Search results for: functional training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6704

Search results for: functional training

3584 Coal Fly Ash Based Ceramic Membrane for Water Purification via Ultrafiltration

Authors: Obsi Terfasa, Bhanupriya Das, Shiao-Shing Chen

Abstract:

Converting coal fly ash (CFA) waste into ceramic membranes presents a promising alternative to traditional disposal methods, offering potential economic and environmental advantages that warrant further investigation. This research focuses on the creation of ceramic membranes exclusively from CFA using a uniaxial compaction technique. The membranes' properties were examined through various analytical methods: Scanning Electron Microscopy (SEM) revealed a porous and flawless membrane surface, X-Ray Diffraction (XRD) identified mullite and quartz crystalline structures, and Fourier-Transform Infrared Spectroscopy (FTIR) characterized the membrane's functional groups. Thermogravimetric analysis (TGA) determined the ideal sintering temperature to be 800°C. To evaluate its separation capabilities, the synthesized membrane was tested on wastewater from denim jeans production at 0.2 bar pressure. The results were impressive, with 97.42% removal of Chemical Oxygen Demand (COD), 95% color elimination, and a pure water flux of 4.5 Lm⁻²h⁻¹bar⁻¹. These findings suggest that CFA, a byproduct of thermal power plants, can be effectively repurposed to produce ultrafiltration membranes suitable for various industrial purification and separations.

Keywords: wastewater treatment, separator, coal fly ash, ceramic membrane, ultrafiltration

Procedia PDF Downloads 36
3583 Studies on Anaemia in Camels (Camelus dromedarius) Brought for Slaughter at Sokoto Metropolitan Abattoir: A Preliminary Report

Authors: Y. S. Baraya, B. Umar, A. Aliyu, A. A. Raji, K. A. N. Esievo

Abstract:

This study was performed to determine the presence of anaemia in randomly selected apparently healthy camels (Camelus dromedarius) brought for slaughter at the Sokoto metropolitan abattoir, Sokoto State, Nigeria. The camels were derived from both sexes, different age groups, functional usages and kept at various localities within and outside Sokoto town. In the study area, studies involving camels were limited in particular the emphasis on the anaemic status of camels brought daily for human consumption. A total of eighty (80) blood samples were collected once a week from these camels within the period of eight (8) weeks to investigate the haematological variations especially packed cell volume (PCV). The PCV analysis revealed anaemia in more than fifty (50) % of the camels studied. However, the actual cause of the anaemia was not investigated but could be caused by infectious agent like protozoan parasite Trypanosoma specie and non-infectious cause such as nutritional deficiency. The PCV examination as a simple, inexpensive and reliable procedure could be part of the routine ante-mortem assessment to evaluate camels for the existence of anaemia since many of the causes of anaemia besides being affecting the meat quality could also be of zoonotic significance.

Keywords: anaemia, camels, packed cell volume, Sokoto abattoir

Procedia PDF Downloads 372
3582 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology

Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik

Abstract:

Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.

Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms

Procedia PDF Downloads 79
3581 Analysis of Moving Loads on Bridges Using Surrogate Models

Authors: Susmita Panda, Arnab Banerjee, Ajinkya Baxy, Bappaditya Manna

Abstract:

The design of short to medium-span high-speed bridges in critical locations is an essential aspect of vehicle-bridge interaction. Due to dynamic interaction between moving load and bridge, mathematical models or finite element modeling computations become time-consuming. Thus, to reduce the computational effort, a universal approximator using an artificial neural network (ANN) has been used to evaluate the dynamic response of the bridge. The data set generation and training of surrogate models have been conducted over the results obtained from mathematical modeling. Further, the robustness of the surrogate model has been investigated, which showed an error percentage of less than 10% with conventional methods. Additionally, the dependency of the dynamic response of the bridge on various load and bridge parameters has been highlighted through a parametric study.

Keywords: artificial neural network, mode superposition method, moving load analysis, surrogate models

Procedia PDF Downloads 100
3580 Radar Signal Detection Using Neural Networks in Log-Normal Clutter for Multiple Targets Situations

Authors: Boudemagh Naime

Abstract:

Automatic radar detection requires some methods of adapting to variations in the background clutter in order to control their false alarm rate. The problem becomes more complicated in non-Gaussian environment. In fact, the conventional approach in real time applications requires a complex statistical modeling and much computational operations. To overcome these constraints, we propose another approach based on artificial neural network (ANN-CMLD-CFAR) using a Back Propagation (BP) training algorithm. The considered environment follows a log-normal distribution in the presence of multiple Rayleigh-targets. To evaluate the performances of the considered detector, several situations, such as scale parameter and the number of interferes targets, have been investigated. The simulation results show that the ANN-CMLD-CFAR processor outperforms the conventional statistical one.

