Search results for: data security assurance
23926 Prediction of All-Beta Protein Secondary Structure Using Garnier-Osguthorpe-Robson Method
Authors: K. Tejasri, K. Suvarna Vani, S. Prathyusha, S. Ramya
Abstract:
Proteins are chained sequences of amino acids which are brought together by the peptide bonds. Many varying formations of the chains are possible due to multiple combinations of amino acids and rotation in numerous positions along the chain. Protein structure prediction is one of the crucial goals worked towards by the members of bioinformatics and theoretical chemistry backgrounds. Among the four different structure levels in proteins, we emphasize mainly the secondary level structure. Generally, the secondary protein basically comprises alpha-helix and beta-sheets. Multi-class classification problem of data with disparity is truly a challenge to overcome and has to be addressed for the beta strands. Imbalanced data distribution constitutes a couple of the classes of data having very limited training samples collated with other classes. The secondary structure data is extracted from the protein primary sequence, and the beta-strands are predicted using suitable machine learning algorithms.Keywords: proteins, secondary structure elements, beta-sheets, beta-strands, alpha-helices, machine learning algorithms
Procedia PDF Downloads 9423925 Sustainable Water Resource Management and Challenges in Indian Agriculture
Authors: Rajendra Kumar Isaac, Monisha Isaac
Abstract:
India, having a vast cultivable area and regional climatic variability, encounters water Resource Management Problems at various levels. The agricultural production of India needs to be increased to meet out projected population growth. Sustainable water resource is the only option to ensure food security, especially in northern Indian states, where the ground and surface water resources are fast depleting. Various tools and technologies available for management of scarce water resources have been discussed. It was concluded that multiple use of water, adopting latest water management options, identification of climate adoptable cropping and farming systems, can enhance water productivity and would encounter the fast growing water management and water shortage problems in Indian agriculture.Keywords: water resource management, sustainable, water management technologies, water productivity, agriculture
Procedia PDF Downloads 39923924 Barriers and Facilitators of Implementing Digital Mental Health Resources in Underserved Regions of Ontario during the COVID-19 Pandemic
Authors: Samaneh Abedini, Diana Urajnik, Nicole Naccarato
Abstract:
A high prevalence of mental health problems was observed in marginalized youth living in underserved regions of Ontario during the COVID-19 pandemic. To address this issue, a growing number of community-based traditional mental health services are offering digital mental health resources due to their accessibility, affordability, and scalability. The feasibility of providing these resources in underserved regions has been examined by researchers rather than by representatives of effective services within a mental health system. Indeed, digitalized mental health contents are not routinely embedded within local mental health organizations' services in Northern Ontario, where they can make a substantial impact. To date, many technology-based mental health initiatives have not been effectively implemented in this region. The obstacles associated with implementing digitalized mental health resources in Northern Ontario may be unique to that region. Thus, specific context-based considerations might need to be applied for developing and implementing digital resources by regional mental health organizations in Northern Ontario. The target population was child-serving organizations situated in northeastern Ontario, specifically within Greater Sudbury and the Sudbury District. A sample of six organizations were selected with representation from the mental health, social, and healthcare sectors. The project supervisor was in a unique position to access the organizations by virtue of existing relationships with the practice and lay communities at large. Thus, recruitment was conducted through professional outreach in partnership with the Center for Rural and Northern Health Research (CRaNHR). Semi-structured interviews were conducted with 1-2 key personnel (e.g., administrator, clinician) from participating organizations. Audio recordings from the semi-structured interviews were transcribed verbatim and thematically analyzed supported by NVivo. Thematic analysis of the data resulted in a total of 13 excerpts which were categorized into two major themes including 1) digital mental health services as a valuable resource for organizations both during and after the pandemic, and 2) barriers and facilitators to a successful implementation of digital mental health resources in northern Ontario. Four secondary themes were identified: 1) perceived barriers to implementation of digital mental health resources to the offered services by mental health agencies; 2) acceptability and feasibility of digital health sources for people living in northern Ontario; 3) data security, safety, and risk; and 4) connecting with clients. The employees of mental health organizations in northern Ontario considered digital mental health resources as generally acceptable to youth. However, they raised several concerns that may affect their implementation into routine practice and service delivery. The implementation of digital systems should be simple and straightforward and should enhance rather than hinder clinical workflows for staff. A clear plan for implementing technological services is also required for the successful adoption of digital systems. For successful adoption and implementation of digital systems, staff views must be considered.Keywords: COVID-19 pandemic, digital mental health resources, Ontario, underserved
Procedia PDF Downloads 10123923 Identify Users Behavior from Mobile Web Access Logs Using Automated Log Analyzer
Authors: Bharat P. Modi, Jayesh M. Patel
Abstract:
Mobile Internet is acting as a major source of data. As the number of web pages continues to grow the Mobile web provides the data miners with just the right ingredients for extracting information. In order to cater to this growing need, a special term called Mobile Web mining was coined. Mobile Web mining makes use of data mining techniques and deciphers potentially useful information from web data. Web Usage mining deals with understanding the behavior of users by making use of Mobile Web Access Logs that are generated on the server while the user is accessing the website. A Web access log comprises of various entries like the name of the user, his IP address, a number of bytes transferred time-stamp etc. A variety of Log Analyzer tools exists which help in analyzing various things like users navigational pattern, the part of the website the users are mostly interested in etc. The present paper makes use of such log analyzer tool called Mobile Web Log Expert for ascertaining the behavior of users who access an astrology website. It also provides a comparative study between a few log analyzer tools available.Keywords: mobile web access logs, web usage mining, web server, log analyzer
Procedia PDF Downloads 36123922 Modeling Food Popularity Dependencies Using Social Media Data
Authors: DEVASHISH KHULBE, MANU PATHAK
Abstract:
The rise in popularity of major social media platforms have enabled people to share photos and textual information about their daily life. One of the popular topics about which information is shared is food. Since a lot of media about food are attributed to particular locations and restaurants, information like spatio-temporal popularity of various cuisines can be analyzed. Tracking the popularity of food types and retail locations across space and time can also be useful for business owners and restaurant investors. In this work, we present an approach using off-the shelf machine learning techniques to identify trends and popularity of cuisine types in an area using geo-tagged data from social media, Google images and Yelp. After adjusting for time, we use the Kernel Density Estimation to get hot spots across the location and model the dependencies among food cuisines popularity using Bayesian Networks. We consider the Manhattan borough of New York City as the location for our analyses but the approach can be used for any area with social media data and information about retail businesses.Keywords: Web Mining, Geographic Information Systems, Business popularity, Spatial Data Analyses
Procedia PDF Downloads 11623921 Hierarchical Piecewise Linear Representation of Time Series Data
Authors: Vineetha Bettaiah, Heggere S. Ranganath
Abstract:
This paper presents a Hierarchical Piecewise Linear Approximation (HPLA) for the representation of time series data in which the time series is treated as a curve in the time-amplitude image space. The curve is partitioned into segments by choosing perceptually important points as break points. Each segment between adjacent break points is recursively partitioned into two segments at the best point or midpoint until the error between the approximating line and the original curve becomes less than a pre-specified threshold. The HPLA representation achieves dimensionality reduction while preserving prominent local features and general shape of time series. The representation permits course-fine processing at different levels of details, allows flexible definition of similarity based on mathematical measures or general time series shape, and supports time series data mining operations including query by content, clustering and classification based on whole or subsequence similarity.Keywords: data mining, dimensionality reduction, piecewise linear representation, time series representation
Procedia PDF Downloads 27523920 Satellite Statistical Data Approach for Upwelling Identification and Prediction in South of East Java and Bali Sea
Authors: Hary Aprianto Wijaya Siahaan, Bayu Edo Pratama
Abstract:
Sea fishery's potential to become one of the nation's assets which very contributed to Indonesia's economy. This fishery potential not in spite of the availability of the chlorophyll in the territorial waters of Indonesia. The research was conducted using three methods, namely: statistics, comparative and analytical. The data used include MODIS sea temperature data imaging results in Aqua satellite with a resolution of 4 km in 2002-2015, MODIS data of chlorophyll-a imaging results in Aqua satellite with a resolution of 4 km in 2002-2015, and Imaging results data ASCAT on MetOp and NOAA satellites with 27 km resolution in 2002-2015. The results of the processing of the data show that the incidence of upwelling in the south of East Java Sea began to happen in June identified with sea surface temperature anomaly below normal, the mass of the air that moves from the East to the West, and chlorophyll-a concentrations are high. In July the region upwelling events are increasingly expanding towards the West and reached its peak in August. Chlorophyll-a concentration prediction using multiple linear regression equations demonstrate excellent results to chlorophyll-a concentrations prediction in 2002 until 2015 with the correlation of predicted chlorophyll-a concentration indicate a value of 0.8 and 0.3 with RMSE value. On the chlorophyll-a concentration prediction in 2016 indicate good results despite a decline in the value of the correlation, where the correlation of predicted chlorophyll-a concentration in the year 2016 indicate a value 0.6, but showed improvement in RMSE values with 0.2.Keywords: satellite, sea surface temperature, upwelling, wind stress
Procedia PDF Downloads 15823919 Design an Intelligent Fire Detection System Based on Neural Network and Particle Swarm Optimization
Authors: Majid Arvan, Peyman Beygi, Sina Rokhsati
Abstract:
In-time detection of fire in buildings is of great importance. Employing intelligent methods in data processing in fire detection systems leads to a significant reduction of fire damage at lowest cost. In this paper, the raw data obtained from the fire detection sensor networks in buildings is processed by using intelligent methods based on neural networks and the likelihood of fire happening is predicted. In order to enhance the quality of system, the noise in the sensor data is reduced by analyzing wavelets and applying SVD technique. Meanwhile, the proposed neural network is trained using particle swarm optimization (PSO). In the simulation work, the data is collected from sensor network inside the room and applied to the proposed network. Then the outputs are compared with conventional MLP network. The simulation results represent the superiority of the proposed method over the conventional one.Keywords: intelligent fire detection, neural network, particle swarm optimization, fire sensor network
Procedia PDF Downloads 38023918 Investigation of Maritime Accidents with Exploratory Data Analysis in the Strait of Çanakkale (Dardanelles)
Authors: Gizem Kodak
Abstract:
The Strait of Çanakkale, together with the Strait of Istanbul and the Sea of Marmara, form the Turkish Straits System. In other words, the Strait of Çanakkale is the southern gate of the system that connects the Black Sea countries with the other countries of the world. Due to the heavy maritime traffic, it is important to scientifically examine the accident characteristics in the region. In particular, the results indicated by the descriptive statistics are of critical importance in order to strengthen the safety of navigation. At this point, exploratory data analysis offers strategic outputs in terms of defining the problem and knowing the strengths and weaknesses against possible accident risk. The study aims to determine the accident characteristics in the Strait of Çanakkale with temporal and spatial analysis of historical data, using Exploratory Data Analysis (EDA) as the research method. The study's results will reveal the general characteristics of maritime accidents in the region and form the infrastructure for future studies. Therefore, the text provides a clear description of the research goals and methodology, and the study's contributions are well-defined.Keywords: maritime accidents, EDA, Strait of Çanakkale, navigational safety
Procedia PDF Downloads 9723917 Data Analysis to Uncover Terrorist Attacks Using Data Mining Techniques
Authors: Saima Nazir, Mustansar Ali Ghazanfar, Sanay Muhammad Umar Saeed, Muhammad Awais Azam, Saad Ali Alahmari
Abstract:
Terrorism is an important and challenging concern. The entire world is threatened by only few sophisticated terrorist groups and especially in Gulf Region and Pakistan, it has become extremely destructive phenomena in recent years. Predicting the pattern of attack type, attack group and target type is an intricate task. This study offers new insight on terrorist group’s attack type and its chosen target. This research paper proposes a framework for prediction of terrorist attacks using the historical data and making an association between terrorist group, their attack type and target. Analysis shows that the number of attacks per year will keep on increasing, and Al-Harmayan in Saudi Arabia, Al-Qai’da in Gulf Region and Tehreek-e-Taliban in Pakistan will remain responsible for many future terrorist attacks. Top main targets of each group will be private citizen & property, police, government and military sector under constant circumstances.Keywords: data mining, counter terrorism, machine learning, SVM
Procedia PDF Downloads 40923916 Forensic Challenges in Source Device Identification for Digital Videos
Authors: Mustapha Aminu Bagiwa, Ainuddin Wahid Abdul Wahab, Mohd Yamani Idna Idris, Suleman Khan
Abstract:
Video source device identification has become a problem of concern in numerous domains especially in multimedia security and digital investigation. This is because videos are now used as evidence in legal proceedings. Source device identification aim at identifying the source of digital devices using the content they produced. However, due to affordable processing tools and the influx in digital content generating devices, source device identification is still a major problem within the digital forensic community. In this paper, we discuss source device identification for digital videos by identifying techniques that were proposed in the literature for model or specific device identification. This is aimed at identifying salient open challenges for future research.Keywords: video forgery, source camcorder, device identification, forgery detection
Procedia PDF Downloads 63123915 Armed Forces Special Powers Act and Human Rights in Nagaland
Authors: Khrukulu Khusoh
Abstract:
The strategies and tactics used by governments throughout the world to counter terrorism and insurgency over the past few decades include the declaration of states of siege or martial law, enactment of anti-terrorist legislation and strengthening of judicial powers. Some of these measures taken have been more successful than the other, but some have proved counterproductive, alienating the public from the authorities and further polarizing an already fractured political environment. Such cases of alienation and polarization can be seen in the northeastern states of India. The Armed Forces (Special Powers) Act which was introduced to curb insurgency in the remote jungles of the far-flung areas has remained a telling tale of agony in the north east India. Grievous trauma to humans through encounter killings, custodial deaths, unwarranted torture, exploitation of women and children in several ways have been reported in Nagaland, Manipur and other northeastern states where the Indian army has been exercising powers under the Armed Forces (Special Powers) Act. While terrorism and the insurgency are destructive of human rights, counter-terrorism does not necessarily restore and safeguard human rights. This special law has not proven effective particularly in dealing with terrorism and insurgency. The insurgency has persisted in the state of Nagaland even after sixty years notwithstanding the presence of a good number of special laws. There is a need to fight elements that threaten the security of a nation, but the methods chosen should be measured, otherwise the fight is lost. There has been no review on the effectiveness or failure of the act to realize its intended purpose. Nor was there any attempt on the part