4’-(MeS)₂-3,3’-Co(1,2-C₂B₉H₁₀)₂]⁻ and meso-[4,7’-(MeS)₂-3,3’-Co(1,2-C₂B₉H₁₀)₂]⁻ were synthesized by the reaction of CoCl₂ with the corresponding methyl sulfide carborane derivatives [10-MeS-7,8-C₂B₉H₁₁)₂]⁻ and [10-MeS-7,8-C₂B₉H₁₁)₂]⁻. In the case of asymmetrically substituted cobalt bis(dicarbollide) complexes the corresponding rac- and meso-isomers were successfully separated by column chromatography as the tetrabutylammonium salts. The compounds obtained were studied by the methods of ¹H, ¹³C, and ¹¹B NMR spectroscopy, single crystal X-ray diffraction, cyclic voltammetry, controlled potential coulometry and quantum chemical calculations. It was found that in the solid state, the transoid- and gauche-conformations of the 8,8’- and 4,4’-isomers are stabilized by four intramolecular CH···S(Me)B hydrogen bonds each one (2.683-2.712 Å and 2.709-2.752 Å, respectively), whereas gauche-conformation of the 4,7’-isomer is stabilized by two intramolecular CH···S hydrogen bonds (2.699-2.711 Å). The existence of the intramolecular CH·S(Me)B hydrogen bonding in solutions was supported by the 1H NMR spectroscopy. These data are in a good agreement with results of the quantum chemical calculations. The corresponding iron and nickel complexes were synthesized as well. The reaction of the methyl sulfide derivatives of cobalt bis(dicarbollide) with various labile transition metal complexes results in rupture of intramolecular hydrogen bonds and complexation of the methyl sulfide groups with external metal. This results in stabilization of other rotational conformation of cobalt bis(dicarbollide) and can be used in design of molecular switches. This work was supported by the Russian Science Foundation (16-13-10331).Keywords: molecular switches, NMR spectroscopy, single crystal X-ray diffraction, transition metal bis(dicarbollide) complexes, quantum chemical calculations
Procedia PDF Downloads 17239 Surface-Enhanced Raman Detection in Chip-Based Chromatography via a Droplet Interface
Authors: Renata Gerhardt, Detlev Belder
Abstract:
Raman spectroscopy has attracted much attention as a structurally descriptive and label-free detection method. It is particularly suited for chemical analysis given as it is non-destructive and molecules can be identified via the fingerprint region of the spectra. In this work possibilities are investigated how to integrate Raman spectroscopy as a detection method for chip-based chromatography, making use of a droplet interface. A demanding task in lab-on-a-chip applications is the specific and sensitive detection of low concentrated analytes in small volumes. Fluorescence detection is frequently utilized but restricted to fluorescent molecules. Furthermore, no structural information is provided. Another often applied technique is mass spectrometry which enables the identification of molecules based on their mass to charge ratio. Additionally, the obtained fragmentation pattern gives insight into the chemical structure. However, it is only applicable as an end-of-the-line detection because analytes are destroyed during measurements. In contrast to mass spectrometry, Raman spectroscopy can be applied on-chip and substances can be processed further downstream after detection. A major drawback of Raman spectroscopy is the inherent weakness of the Raman signal, which is due to the small cross-sections associated with the scattering process. Enhancement techniques, such as surface enhanced Raman spectroscopy (SERS), are employed to overcome the poor sensitivity even allowing detection on a single molecule level. In SERS measurements, Raman signal intensity is improved by several orders of magnitude if the analyte is in close proximity to nanostructured metal surfaces or nanoparticles. The main gain of lab-on-a-chip technology is the building block-like ability to seamlessly integrate different functionalities, such as synthesis, separation, derivatization and detection on a single device. We intend to utilize this powerful toolbox to realize Raman detection in chip-based chromatography. By interfacing on-chip separations with a droplet generator, the separated analytes are encapsulated into numerous discrete containers. These droplets can then be injected with a silver nanoparticle solution and investigated via Raman spectroscopy. Droplet microfluidics is a sub-discipline of microfluidics which instead of a continuous flow operates with the segmented flow. Segmented flow is created by merging two immiscible phases (usually an aqueous phase and oil) thus forming small discrete volumes of one phase in the carrier phase. The study surveys different chip designs to realize coupling of chip-based chromatography with droplet microfluidics. With regards to maintaining a sufficient flow rate for chromatographic separation and ensuring stable eluent flow over the column different flow rates of eluent and oil phase are tested. Furthermore, the detection of analytes in droplets with surface enhanced Raman spectroscopy is examined. The compartmentalization of separated compounds preserves the analytical resolution since the continuous phase restricts dispersion between the droplets. The droplets are ideal vessels for the insertion of silver colloids thus making use of the surface enhancement effect and improving the sensitivity of the detection. The long-term goal of this work is the first realization of coupling chip based chromatography with droplets microfluidics to employ surface enhanced Raman spectroscopy as means of detection.Keywords: chip-based separation, chip LC, droplets, Raman spectroscopy, SERS
Procedia PDF Downloads 24538 Global Winners versus Local Losers: Globalization Identity and Tradition in Spanish Club Football
Authors: Jim O'brien
Abstract:
Contemporary global representation and consumption of La Liga across a plethora of media platform outlets has resulted in significant implications for the historical, political and cultural developments which shaped the development of Spanish club football. This has established and reinforced a hierarchy of a small number of teams belonging to or aspiring to belong to a cluster of global elite clubs seeking to imitate the blueprint of the English Premier League in respect of corporate branding and marketing in order to secure a global fan base through success and exposure in La Liga itself and through the Champions League. The synthesis between globalization, global sport and the status of high profile clubs has created radical change within the folkloric iconography of Spanish football. The main focus of this paper is to critically evaluate the consequences of globalization on the rich tapestry at the core of the game’s distinctive history in Spain. The seminal debate underpinning the study considers whether the divergent aspects of globalization have acted as a malevolent force, eroding tradition, causing financial meltdown and reducing much of the fabric of club football to the status of by standers, or have promoted a renaissance of these traditions, securing their legacies through new fans and audiences. The study draws on extensive sources on the history, politics and culture of Spanish football, in both English and Spanish. It also uses primary and archive material derived from interviews and fieldwork undertaken with scholars, media professionals and club representatives in Spain. The paper has four main themes. Firstly, it contextualizes the key historical, political and cultural forces which shaped the landscape of Spanish football from the late nineteenth century. The seminal notions of region, locality and cultural divergence are pivotal to this discourse. The study then considers the relationship between football, ethnicity and identity as a barometer of continuity and change, suggesting that tradition is being reinvented and re-framed to reflect the shifting demographic and societal patterns within the Spanish state. Following on from this, consideration is given to the paradoxical function of ‘El Clasico’ and the dominant duopoly of the FC Barcelona – Real Madrid axis in both eroding tradition in the global nexus of football’s commodification and in protecting historic political rivalries. To most global consumers of La Liga, the mega- spectacle and hyperbole of ‘El Clasico’ is the essence of Spanish football, with cultural misrepresentation and distortion catapulting the event to the global media audience. Finally, the paper examines La Liga as a sporting phenomenon in which elite clubs, cult managers and galacticos serve as commodities on the altar of mass consumption in football’s global entertainment matrix. These processes accentuate a homogenous mosaic of cultural conformity which obscures local, regional and national identities and paradoxically fuses the global with the local to maintain the distinctive hue of La Liga, as witnessed by the extraordinary successes of Athletico Madrid and FC Eibar in recent seasons.Keywords: Spanish football, globalization, cultural identity, tradition, folklore