Keywords: radat detection, ANN-CMLD-CFAR, log-normal clutter, statistical modelling

Procedia PDF Downloads 364
3579 ADHD: Assessment of Pragmatic Skills in Adults

Authors: Elena Even-Simkin

Abstract:

Attention Deficit Hyperactivity Disorder (ADHD) is one of the most frequently diagnosed disorders in children, but in many cases, the diagnosis is not provided until adulthood. Diagnosing adults with ADHD faces different obstacles due to numerous factors, such as educational or under-resourced familial environment, high intelligence compensating for stress-inducing difficulties, and additional comorbidities. Undiagnosed children and adolescents with ADHD may become undiagnosed adults with ADHD, who miss out on the early treatment and may experience significant social and pragmatic difficulties, leading to functional problems that subsequently affect their lifestyle, education, and occupational functioning. The proposed study presents a cost-effective and unique consideration of the pragmatic aspect among adults with ADHD. It provides a systematic and standardized evaluation of the pragmatic level in adults with ADHD, based on a comprehensive approach introduced by Arcara & Bambini (2016) for the assessment of pragmatic abilities in neuro-typical individuals. This assessment tool can promote the inclusion of pragmatic skills in the cognitive profile in the diagnostic practice of ADHD, and, thus, the proposed instrument can help not only identify the pragmatic difficulties in the ADHD population but also advance effective intervention programs that specifically focus on pragmatic skills in the targeted population.

Keywords: ADHD, adults, assessment, pragmatics

Procedia PDF Downloads 76
3578 Designing an Intelligent Voltage Instability System in Power Distribution Systems in the Philippines Using IEEE 14 Bus Test System

Authors: Pocholo Rodriguez, Anne Bernadine Ocampo, Ian Benedict Chan, Janric Micah Gray

Abstract:

The state of an electric power system may be classified as either stable or unstable. The borderline of stability is at any condition for which a slight change in an unfavourable direction of any pertinent quantity will cause instability. Voltage instability in power distribution systems could lead to voltage collapse and thus power blackouts. The researchers will present an intelligent system using back propagation algorithm that can detect voltage instability and output voltage of a power distribution and classify it as stable or unstable. The researchers’ work is the use of parameters involved in voltage instability as input parameters to the neural network for training and testing purposes that can provide faster detection and monitoring of the power distribution system.

Keywords: back-propagation algorithm, load instability, neural network, power distribution system

Procedia PDF Downloads 435
3577 Evaluation of the Sterilization Practice in Liberal Dental Surgeons at Sidi Bel Abbes- Algeria

Authors: A. Chenafa, S. Boulenouar, M. Zitouni, M. Boukouria

Abstract:

The sterilization of medical devices constitutes for all the medical professions, an inescapable obligation. It has for objective to prevent the infectious risk, both for the patient and for the medical team. The Dental surgeon as every healthcare professional has to master perfectly this subject and to train his staff to the various techniques of sterilization. It is the only way to assure the patients all the security for which they are entitled to wait when they undergo a dental care. It’s for it, that we undertook to lead an investigation aiming at estimating the sterilization practice at the dental surgeon of Sidi bel Abbes. The survey result showed a youth marked with the profession with a majority use of autoclave with cycle B and an almost total absence of the sterilization controls (test of Bowie and Dick). However, the majority of the dentists control and validate their sterilizers. Finally, our survey allowed us to describe some practices which must be improved regarding control, regarding qualification and regarding staff training. And suggestions were made in this sense.

Keywords: dental surgeon, medical devices, sterilization, survey

Procedia PDF Downloads 402
3576 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection

Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa

Abstract:

Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.

Keywords: classification, airborne LiDAR, parameters selection, support vector machine

Procedia PDF Downloads 147
3575 A Study of Emotional Intelligence and Perceived Stress among First and Second Year Medical Students in South India

Authors: Nitin Joseph

Abstract:

Objectives: This study was done to assess emotional intelligence levels and to find out its association with socio demographic variables and perceived stress among medical students. Material and Methods: This study was done among first and second year medical students. Data was collected using a self-administered questionnaire. Results: Emotional intelligence scores was found to significantly increase with age of the participants (F=2.377, P < 0.05). Perceived stress was found to be significantly more among first year (t=1.997, P=0.05). Perceived stress was found to significantly decrease with increasing emotional intelligence scores (r = – 0.226, P < 0.001). Conclusion: First year students were found to be more vulnerable to stress than their seniors probably due to lesser emotional intelligence. As both these parameters are related, ample measures to improve emotional intelligence needs to be supported in the training curriculum of beginners so as to make them more stress free during early student life.