of the state to critically look at the violation of rights of innocent citizens by the state agencies. The Indian state keeps enacting laws, but none of these could be effectively applied as there was the absence of clarity of purpose. Therefore, every new law which has been enacted time and again to deal with security threats failed to bring any solution for the last six decades. The Indian state resorts to measures which are actually not giving anything in terms of strategic benefits but are short-term victories that might result in long-term tragedies. Therefore, right thinking citizens and human rights activists across the country feel that introduction of Armed Forces (Special Powers) Act was as much violation of human rights and its continuation is undesirable. What worried everyone is the arbitrary use, or rather misuse of power by the Indian armed forces particularly against the weaker sections of the society, including women. After having being subjected to indiscriminate abuse of that law, people of the north-east India have been demanding its revocation for a long time. The present paper attempts to critically examine the violation of human rights under Armed Forces (Special Powers) Act. It also attempts to bring out the impact of Armed Forces (Special Powers) Act on the Naga people.Keywords: armed forces, insurgency, special laws, violence
Procedia PDF Downloads 49523914 Mathematical Model That Using Scrambling and Message Integrity Methods in Audio Steganography
Authors: Mohammed Salem Atoum
Abstract:
The success of audio steganography is to ensure imperceptibility of the embedded message in stego file and withstand any form of intentional or un-intentional degradation of message (robustness). Audio steganographic that utilized LSB of audio stream to embed message gain a lot of popularity over the years in meeting the perceptual transparency, robustness and capacity. This research proposes an XLSB technique in order to circumvent the weakness observed in LSB technique. Scrambling technique is introduce in two steps; partitioning the message into blocks followed by permutation each blocks in order to confuse the contents of the message. The message is embedded in the MP3 audio sample. After extracting the message, the permutation codebook is used to re-order it into its original form. Md5sum and SHA-256 are used to verify whether the message is altered or not during transmission. Experimental result shows that the XLSB performs better than LSB.Keywords: XLSB, scrambling, audio steganography, security
Procedia PDF Downloads 36323913 Solar Seawater Desalination Still with Seawater Preheater Using Efficient Heat Transfer Oil: Numerical Investigation and Data Verification
Authors: Ahmed N. Shmroukh, Gamal Tag Abdel-Jaber, Rashed D. Aldughpassi
Abstract:
The feasibility of improving the performance of the proposed solar still unit which operated in very hot climate is investigated numerically and verified with experimental data. This solar desalination unit with proposed auxiliary device as seawater preheating system using petrol based textherm oil was used to produce pure fresh water from seawater. The effective evaporation area of basin is about 1 m2. The unit was tested in two main operation modes which are normal and with seawater preheating system. The results showed that, there is good agreement between the theoretical data and the experimental data; this means that the numerical model can be accurately dependable for predicting the proposed solar still performance and design parameters. The results also showed that the fresh water productivity of the solar still in the modified preheating case which is higher than normal case, leads to an increase in productivity of 42%.Keywords: improving productivity, seawater desalination, solar stills, theoretical model
Procedia PDF Downloads 13623912 The Parallelization of Algorithm Based on Partition Principle for Association Rules Discovery
Authors: Khadidja Belbachir, Hafida Belbachir
Abstract:
subsequently the expansion of the physical supports storage and the needs ceaseless to accumulate several data, the sequential algorithms of associations’ rules research proved to be ineffective. Thus the introduction of the new parallel versions is imperative. We propose in this paper, a parallel version of a sequential algorithm “Partition”. This last is fundamentally different from the other sequential algorithms, because it scans the data base only twice to generate the significant association rules. By consequence, the parallel approach does not require much communication between the sites. The proposed approach was implemented for an experimental study. The obtained results, shows a great reduction in execution time compared to the sequential version and Count Distributed algorithm.Keywords: association rules, distributed data mining, partition, parallel algorithms
Procedia PDF Downloads 41623911 A Less Complexity Deep Learning Method for Drones Detection
Authors: Mohamad Kassab, Amal El Fallah Seghrouchni, Frederic Barbaresco, Raed Abu Zitar
Abstract:
Detecting objects such as drones is a challenging task as their relative size and maneuvering capabilities deceive machine learning models and cause them to misclassify drones as birds or other objects. In this work, we investigate applying several deep learning techniques to benchmark real data sets of flying drones. A deep learning paradigm is proposed for the purpose of mitigating the complexity of those systems. The proposed paradigm consists of a hybrid between the AdderNet deep learning paradigm and the Single Shot Detector (SSD) paradigm. The goal was to minimize multiplication operations numbers in the filtering layers within the proposed system and, hence, reduce complexity. Some standard machine learning technique, such as SVM, is also tested and compared to other deep learning systems. The data sets used for training and testing were either complete or filtered in order to remove the images with mall objects. The types of data were RGB or IR data. Comparisons were made between all these types, and conclusions were presented.Keywords: drones detection, deep learning, birds versus drones, precision of detection, AdderNet
