Search results for: transport capacity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5928

Search results for: transport capacity

2838 Investigation of a Hybrid Process: Multipoint Incremental Forming

Authors: Safa Boudhaouia, Mohamed Amen Gahbiche, Eliane Giraud, Wacef Ben Salem, Philippe Dal Santo

Abstract:

Multi-point forming (MPF) and asymmetric incremental forming (ISF) are two flexible processes for sheet metal manufacturing. To take advantages of these two techniques, a hybrid process has been developed: The Multipoint Incremental Forming (MPIF). This process accumulates at once the advantages of each of these last mentioned forming techniques, which makes it a very interesting and particularly an efficient process for single, small, and medium series production. In this paper, an experimental and a numerical investigation of this technique are presented. To highlight the flexibility of this process and its capacity to manufacture standard and complex shapes, several pieces were produced by using MPIF. The forming experiments are performed on a 3-axis CNC machine. Moreover, a numerical model of the MPIF process has been implemented in ABAQUS and the analysis showed a good agreement with experimental results in terms of deformed shape. Furthermore, the use of an elastomeric interpolator allows avoiding classical local defaults like dimples, which are generally caused by the asymmetric contact and also improves the distribution of residual strain. Future works will apply this approach to other alloys used in aeronautic or automotive applications.

Keywords: incremental forming, numerical simulation, MPIF, multipoint forming

Procedia PDF Downloads 358
2837 The Effects of Music and Gender on Recall Ability on College Students: A Study in Students from Universitas Indonesia

Authors: Hestika D. Waraningrum, Indriani N. Khairunnisa, Nabila Isnandini, Nadine Yasminah, Sekar A. Winesa

Abstract:

Each individual’s ability to recall, whether they are male or female, is allegedly influenced by the environmental circumstances during the recalling process. The presence of a distraction is one of the environmental variables that affect recall ability in its capacity in the Short Term Memory. This study was made to see the difference in number of words that was successfully recalled by male participants and female participants with the presence of music as a distraction and also without music as a distraction. Data was taken using an experimental procedure from 75 female and male undergraduate students of Universitas Indonesia. The study design used was a 2x2 Factorial ANOVA, which aimed to see the difference between two variables, which were gender (male vs female) and the presence of a distraction (music serving as a distraction vs absence of music). The results indicated that there were no significant mean differences in the ability to recall between male and female participants. There are no significant mean differences between the presence and the absence of music as a distraction, but a significant interaction was found between gender and distraction with the ability to recall.

Keywords: college, gender, music, recall

Procedia PDF Downloads 233
2836 Spectrum Allocation in Cognitive Radio Using Monarch Butterfly Optimization

Authors: Avantika Vats, Kushal Thakur

Abstract:

This paper displays the point at issue, improvement, and utilization of a Monarch Butterfly Optimization (MBO) rather than a Genetic Algorithm (GA) in cognitive radio for the channel portion. This approach offers a satisfactory approach to get the accessible range of both the users, i.e., primary users (PUs) and secondary users (SUs). The proposed enhancement procedure depends on a nature-inspired metaheuristic algorithm. In MBO, all the monarch butterfly individuals are located in two distinct lands, viz. Southern Canada and the northern USA (land 1), and Mexico (Land 2). The positions of the monarch butterflies are modernizing in two ways. At first, the offsprings are generated (position updating) by the migration operator and can be adjusted by the migration ratio. It is trailed by tuning the positions for different butterflies by the methods for the butterfly adjusting operator. To keep the population unaltered and minimize fitness evaluations, the aggregate of the recently produced butterflies in these two ways stays equivalent to the first population. The outcomes obviously display the capacity of the MBO technique towards finding the upgraded work values on issues regarding the genetic algorithm.

Keywords: cognitive radio, channel allocation, monarch butterfly optimization, evolutionary, computation

Procedia PDF Downloads 76
2835 Impact of Stack Caches: Locality Awareness and Cost Effectiveness

Authors: Abdulrahman K. Alshegaifi, Chun-Hsi Huang

Abstract:

Treating data based on its location in memory has received much attention in recent years due to its different properties, which offer important aspects for cache utilization. Stack data and non-stack data may interfere with each other’s locality in the data cache. One of the important aspects of stack data is that it has high spatial and temporal locality. In this work, we simulate non-unified cache design that split data cache into stack and non-stack caches in order to maintain stack data and non-stack data separate in different caches. We observe that the overall hit rate of non-unified cache design is sensitive to the size of non-stack cache. Then, we investigate the appropriate size and associativity for stack cache to achieve high hit ratio especially when over 99% of accesses are directed to stack cache. The result shows that on average more than 99% of stack cache accuracy is achieved by using 2KB of capacity and 1-way associativity. Further, we analyze the improvement in hit rate when adding small, fixed, size of stack cache at level1 to unified cache architecture. The result shows that the overall hit rate of unified cache design with adding 1KB of stack cache is improved by approximately, on average, 3.9% for Rijndael benchmark. The stack cache is simulated by using SimpleScalar toolset.