Keywords: emotional intelligence, medical students, perceived stress, socio demographic variables

Procedia PDF Downloads 452
3574 The Study of Wetting Properties of Silica-Poly (Acrylic Acid) Thin Film Coatings

Authors: Sevil Kaynar Turkoglu, Jinde Zhang, Jo Ann Ratto, Hanna Dodiuk, Samuel Kenig, Joey Mead

Abstract:

Superhydrophilic, crack-free thin film coatings based on silica nanoparticles were fabricated by dip-coating method. Both thermodynamic and dynamic effects on the wetting properties of the thin films were investigated by modifying the coating formulation via changing the particle-to-binder ratio and weight % of silica in solution. The formulated coatings were characterized by a number of analyses. Water contact angle (WCA) measurements were conducted for all coatings to characterize the surface wetting properties. Scanning electron microscope (SEM) images were taken to examine the morphology of the coating surface. Atomic force microscopy (AFM) analysis was done to study surface topography. The presence of hydrophilic functional groups and nano-scale roughness were found to be responsible for the superhydrophilic behavior of the films. In addition, surface chemistry, compared to surface roughness, was found to be a primary factor affecting the wetting properties of the thin film coatings.

Keywords: poly (acrylic acid), silica nanoparticles, superhydrophilic coatings, surface wetting

Procedia PDF Downloads 134
3573 Creating a Quasi-Folklore as a Tool for Knowledge Sharing in a Family-Based Business

Authors: Chico A. E. Hindarto

Abstract:

Knowledge management practices are more contextual when they combine with the corporate culture. Each entity has a specific cultural climate that enables knowledge sharing in both functional and individual levels. The interactions between people within organization can be influenced by the culture and how the knowledge is transmitted. On the other hand, these interactions have impacts in culture modification as well. Storytelling is one of the methods in delivering the knowledge throughout the organization. This paper aims to explore the possibility in using a quasi-folklore in the family-based business. Folklore is defined as informal tradition culture that spreading through a word-of-mouth, without knowing the source of the story. In this paper, the quasi-folklore term is used to differentiate it with the original term of folklore. The story is created by somebody in the organization, not like the folklore with unknown source. However, the source is not disclosed, in order to avoid the predicted interest from the story origin. The setting of family-based business is deliberately chosen, since the kinship is considerably strong in this type of entity. Through a thorough literature review that relates to knowledge management, storytelling, and folklore, this paper determines how folklore can be an option for knowledge sharing within the organization.

Keywords: folklore, family business, organizational culture, knowledge management, storytelling

Procedia PDF Downloads 286
3572 Enhanced Properties of Plasma-Induced Two-Dimensional Ga₂O₃/GaS Heterostructures on Liquid Alloy Substrate

Authors: S. Zhuiykov, M. Karbalaei Akbari

Abstract:

Ultra-low-level incorporation of trace impurities and dopants into two-dimensional (2D) semiconductors is a challenging step towards the development of functional electronic instruments based on 2D materials. Herein, the incorporation of sulphur atoms into 2D Ga2O3 surface oxide film of eutectic gallium-indium alloy (EGaIn) is achieved through plasma-enhanced metal-catalyst dissociation of H2S gas on EGaIn substrate. This process led to the growth of GaS crystalline nanodomains inside amorphous 2D Ga2O3 sublayer films. Consequently, 2D lateral heterophase was developed between the amorphous Ga2O3 and crystalline GaS nanodomains. The materials characterization revealed the alteration of photoluminescence (PL) characteristics and change of valence band maximum (VBM) of functionalized 2D films. The comprehensive studies by conductive atomic force microscopy (c-AFM) showed considerable enhancement of conductivity of 2D Ga2O3/GaS materials (300 times improvement) compared with that of 2D Ga2O3 film. This technique has a great potential for the fabrication of 2D metal oxide devices with tuneable electronic characteristics similar to nano junction memristors and transistors.