Procedia PDF Downloads 30137 Bridging Educational Research and Policymaking: The Development of Educational Think Tank in China
Authors: Yumei Han, Ling Li, Naiqing Song, Xiaoping Yang, Yuping Han
Abstract:
Educational think tank is agreeably regarded as significant part of a nation’s soft power to promote the scientific and democratic level of educational policy making, and it plays critical role of bridging educational research in higher institutions and educational policy making. This study explores the concept, functions and significance of educational think tank in China, and conceptualizes a three dimensional framework to analyze the approaches of transforming research-based higher institutions into effective educational think tanks to serve educational policy making in the nation wide. Since 2014, the Ministry of Education P.R. China has been promoting the strategy of developing new type of educational think tanks in higher institutions, and such a strategy has been put into the agenda for the 13th Five Year Plan for National Education Development released in 2017.In such context, increasing scholars conduct studies to put forth strategies of promoting the development and transformation of new educational think tanks to serve educational policy making process. Based on literature synthesis, policy text analysis, and analysis of theories about policy making process and relationship between educational research and policy-making, this study constructed a three dimensional conceptual framework to address the following questions: (a) what are the new features of educational think tanks in the new era comparing traditional think tanks, (b) what are the functional objectives of the new educational think tanks, (c) what are the organizational patterns and mechanism of the new educational think tanks, (d) in what approaches traditional research-based higher institutions can be developed or transformed into think tanks to effectively serve the educational policy making process. The authors adopted case study approach on five influential education policy study centers affiliated with top higher institutions in China and applied the three dimensional conceptual framework to analyze their functional objectives, organizational patterns as well as their academic pathways that researchers use to contribute to the development of think tanks to serve education policy making process.Data was mainly collected through interviews with center administrators, leading researchers and academic leaders in the institutions. Findings show that: (a) higher institution based think tanks mainly function for multi-level objectives, providing evidence, theoretical foundations, strategies, or evaluation feedbacks for critical problem solving or policy-making on the national, provincial, and city/county level; (b) higher institution based think tanks organize various types of research programs for different time spans to serve different phases of policy planning, decision making, and policy implementation; (c) in order to transform research-based higher institutions into educational think tanks, the institutions must promote paradigm shift that promotes issue-oriented field studies, large data mining and analysis, empirical studies, and trans-disciplinary research collaborations; and (d) the five cases showed distinguished features in their way of constructing think tanks, and yet they also exposed obstacles and challenges such as independency of the think tanks, the discourse shift from academic papers to consultancy report for policy makers, weakness in empirical research methods, lack of experience in trans-disciplinary collaboration. The authors finally put forth implications for think tank construction in China and abroad.Keywords: education policy-making, educational research, educational think tank, higher institution
Procedia PDF Downloads 15836 Generative Syntaxes: Macro-Heterophony and the Form of ‘Synchrony’
Authors: Luminiţa Duţică, Gheorghe Duţică
Abstract:
One of the most powerful language innovation in the twentieth century music was the heterophony–hypostasis of the vertical syntax entered into the sphere of interest of many composers, such as George Enescu, Pierre Boulez, Mauricio Kagel, György Ligeti and others. The heterophonic syntax has a history of its growth, which means a succession of different concepts and writing techniques. The trajectory of settling this phenomenon does not necessarily take into account the chronology: there are highly complex primary stages and advanced stages of returning to the simple forms of writing. In folklore, the plurimelodic simultaneities are free or random and originate from the (unintentional) differences/‘deviations’ from the state of unison, through a variety of ornaments, melismas, imitations, elongations and abbreviations, all in a flexible rhythmic and non-periodic/immeasurable framework, proper to the parlando-rubato rhythmics. Within the general framework of the multivocal organization, the heterophonic syntax in elaborate (academic) version has imposed itself relatively late compared with polyphony and homophony. Of course, the explanation is simple, if we consider the causal relationship between the sound vocabulary elements – in this case, the modalism – and the typologies of vertical organization appropriate for it. Therefore, adding up the ‘classic’ pathway of the writing typologies (monody – polyphony – homophony), heterophony - applied equally to the structures of modal, serial or synthesis vocabulary – reclaims necessarily an own macrotemporal form, in the sense of the analogies enshrined by the evolution of the musical styles and languages: polyphony→fugue, homophony→sonata. Concerned about the prospect of edifying a new musical ontology, the composer Ştefan Niculescu experienced – along with the mathematical organization of heterophony according to his own original methods – the possibility of extrapolation of this phenomenon in macrostructural plan, reaching this way to the unique form of ‘synchrony’. Founded on coincidentia oppositorum principle (involving the ‘one-multiple’ binom), the sound architecture imagined by Ştefan Niculescu consists in one (temporal) model / algorithm of articulation of two sound states: 1. monovocality state (principle of identity) and 2. multivocality state (principle of difference). In this context, the heterophony becomes an (auto)generative mechanism, with macrotemporal amplitude, strategy that will be grown by the composer, practically throughout his creation (see the works: Ison I, Ison II, Unisonos I, Unisonos II, Duplum, Triplum, Psalmus, Héterophonies pour Montreux (Homages to Enescu and Bartók etc.). For the present demonstration, we selected one of the most edifying works of Ştefan Niculescu – Simphony II, Opus dacicum – where the form of (heterophony-)synchrony acquires monumental-symphonic features, representing an emblematic case for the complexity level achieved by this type of vertical syntax in the twentieth century music.Keywords: heterophony, modalism, serialism, synchrony, syntax
Procedia PDF Downloads 34335 Wastewater Treatment Using Ternary Hybrid Advanced Oxidation Processes Through Heterogeneous Fenton
Authors: komal verma, V. S. Moholkar
Abstract:
In this current study, the challenge of effectively treating and mineralizing industrial wastewater prior to its discharge into natural water bodies, such as rivers and lakes, is being addressed. Particularly, the focus is on the wastewater produced by chemical process industries, including refineries, petrochemicals, fertilizer, pharmaceuticals, pesticides, and dyestuff industries. These wastewaters often contain stubborn organic pollutants that conventional techniques, such as microbial processes cannot efficiently degrade. To tackle this issue, a ternary hybrid technique comprising of adsorption, heterogeneous Fenton process, and sonication has been employed. The study aims to evaluate the effectiveness of this approach for treating and mineralizing wastewater from a fertilizer industry located in Northeast India. The study comprises several key components, starting with the synthesis of the Fe3O4@AC nanocomposite using the co-precipitation method. The nanocomposite is then subjected to comprehensive characterization through various standard techniques, including FTIR, FE-SEM, EDX, TEM, BET surface area analysis, XRD, and magnetic property determination using VSM. Next, the process parameters of wastewater treatment are statistically optimized, focusing on achieving a high level of COD (Chemical Oxygen Demand) removal as the response variable. The Fe3O4@AC nanocomposite's adsorption characteristics and kinetics are also assessed in detail. The remarkable outcome of this study is the successful application of the ternary hybrid technique, combining adsorption, Fenton process, and sonication. This approach proves highly effective, leading to nearly complete mineralization (or TOC removal) of the fertilizer industry wastewater. The results highlight the potential of the Fe3O4@AC nanocomposite and the ternary hybrid technique as a promising solution for tackling challenging wastewater pollutants from various chemical process industries. This paper reports investigations in the mineralization of industrial wastewater (COD = 3246 mg/L, TOC = 2500 mg/L) using a ternary (ultrasound + Fenton + adsorption) hybrid advanced oxidation process. Fe3O4 decorated activated charcoal (Fe3O4@AC) nanocomposites (surface area = 538.88 m2/g; adsorption capacity = 294.31 mg/g) were synthesized using co-precipitation. The wastewater treatment process was optimized using central composite statistical design. At optimum conditions, viz. pH = 4.2, H2O2 loading = 0.71 M, adsorbent dose = 0.34 g/L, reduction in COD and TOC of wastewater were 94.75% and 89%, respectively. This result results from synergistic interactions among the adsorption of pollutants onto activated charcoal and surface Fenton reactions induced due to the leaching of Fe2+/Fe3+ ions from the Fe3O4 nanoparticles. Micro-convection generated due to sonication assisted faster mass transport (adsorption/desorption) of pollutants between Fe3O4@AC nanocomposite and the solution. The net result of this synergism was high interactions and reactions among and radicals and pollutants that resulted in the effective mineralization of wastewater. The Fe3O4@AC showed excellent recovery (> 90 wt%) and reusability (> 90% COD removal) in 5 successive cycles of treatment. LC-MS analysis revealed effective (> 50%) degradation of more than 25 significant contaminants (in the form of herbicides and pesticides) after the treatment with ternary hybrid AOP. Similarly, the toxicity analysis test using the seed germination technique revealed ~ 60% reduction in the toxicity of the wastewater after treatment.Keywords: chemical oxygen demand (cod), fe3o4@ac nanocomposite, kinetics, lc-ms, rsm, toxicity
Procedia PDF Downloads 7234 Application of Alumina-Aerogel in Post-Combustion CO₂ Capture: Optimization by Response Surface Methodology
Authors: S. Toufigh Bararpour, Davood Karami, Nader Mahinpey
Abstract:
Dependence of global economics on fossil fuels has led to a large growth in the emission of greenhouse gases (GHGs). Among the various GHGs, carbon dioxide is the main contributor to the greenhouse effect due to its huge emission amount. To mitigate the threatening effect of CO₂, carbon capture and sequestration (CCS) technologies have been studied widely in recent years. For the combustion processes, three main CO₂ capture techniques have been proposed such as post-combustion, pre-combustion and oxyfuel combustion. Post-combustion is the most commonly used CO₂ capture process as it can be readily retrofit into the existing power plants. Multiple advantages have been reported for the post-combustion by solid sorbents such as high CO₂ selectivity, high adsorption capacity, and low required regeneration energy. Chemical adsorption of CO₂ over alkali-metal-based solid sorbents such as K₂CO₃ is a promising method for the selective capture of diluted CO₂ from the huge amount of nitrogen existing in the flue gas. To improve the CO₂ capture performance, K₂CO₃ is supported by a stable and porous material. Al₂O₃ has been employed commonly as the support and enhanced the cyclic CO₂ capture efficiency of K₂CO₃. Different phases of alumina can be obtained by setting the calcination temperature of boehmite at 300, 600 (γ-alumina), 950 (δ-alumina) and 1200 °C (α-alumina). By increasing the calcination temperature, the regeneration capacity of alumina increases, while the surface area reduces. However, sorbents with lower surface areas have lower CO₂ capture capacity as well (except for the sorbents prepared by hydrophilic support materials). To resolve this issue, a highly efficient alumina-aerogel support was synthesized with a BET surface area of over 2000 m²/g and then calcined at a high temperature. The synthesized alumina-aerogel was impregnated on K₂CO₃ based on 50 wt% support/K₂CO₃, which resulted in the preparation of a sorbent with remarkable CO₂ capture performance. The effect of synthesis conditions such as types of alcohols, solvent-to-co-solvent ratios, and aging times was investigated on the performance of the support. The best support was synthesized using methanol as the solvent, after five days of aging time, and at a solvent-to-co-solvent (methanol-to-toluene) ratio (v/v) of 1/5. Response surface methodology was used to investigate the effect of operating parameters such as carbonation temperature and H₂O-to-CO₂ flowrate ratio on the CO₂ capture capacity. The maximum CO₂ capture capacity, at the optimum amounts of operating parameters, was 7.2 mmol CO₂ per gram K₂CO₃. Cyclic behavior of the sorbent was examined over 20 carbonation and regenerations cycles. The alumina-aerogel-supported K₂CO₃ showed a great performance compared to unsupported K₂CO₃ and γ-alumina-supported K₂CO₃. Fundamental performance analyses and long-term thermal and chemical stability test will be performed on the sorbent in the future. The applicability of the sorbent for a bench-scale process will be evaluated, and a corresponding process model will be established. The fundamental material knowledge and respective process development will be delivered to industrial partners for the design of a pilot-scale testing unit, thereby facilitating the industrial application of alumina-aerogel.Keywords: alumina-aerogel, CO₂ capture, K₂CO₃, optimization
Procedia PDF Downloads 11633 Multifunctional Epoxy/Carbon Laminates Containing Carbon Nanotubes-Confined Paraffin for Thermal Energy Storage
Authors: Giulia Fredi, Andrea Dorigato, Luca Fambri, Alessandro Pegoretti
Abstract:
Thermal energy storage (TES) is the storage of heat for later use, thus filling the gap between energy request and supply. The most widely used materials for TES are the organic solid-liquid phase change materials (PCMs), such as paraffin. These materials store/release a high amount of latent heat thanks to their high specific melting enthalpy, operate in a narrow temperature range and have a tunable working temperature. However, they suffer from a low thermal conductivity and need to be confined to prevent leakage. These two issues can be tackled by confining PCMs with carbon nanotubes (CNTs). TES applications include the buildings industry, solar thermal energy collection and thermal management of electronics. In most cases, TES systems are an additional component to be added to the main structure, but if weight and volume savings are key issues, it would be advantageous to embed the TES functionality directly in the structure. Such multifunctional materials could be employed in the automotive industry, where the diffusion of lightweight structures could complicate the thermal management of the cockpit environment or of other temperature sensitive components. This work aims to produce epoxy/carbon structural laminates containing CNT-stabilized paraffin. CNTs were added to molten paraffin in a fraction of 10 wt%, as this was the minimum amount at which no leakage was detected above the melting temperature (45°C). The paraffin/CNT blend was cryogenically milled to obtain particles with an average size of 50 µm. They were added in various percentages (20, 30 and 40 wt%) to an epoxy/hardener formulation, which was used as a matrix to produce laminates through a wet layup technique, by stacking five plies of a plain carbon fiber fabric. The samples were characterized microstructurally, thermally and mechanically. Differential scanning calorimetry (DSC) tests showed that the paraffin kept its ability to melt and crystallize also in the laminates, and the melting enthalpy was almost proportional to the paraffin weight fraction. These thermal properties were retained after fifty heating/cooling cycles. Laser flash analysis showed that the thermal conductivity through the thickness increased with an increase of the PCM, due to the presence of CNTs. The ability of the developed laminates to contribute to the thermal management was also assessed by monitoring their cooling rates through a thermal camera. Three-point bending tests showed that the flexural modulus was only slightly impaired by the presence of the paraffin/CNT particles, while a more sensible decrease of the stress and strain at break and the interlaminar shear strength was detected. Optical and scanning electron microscope images revealed that these could be attributed to the preferential location of the PCM in the interlaminar region. These results demonstrated the feasibility of multifunctional structural TES composites and highlighted that the PCM size and distribution affect the mechanical properties. In this perspective, this group is working on the encapsulation of paraffin in a sol-gel derived organosilica shell. Submicron spheres have been produced, and the current activity focuses on the optimization of the synthesis parameters to increase the emulsion efficiency.Keywords: carbon fibers, carbon nanotubes, lightweight materials, multifunctional composites, thermal energy storage
Procedia PDF Downloads 16032 Nanocomposite Effect Based on Silver Nanoparticles and Anemposis Californica Extract as Skin Restorer
Authors: Maria Zulema Morquecho Vega, Fabiola CarolinaMiranda Castro, Rafael Verdugo Miranda, Ignacio Yocupicio Villegas, Ana lidia Barron Raygoza, Martin enrique MArquez Cordova, Jose Alberto Duarte Moller
Abstract:
Background: Anemopsis californica, also called (tame grass) belongs to the Saururaceae family small, green plant. The blade is long and wide. Gives a white flower. The plant population is only found in humid, swampy habitats, it grows where there is water, along the banks of streams and water holes. In the winter, it dries up. The leaves, rhizomes, or roots of this plant have been used to treat a range of diseases. Some of its healing properties are used to treat wounds, cold and flu symptoms, spasmodic cough, infection, pain and inflammation, burns, swollen feet, as well as lung ailments, asthma, circulatory problems (varicose veins), rheumatoid arthritis, purifies blood, helps in urinary and digestive tract diseases, sores and healing, for headache, sore throat, diarrhea, kidney pain. The tea made from the leaves and roots is used to treat uterine cancer, womb cancer, relieves menstrual pain and stops excessive bleeding after childbirth. It is also used as a gynecological treatment for infections, hemorrhoids, candidiasis and vaginitis. Objective: To study the cytotoxicity of gels prepared with silver nanoparticles in AC extract combined with chitosan, collagen and hyaluronic acid as an alternative therapy for skin conditions. Methods: The Ag NPs were synthesized according to the following method. A 0.3 mg/mL solution is prepared in 10 ml of deionized water, adjust to pH 12 with NaOH, stirring is maintained constant magnetic and a temperature of 80 °C. Subsequently, 100 ul of a 0.1 M AgNO3 solution and kept stirring constantly for 15 min. Once the reaction is complete, measurements are performed by UV-Vis. A gel was prepared in a 5% solution of acetic acid with the respective nanoparticles and AC extract of silver in the extract of AC. Chitosan is added until the process begins to occur gel. At that time, collagen will be added in a ratio of 3 to 5 drops, and later, hyaluronic acid in 2% of the total compound formed. Finally, after resting for 24 hours, the cytotoxic effect of the gels was studied. in the presence of highly positive bacteria Staphylococcus aureus and highly negative for Escherichia coli. Cultures will be incubated for 24 hours in the presence of the compound and compared with the reference. Results: Silver nanoparticles obtained had a spherical shape and sizes among 20 and 30 nm. UV-Vis spectra confirm the presence of silver nanoparticles showing a surface plasmon around 420 nm. Finally, the test in presence of bacteria yield a good antibacterial property of this nanocompound and tests in people were successful. Conclusion: Gel prepared by biogenic synthesis shown beneficious effects in severe acne, acne vulgaris and wound healing with diabetic patients.Keywords: anemopsis californica, nanomedicina, biotechnology, biomedicine
Procedia PDF Downloads 11531 Addressing the Biocide Residue Issue in Museum Collections Already in the Planning Phase: An Investigation Into the Decontamination of Biocide Polluted Museum Collections Using the Temperature and Humidity Controlled Integrated Contamination Manageme
Authors: Nikolaus Wilke, Boaz Paz
Abstract:
Museum staff, conservators, restorers, curators, registrars, art handlers but potentially also museum visitors are often exposed to the harmful effects of biocides, which have been applied to collections in the past for the protection and preservation of cultural heritage. Due to stable light, moisture, and temperature conditions, the biocidal active ingredients were preserved for much longer than originally assumed by chemists, pest controllers, and museum scientists. Given the requirements to minimize the use and handling of toxic substances and the obligations of employers regarding safe working environments for their employees, but also for visitors, the museum sector worldwide needs adequate decontamination solutions. Today there are millions of contaminated objects in museums. This paper introduces the results of a systematic investigation into the reduction rate of biocide contamination in various organic materials that were treated with the humidity and temperature controlled ICM (Integrated Contamination Management) method. In the past, collections were treated with a wide range, at times even with a combination of toxins, either preventively or to eliminate active insect or fungi infestations. It was only later that most of those toxins were recognized as CMR (cancerogenic mutagen reprotoxic) substances. Among them were numerous chemical substances that are banned today because of their toxicity. While the biocidal effect of inorganic salts such as arsenic (arsenic(III) oxide), sublimate (mercury(II) chloride), copper oxychloride (basic copper chloride) and zinc chloride was known very early on, organic tar distillates such as paradichlorobenzene, carbolineum, creosote and naphthalene were increasingly used from the 19th century onwards, especially as wood preservatives. With the rapid development of organic synthesis chemistry in the 20th century and the development of highly effective warfare agents, pesticides and fungicides, these substances were replaced by chlorogenic compounds (e.g. γ-hexachlorocyclohexane (lindane), dichlorodiphenyltrichloroethane (DDT), pentachlorophenol (PCP), hormone-like derivatives such as synthetic pyrethroids (e.g., permethrin, deltamethrin, cyfluthrin) and phosphoric acid esters (e.g., dichlorvos, chlorpyrifos). Today we know that textile artifacts (costumes, uniforms, carpets, tapestries), wooden objects, herbaria, libraries, archives and historical wall decorations made of fabric, paper and leather were also widely treated with toxic inorganic and organic substances. The migration (emission) of pollutants from the contaminated objects leads to continuous (secondary) contamination and accumulation in the indoor air and dust. It is important to note that many of mentioned toxic substances are also material-damaging; they cause discoloration and corrosion. Some, such as DDT, form crystals, which in turn can cause micro tectonic, destructive shifting, for example, in paint layers. Museums must integrate sustainable solutions to address the residual biocide problems already in the planning phase. Gas and dust phase measurements and analysis must become standard as well as methods of decontamination.Keywords: biocides, decontamination, museum collections, toxic substances in museums