Keywords: hit rate, locality of program, stack cache, stack data

Procedia PDF Downloads 304
2834 Building Collapse: Factors and Resisting Mechanisms: A Review of Case Studies

Authors: Genevieve D. Fernandes, Nisha P. Naik

Abstract:

All through the ages in all human civilizations, men have been engaged in construction activity, not only to build their dwellings and house their activities, but also roads, bridges to facilitate means of transport, and communication etc. The main concern in this activity was to ensure safety and reduce the collapse of the buildings and other structures. But even after taking all precautions, it is impossible to guarantee safety and collapse because of several unforeseen reasons like faulty constructions, design errors, overloading, soil liquefaction, gas explosion, material degradation, terrorist attacks and economic factors also contributing to the collapse. It is also uneconomical to design the structure for unforeseen events unless they have a reasonable chance of occurrence. In order to ensure safety and prevent collapse, many guidelines have been framed by local bodies and government authorities in many countries like the United States Department of Defence (DOD), United States General Service Administration (GSA) and Euro-Codes in European Nations. Some other practices are followed to incorporate redundancies in the structure like detailing, ductile designs, tying of elements at particular locations, and provision of hinges and interconnections. It is also to be admitted that a full-proof safe design structure for accidental events cannot be prepared and implemented as it is uneconomical and the chances of such occurrences are less. This paper reviews past case studies of the collapse of structures with the aim of developing an understanding of the collapse mechanism. This study will definitely help to bring about a detailed improvement in the design to maximise the quality of the construction at a minimal cost.

Keywords: unforeseen factors, progressive collapse, collapse resisting mechanisms, column removal scenario

Procedia PDF Downloads 139
2833 FSO Performance under High Solar Irradiation: Case Study Qatar

Authors: Syed Jawad Hussain, Abir Touati, Farid Touati

Abstract:

Free-Space Optics (FSO) is a wireless technology that enables the optical transmission of data though the air. FSO is emerging as a promising alternative or complementary technology to fiber optic and wireless radio-frequency (RF) links due to its high-bandwidth, robustness to EMI, and operation in unregulated spectrum. These systems are envisioned to be an essential part of future generation heterogeneous communication networks. Despite the vibrant advantages of FSO technology and the variety of its applications, its widespread adoption has been hampered by rather disappointing link reliability for long-range links due to atmospheric turbulence-induced fading and sensitivity to detrimental climate conditions. Qatar, with modest cloud coverage, high concentrations of airborne dust and high relative humidity particularly lies in virtually rainless sunny belt with a typical daily average solar radiation exceeding 6 kWh/m2 and 80-90% clear skies throughout the year. The specific objective of this work is to study for the first time in Qatar the effect of solar irradiation on the deliverability of the FSO Link. In order to analyze the transport media, we have ported Embedded Linux kernel on Field Programmable Gate Array (FPGA) and designed a network sniffer application that can run into FPGA. We installed new FSO terminals and configure and align them successively. In the reporting period, we carry out measurement and relate them to weather conditions.

Keywords: free space optics, solar irradiation, field programmable gate array, FSO outage

Procedia PDF Downloads 362
2832 Behavior of Epoxy Insulator with Surface Defect under HVDC Stress

Authors: Qingying Liu, S. Liu, L. Hao, B. Zhang, J. D. Yan

Abstract:

HVDC technology is becoming increasingly popular due to its simplicity in topology and less power loss over long distance of power transmission, in comparison with HVAC technology. However, the dielectric behavior of insulators in the long term under HVDC stress is completely different from that under HVAC stress as a result of charge accumulation in a constant electric field. Insulators used in practical systems are never perfect in their structural conditions. Over time shallow cracks may develop on their surface. The presence of defects can lead to drastic change in their dielectric behaviour and thus increase the probability of surface flashover. In this contribution, experimental investigations have been carried out on the charge accumulation phenomenon on the surface of a rod insulator made of epoxy that is placed between two disk shaped electrodes at different voltage levels and in different gases (SF6, CO2 and N2). Many results obtained, such as, the two-dimensional electrostatic potential distribution along the insulator surface after the removal of the power source following a pre-defined period of application. The probe has been carefully calibrated before each test. Results show that surface charge distribution near the two disk shaped electrodes is not uniform in the circumferential direction, possibly due to the imperfect electrical connections between the embeded conductor in the insulator and the disk shaped electrodes. The axial length of this non-uniform region is experimentally determined, which provides useful information for shielding design. A charge transport model is also used to explain the formation of the long term electrostatic potential distribution under a constant applied voltage.

Keywords: HVDC, power systems, dielectric behavior, insulation, charge accumulation

Procedia PDF Downloads 225
2831 Barriers and Enablers to Climate and Health Adaptation Planning in Small Urban Areas in the Great Lakes Region

Authors: Elena Cangelosi, Wayne Beyea

Abstract:

This research expands the resilience planning literature by exploring the barriers and enablers to climate and health adaptation planning for small urban, coastal Great Lakes communities. With funding from the United States Centers for Disease Control and Prevention (CDC) Climate Ready City and States Initiative, this research took place during a 3-year pilot intervention project which integrates urban planning and public health. The project used the CDC’s Building Resilience Against Climate Effects (BRACE) framework to prevent or reduce the human health impacts from climate change in Marquette County, Michigan. Using a deliberation with the analysis planning process, interviews, focus groups, and community meetings with over 25 stakeholder groups and over 100 participants identified the area’s climate-related health concerns and adaptation interventions to address those concerns. Marquette County, on the shores of Lake Superior, the largest of the Great Lakes, was selected for the project based on their existing adaptive capacity and proactive approach to climate adaptation planning. With Marquette County as the context, this study fills a gap in the adaptation literature, which currently heavily emphasizes large-urban or agriculturally-based rural areas, and largely neglects small urban areas. This research builds on the qualitative case-study, survey, and interview approach established by previous researchers on contextual barriers and enablers for adaptation planning. This research uses a case study approach, including surveys and interviews of public officials, to identify the barriers and enablers for climate and health adaptation planning for small-urban areas within a large, non-agricultural, Great Lakes county. The researchers hypothesize that the barriers and enablers will, in some cases, overlap those found in other contexts, but in many cases, will be unique to a rural setting. The study reveals that funding, staff capacity, and communication across a large, rural geography act as the main barriers, while strong networks and collaboration, interested leaders, and community interest through a strong human-land connection act as the primary enablers. Challenges unique to rural areas are revealed, including weak opportunities for grant funding, large geographical distances, communication challenges with an aging and remote population, and the out-migration of education residents. Enablers that may be unique to rural contexts include strong collaborative relationships across jurisdictions for regional work and strong connections between residents and the land. As the factors that enable and prevent climate change planning are highly contextual, understanding, and appropriately addressing the unique factors at play for small-urban communities is key for effective planning in those areas. By identifying and addressing the barriers and enablers to climate and health adaptation planning for small-urban, coastal areas, this study can help Great Lakes communities appropriately build resilience to the adverse impacts of climate change. In addition, this research expands the breadth of research and understanding of the challenges and opportunities planners confront in the face of climate change.

Keywords: climate adaptation and resilience, climate change adaptation, climate change and urban resilience, governance and urban resilience

Procedia PDF Downloads 121
2830 Detaching the ‘Criminal Justice Conveyor Belt’: Diversion as a Responsive Mechanism for Children in Kenya

Authors: Sarah Kinyanjui, Mahnaaz Mohamed

Abstract:

The child justice system in Kenya is organically departing from a managerial and retributive model to one that espouses restorative justice. Notably, the Children Act 2001, and the most recent, Children Act 2022, signalled an aspiration to facilitate meaningful interventions as opposed to ‘processing’ children through the justice system. In this vein, the Children Act 2022 formally recognises diversion and provides modalities for its implementation. This paper interrogates the diversion promise and reflects on the implementation of diversion as envisaged by the 2022 Act. Using restorative justice, labelling and differential association theories as well as the value of care lenses, the paper discusses diversion as a meaningful response to child offending. It further argues that while diversion presents a strong platform for the realisation of the restorative and rehabilitative ideals, in the absence of a well-planned, coordinated, and resourced framework, diversion may remain a mere alternative ‘conveyor belt’. Strategic multi-agency planning, capacity building and cooperation are highlighted as essential minimums for the realisation of the goals of diversion.

Keywords: diversion for child offenders, restorative justice, responsive criminal justice system, children act 2022 kenya

Procedia PDF Downloads 73
2829 Nanoscale Metal-Organic Framework Coated Carbon Nitride Nanosheet for Combination Cancer Therapy

Authors: Rui Chen, Jinfeng Zhang, Chun-Sing Lee

Abstract:

In the past couple of decades, nanoscale metal-organic frameworks (NMOFs) have been highlighted as promising delivery platforms for biomedical applications, which combine many potent features such as high loading capacity, progressive biodegradability and low cytotoxicity. While NMOF has been extensively used as carriers for drugs of different modalities, so far there is no report on exploiting the advantages of NMOF for combination therapy. Herein, we prepared core-shell nanoparticles, where each nanoparticle contains a single graphitic-phase carbon nitride (g-C3N4) nanosheet encapsulated by a zeolitic-imidazolate frameworks-8 (ZIF-8) shell. The g-C3N4 nanosheets are effective visible-light photosensitizer for photodynamic therapy (PDT). When hosting DOX (doxorubicin), the as-synthesized core-shell nanoparticles could realize combinational photo-chemo therapy and provide dual-color fluorescence imaging. Therefore, we expect NMOFs-based core-shell nanoparticles could provide a new way to achieve much-enhanced cancer therapy.

Keywords: carbon nitride, combination therapy, drug delivery, nanoscale metal-organic frameworks

Procedia PDF Downloads 427
2828 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis

Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu

Abstract:

Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.

Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing

Procedia PDF Downloads 140
2827 A Review of the Environmental Impact of Physical Expansion of Shandiz City

Authors: Foruzan Taheri, Seyedeh Negar Hosseinian, Katayoon Alizadeh

Abstract:

The small countryside city of Shandiz, with a population of about 13.297 is located 35 km to the west of the Mashhad metropolitan. Due to Shandiz’s natural beauty, suitable climate, and its close proximity to Mashhad which is the largest city in the eastern half of the country, many people own second houses in this area. In addition to this, Shandiz hosts millions of visitors annually. Its economic role, which is parallel and complementary to Mashhad, has caused population growth, the increase of activities, and physical expansion, all of which exceed the city’s capacity. The aim of this descriptive and analytical study was to evaluate the impact of city expansion on the environment and aid in preventing further harm to the natural environment of this perimeter. Data were collected from population and housing statistics during a different period of time-based on GIS. Results show that the existence of an integrated environmental management system in order to coordinate development projects and the expansion of tourism programs that meet environmental conditions are necessary and achieving sustainable development with quality of life in this area without considering environmental limitations and capabilities cannot be sustained.