Keywords: 2D semiconductors, Ga₂O₃, GaS, plasma-induced functionalization

Procedia PDF Downloads 91
3571 Incorporating Anomaly Detection in a Digital Twin Scenario Using Symbolic Regression

Authors: Manuel Alves, Angelica Reis, Armindo Lobo, Valdemar Leiras

Abstract:

In industry 4.0, it is common to have a lot of sensor data. In this deluge of data, hints of possible problems are difficult to spot. The digital twin concept aims to help answer this problem, but it is mainly used as a monitoring tool to handle the visualisation of data. Failure detection is of paramount importance in any industry, and it consumes a lot of resources. Any improvement in this regard is of tangible value to the organisation. The aim of this paper is to add the ability to forecast test failures, curtailing detection times. To achieve this, several anomaly detection algorithms were compared with a symbolic regression approach. To this end, Isolation Forest, One-Class SVM and an auto-encoder have been explored. For the symbolic regression PySR library was used. The first results show that this approach is valid and can be added to the tools available in this context as a low resource anomaly detection method since, after training, the only requirement is the calculation of a polynomial, a useful feature in the digital twin context.

Keywords: anomaly detection, digital twin, industry 4.0, symbolic regression

Procedia PDF Downloads 120
3570 Methodology for Developing an Intelligent Tutoring System Based on Marzano’s Taxonomy

Authors: Joaquin Navarro Perales, Ana Lidia Franzoni Velázquez, Francisco Cervantes Pérez

Abstract:

The Mexican educational system faces diverse challenges related with the quality and coverage of education. The development of Intelligent Tutoring Systems (ITS) may help to solve some of them by helping teachers to customize their classes according to the performance of the students in online courses. In this work, we propose the adaptation of a functional ITS based on Bloom’s taxonomy called Sistema de Apoyo Generalizado para la Enseñanza Individualizada (SAGE), to measure student’s metacognition and their emotional response based on Marzano’s taxonomy. The students and the system will share the control over the advance in the course, so they can improve their metacognitive skills. The system will not allow students to get access to subjects not mastered yet. The interaction between the system and the student will be implemented through Natural Language Processing techniques, thus avoiding the use of sensors to evaluate student’s response. The teacher will evaluate student’s knowledge utilization, which is equivalent to the last cognitive level in Marzano’s taxonomy.

Keywords: intelligent tutoring systems, student modelling, metacognition, affective computing, natural language processing

Procedia PDF Downloads 197
3569 Extending Image Captioning to Video Captioning Using Encoder-Decoder

Authors: Sikiru Ademola Adewale, Joe Thomas, Bolanle Hafiz Matti, Tosin Ige

Abstract:

This project demonstrates the implementation and use of an encoder-decoder model to perform a many-to-many mapping of video data to text captions. The many-to-many mapping occurs via an input temporal sequence of video frames to an output sequence of words to form a caption sentence. Data preprocessing, model construction, and model training are discussed. Caption correctness is evaluated using 2-gram BLEU scores across the different splits of the dataset. Specific examples of output captions were shown to demonstrate model generality over the video temporal dimension. Predicted captions were shown to generalize over video action, even in instances where the video scene changed dramatically. Model architecture changes are discussed to improve sentence grammar and correctness.

Keywords: decoder, encoder, many-to-many mapping, video captioning, 2-gram BLEU

Procedia PDF Downloads 108
3568 Corporate Governance Mechanisms, Whistle-Blowing Policy and Earnings Management Practices of Firms in Malaysia

Authors: Mujeeb Saif Mohsen Al-Absy, Ku Nor Izah Ku Ismail, Sitraselvi Chandren

Abstract:

This study examines whether corporate governance (CG) mechanisms in firms that have a whistle-blowing policy (WHBLP) are more effective in constraining earnings management (EM), than those without. A sample of 288 Malaysian firms for the years 2013 to 2015, amounting to 864 firm-years were grouped into firms with and without WHBLP. Results show that for firms without WHBLP, the board chairman tenure would minimize EM activities. Meanwhile, for firms with WHBLP, board chairman independence, board chairman tenure, audit committee size, audit committee meeting and women in the audit committees are found to be associated with less EM activities. Further, it is found that ownership concentration and Big 4 auditing firms help to reduce EM activities in firms with WHBLP, while not in firms without WHBLP. Hence, functional and effective governance can be achieved by having a WHBLP, which is in line with agency and resource dependent theories. Therefore, this study suggests that firms should have a WHBLP in place, and policymakers should come up with enhanced criteria to strengthen the mechanisms of WHBLP.

