Search results for: robotic experiments
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3510

Search results for: robotic experiments

450 Design and Test a Robust Bearing-Only Target Motion Analysis Algorithm Based on Modified Gain Extended Kalman Filter

Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy

Abstract:

Passive sonar is a method for detecting acoustic signals in the ocean. It detects the acoustic signals emanating from external sources. With passive sonar, we can determine the bearing of the target only, no information about the range of the target. Target Motion Analysis (TMA) is a process to estimate the position and speed of a target using passive sonar information. Since bearing is the only available information, the TMA technique called Bearing-only TMA. Many TMA techniques have been developed. However, until now, there is not a very effective method that could be used to always track an unknown target and extract its moving trace. In this work, a design of effective Bearing-only TMA Algorithm is done. The measured bearing angles are very noisy. Moreover, for multi-beam sonar, the measurements is quantized due to the sonar beam width. To deal with this, modified gain extended Kalman filter algorithm is used. The algorithm is fine-tuned, and many modules are added to improve the performance. A special validation gate module is used to insure stability of the algorithm. Many indicators of the performance and confidence level measurement are designed and tested. A new method to detect if the target is maneuvering is proposed. Moreover, a reactive optimal observer maneuver based on bearing measurements is proposed, which insure converging to the right solution all of the times. To test the performance of the proposed TMA algorithm a simulation is done with a MATLAB program. The simulator program tries to model a discrete scenario for an observer and a target. The simulator takes into consideration all the practical aspects of the problem such as a smooth transition in the speed, a circular turn of the ship, noisy measurements, and a quantized bearing measurement come for multi-beam sonar. The tests are done for a lot of given test scenarios. For all the tests, full tracking is achieved within 10 minutes with very little error. The range estimation error was less than 5%, speed error less than 5% and heading error less than 2 degree. For the online performance estimator, it is mostly aligned with the real performance. The range estimation confidence level gives a value equal to 90% when the range error less than 10%. The experiments show that the proposed TMA algorithm is very robust and has low estimation error. However, the converging time of the algorithm is needed to be improved.

Keywords: target motion analysis, Kalman filter, passive sonar, bearing-only tracking

Procedia PDF Downloads 402
449 Experimental Study on Heat and Mass Transfer of Humidifier for Fuel Cell

Authors: You-Kai Jhang, Yang-Cheng Lu

Abstract:

Major contributions of this study are threefold: designing a new model of planar-membrane humidifier for Proton Exchange Membrane Fuel Cell (PEMFC), an index to measure the Effectiveness (εT) of that humidifier, and an air compressor system to replicate related planar-membrane humidifier experiments. PEMFC as a kind of renewable energy has become more and more important in recent years due to its reliability and durability. To maintain the efficiency of the fuel cell, the membrane of PEMFC need to be controlled in a good hydration condition. How to maintain proper membrane humidity is one of the key issues to optimize PEMFC. We developed new humidifier to recycle water vapor from cathode air outlet so as to keep the moisture content of cathode air inlet in a PEMFC. By measuring parameters such as dry side air outlet dew point temperature, dry side air inlet temperature and humidity, wet side air inlet temperature and humidity, and differential pressure between dry side and wet side, we calculated indices obtained by dew point approach temperature (DPAT), water flux (J), water recovery ratio (WRR), effectiveness (εT), and differential pressure (ΔP). We discussed six topics including sealing effect, flow rate effect, flow direction effect, channel effect, temperature effect, and humidity effect by using these indices. Gas cylinders are used as sources of air supply in many studies of humidifiers. Gas cylinder depletes quickly during experiment at 1kW air flow rate, and it causes replication difficult. In order to ensure high stable air quality and better replication of experimental data, this study designs an air supply system to overcome this difficulty. The experimental result shows that the best rate of pressure loss of humidifier is 0.133×10³ Pa(g)/min at the torque of 25 (N.m). The best humidifier performance ranges from 30-40 (LPM) of air flow rates. The counter flow configured humidifies moisturizes the dry side inlet air more effectively than the parallel flow humidifier. From the performance measurements of the channel plates various rib widths studied in this study, it is found that the narrower the rib width is, the more the performance of humidifier improves. Raising channel width in same hydraulic diameter (Dh ) will obtain higher εT and lower ΔP. Moreover, increasing the dry side air inlet temperature or humidity will lead to lower εT. In addition, when the dry side air inlet temperature exceeds 50°C, the effect becomes even more obvious.