Keywords: population growth, tourism, physical development, environmental impact, Shandiz City

Procedia PDF Downloads 352
2826 Improve of Biomass Properties through Torrefaction Process

Authors: Malgorzata Walkowiak, Magdalena Witczak, Wojciech Cichy

Abstract:

Biomass is an important renewable energy source in Poland. As a biofuel, it has many advantages like renewable in noticeable time and relatively high energy potential. But disadvantages of biomass like high moisture content and hygroscopic nature causes that gaining, transport, storage and preparation for combustion become troublesome and uneconomic. Thermal modification of biomass can improve hydrophobic properties, increase its calorific value and natural resistance. This form of thermal processing is known as torrefaction. The aim of the study was to investigate the effect of the pre-heat treatment of wood and plant lignocellulosic raw materials on the properties of solid biofuels. The preliminary studies included pine, beech and willow wood and other lignocellulosic raw materials: mustard, hemp, grass stems, tobacco stalks, sunflower husks, Miscanthus straw, rape straw, cereal straw, Virginia Mallow straw, rapeseed meal. Torrefaction was carried out using variable temperatures and time of the process, depending on the material used. It was specified the weight loss and the ash content and calorific value was determined. It was found that the thermal treatment of the tested lignocellulosic raw materials is able to provide solid biofuel with improved properties. In the woody materials, the increase of the lower heating value was in the range of 0,3 MJ/kg (pine and beech) to 1,1 MJ/kg (willow), in non-woody materials – from 0,5 MJ/kg (tobacco stalks, Miscanthus) to 3,5 MJ/kg (rapeseed meal). The obtained results indicate for further research needs, particularly in terms of conditions of the torrefaction process.

Keywords: biomass, lignocellulosic materials, solid biofuels, torrefaction

Procedia PDF Downloads 238
2825 Holomorphic Prioritization of Sets within Decagram of Strategic Decision Making of POSM Using Operational Research (OR): Analytic Hierarchy Process (AHP) Analysis

Authors: Elias Ogutu Azariah Tembe, Hussain Abdullah Habib Al-Salamin

Abstract:

There is decagram of strategic decisions of operations and production/service management (POSM) within operational research (OR) which must collate, namely: design, inventory, quality, location, process and capacity, layout, scheduling, maintain ace, and supply chain. This paper presents an architectural configuration conceptual framework of a decagram of sets decisions in a form of mathematical complete graph and abelian graph. Mathematically, a complete graph is undirected (UDG), and directed (DG) a relationship where every pair of vertices are connected, collated, confluent, and holomorphic. There has not been any study conducted which, however, prioritizes the holomorphic sets which of POMS within OR field of study. The study utilizes OR structured technique known as The Analytic Hierarchy Process (AHP) analysis for organizing, sorting and prioritizing (ranking) the sets within the decagram of POMS according to their attribution (propensity), and provides an analysis how the prioritization has real-world application within the 21st century.

Keywords: holomorphic, decagram, decagon, confluent, complete graph, AHP analysis, SCM, HRM, OR, OM, abelian graph

Procedia PDF Downloads 404
2824 The Differences and Similarities between the Ship Waste Tracking Regulations of Turkey and Particular European Union Member Countries

Authors: Kaan Koyuncu, Umut Celen Arican, Sevilay Can

Abstract:

In the maritime industry, there have been regulations to prevent pollution, and the first attempt to offer a legal basis was Marpol Convention which was held in 1973 in order to provide a framework for the disposal of ship wastes. Based on this convention, ports are obliged to build waste receiving facilities. European Union regulations make several member countries to follow these directions, In Turkey, under Blue Card System, the quantity and types of wastes, the delivery time, the capacity of the receiving facilities, and other required information can be monitored online. Therefore, yachts and other boats with the bilge, sewage, and waste which illegally discharge into the sea, can be blocked. This system is an outcome of the law adopted from European Union regulations. In this study, the present systems in Turkey which occurred in 2010 after the integration of the system, which has been put in the force in 2000 in Europe will be analyzed and interpreted to provide a useful comparison, a practical guide, and a roadmap for potential improvements.

Keywords: Europe-Turkey, blue card, marine environment, ship waste tracking system

Procedia PDF Downloads 496
2823 Performance Evaluation of Diverging Diamond Interchange Compared to Single Point Diamond Interchange in Riyadh City

Authors: Maged A. Mogalli, Abdullah I. Al-Mansour, Seongkwan Mark Lee

Abstract:

In the last decades, population growth has gradually exceeded transportation infrastructure growth, and today’s transportation professionals are facing challenge on how to meet the mobility needs of a rising population especially in the absence of adequate public transport, as is the case in Saudi Arabia. The traffic movement congestion can be decreased by carrying out some appropriate alternative designs of interchanges such as diverging diamond interchange (DDI) and single diamond interchange (SPDI). In this paper, evaluation of newly implemented DDIs at the interchange of Makkah road with Prince Turki road and the interchange of King Khaled road with Prince Saud Ibn Mohammed Ibn Mugrin road in Riyadh city was carried out. The comparison between the DDI and SPDI is conducted by evaluating different measures of effectiveness (MOE) such as stop delay, average queue length, and number of stops. In this connection, each interchange type was evaluated for traffic flow at peak hours using micro-simulation program namely 'Synchro/SimTarffic' to measure its effectiveness such as stop delay, average queue length, and number of stops. The results of this study show that DDI provides a better result when compared with SPDI in terms of stope delay, average queue length, and number of stops. The stop delay for the SPDI is greater than DDI by three times. Also, the average queue length is approximately twice that of the SPDI when compared to the DDI. Furthermore, the number of stops for the SPDI is about twice as the DDI.