Keywords: corporate governance, earnings management, whistle-blowing policy, audit committee, board of directors

Procedia PDF Downloads 135
3567 Perception of Value Affecting Engagement Through Online Audio Communication

Authors: Apipol Penkitti

Abstract:

The new normal or a new way of life stemmed from the COVID-19 outbreak, gave rise to a new form of social media: audio-based social platforms (ABSPs), known as Clubhouse, Twitter space, and Facebook live audio room. These platforms, on which audio-based communication is featured, became popular in a short span of time. The objective of the research study is to understand ABSPs users’ behaviors in Thailand. The study, in which functional attitude theory, uses and gratifications theory, and social influence theory are referred to, is conducted through consumer perceived utilitarian, hedonic, and social value that affect engagement. This research study is mixed method paradigm, utilizing Model of Triangulation as its framework. The data acquisition is proceeded through questionnaires from a sample of 384 male, female and LGBTQA+ individuals aged 25 - 34 who, from various occupations, have used audio-based social platform applications. This research study employs the structural equation modeling to analyze the relationships between variables, and it uses the semi - structured interviewing to comprehend the rationality of the variables in the study. The study found that hedonic value directly affects engagement.

Keywords: audio based social platform, engagement, hedonic, perceived value, social, utilitarian

Procedia PDF Downloads 126
3566 Recovery of Essential Oil from Zingiber Officinale Var. Bentong Using Ultrasound Assisted-Supercritical Carbon Dioxide Extraction

Authors: Norhidayah Suleiman, Afza Zulfaka

Abstract:

Zingiber officinale var. Bentong has been identified as the source of high added value compound specifically gingerol-related compounds. The extraction of the high-value compound using conventional method resulted in low yield and time consumption. Hence, the motivation for this work is to investigate the effect of the extraction technique on the essential oil from Zingiber officinale var. Bentong rhizome for commercialization purpose in many industries namely, functional food, pharmaceutical, and cosmeceutical. The investigation begins with a pre-treatment using ultrasound assisted in order to enhance the recovery of essential oil. It was conducted at a fixed frequency (20 kHz) of ultrasound with various time (10, 20, 40 min). The extraction using supercritical carbon dioxide (scCO2) were carried out afterward at a specific condition of temperature (50 °C) and pressure (30 MPa). scCO2 extraction seems to be a promising sustainable green method for the extraction of essential oil due to the benefits that CO2 possesses. The expected results demonstrated the ultrasound-assisted-scCO2 produces a higher yield of essential oil compared to solely scCO2 extraction. This research will provide important features for its application in food supplements or phytochemical preparations.

Keywords: essential oil, scCO2, ultrasound assisted, Zingiber officinale Var. Bentong

Procedia PDF Downloads 133
3565 Designing an Operational Control System for the Continuous Cycle of Industrial Technological Processes Using Fuzzy Logic

Authors: Teimuraz Manjapharashvili, Ketevani Manjaparashvili

Abstract:

Fuzzy logic is a modeling method for complex or ill-defined systems and is a relatively new mathematical approach. Its basis is to consider overlapping cases of parameter values and define operations to manipulate these cases. Fuzzy logic can successfully create operative automatic management or appropriate advisory systems. Fuzzy logic techniques in various operational control technologies have grown rapidly in the last few years. Fuzzy logic is used in many areas of human technological activity. In recent years, fuzzy logic has proven its great potential, especially in the automation of industrial process control, where it allows to form of a control design based on the experience of experts and the results of experiments. The engineering of chemical technological processes uses fuzzy logic in optimal management, and it is also used in process control, including the operational control of continuous cycle chemical industrial, technological processes, where special features appear due to the continuous cycle and correct management acquires special importance. This paper discusses how intelligent systems can be developed, in particular, how fuzzy logic can be used to build knowledge-based expert systems in chemical process engineering. The implemented projects reveal that the use of fuzzy logic in technological process control has already given us better solutions than standard control techniques. Fuzzy logic makes it possible to develop an advisory system for decision-making based on the historical experience of the managing operator and experienced experts. The present paper deals with operational control and management systems of continuous cycle chemical technological processes, including advisory systems. Because of the continuous cycle, many features are introduced in them compared to the operational control of other chemical technological processes. Among them, there is a greater risk of transitioning to emergency mode; the return from emergency mode to normal mode must be done very quickly due to the impossibility of stopping the technological process due to the release of defective products during this period (i.e., receiving a loss), accordingly, due to the need for high qualification of the operator managing the process, etc. For these reasons, operational control systems of continuous cycle chemical technological processes have been specifically discussed, as they are different systems. Special features of such systems in control and management were brought out, which determine the characteristics of the construction of control and management systems. To verify the findings, the development of an advisory decision-making information system for operational control of a lime kiln using fuzzy logic, based on the creation of a relevant expert-targeted knowledge base, was discussed. The control system has been implemented in a real lime production plant with a lime burn kiln, which has shown that suitable and intelligent automation improves operational management, reduces the risks of releasing defective products, and, therefore, reduces costs. The special advisory system was successfully used in the said plant both for the improvement of operational management and, if necessary, for the training of new operators due to the lack of an appropriate training institution.