Procedia PDF Downloads 11430 The Effects of Circadian Rhythms Change in High Latitudes
Authors: Ekaterina Zvorykina
Abstract:
Nowadays, Arctic and Antarctic regions are distinguished to be one of the most important strategic resources for global development. Nonetheless, living conditions in Arctic regions still demand certain improvements. As soon as the region is rarely populated, one of the main points of interest is health accommodation of the people, who migrate to Arctic region for permanent and shift work. At Arctic and Antarctic latitudes, personnel face polar day and polar night conditions during the time of the year. It means that they are deprived of natural sunlight in winter season and have continuous daylight in summer. Firstly, the change in light intensity during 24-hours period due to migration affects circadian rhythms. Moreover, the controlled artificial light in winter is also an issue. The results of the recent studies on night shift medical professionals, who were exposed to permanent artificial light, have already demonstrated higher risks in cancer, depression, Alzheimer disease. Moreover, people exposed to frequent time zones change are also subjected to higher risks of heart attack and cancer. Thus, our main goals are to understand how high latitude work and living conditions can affect human health and how it can be prevented. In our study, we analyze molecular and cellular factors, which play important role in circadian rhythm change and distinguish main risk groups in people, migrating to high latitudes. The main well-studied index of circadian timing is melatonin or its metabolite 6-sulfatoxymelatonin. In low light intensity melatonin synthesis is disturbed and as a result human organism requires more time for sleep, which is still disregarded when it comes to working time organization. Lack of melatonin also causes shortage in serotonin production, which leads to higher depression risk. Melatonin is also known to inhibit oncogenes and increase apoptosis level in cells, the main factors for tumor growth, as well as circadian clock genes (for example Per2). Thus, people who work in high latitudes can be distinguished as a risk group for cancer diseases and demand more attention. Clock/Clock genes, known to be one of the main circadian clock regulators, decrease sensitivity of hypothalamus to estrogen and decrease glucose sensibility, which leads to premature aging and oestrous cycle disruption. Permanent light exposure also leads to accumulation superoxide dismutase and oxidative stress, which is one of the main factors for early dementia and Alzheimer disease. We propose a new screening system adjusted for people, migrating from middle to high latitudes and accommodation therapy. Screening is focused on melatonin and estrogen levels, sleep deprivation and neural disorders, depression level, cancer risks and heart and vascular disorders. Accommodation therapy includes different types artificial light exposure, additional melatonin and neuroprotectors. Preventive procedures can lead to increase of migration intensity to high latitudes and, as a result, the prosperity of Arctic region.Keywords: circadian rhythm, high latitudes, melatonin, neuroprotectors
Procedia PDF Downloads 15529 Superhydrophobic Materials: A Promising Way to Enhance Resilience of Electric System
Authors: M. Balordi, G. Santucci de Magistris, F. Pini, P. Marcacci
Abstract:
The increasing of extreme meteorological events represents the most important causes of damages and blackouts of the whole electric system. In particular, the icing on ground-wires and overheads lines, due to snowstorms or harsh winter conditions, very often gives rise to the collapse of cables and towers both in cold and warm climates. On the other hand, the high concentration of contaminants in the air, due to natural and/or antropic causes, is reflected in high levels of pollutants layered on glass and ceramic insulators, causing frequent and unpredictable flashover events. Overheads line and insulator failures lead to blackouts, dangerous and expensive maintenances and serious inefficiencies in the distribution service. Inducing superhydrophobic (SHP) properties to conductors, ground-wires and insulators, is one of the ways to face all these problems. Indeed, in some cases, the SHP surface can delay the ice nucleation time and decrease the ice nucleation temperature, preventing ice formation. Besides, thanks to the low surface energy, the adhesion force between ice and a superhydrophobic material are low and the ice can be easily detached from the surface. Moreover, it is well known that superhydrophobic surfaces can have self-cleaning properties: these hinder the deposition of pollution and decrease the probability of flashover phenomena. Here this study presents three different studies to impart superhydrophobicity to aluminum, zinc and glass specimens, which represent the main constituent materials of conductors, ground-wires and insulators, respectively. The route to impart the superhydrophobicity to the metallic surfaces can be summarized in a three-step process: 1) sandblasting treatment, 2) chemical-hydrothermal treatment and 3) coating deposition. The first step is required to create a micro-roughness. In the chemical-hydrothermal treatment a nano-scale metallic oxide (Al or Zn) is grown and, together with the sandblasting treatment, bring about a hierarchical micro-nano structure. By coating an alchilated or fluorinated siloxane coating, the surface energy decreases and gives rise to superhydrophobic surfaces. In order to functionalize the glass, different superhydrophobic powders, obtained by a sol-gel synthesis, were prepared. Further, the specimens were covered with a commercial primer and the powders were deposed on them. All the resulting metallic and glass surfaces showed a noticeable superhydrophobic behavior with a very high water contact angles (>150°) and a very low roll-off angles (<5°). The three optimized processes are fast, cheap and safe, and can be easily replicated on industrial scales. The anti-icing and self-cleaning properties of the surfaces were assessed with several indoor lab-tests that evidenced remarkable anti-icing properties and self-cleaning behavior with respect to the bare materials. Finally, to evaluate the anti-snow properties of the samples, some SHP specimens were exposed under real snow-fall events in the RSE outdoor test-facility located in Vinadio, western Alps: the coated samples delay the formation of the snow-sleeves and facilitate the detachment of the snow. The good results for both indoor and outdoor tests make these materials promising for further development in large scale applications.Keywords: superhydrophobic coatings, anti-icing, self-cleaning, anti-snow, overheads lines
Procedia PDF Downloads 18328 Impact of COVID-19 on Study Migration
Authors: Manana Lobzhanidze
Abstract:
The COVID-19 pandemic has made significant changes in migration processes, notably changes in the study migration process. The constraints caused by the COVID-19 pandemic led to changes in the studying process, which negatively affected its efficiency. The educational process has partially or completely shifted to distance learning; Both labor and study migration have increased significantly in the world. The employment and education market has become global and consequently, a number of challenges have arisen for employers, researchers, and businesses. The role of preparing qualified personnel in achieving high productivity is justified, the benefits for employers and employees are assessed on the one hand, and the role of study migration for the country’s development is examined on the other hand. Research methods. The research is based on methods of analysis and synthesis, quantitative and qualitative, groupings, relative and mean quantities, graphical representation, comparison, analysis and etc. In-depth interviews were conducted with experts to determine quantitative and qualitative indicators. Research findings. Factors affecting study migration are analysed in the paper and the environment that stimulates migration is explored. One of the driving forces of migration is considered to be the desire for receiving higher pay. Levels and indicators of study migration are studied by country. Comparative analysis has found that study migration rates are high in countries where the price of skilled labor is high. The productivity of individuals with low skills is low, which negatively affects the economic development of countries. It has been revealed that students leave the country to improve their skills during study migration. The process mentioned in the article is evaluated as a positive event for a developing country, as individuals are given the opportunity to share the technology of developed countries, gain knowledge, and then introduce it in their own country. The downside of study migration is the return of a small proportion of graduates from developed economies to their home countries. The article concludes that countries with emerging economies devote less resources to research and development, while this is a priority in developed countries, allowing highly skilled individuals to use their skills efficiently. The paper studies the national education system examines the level of competition in the education market and the indicators of educational migration. The level of competition in the education market and the indicators of educational migration are studied. The role of qualified personnel in achieving high productivity is substantiated, the benefits of employers and employees are assessed on the one hand, and the role of study migration in the development of the country is revealed on the other hand. The paper also analyzes the level of competition in the education and labor markets and identifies indicators of study migration. During the pandemic period, there was a great demand for the digital technologies. Open access to a variety of comprehensive platforms will significantly reduce study migration to other countries. As a forecast, it can be said that the intensity of the use of e-learning platforms will be increased significantly in the post-pandemic period. The paper analyzes the positive and negative effects of study migration on economic development, examines the challenges of study migration in light of the COVID-19 pandemic, suggests ways to avoid negative consequences, and develops recommendations for improving the study migration process in the post-pandemic period.Keywords: study migration, COVID-19 pandemic, factors affecting migration, economic development, post-pandemic migration
Procedia PDF Downloads 12627 The in Vitro and in Vivo Antifungal Activity of Terminalia Mantaly on Aspergillus Species Using Drosophila melanogaster (UAS-Diptericin) As a Model
Authors: Ponchang Apollos Wuyep, Alice Njolke Mafe, Longchi Satkat Zacheaus, Dogun Ojochogu, Dabot Ayuba Yakubu
Abstract:
Fungi causes huge losses when infections occur both in plants and animals. Synthetic Antifungal drugs are mostly very expensive and highly cytotoxic when taken. This study was aimed at determining the in vitro and in vivo antifungal activities of the leaves and stem extracts of Terminalia mantaly (Umbrella tree)H. Perrier on Aspergillus species in a bid to identify potential sources of cheap starting materials for the synthesis of new drugs to address the growing antimicrobial resistance. T. mantaly leave and stem powdered plant was extracted by fractionation using the method of solvent partition co-efficient in their graded form in the order n-hexane, Ethyl acetate, methanol and distilled water and phytochemical screening of each fraction revealed the presence of alkaloids, saponins, Tannins, flavonoids, carbohydrates, steroids, anthraquinones, cardiac glycosides and terpenoids in varying degrees. The Agar well diffusion technique was used to screen for antifungal activity of the fractions on clinical isolates of Aspergillus species (Aspergillus flavus and Aspergillus fumigatus). Minimum inhibitory concentration (MIC50) of the most active extracts was determined by the broth dilution method. The fractions test indicated a high antifungal activity with zones of inhibition ranging from 6 to 26 mm and 8 to 30mm (leave fractions) and 10mm to 34mm and 14mm to36mm (stem fractions) on A. flavus and A. fumigatus respectively. All the fractions indicated antifungal activity in a dose response relationship at concentrations of 62.5mg/ml, 125mg/ml, 250mg/ml and 500mg/ml. Better antifungal efficacy was shown by the Ethyl acetate, Hexane and Methanol fractions in the in vitro as the most potent fraction with MIC ranging from 62.5 to 125mg/ml. There was no statistically significant difference (P>0.05) in the potency of the Eight fractions from leave and stem (Hexane, Ethyl acetate, methanol and distilled water, antifungal (fluconazole), which served as positive control and 10% DMSO(Dimethyl Sulfoxide)which served as negative control. In the in vivo investigations, the ingestion technique was used for the infectious studies Female Drosophilla melanogaster(UAS-Diptericin)normal flies(positive control),infected and not treated flies (negative control) and infected flies with A. fumigatus and placed on normal diet, diet containing fractions(MSM and HSM each at concentrations of 10mg/ml 20mg/ml, 30mg/ml, 40mg/ml, 50mg/ml, 60mg/ml, 70mg/ml, 80mg/ml, 90mg/ml and 100mg/ml), diet containing control drugs(fluconazole as positive control)and infected flies on normal diet(negative control), the flies were observed for fifteen(15) days. Then the total mortality of flies was recorded each day. The results of the study reveals that the flies were susceptible to infection with A. fumigatus and responded to treatment with more effectiveness at 50mg/ml, 60mg/ml and 70mg/ml for both the Methanol and Hexane stem fractions. Therefore, the Methanol and Hexane stem fractions of T. mantaly contain therapeutically useful compounds, justifying the traditional use of this plant for the treatment of fungal infections.Keywords: Terminalia mantaly, Aspergillus fumigatus, cytotoxic, Drosophila melanogaster, antifungal
Procedia PDF Downloads 8526 Preliminary Characterization of Hericium Species Sampled in Tuscany, Italy
Authors: V. Cesaroni, C. Girometta, A. Bernicchia, M. Brusoni, F. Corana, R. M. Baiguera, C. M. Cusaro, M. L. Guglielminetti, B. Mannucci, H. Kawagishi, C. Perini, A. M. Picco, P. Rossi, E. Salerni, E. Savino
Abstract:
Fungi of the genus Hericium contain various compounds with antibacterial activity, cytotoxic effect on cancer cells and bioactive molecules. Some of the active metabolites stimulate the synthesis of the Nerve Growth Factor (NGF). Recently, the effect of dietary supplement based on Hericium erinaceus on recognition memory and on hippocampal mossy fiber-CA3 neurotransmission was published. The aim of this study was to investigate the presence of Hericium species on Italian territory in order to isolate the strains for further studies and applications. The first step was to collect Hericium sporophores in Tuscany: H. alpestre Pers., H. coralloides (Scop.) Pers. and H. erinaceus (Bull.) Pers. were the species present. The strains of H. alpestre (H.a.1), H. coralloides (H.c.1) and H. erinaceus (H.e.1 & H.e.2) have been isolated in pure culture and preserved in the collection of the University of Pavia (MicUNIPV). The DNA sequences obtained from the strains were compared to other sequences found in international databases. Therefore, it was possible to construct a phylogenetic tree that highlights the clear separation in clades of the sequences and the molecular identification of our strains with the species of Hericium considered. The second step was to cultivate indoor and outdoor H. erinaceus in order to obtain as many sporophores as possible for further chemical analysis. All the procedures for H. erinaceus cultivation have been followed. Among the available recipes for indoor H. erinaceus cultivation, it was used a substrate formulation contained 70% oak