Keywords: single point diamond interchange, diverging diamond interchange, measures of effectiveness, simulation

Procedia PDF Downloads 262
2822 Design of Advanced Materials for Alternative Cooling Devices

Authors: Emilia Olivos, R. Arroyave, A. Vargas-Calderon, J. E. Dominguez-Herrera

Abstract:

More efficient cooling systems are needed to reduce building energy consumption and environmental impact. At present researchers focus mainly on environmentally-friendly magnetic materials and the potential application in cooling devices. The magnetic materials presented in this project belong to a group known as Heusler alloys. These compounds are characterized by a strong coupling between their structure and magnetic properties. Usually, a change in one of them can alter the other, which implies changes in other electronic or structural properties, such as, shape magnetic memory response or the magnetocaloric effect. Those properties and its dependence with external fields make these materials interesting, both from a fundamental point of view, as well as on their different possible applications. In this work, first principles and Monte Carlo simulations have been used to calculate exchange couplings and magnetic properties as a function of an applied magnetic field on Heusler alloys. As a result, we found a large dependence of the magnetic susceptibility, entropy and heat capacity, indicating that the magnetic field can be used in experiments to trigger particular magnetic properties in materials, which are necessary to develop solid-state refrigeration devices.

Keywords: ferromagnetic materials, magnetocaloric effect, materials design, solid state refrigeration

Procedia PDF Downloads 217
2821 Effect of Vesicular Arbuscular mycorrhiza on Phytoremedial Potential and Physiological Changes in Solanum melongena Plants Grown under Heavy Metal Stress

Authors: Ritu Chaturvedi, Mayank Varun, M. S. Paul

Abstract:

Heavy metal contamination of soil is a growing area of concern since the soil is the matrix that supports flora and impacts humans directly. Phytoremediation of contaminated sites is gaining popularity due to its cost effectiveness and solar driven nature. Some hyperaccumulators have been identified for their potential. Metal-accumulating plants have various mechanisms to cope up with stress and one of them is increasing antioxidative capacity. The aim of this research is to assess the effect of Vesicular arbuscular mycorrhiza (VAM) application on the phytoremedial potential of Solanum melongena (Eggplant) and level of photosynthetic pigments along with antioxidative enzymes. Results showed that VAM application increased shoot length, root proliferation pattern of plants. The level of photosynthetic pigments, proline, SOD, CAT, APX altered significantly in response to heavy metal treatment. In conclusion, VAM increased the uptake of heavy metals which lead to the activation of the defense system in plants for scavenging free radicals.

Keywords: heavy metal, phytoextraction, phytostabilization, reactive oxygen species

Procedia PDF Downloads 276
2820 Border Trade Policy to Promote Thailand - Myanmar Mae Sai, Chiang Rai Province

Authors: Sakapas Saengchai, Pichamon Chansuchai

Abstract:

Research Thai- Myanmar Border Trade Promotion Policy, Mae Sai District, Chiang Rai Province The objectives of this study were to study the policy of promoting Thai- Myanmar border trade in Mae Sai district, Chiang Rai province. And suitable models for the development of border trade in Mae Sai. Chiang Rai province This research uses qualitative methodology. The method of collecting data from research papers. Participatory Observation In-depth interviews in which the information is important, the governor of Chiang Rai. Chiang Rai Customs Service Executive Office of Mae Sai Immigration Bureau Maesai Chamber of Commerce and Private Entrepreneurs By specific sampling Data analysis uses content analysis. The study indicated that Border Trade Promotion Policy The direction taken by the government to focus on developing 1. Security is further reducing crime. Smuggling and human trafficking Including the preparation to protect people from terrorism and natural disasters. And cooperation with Burma on border security. 2. The development of wealth is the promotion of investment. The transport links, logistics value chain. Products and services across the Thai-Myanmar border. Improve the regulations and laws to promote fair trade. Convenient and fast 3. Sustainable development is the ability to generate income, quality of life of people in the Thai border to increase continuously. By using balanced natural resources, production and consumption are environmentally friendly. Which featured the participation of all sectors of the public and private sectors in the region to drive the development of the border with Thailand. Chiang Rai province To be more competitive .

Keywords: Border, Trade, Policy, Promote

Procedia PDF Downloads 174
2819 Laser-Hole Boring into Overdense Targets: A Detailed Study on Laser and Target Properties

Authors: Florian Wagner, Christoph Schmidt, Vincent Bagnoud

Abstract:

Understanding the interaction of ultra-intense laser pulses with overcritical targets is of major interest for many applications such as laser-driven ion acceleration, fast ignition in the frame of inertial confinement fusion or high harmonic generation and the creation of attosecond pulses. One particular aspect of this interaction is the shift of the critical surface, where the laser pulse is stopped and the absorption is at maximum, due to the radiation pressure induced by the laser pulse, also referred to as laser hole boring. We investigate laser-hole boring experimentally by measuring the backscattered spectrum which is doppler-broadened because of the movement of the reflecting surface. Using the high-power, high-energy laser system PHELIX in Darmstadt, we gathered an extensive set of data for different laser intensities ranging from 10^18 W/cm2 to 10^21 W/cm2, two different levels of the nanosecond temporal contrast (10^6 vs. 10^11), elliptical and linear polarization and varying target configurations. In this contribution we discuss how the maximum velocity of the critical surface depends on these parameters. In particular we show that by increasing the temporal contrast the maximum hole boring velocity is decreased by more than a factor of three. Our experimental findings are backed by a basic analytical model based on momentum and mass conservation as well as particle in cell simulations. These results are of particular importance for fast ignition since they contribute to a better understanding of the transport of the ignitor pulse into the overdense region.