Keywords: chemical process control systems, continuous cycle industrial technological processes, fuzzy logic, lime kiln

Procedia PDF Downloads 28
3564 Clinical Staff Perceptions of the Quality of End-of-Life Care in an Acute Private Hospital: A Mixed Methods Design

Authors: Rosemary Saunders, Courtney Glass, Karla Seaman, Karen Gullick, Julie Andrew, Anne Wilkinson, Ashwini Davray

Abstract:

Current literature demonstrates that most Australians receive end-of-life care in a hospital setting, despite most hoping to die within their own home. The necessity for high quality end-of-life care has been emphasised by the Australian Commission on Safety and Quality in Health Care and the National Safety and Quality in Health Services Standards depict the requirement for comprehensive care at the end of life (Action 5.20), reinforcing the obligation for continual organisational assessment to determine if these standards are suitably achieved. Limited research exploring clinical staff perspectives of end-of-life care delivery has been conducted within an Australian private health context. This study aimed to investigate clinical staff member perceptions of end-of-life care delivery at a private hospital in Western Australia. The study comprised of a multi-faceted mixed-methods methodology, part of a larger study. Data was obtained from clinical staff utilising surveys and focus groups. A total of 133 questionnaires were completed by clinical staff, including registered nurses (61.4%), enrolled nurses (22.7%), allied health professionals (9.9%), non-palliative care consultants (3.8%) and junior doctors (2.2%). A total of 14.7% of respondents were palliative care ward staff members. Additionally, seven staff focus groups were conducted with physicians (n=3), nurses (n=26) and allied health professionals including social workers (n=1), dietitians (n=2), physiotherapists (n=5) and speech pathologists (n=3). Key findings from the surveys highlighted that the majority of staff agreed it was part of their role to talk to doctors about the care of patients who they thought may be dying, and recognised the importance of communication, appropriate training and support for clinical staff to provide quality end-of-life care. Thematic analysis of the qualitative data generated three key themes: creating the setting which highlighted the importance of adequate resourcing and conducive physical environments for end-of-life care and to support staff and families; planning and care delivery which emphasised the necessity for collaboration between staff, families and patients to develop care plans and treatment directives; and collaborating in end-of-life care, with effective communication and teamwork leading to achievable care delivery expectations. These findings contribute to health professionals better understanding of end-of-life care provision and the importance of collaborating with patients and families in care delivery. It is crucial that health care providers implement strategies to overcome gaps in care, so quality end-of-life care is provided. Findings from this study have been translated into practice, with the development and implementation of resources, training opportunities, support networks and guidelines for the delivery of quality end-of-life care.

Keywords: clinical staff, end-of-life care, mixed-methods, private hospital.

Procedia PDF Downloads 152
3563 Experimental Study on the Creep Characteristics of FRC Base for Composite Pavement System

Authors: Woo-Tai Jung, Sung-Yong Choi, Young-Hwan Park

Abstract:

The composite pavement system considered in this paper is composed of a functional surface layer, a fiber reinforced asphalt middle layer and a fiber reinforced lean concrete base layer. The mix design of the fiber reinforced lean concrete corresponds to the mix composition of conventional lean concrete but reinforced by fibers. The quasi-absence of research on the durability or long-term performances (fatigue, creep, etc.) of such mix design stresses the necessity to evaluate experimentally the long-term characteristics of this layer composition. This study tests the creep characteristics as one of the long-term characteristics of the fiber reinforced lean concrete layer for composite pavement using a new creep device. The test results reveal that the lean concrete mixed with fiber reinforcement and fly ash develops smaller creep than the conventional lean concrete. The results of the application of the CEB-FIP prediction equation indicate that a modified creep prediction equation should be developed to fit with the new mix design of the layer.