Procedia PDF Downloads 18223910 The Quality Assessment of Seismic Reflection Survey Data Using Statistical Analysis: A Case Study of Fort Abbas Area, Cholistan Desert, Pakistan
Authors: U. Waqas, M. F. Ahmed, A. Mehmood, M. A. Rashid
Abstract:
In geophysical exploration surveys, the quality of acquired data holds significant importance before executing the data processing and interpretation phases. In this study, 2D seismic reflection survey data of Fort Abbas area, Cholistan Desert, Pakistan was taken as test case in order to assess its quality on statistical bases by using normalized root mean square error (NRMSE), Cronbach’s alpha test (α) and null hypothesis tests (t-test and F-test). The analysis challenged the quality of the acquired data and highlighted the significant errors in the acquired database. It is proven that the study area is plain, tectonically least affected and rich in oil and gas reserves. However, subsurface 3D modeling and contouring by using acquired database revealed high degrees of structural complexities and intense folding. The NRMSE had highest percentage of residuals between the estimated and predicted cases. The outcomes of hypothesis testing also proved the biasness and erraticness of the acquired database. Low estimated value of alpha (α) in Cronbach’s alpha test confirmed poor reliability of acquired database. A very low quality of acquired database needs excessive static correction or in some cases, reacquisition of data is also suggested which is most of the time not feasible on economic grounds. The outcomes of this study could be used to assess the quality of large databases and to further utilize as a guideline to establish database quality assessment models to make much more informed decisions in hydrocarbon exploration field.Keywords: Data quality, Null hypothesis, Seismic lines, Seismic reflection survey
Procedia PDF Downloads 16423909 The Uniting Control Lyapunov Functions in Permanent Magnet Synchronous Linear Motor
Authors: Yi-Fei Yang, Nai-Bao He, Shao-Bang Xing
Abstract:
This study investigates the permanent magnet synchronous linear motor (PMSLM) chaotic motion under the specific physical parameters, the stability and the security of motor-driven system will be unavoidably influenced. Therefore, it is really necessary to investigate the methods of controlling or suppressing chaos in PMSLM. Firstly, we derive a chaotic model of PMSLM in the closed-loop system. Secondly, in order to realize the local asymptotic stabilization of the mechanical subsystem and the global stabilization of the motor-driven system including electrical subsystem, we propose an improved uniting control lyapunov functions by introducing backstepping approach. Finally, an illustrated example is also given to show the electiveness of the obtained results.Keywords: linear motor, lyapunov functions, chao control, hybrid controller
Procedia PDF Downloads 33823908 Sparsity-Based Unsupervised Unmixing of Hyperspectral Imaging Data Using Basis Pursuit
Authors: Ahmed Elrewainy
Abstract:
Mixing in the hyperspectral imaging occurs due to the low spatial resolutions of the used cameras. The existing pure materials “endmembers” in the scene share the spectra pixels with different amounts called “abundances”. Unmixing of the data cube is an important task to know the present endmembers in the cube for the analysis of these images. Unsupervised unmixing is done with no information about the given data cube. Sparsity is one of the recent approaches used in the source recovery or unmixing techniques. The l1-norm optimization problem “basis pursuit” could be used as a sparsity-based approach to solve this unmixing problem where the endmembers is assumed to be sparse in an appropriate domain known as dictionary. This optimization problem is solved using proximal method “iterative thresholding”. The l1-norm basis pursuit optimization problem as a sparsity-based unmixing technique was used to unmix real and synthetic hyperspectral data cubes.Keywords: basis pursuit, blind source separation, hyperspectral imaging, spectral unmixing, wavelets
Procedia PDF Downloads 19523907 Survivable IP over WDM Network Design Based on 1 ⊕ 1 Network Coding
Authors: Nihed Bahria El Asghar, Imen Jouili, Mounir Frikha
Abstract:
Inter-datacenter transport network is very bandwidth and delay demanding. The data transferred over such a network is also highly QoS-exigent mostly because a huge volume of data should be transported transparently with regard to the application user. To avoid the data transfer failure, a backup path should be reserved. No re-routing delay should be observed. A dedicated 1+1 protection is however not applicable in inter-datacenter transport network because of the huge spare capacity. In this context, we propose a survivable virtual network with minimal backup based on network coding (1 ⊕ 1) and solve it using a modified Dijkstra-based heuristic.Keywords: network coding, dedicated protection, spare capacity, inter-datacenters transport network
Procedia PDF Downloads 44723906 Prevalence and Hypertension Management among the Nomadic Migratory Community of Marsabit County, Kenya: Lessons Learned and Wayforward
Authors: Wesley Too, Christine Chesiror
Abstract:
Hypertension is a public health challenge that globally, with the World Health Organization estimating that by 2025, more than 1.5 billion people would have been diagnosed with it. Kenya’s prevalence of hypertension is estimated at 24.6 percent; however, 55% of the affected have uncontrolled blood pressure, which is worst in some parts of the country with different lifestyle: nomads and migratory communities. Kenyan pastoralists comprise 20% of the nation's population and are constantly on the move for search of water, pasture for their herd, and desertification have driven nomadic populations to the brink, given their unique and dynamic challenges. Nomads face myriad of challenges and barriers towards the management of their health care problems. Nomadic area is predominantly rural, with a low population density and a nomadic population. Health care access and quality are further hampered by poor telecommunications, infrastructure, and