Keywords: laser-hole boring, interaction of ultra-intense lasers with overcritical targets, fast ignition, relativistic laser motter interaction

Procedia PDF Downloads 413
2818 Simulation of Optimal Runoff Hydrograph Using Ensemble of Radar Rainfall and Blending of Runoffs Model

Authors: Myungjin Lee, Daegun Han, Jongsung Kim, Soojun Kim, Hung Soo Kim

Abstract:

Recently, the localized heavy rainfall and typhoons are frequently occurred due to the climate change and the damage is becoming bigger. Therefore, we may need a more accurate prediction of the rainfall and runoff. However, the gauge rainfall has the limited accuracy in space. Radar rainfall is better than gauge rainfall for the explanation of the spatial variability of rainfall but it is mostly underestimated with the uncertainty involved. Therefore, the ensemble of radar rainfall was simulated using error structure to overcome the uncertainty and gauge rainfall. The simulated ensemble was used as the input data of the rainfall-runoff models for obtaining the ensemble of runoff hydrographs. The previous studies discussed about the accuracy of the rainfall-runoff model. Even if the same input data such as rainfall is used for the runoff analysis using the models in the same basin, the models can have different results because of the uncertainty involved in the models. Therefore, we used two models of the SSARR model which is the lumped model, and the Vflo model which is a distributed model and tried to simulate the optimum runoff considering the uncertainty of each rainfall-runoff model. The study basin is located in Han river basin and we obtained one integrated runoff hydrograph which is an optimum runoff hydrograph using the blending methods such as Multi-Model Super Ensemble (MMSE), Simple Model Average (SMA), Mean Square Error (MSE). From this study, we could confirm the accuracy of rainfall and rainfall-runoff model using ensemble scenario and various rainfall-runoff model and we can use this result to study flood control measure due to climate change. Acknowledgements: This work is supported by the Korea Agency for Infrastructure Technology Advancement(KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 18AWMP-B083066-05).

Keywords: radar rainfall ensemble, rainfall-runoff models, blending method, optimum runoff hydrograph

Procedia PDF Downloads 282
2817 Solar Energy Generation Based Urban Development: A Case of Jodhpur City

Authors: A. Kumar, V. Devadas

Abstract:

India has the most year-round favorable sunny conditions along with the second-highest solar irradiation in the world, the country holds the potential to become the global solar hub. The solar and wind-based generation capacity has skyrocketed in India with the successful effort of the Ministry of Renewable Energy, whereas the potential of rooftop based solar power generation has yet to be explored for proposed solar cities in India. The research aims to analyze the gap in the energy scenario in Jodhpur City and proposes interventions of solar energy generation systems as a catalyst for urban development. The research is based on the system concept which deals with simulation between the city system as a whole and its interactions between different subsystems. A system-dynamics based mathematical model is developed by identifying the control parameters using regression and correlation analysis to assess the gap in energy sector. The base model validation is done using the past 10 years timeline data collected from secondary sources. Further, energy consumption and solar energy generation-based projection are made for testing different scenarios to conclude the feasibility for maintaining the city level energy independence till 2031.

Keywords: city, consumption, energy, generation

Procedia PDF Downloads 131
2816 An Experimental and Numerical Study on the Pultruded GFRP I-Sections Beams

Authors: Parinaz Arashnia, Farzad Hatami, Saeed Ghaffarpour Jahromi

Abstract:

Using steel in bridges’ construction because of their desired tensile and compressive strength and light weight especially in large spans was widely popular. Disadvantages of steel such as corrosion, buckling and weaknesses in high temperature and unsuitable weld could be solve with using Fibres Reinforced Polymer (FRP) profiles. The FRP is a remarkable class of composite polymers that can improve structural elements behaviour like corrosion resistance, fir resistance with good proofing and electricity and magnetic non-conductor. Nowadays except FRP reinforced bars and laminates, FRP I-beams are made and studied. The main reason for using FRP profiles is, prevent of corrosion and increase the load carrying capacity and durability, especially in large spans in bridges’ deck. In this paper, behaviour of I-section glass fibres reinforced polymer (GFRP) beam is discussed under point loads with numerical models and results has been compared and verified with experimental tests.

Keywords: glass fibres reinforced polymer, composite, I-section beam, durability, finite element method, numerical model

Procedia PDF Downloads 257
2815 Numerical Study for Compressive Strength of Basalt Composite Sandwich Infill Panel

Authors: Viriyavudh Sim, Jung Kyu Choi, Yong Ju Kwak, Oh Hyeon Jeon, Woo Young Jung

Abstract:

In this study, we investigated the buckling performance of basalt fiber reinforced polymer (BFRP) sandwich infill panels. Fiber Reinforced Polymer (FRP) is a major evolution for energy dissipation when used as infill material of frame structure, a basic Polymer Matrix Composite (PMC) infill wall system consists of two FRP laminates surrounding an infill of foam core. Furthermore, this type of component is for retrofitting and strengthening frame structure to withstand the seismic disaster. In-plane compression was considered in the numerical analysis with ABAQUS platform to determine the buckling failure load of BFRP infill panel system. The present result shows that the sandwich BFRP infill panel system has higher resistance to buckling failure than those of glass fiber reinforced polymer (GFRP) infill panel system, i.e. 16% increase in buckling resistance capacity.