Keywords: creep, lean concrete, pavement, fiber reinforced concrete, base

Procedia PDF Downloads 522
3562 Adaptive Few-Shot Deep Metric Learning

Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian

Abstract:

Whereas currently the most prevalent deep learning methods require a large amount of data for training, few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.

Keywords: few-shot learning, triplet network, adaptive margin, deep learning

Procedia PDF Downloads 171
3561 Poly (Lactic Acid)/Poly (Butylene Adipate-Co-terephthalate) Films Reinforced with Polyhedral Oligomeric Silsesquioxane Nanoparticles

Authors: Elahe Moradi, Hossein Ali Khonakdar

Abstract:

In the context of the growing interest in renewable polymers, this study presents an innovative approach to environmental conservation through the development of an eco-friendly structure. The research focused on enhancing the compatibility between two immiscible polymers, poly (lactic acid) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT), using polyhedral oligomeric silsesquioxanes (POSS) nanoparticles with an epoxy functional group (Epoxy-POSS). This was achieved through a solution casting method. The study found that the modulus in the glassy region for blends containing Epoxy-POSS was significantly higher than that of the PLA/PBAT blend without Epoxy-POSS. However, in the transition and rubbery regions, the modulus of the Epoxy-POSS-containing blends was only marginally greater. From a mechanical properties’ perspective, the study demonstrated that the incorporation of POSS-EPOXY at varying concentrations enhanced the tensile strength of the PLA/PBAT blend by 30%, thereby acting as a reinforcement. This finding underscores the potential of this approach in the development of renewable polymers.

Keywords: Polyhedral oligomeric silsesquioxane, mechanical behavior, PLA, PBAT, nanocomposite

Procedia PDF Downloads 62
3560 Enhancing Fall Detection Accuracy with a Transfer Learning-Aided Transformer Model Using Computer Vision

Authors: Sheldon McCall, Miao Yu, Liyun Gong, Shigang Yue, Stefanos Kollias

Abstract:

Falls are a significant health concern for older adults globally, and prompt identification is critical to providing necessary healthcare support. Our study proposes a new fall detection method using computer vision based on modern deep learning techniques. Our approach involves training a trans- former model on a large 2D pose dataset for general action recognition, followed by transfer learning. Specifically, we freeze the first few layers of the trained transformer model and train only the last two layers for fall detection. Our experimental results demonstrate that our proposed method outperforms both classical machine learning and deep learning approaches in fall/non-fall classification. Overall, our study suggests that our proposed methodology could be a valuable tool for identifying falls.

Keywords: healthcare, fall detection, transformer, transfer learning

Procedia PDF Downloads 148
3559 Familiarity with Nursing and Description of Nurses Duties

Authors: Narges Solaymani

Abstract:

Definition of Nurse: Nurse: A person who is educated and skilled in the field of scientific principles and professional skills of health care, treatment, and medical training of patients. Nursing is a very important profession in the societies of the world. Although in the past, all caregivers of the sick and disabled were called nurses, nowadays, a nurse is a person who has a university education in this field. There are nurses in bachelor's, master's, and doctoral degrees in nursing. New courses have been launched in the master's degree based on duty-oriented nurses. A nurse cannot have an independent treatment center but is a member of the treatment team in established treatment centers such as hospitals, clinics, or offices. Nurses can establish counseling centers and provide nursing services at home. According to the standards, the number of nurses should be three times the number of doctors or twice the number of hospital beds, or there should be three nurses for every thousand people. Also, international standards show that in the internal and surgical department, every 4 to 6 patients should have a nurse.

Keywords: nurse, intensive care, CPR, bandage

Procedia PDF Downloads 68
3558 Protein Remote Homology Detection and Fold Recognition by Combining Profiles with Kernel Methods

Authors: Bin Liu

Abstract:

Protein remote homology detection and fold recognition are two most important tasks in protein sequence analysis, which is critical for protein structure and function studies. In this study, we combined the profile-based features with various string kernels, and constructed several computational predictors for protein remote homology detection and fold recognition. Experimental results on two widely used benchmark datasets showed that these methods outperformed the competing methods, indicating that these predictors are useful computational tools for protein sequence analysis. By analyzing the discriminative features of the training models, some interesting patterns were discovered, reflecting the characteristics of protein superfamilies and folds, which are important for the researchers who are interested in finding the patterns of protein folds.