sawdust, 20% rice bran, 10% wheat straw, 1% CaCO3 and 1% sucrose. The bioactive compounds present in the mycelia and in the sporophores of H. erinaceus were chemically analyzed in collaboration with the Centro Grandi Strumenti of the University of Pavia using high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS). The materials to be analyzed were previously freeze-dried and then extracted with an alcoholic procedure. Preliminary chromatographic analysis revealed the presence of potentially bioactive and structurally different secondary metabolites such as polysaccharides, erinacins, ericenones, steroids and other terpenoids. Ericenones C and D (in sporophores) and erinacin A (in mycelium) have been identified by comparison with the respective standards. These molecules are known to have effects on the Central Nervous System (CNS) cells, which is the main objective of our studies. Thanks to the high sensitivity in the detection of bioactive compounds of H. erinaceus, it will be possible to use the To obtain lyophilized mycelium and the respective culture broth, 4 small pieces (about 5 mm2) of the respective H.e.1 or H.c.1 strains, taken from the margin of growing cultures (MEA), were inoculated into 1 liter of 2% ME (malt extract, Biokar Diagnostics). The static liquid cultures were kept at 24 °C in the dark chamber and fungi grew for one month. 10 replicates for each strain have been done. The method proposed as an analytical screening protocol to determine the optimal growth conditions of the fungus and to improve the production chain of H. erinaceus. These results encourage to carry out chemical analyzes also on H. alpestre and H. coralloides in order to evaluate the presence of bioactive compounds in these two species.Keywords: Hericium species, Hercium erinaceus bioactive compounds, medicinal mushrooms, mushroom cultivation
Procedia PDF Downloads 14325 Impact of Primary Care Telemedicine Consultations On Health Care Resource Utilisation: A Systematic Review
Authors: Anastasia Constantinou, Stephen Morris
Abstract:
Background: The adoption of synchronous and asynchronous telemedicine modalities for primary care consultations has exponentially increased since the COVID-19 pandemic. However, there is limited understanding of how virtual consultations influence healthcare resource utilization and other quality measures including safety, timeliness, efficiency, patient and provider satisfaction, cost-effectiveness and environmental impact. Aim: Quantify the rate of follow-up visits, emergency department visits, hospitalizations, request for investigations and prescriptions and comment on the effect on different quality measures associated with different telemedicine modalities used for primary care services and primary care referrals to secondary care Design and setting: Systematic review in primary care Methods: A systematic search was carried out across three databases (Medline, PubMed and Scopus) between August and November 2023, using terms related to telemedicine, general practice, electronic referrals, follow-up, use and efficiency and supported by citation searching. This was followed by screening according to pre-defined criteria, data extraction and critical appraisal. Narrative synthesis and metanalysis of quantitative data was used to summarize findings. Results: The search identified 2230 studies; 50 studies are included in this review. There was a prevalence of asynchronous modalities in both primary care services (68%) and referrals from primary care to secondary care (83%), and most of the study participants were females (63.3%), with mean age of 48.2. The average follow-up for virtual consultations in primary care was 28.4% (eVisits: 36.8%, secure messages 18.7%, videoconference 23.5%) with no significant difference between them or F2F consultations. There was an average annual reduction of primary care visits by 0.09/patient, an increase in telephone visits by 0.20/patient, an increase in ED encounters by 0.011/patient, an increase in hospitalizations by 0.02/patient and an increase in out of hours visits by 0.019/patient. Laboratory testing was requested on average for 10.9% of telemedicine patients, imaging or procedures for 5.6% and prescriptions for 58.7% of patients. When looking at referrals to secondary care, on average 36.7% of virtual referrals required follow-up visit, with the average rate of follow-up for electronic referrals being higher than for videoconferencing (39.2% vs 23%, p=0.167). Technical failures were reported on average for 1.4% of virtual consultations to primary care. When using carbon footprint estimates, we calculate that the use of telemedicine in primary care services can potentially provide a net decrease in carbon footprint by 0.592kgCO2/patient/year. When follow-up rates are taken into account, we estimate that virtual consultations reduce carbon footprint for primary care services by 2.3 times, and for secondary care referrals by 2.2 times. No major concerns regarding quality of care, or patient satisfaction were identified. 5/7 studies that addressed cost-effectiveness, reported increased savings. Conclusions: Telemedicine provides quality, cost-effective, and environmentally sustainable care for patients in primary care with inconclusive evidence regarding the rates of subsequent healthcare utilization. The evidence is limited by heterogeneous, small-scale studies and lack of prospective comparative studies. Further research to identify the most appropriate telemedicine modality for different patient populations, clinical presentations, service provision (e.g. used to follow-up patients instead of initial diagnosis) as well as further education for patients and providers alike on how to make best use of this service is expected to improve outcomes and influence practice.Keywords: telemedicine, healthcare utilisation, digital interventions, environmental impact, sustainable healthcare
Procedia PDF Downloads 5724 Single Crystal Growth in Floating-Zone Method and Properties of Spin Ladders: Quantum Magnets
Authors: Rabindranath Bag, Surjeet Singh
Abstract:
Materials in which the electrons are strongly correlated provide some of the most challenging and exciting problems in condensed matter physics today. After the discovery of high critical temperature superconductivity in layered or two-dimensional copper oxides, many physicists got attention in cuprates and it led to an upsurge of interest in the synthesis and physical properties of copper-oxide based material. The quest to understand superconducting mechanism in high-temperature cuprates, drew physicist’s attention to somewhat simpler compounds consisting of spin-chains or one-dimensional lattice of coupled spins. Low-dimensional quantum magnets are of huge contemporary interest in basic sciences as well emerging technologies such as quantum computing and quantum information theory, and heat management in microelectronic devices. Spin ladder is an example of quasi one-dimensional quantum magnets which provides a bridge between one and two dimensional materials. One of the examples of quasi one-dimensional spin-ladder compounds is Sr14Cu24O41, which exhibits a lot of interesting and exciting physical phenomena in low dimensional systems. Very recently, the ladder compound Sr14Cu24O41 was shown to exhibit long-distance quantum entanglement crucial to quantum information theory. Also, it is well known that hole-compensation in this material results in very high (metal-like) anisotropic thermal conductivity at room temperature. These observations suggest that Sr14Cu24O41 is a potential multifunctional material which invites further detailed investigations. To investigate these properties one must needs a large and high quality of single crystal. But these systems are showing incongruently melting behavior, which brings many difficulties to grow a large and quality of single crystals. Hence, we are using TSFZ (Travelling Solvent Floating Zone) method to grow the high quality of single crystals of the low dimensional magnets. Apart from this, it has unique crystal structure (alternating stacks of plane containing edge-sharing CuO2 chains, and the plane containing two-leg Cu2O3 ladder with intermediate Sr layers along the b- axis), which is also incommensurate in nature. It exhibits abundant physical phenomenon such as spin dimerization, crystallization of charge holes and charge density wave. The maximum focus of research so far involved in introducing defects on A-site (Sr). However, apart from the A-site (Sr) doping, there are only few studies in which the B-site (Cu) doping of polycrystalline Sr14Cu24O41 have been discussed and the reason behind this is the possibility of two doping sites for Cu (CuO2 chain and Cu2O3 ladder). Therefore, in our present work, the crystals (pristine and Cu-site doped) were grown by using TSFZ method by tuning the growth parameters. The Laue diffraction images, optical polarized microscopy and Scanning Electron Microscopy (SEM) images confirm the quality of the grown crystals. Here, we report the single crystal growth, magnetic and transport properties of Sr14Cu24O41 and its lightly doped variants (magnetic and non-magnetic) containing less than 1% of Co, Ni, Al and Zn impurities. Since, any real system will have some amount of weak disorder, our studies on these ladder compounds with controlled dilute disorder would be significant in the present context.Keywords: low-dimensional quantum magnets, single crystal, spin-ladder, TSFZ technique