Keywords: Basalt Fiber Reinforced Polymer (BFRP), buckling performance, FEM analysis, sandwich infill panel

Procedia PDF Downloads 441
2814 Use Multiphysics Simulations and Resistive Pulse Sensing to Study the Effect of Metal and Non-Metal Nanoparticles in Different Salt Concentration

Authors: Chun-Lin Chiang, Che-Yen Lee, Yu-Shan Yeh, Jiunn-Haur Shaw

Abstract:

Wafer fabrication is a critical part of the semiconductor process, when the finest linewidth with the improvement of technology continues to decline and the structure development from 2D towards to 3D. The nanoparticles contained in the slurry or in the ultrapure water which used for cleaning have a large influence on the manufacturing process. Therefore, semiconductor industry is hoping to find a viable method for on-line detection the nanoparticles size and concentration. The resistive pulse sensing technology is one of the methods that may cover this question. As we know that nanoparticles properties of material differ significantly from their properties at larger length scales. So, we want to clear that the metal and non-metal nanoparticles translocation dynamic when we use the resistive pulse sensing technology. In this study we try to use the finite element method that contains three governing equations to do multiphysics coupling simulations. The Navier-Stokes equation describes the laminar motion, the Nernst-Planck equation describes the ion transport, and the Poisson equation describes the potential distribution in the flow channel. To explore that the metal nanoparticles and the non-metal nanoparticles in different concentration electrolytes, through the nanochannel caused by ion current changes. Then the reliability of the simulation results was verified by resistive pulse sensing test. The existing results show that the lower ion concentration, the greater effect of nanoparticles on the ion concentration in the nanochannel. The conductive spikes are correlated with nanoparticles surface charge. Then we can be concluded that in the resistive pulse sensing technique, the ion concentration in the nanochannel and nanoparticle properties are important for the translocation dynamic, and they have the interactions.

Keywords: multiphysics simulations, resistive pulse sensing, nanoparticles, nanochannel

Procedia PDF Downloads 350
2813 Top-Down, Middle-Out, Bottom-Up: A Design Approach to Transforming Prison

Authors: Roland F. Karthaus, Rachel S. O'Brien

Abstract:

Over the past decade, the authors have undertaken applied research aimed at enabling transformation within the prison service to improve conditions and outcomes for those living, working and visiting in prisons in the UK and the communities they serve. The research has taken place against a context of reducing resources and public discontent at increasing levels of violence, deteriorating conditions and persistently high levels of re-offending. Top-down governmental policies have mainly been ineffectual and in some cases counter-productive. The prison service is characterised by hierarchical organisation, and the research has applied design thinking at multiple levels to challenge and precipitate change: top-down, middle-out and bottom-up. The research employs three distinct but related approaches, system design (top-down): working at the national policy level to analyse the changing policy context, identifying opportunities and challenges; engaging with the Ministry of Justice commissioners and sector organisations to facilitate debate, introducing new evidence and provoking creative thinking, place-based design (middle-out): working with individual prison establishments as pilots to illustrate and test the potential for local empowerment, creative change, and improved architecture within place-specific contexts and organisational hierarchies, everyday design (bottom-up): working with individuals in the system to explore the potential for localised, significant, demonstrator changes; including collaborative design, capacity building and empowerment in skills, employment, communication, training, and other activities. The research spans a series of projects, through which the methodological approach has developed responsively. The projects include a place-based model for the re-purposing of Ministry of Justice land assets for the purposes of rehabilitation; an evidence-based guide to improve prison design for health and well-being; capacity-based employment, skills and self-build project as a template for future open prisons. The overarching research has enabled knowledge to be developed and disseminated through policy and academic networks. Whilst the research remains live and continuing; key findings are emerging as a basis for a new methodological approach to effecting change in the UK prison service. An interdisciplinary approach is necessary to overcome the barriers between distinct areas of the prison service. Sometimes referred to as total environments, prisons encompass entire social and physical environments which themselves are orchestrated by institutional arms of government, resulting in complex systems that cannot be meaningfully engaged through narrow disciplinary lenses. A scalar approach is necessary to connect strategic policies with individual experiences and potential, through the medium of individual prison establishments, operating as discrete entities within the system. A reflexive process is necessary to connect research with action in a responsive mode, learning to adapt as the system itself is changing. The role of individuals in the system, their latent knowledge and experience and their ability to engage and become agents of change are essential. Whilst the specific characteristics of the UK prison system are unique, the approach is internationally applicable.

Keywords: architecture, design, policy, prison, system, transformation

Procedia PDF Downloads 137
2812 Characterization of Onion Peels Extracts and Its Utilization in a Deep Fried Snack

Authors: Nabia Siddiqui, Tahira Mohsin Ali, Tanveer Abbas, Abid Hasnain

Abstract:

The present study proposed the use of different onion peel extracts in a South Asian snacks called ‘sew’. The polyphenols extracted from peels were initially analyzed for their antimicrobial potential and bioactive components following three different extraction systems. A relatively higher level of total phenolic content (TP), total flavonoid (TF) and antioxidant activity was observed for EWE (ethanol and water based) extracts followed by EAAE (ethanol and acetic acid) and WE (water extract) sample. Onion extracts showed ability to inhibit gram-positive as well as gram-negative bacteria. The incorporation of onion peel extracts in sew showed a marked increase in bioactive components. Besides bioactivity, sensory attributes, textural characteristics and storage stability of these snacks containing onion peel extract also significantly improved during the shelf study at ambient temperature for up to two months. Thus, these results justify the utilization of these plant polyphenols in fried snacks.