security. In Kenya, nomadic communities experience the worst health outcomes, disproportionate health disparities, and inequalities due to unresponsive, culturally sensitive health care system to nomad’s lifestyle and their health care needs. Marsabit covering a surface area of 66,923.1 km2, is the second largest county in Kenya, constituting about 2.3 million people of North-Eastern region, with only 2.3 percent and 1.9 percent of Kenya's total number of doctors and nurses in the country. In Kenya, there are scanty research on hypertension managementin this region and, at best, non-existent study on hypertension among nomads-migratory communities of Northern Kenya. Therefore, the purpose seeks to determine the prevalence of hypertension among nomads and document nomads' practices regarding early detections, management, and levels of control of hypertension in one of the Counties in Kenya with high- hypertensive case load per year. Methods: A cross-sectional study design was used to collect data from multiple sites and health facilities. A total of 260 participants were enrolled into the study. The study is currently ongoing. It is anticipated that by September, we will have initial findings & recommendations to share for conferenceKeywords: pastoralists, hypertension, health, kenya
Procedia PDF Downloads 10923905 Factors Affecting Expectations and Intentions of University Students’ Mobile Phone Use in Educational Contexts
Authors: Davut Disci
Abstract:
Objective: to measure the factors affecting expectations and intentions of using mobile phone in educational contexts by university students, using advanced equations and modeling techniques. Design and Methodology: According to the literature, Mobile Addiction, Parental Surveillance- Safety/Security, Social Relations, and Mobile Behavior are most used terms of defining mobile use of people. Therefore these variables are tried to be measured to find and estimate their effects on expectations and intentions of using mobile phone in educational context. 421 university students participated in this study and there are 229 Female and 192 Male students. For the purpose of examining the mobile behavior and educational expectations and intentions, a questionnaire is prepared and applied to the participants who had to answer all the questions online. Furthermore, responses to close-ended questions are analyzed by using The Statistical Package for Social Sciences(SPSS) software, reliabilities are measured by Cronbach’s Alpha analysis and hypothesis are examined via using Multiple Regression and Linear Regression analysis and the model is tested with Structural Equation Modeling(SEM) technique which is important for testing the model scientifically. Besides these responses, open-ended questions are taken into consideration. Results: When analyzing data gathered from close-ended questions, it is found that Mobile Addiction, Parental Surveillance, Social Relations and Frequency of Using Mobile Phone Applications are affecting the mobile behavior of the participants in different levels, helping them to use mobile phone in educational context. Moreover, as for open-ended questions, participants stated that they use many mobile applications in their learning environment in terms of contacting with friends, watching educational videos, finding course material via internet. They also agree in that mobile phone brings greater flexibility to their lives. According to the SEM results the model is not evaluated and it can be said that it may be improved to show in SEM besides in multiple regression. Conclusion: This study shows that the specified model can be used by educationalist, school authorities to improve their learning environment.Keywords: education, mobile behavior, mobile learning, technology, Turkey
Procedia PDF Downloads 42123904 Factors Affecting Expectations and Intentions of University Students in Educational Context
Authors: Davut Disci
Abstract:
Objective: to measure the factors affecting expectations and intentions of using mobile phone in educational contexts by university students, using advanced equations and modeling techniques. Design and Methodology: According to the literature, Mobile Addiction, Parental Surveillance-Safety/Security, Social Relations, and Mobile Behavior are most used terms of defining mobile use of people. Therefore, these variables are tried to be measured to find and estimate their effects on expectations and intentions of using mobile phone in educational context. 421 university students participated in this study and there are 229 Female and 192 Male students. For the purpose of examining the mobile behavior and educational expectations and intentions, a questionnaire is prepared and applied to the participants who had to answer all the questions online. Furthermore, responses to close-ended questions are analyzed by using The Statistical Package for Social Sciences(SPSS) software, reliabilities are measured by Cronbach’s Alpha analysis and hypothesis are examined via using Multiple Regression and Linear Regression analysis and the model is tested with Structural Equation Modeling (SEM) technique which is important for testing the model scientifically. Besides these responses, open-ended questions are taken into consideration. Results: When analyzing data gathered from close-ended questions, it is found that Mobile Addiction, Parental Surveillance, Social Relations and Frequency of Using Mobile Phone Applications are affecting the mobile behavior of the participants in different levels, helping them to use mobile phone in educational context. Moreover, as for open-ended questions, participants stated that they use many mobile applications in their learning environment in terms of contacting with friends, watching educational videos, finding course material via internet. They also agree in that mobile phone brings greater flexibility to their lives. According to the SEM results the model is not evaluated and it can be said that it may be improved to show in SEM besides in multiple regression. Conclusion: This study shows that the specified model can be used by educationalist, school authorities to improve their learning environment.Keywords: learning technology, instructional technology, mobile learning, technology