Procedia PDF Downloads 27323 Development of Wound Dressing System Based on Hydrogel Matrix Incorporated with pH-Sensitive Nanocarrier-Drug Systems
Authors: Dagmara Malina, Katarzyna Bialik-Wąs, Klaudia Pluta
Abstract:
The growing significance of transdermal systems, in which skin is a route for systemic drug delivery, has generated a considerable amount of data which has resulted in a deeper understanding of the mechanisms of transport across the skin in the context of the controlled and prolonged release of active substances. One of such solutions may be the use of carrier systems based on intelligent polymers with different physicochemical properties. In these systems, active substances, e.g. drugs, can be conjugated (attached), immobilized, or encapsulated in a polymer matrix that is sensitive to specific environmental conditions (e.g. pH or temperature changes). Intelligent polymers can be divided according to their sensitivity to specific environmental stimuli such as temperature, pH, light, electric, magnetic, sound, or electromagnetic fields. Materials & methods—The first stage of the presented research concerned the synthesis of pH-sensitive polymeric carriers by a radical polymerization reaction. Then, the selected active substance (hydrocortisone) was introduced into polymeric carriers. In a further stage, bio-hybrid sodium alginate/poly(vinyl alcohol) – SA/PVA-based hydrogel matrices modified with various carrier-drug systems were prepared with the chemical cross-linking method. The conducted research included the assessment of physicochemical properties of obtained materials i.e. degree of hydrogel swelling and degradation studies as a function of pH in distilled water and phosphate-buffered saline (PBS) at 37°C in time. The gel fraction represents the insoluble gel fraction as a result of inter-molecule cross-linking formation was also measured. Additionally, the chemical structure of obtained hydrogels was confirmed using FT-IR spectroscopic technique. The dynamic light scattering (DLS) technique was used for the analysis of the average particle size of polymer-carriers and carrier-drug systems. The nanocarriers morphology was observed using SEM microscopy. Results & Discussion—The analysis of the encapsulated polymeric carriers showed that it was possible to obtain the time-stable empty pH-sensitive carrier with an average size 479 nm and the encapsulated system containing hydrocortisone with an average 543 nm, which was introduced into hydrogel structure. Bio-hybrid hydrogel matrices are stable materials, and the presence of an additional component: pH-sensitive carrier – hydrocortisone system, does not reduce the degree of cross-linking of the matrix nor its swelling ability. Moreover, the results of swelling tests indicate that systems containing higher concentrations of the drug have a slightly higher sorption capacity in each of the media used. All analyzed materials show stable and statically changing swelling values in simulated body fluids - there is no sudden fluid uptake and no rapid release from the material. The analysis of FT-IR spectra confirms the chemical structure of the obtained bio-hybrid hydrogel matrices. In the case of modifications with a pH-sensitive carrier, a much more intense band can be observed in the 3200-3500 cm⁻¹ range, which most likely originates from the strong hydrogen interactions that occur between individual components.Keywords: hydrogels, polymer nanocarriers, sodium alginate/poly(vinyl alcohol) matrices, wound dressings.
Procedia PDF Downloads 14622 Exploring Participatory Research Approaches in Agricultural Settings: Analyzing Pathways to Enhance Innovation in Production
Authors: Michele Paleologo, Marta Acampora, Serena Barello, Guendalina Graffigna
Abstract:
Introduction: In the face of increasing demands for higher agricultural productivity with minimal environmental impact, participatory research approaches emerge as promising means to promote innovation. However, the complexities and ambiguities surrounding these approaches in both theory and practice present challenges. This Scoping Review seeks to bridge these gaps by mapping participatory approaches in agricultural contexts, analyzing their characteristics, and identifying indicators of success. Methods: Following PRISMA guidelines, we conducted a systematic Scoping Review, searching Scopus and Web of Science databases. Our review encompassed 34 projects from diverse geographical regions and farming contexts. Thematic analysis was employed to explore the types of innovation promoted and the categories of participants involved. Results: The identified innovation types encompass technological advancements, sustainable farming practices, and market integration, forming 5 main themes: climate change, cultivar, irrigation, pest and herbicide, and technical improvement. These themes represent critical areas where participatory research drives innovation to address pressing agricultural challenges. Participants were categorized as citizens, experts, NGOs, private companies, and public bodies. Understanding their roles is vital for designing effective participatory initiatives that embrace diverse stakeholders. The review also highlighted 27 theoretical frameworks underpinning participatory projects. Clearer guidelines and reporting standards are crucial for facilitating the comparison and synthesis of findings across studies, thereby enhancing the robustness of future participatory endeavors. Furthermore, we identified three main categories of barriers and facilitators: pragmatic/behavioral, emotional/relational, and cognitive. These insights underscore the significance of participant engagement and collaborative decision-making for project success beyond theoretical considerations. Regarding participation, projects were classified as contributory (5 cases), where stakeholders contributed insights; collaborative (10 cases), with active co-designing of solutions; and co-created (19 cases), featuring deep stakeholder involvement from ideation to implementation, resulting in joint ownership of outcomes. Such diverse participation modes highlight the adaptability of participatory approaches to varying agricultural contexts. Discussion: In conclusion, this Scoping Review demonstrates the potential of participatory research in driving transformative changes in farmers' practices, fostering sustainability and innovation in agriculture. Understanding the diverse landscape of participatory approaches, theoretical frameworks, and participant engagement strategies is essential for designing effective and context-specific interventions. Collaborative efforts among researchers, practitioners, and stakeholders are pivotal in harnessing the full potential of participatory approaches and driving positive change in agricultural settings worldwide. The identified themes of innovation and participation modes provide valuable insights for future research and targeted interventions in agricultural innovation.Keywords: participatory research, co-creation, agricultural innovation, stakeholders' engagement
Procedia PDF Downloads 65