Keywords: protein remote homology detection, protein fold recognition, profile-based features, Support Vector Machines (SVMs)

Procedia PDF Downloads 161
3557 Electrical and Magnetic Properties of Neodymium and Erbium Doped Bismuth Ferrite Multifunctional Materials for Spintronic Devices

Authors: Ravinder Dachepalli, Naveena Gadwala, K. Vani

Abstract:

Nd and Er substituted bismuth nano crystalline multifunctional materials were prepared by citrate gel autocombution technique. The structural characterization was carried out by XRD and SEM. Electrical properties such are electrical conductivity and dielectric properties have been measured. Plots of electrical conductivity versus temperature increases with increasing temperature and shown a transition near Curie temperature. Dielectric properties such are dielectric constant and dielectric loss tangent have been measured from 20Hz to 2 MHz at room temperature. Plots of dielectric constant versus frequency show a normal dielectric behaviour of multifunctional materials. Temperature dependence of magnetic properties of Bi-Nd and Bi-Er multi-functional materials were carried out by using Vibrating sample magnetometer (VSM). The magnetization as a function of an applied field ±100 Oe was carried out at 3K and 360 K. Zero field Cooled (ZFC) and Field Cooled (FC) magnetization measurements under an applied field of 100Oe a in the temperature range of 5-375K. The observed results can be explained for spintronic devices.

Keywords: Bi-Nd and Bi-Er Multifunctional Materia, Citrate Gel Auto combustion Technique, FC-ZFC magnetization, Dielectric constant

Procedia PDF Downloads 400
3556 Podcasting as an Instructional Method: Case Study of a School Psychology Class

Authors: Jeff A. Tysinger, Dawn P. Tysinger

Abstract:

There has been considerable growth in online learning. Researchers continue to explore the impact various methods of delivery. Podcasting is a popular method for sharing information. The purpose of this study was to examine the impact of student motivation and the perception of the acquisition of knowledge in an online environment of a skill-based class. 25 students in a school psychology graduate class completed a pretest and posttest examining podcast use and familiarity. In addition, at the completion of the course they were administered a modified version of the Instructional Materials Motivation Survey. The four subscales were examined (attention, relevance, confidence, and satisfaction). Results indicated that students are motivated, they perceive podcasts as positive instructional tools, and students are successful in acquiring the needed information. Additional benefits of using podcasts and recommendations in school psychology training are discussed.

Keywords: motivation, online learning, pedagogy, podcast

Procedia PDF Downloads 131
3555 Nigerian Football System: Examining Meso-Level Practices against a Global Model for Integrated Development of Mass and Elite Sport

Authors: I. Derek Kaka’an, P. Smolianov, D. Koh Choon Lian, S. Dion, C. Schoen, J. Norberg

Abstract:

This study was designed to examine mass participation and elite football performance in Nigeria with reference to advance international football management practices. Over 200 sources of literature on sport delivery systems were analyzed to construct a globally applicable model of elite football integrated with mass participation, comprising of the following three levels: macro- (socio-economic, cultural, legislative, and organizational), meso- (infrastructures, personnel, and services enabling sport programs) and micro-level (operations, processes, and methodologies for development of individual athletes). The model has received scholarly validation and showed to be a framework for program analysis that is not culturally bound. The Smolianov and Zakus model has been employed for further understanding of sport systems such as US soccer, US Rugby, swimming, tennis, and volleyball as well as Russian and Dutch swimming. A questionnaire was developed using the above-mentioned model. Survey questions were validated by 12 experts including academicians, executives from sport governing bodies, football coaches, and administrators. To identify best practices and determine areas for improvement of football in Nigeria, 120 coaches completed the questionnaire. Useful exemplars and possible improvements were further identified through semi-structured discussions with 10 Nigerian football administrators and experts. Finally, content analysis of Nigeria Football Federation’s website and organizational documentation was conducted. This paper focuses on the meso-level of Nigerian football delivery, particularly infrastructures, personnel, and services enabling sport programs. This includes training centers, competition systems, and intellectual services. Results identified remarkable achievements coupled with great potential to further develop football in different types of public and private organizations in Nigeria. These include: assimilating football competitions with other cultural and educational activities, providing favorable conditions for employees of all possible organizations to partake and help in managing football programs and events, providing football coaching integrated with counseling for prevention of antisocial conduct, and improving cooperation between football programs and organizations for peace-making and advancement of international relations, tourism, and socio-economic development. Accurate reporting of the sports programs from the media should be encouraged through staff training for better awareness of various events. The systematic integration of these meso-level practices into the balanced development of mass and high-performance football will contribute to international sport success as well as national health, education, and social harmony.

Keywords: football, high performance, mass participation, Nigeria, sport development

Procedia PDF Downloads 251