Procedia PDF Downloads 45223903 Fertilizer Procurement and Distribution in Nigeria: Assessing Policy against Implementation
Authors: Jacob Msughter Gwa, Rhys Williams
Abstract:
It is widely known that food security is a major concern in Sub-Saharan Africa. In many regions, including Nigeria, this is due to an agriculture-old problem of soil erosion beyond replacement levels. It seems that the use of fertilizer would be an immediate solution as it can boost agricultural productivity, and low agricultural productivity is attributed to the low use of fertilizers in Nigeria. The Government of Nigeria has been addressing the challenges of food shortage but with limited success. The utilisation of a practical and efficient subsidy programme in addressing this issue seems to be needed. However, the problem of procurement and distribution changes from one stage of subsidy to another. This paper looks at the difference between the ideal and the actual implementation of agricultural fertilizer policies in Nigeria, as it currently runs the risk of meeting required standards on paper but missing the desired real outcomes, and recognises the need to close the gap between the paper work and the realities on the ground.Keywords: agricultural productivity, fertilizer distribution, fertilizer procurement, Nigeria
Procedia PDF Downloads 36823902 Distant Speech Recognition Using Laser Doppler Vibrometer
Authors: Yunbin Deng
Abstract:
Most existing applications of automatic speech recognition relies on cooperative subjects at a short distance to a microphone. Standoff speech recognition using microphone arrays can extend the subject to sensor distance somewhat, but it is still limited to only a few feet. As such, most deployed applications of standoff speech recognitions are limited to indoor use at short range. Moreover, these applications require air passway between the subject and the sensor to achieve reasonable signal to noise ratio. This study reports long range (50 feet) automatic speech recognition experiments using a Laser Doppler Vibrometer (LDV) sensor. This study shows that the LDV sensor modality can extend the speech acquisition standoff distance far beyond microphone arrays to hundreds of feet. In addition, LDV enables 'listening' through the windows for uncooperative subjects. This enables new capabilities in automatic audio and speech intelligence, surveillance, and reconnaissance (ISR) for law enforcement, homeland security and counter terrorism applications. The Polytec LDV model OFV-505 is used in this study. To investigate the impact of different vibrating materials, five parallel LDV speech corpora, each consisting of 630 speakers, are collected from the vibrations of a glass window, a metal plate, a plastic box, a wood slate, and a concrete wall. These are the common materials the application could encounter in a daily life. These data were compared with the microphone counterpart to manifest the impact of various materials on the spectrum of the LDV speech signal. State of the art deep neural network modeling approaches is used to conduct continuous speaker independent speech recognition on these LDV speech datasets. Preliminary phoneme recognition results using time-delay neural network, bi-directional long short term memory, and model fusion shows great promise of using LDV for long range speech recognition. To author’s best knowledge, this is the first time an LDV is reported for long distance speech recognition application.Keywords: covert speech acquisition, distant speech recognition, DSR, laser Doppler vibrometer, LDV, speech intelligence surveillance and reconnaissance, ISR
Procedia PDF Downloads 17923901 The Necessity to Standardize Procedures of Providing Engineering Geological Data for Designing Road and Railway Tunneling Projects
Authors: Atefeh Saljooghi Khoshkar, Jafar Hassanpour
Abstract:
One of the main problems of the design stage relating to many tunneling projects is the lack of an appropriate standard for the provision of engineering geological data in a predefined format. In particular, this is more reflected in highway and railroad tunnel projects in which there is a number of tunnels and different professional teams involved. In this regard, comprehensive software needs to be designed using the accepted methods in order to help engineering geologists to prepare standard reports, which contain sufficient input data for the design stage. Regarding this necessity, applied software has been designed using macro capabilities and Visual Basic programming language (VBA) through Microsoft Excel. In this software, all of the engineering geological input data, which are required for designing different parts of tunnels, such as discontinuities properties, rock mass strength parameters, rock mass classification systems, boreability classification, the penetration rate, and so forth, can be calculated and reported in a standard format.Keywords: engineering geology, rock mass classification, rock mechanic, tunnel
Procedia PDF Downloads 8123900 The Underestimate of the Annual Maximum Rainfall Depths Due to Coarse Time Resolution Data
Authors: Renato Morbidelli, Carla Saltalippi, Alessia Flammini, Tommaso Picciafuoco, Corrado Corradini
Abstract:
A considerable part of rainfall data to be used in the hydrological practice is available in aggregated form within constant time intervals. This can produce undesirable effects, like the underestimate of the annual maximum rainfall depth, Hd, associated with a given duration, d, that is the basic quantity in the development of rainfall depth-duration-frequency relationships and in determining if climate change is producing effects on extreme event intensities and frequencies. The errors in the evaluation of Hd from data characterized by a coarse temporal aggregation, ta, and a procedure to reduce the non-homogeneity of the Hd series are here investigated. Our results indicate that: 1) in the worst conditions, for d=ta, the estimation of a single Hd value can be affected by an underestimation error up to 50%, while the average underestimation error for a series with at least 15-20 Hd values, is less than or equal to 16.7%; 2) the underestimation error values follow an exponential probability density function; 3) each very long time series of Hd contains many underestimated values; 4) relationships between the non-dimensional ratio ta/d and the average underestimate of Hd, derived from continuous rainfall data observed in many stations of Central Italy, may overcome this issue; 5) these equations should allow to improve the Hd estimates and the associated depth-duration-frequency curves at least in areas with similar climatic conditions.Keywords: central Italy, extreme events, rainfall data, underestimation errors