Keywords: onion peels extract, South Asian snacks, antioxidant capacity, bioactivity

Procedia PDF Downloads 245
2811 Cooperative Diversity Scheme Based on MIMO-OFDM in Small Cell Network

Authors: Dong-Hyun Ha, Young-Min Ko, Chang-Bin Ha, Hyoung-Kyu Song

Abstract:

In Heterogeneous network (HetNet) can provide high quality of a service in a wireless communication system by composition of small cell networks. The composition of small cell networks improves cell coverage and capacity to the mobile users.Recently, various techniques using small cell networks have been researched in the wireless communication system. In this paper, the cooperative scheme obtaining high reliability is proposed in the small cell networks. The proposed scheme suggests a cooperative small cell system and the new signal transmission technique in the proposed system model. The new signal transmission technique applies a cyclic delay diversity (CDD) scheme based on the multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) system to obtain improved performance. The improved performance of the proposed scheme is confirmed by the simulation results.

Keywords: adaptive transmission, cooperative communication, diversity gain, OFDM

Procedia PDF Downloads 505
2810 A Nuclear Negotiation Qualitative Case Study with Force Field Analysis

Authors: Onur Yuksel

Abstract:

In today’s complex foreign relations between countries, the nuclear enrichment and nuclear weapon have become a threat for all states in the world. There are couple isolated states which have capacity to produce nuclear weapons such as Iran and North Korea. In this article, Iran nuclear negotiation was analyzed in terms of its relations especially with The United States in order to find the important factors that affect the course of the ongoing nuclear negotiation. In this sense, the Force Field Analysis was used by determining and setting forth Driving and Restraining Forces of the nuclear negotiations in order to see the big picture and to develop strategies that may improve the long-term ongoing Iran nuclear negotiations. It is found that Iran nuclear negotiation heavily depends on breaking down the idea of Iran’s supporting terrorist organizations and being more transparent about nuclear and uranium enrichment. Also, it was found that Iran has to rebuild its relations with Western countries, especially with the United States. In addition, the counties— who contribute to Iran nuclear negotiations— will need to work on the dynamics and drivers of the Israel and Iran relations in order to peacefully transform the conflict between the two states.

Keywords: driving force, Iran nuclear negotiation, restraining force, the force field analysis

Procedia PDF Downloads 159
2809 Structural Monitoring of Externally Confined RC Columns with Inadequate Lap-Splices, Using Fibre-Bragg-Grating Sensors

Authors: Petros M. Chronopoulos, Evangelos Z. Astreinidis

Abstract:

A major issue of the structural assessment and rehabilitation of existing RC structures is the inadequate lap-splicing of the longitudinal reinforcement. Although prohibited by modern Design Codes, the practice of arranging lap-splices inside the critical regions of RC elements was commonly applied in the past. Today this practice is still the rule, at least for conventional new buildings. Therefore, a lot of relevant research is ongoing in many earthquake prone countries. The rehabilitation of deficient lap-splices of RC elements by means of external confinement is widely accepted as the most efficient technique. If correctly applied, this versatile technique offers a limited increase of flexural capacity and a considerable increase of local ductility and of axial and shear capacities. Moreover, this intervention does not affect the stiffness of the elements and does not affect the dynamic characteristics of the structure. This technique has been extensively discussed and researched contributing to vast accumulation of technical and scientific knowledge that has been reported in relevant books, reports and papers, and included in recent Design Codes and Guides. These references are mostly dealing with modeling and redesign, covering both the enhanced (axial and) shear capacity (due to the additional external closed hoops or jackets) and the increased ductility (due to the confining action, preventing the unzipping of lap-splices and the buckling of continuous reinforcement). An analytical and experimental program devoted to RC members with lap-splices is completed in the Lab. of RC/NTU of Athens/GR. This program aims at the proposal of a rational and safe theoretical model and the calibration of the relevant Design Codes’ provisions. Tests, on forty two (42) full scale specimens, covering mostly beams and columns (not walls), strengthened or not, with adequate or inadequate lap-splices, have been already performed and evaluated. In this paper, the results of twelve (12) specimens under fully reversed cyclic actions are presented and discussed. In eight (8) specimens the lap-splices were inadequate (splicing length of 20 or 30 bar diameters) and they were retrofitted before testing by means of additional external confinement. The two (2) most commonly applied confining materials were used in this study, namely steel and FRPs. More specifically, jackets made of CFRP wraps or light cages made of mild steel were applied. The main parameters of these tests were (i) the degree of confinement (internal and external), and (ii) the length of lap-splices, equal to 20, 30 or 45 bar diameters. These tests were thoroughly instrumented and monitored, by means of conventional (LVDTs, strain gages, etc.) and innovative (optic fibre-Bragg-grating) sensors. This allowed for a thorough investigation of the most influencing design parameter, namely the hoop-stress developed in the confining material. Based on these test results and on comparisons with the provisions of modern Design Codes, it could be argued that shorter (than the normative) lap-splices, commonly found in old structures, could still be effective and safe (at least for lengths more than an absolute minimum), depending on the required ductility, if a properly arranged and adequately detailed external confinement is applied.

Keywords: concrete, fibre-Bragg-grating sensors, lap-splices, retrofitting / rehabilitation

Procedia PDF Downloads 251