Procedia PDF Downloads 19123899 Reliability Evaluation of a Payment Model in Mobile E-Commerce Using Colored Petri Net
Authors: Abdolghader Pourali, Mohammad V. Malakooti, Muhammad Hussein Yektaie
Abstract:
A mobile payment system in mobile e-commerce generally have high security so that the user can trust it for doing business deals, sales, paying financial transactions, etc. in the mobile payment system. Since an architecture or payment model in e-commerce only shows the way of interaction and collaboration among users and mortgagers and does not present any evaluation of effectiveness and confidence about financial transactions to stakeholders. In this paper, we try to present a detailed assessment of the reliability of a mobile payment model in the mobile e-commerce using formal models and colored Petri nets. Finally, we demonstrate that the reliability of this system has high value (case study: a secure payment model in mobile commerce.Keywords: reliability, colored Petri net, assessment, payment models, m-commerce
Procedia PDF Downloads 53723898 Comparative Analysis of Smart City Development: Assessing the Resilience and Technological Advancement in Singapore and Bucharest
Authors: Sînziana Iancu
Abstract:
In an era marked by rapid urbanization and technological advancement, the concept of smart cities has emerged as a pivotal solution to address the complex challenges faced by urban centres. As cities strive to enhance the quality of life for their residents, the development of smart cities has gained prominence. This study embarks on a comparative analysis of two distinct smart city models, Singapore and Bucharest, to assess their resilience and technological advancements. The significance of this study lies in its potential to provide valuable insights into the strategies, strengths, and areas of improvement in smart city development, ultimately contributing to the advancement of urban planning and sustainability. Methodologies: This comparative study employs a multifaceted approach to comprehensively analyse the smart city development in Singapore and Bucharest: * Comparative Analysis: A systematic comparison of the two cities is conducted, focusing on key smart city indicators, including digital infrastructure, integrated public services, urban planning and sustainability, transportation and mobility, environmental monitoring, safety and security, innovation and economic resilience, and community engagement; * Case Studies: In-depth case studies are conducted to delve into specific smart city projects and initiatives in both cities, providing real-world examples of their successes and challenges; * Data Analysis: Official reports, statistical data, and relevant publications are analysed to gather quantitative insights into various aspects of smart city development. Major Findings: Through a comprehensive analysis of Singapore and Bucharest's smart city development, the study yields the following major findings: * Singapore excels in digital infrastructure, integrated public services, safety, and innovation, showcasing a high level of resilience across these domains; * Bucharest is in the early stages of smart city development, with notable potential for growth in digital infrastructure and community engagement.; * Both cities exhibit a commitment to sustainable urban planning and environmental monitoring, with room for improvement in integrating these aspects into everyday life; * Transportation and mobility solutions are a priority for both cities, with Singapore having a more advanced system, while Bucharest is actively working on improving its transportation infrastructure; * Community engagement, while important, requires further attention in both cities to enhance the inclusivity of smart city initiatives. Conclusion: In conclusion, this study serves as a valuable resource for urban planners, policymakers, and stakeholders in understanding the nuances of smart city development and resilience. While Singapore stands as a beacon of success in various smart city indicators, Bucharest demonstrates potential and a willingness to adapt and grow in this domain. As cities worldwide embark on their smart city journeys, the lessons learned from Singapore and Bucharest provide invaluable insights into the path toward urban sustainability and resilience in the digital age.Keywords: bucharest, resilience, Singapore, smart city
Procedia PDF Downloads 6923897 Synthesis of CeF3:Sm3+ Nanophosphor for Biological Applications
Authors: Mayuri Gandhi, Nayan Agrawal, Harshita Bhatia
Abstract:
In the present work, cerium fluoride (CeF3) was selected as the host material because of its high density, fast response and high radiation resistance, efficient absorption and energy transfer by host (to activator). For the synthesis of CeF3 nanoparticles doped with Sm3+ ion, co-precipitation route was employed. Thus for optimum results, concentration dependent studies of the fluorescence of Sm3+ was carried out. The photoluminescence gave emissions in both visible as well as the NIR region and therefore it can have its application in solar cells, where it can absorb a large spectrum of energy. CeF3:Sm3+ nanoparticles were carefully incorporated in a suitable polymer matrix in order to demonstrate a variety of applications to improve the performance of the polymer materials and use it to develop high grade optoelectronic devices such as LEDs, security labelling, lasers, displays, biological imaging, etc.Keywords: bioimaging, cerium fluoride, NIR emission, samarium
Procedia PDF Downloads 418