Keywords: PEM fuel cell, water management, membrane humidifier, heat and mass transfer, humidifier performance

Procedia PDF Downloads 176
448 Nanoporous Metals Reinforced with Fullerenes

Authors: Deni̇z Ezgi̇ Gülmez, Mesut Kirca

Abstract:

Nanoporous (np) metals have attracted considerable attention owing to their cellular morphological features at atomistic scale which yield ultra-high specific surface area awarding a great potential to be employed in diverse applications such as catalytic, electrocatalytic, sensing, mechanical and optical. As one of the carbon based nanostructures, fullerenes are also another type of outstanding nanomaterials that have been extensively investigated due to their remarkable chemical, mechanical and optical properties. In this study, the idea of improving the mechanical behavior of nanoporous metals by inclusion of the fullerenes, which offers a new metal-carbon nanocomposite material, is examined and discussed. With this motivation, tensile mechanical behavior of nanoporous metals reinforced with carbon fullerenes is investigated by classical molecular dynamics (MD) simulations. Atomistic models of the nanoporous metals with ultrathin ligaments are obtained through a stochastic process simply based on the intersection of spherical volumes which has been used previously in literature. According to this technique, the atoms within the ensemble of intersecting spherical volumes is removed from the pristine solid block of the selected metal, which results in porous structures with spherical cells. Following this, fullerene units are added into the cellular voids to obtain final atomistic configurations for the numerical tensile tests. Several numerical specimens are prepared with different number of fullerenes per cell and with varied fullerene sizes. LAMMPS code was used to perform classical MD simulations to conduct uniaxial tension experiments on np models filled by fullerenes. The interactions between the metal atoms are modeled by using embedded atomic method (EAM) while adaptive intermolecular reactive empirical bond order (AIREBO) potential is employed for the interaction of carbon atoms. Furthermore, atomic interactions between the metal and carbon atoms are represented by Lennard-Jones potential with appropriate parameters. In conclusion, the ultimate goal of the study is to present the effects of fullerenes embedded into the cellular structure of np metals on the tensile response of the porous metals. The results are believed to be informative and instructive for the experimentalists to synthesize hybrid nanoporous materials with improved properties and multifunctional characteristics.

Keywords: fullerene, intersecting spheres, molecular dynamic, nanoporous metals

Procedia PDF Downloads 239
447 In vitro Callus Production from Lantana Camara: A Step towards Biotransformation Studies

Authors: Maged El-Sayed Mohamed

Abstract:

Plant tissue culture practices are presented nowadays as the most promising substitute to a whole plant in the terms of secondary metabolites production. They offer the advantages of high production, tunability and they have less effect on plant ecosystems. Lantana camara is a weed, which is common all over the world as an ornamental plant. Weeds can adapt to any type of soil and climate due to their rich cellular machinery for secondary metabolites’ production. This characteristic is found in Lantana camara as a plant of very rich diversity of secondary metabolites with no dominant class of compounds. Aim: This trait has encouraged the author to develop tissue culture experiments for Lantana camara to be a platform for production and manipulation of secondary metabolites through biotransformation. Methodology: The plant was collected in its flowering stage in September 2014, from which explants were prepared from shoot tip, auxiliary bud and leaf. Different types of culture media were tried as well as four phytohormones and their combinations; NAA, 2,4-D, BAP and kinetin. Explants were grown in dark or in 12 hours dark and light cycles at 25°C. A metabolic profile for the produced callus was made and then compared to the whole plant profile. The metabolic profile was made using GC-MS for volatile constituents (extracted by n-hexane) and by HPLC-MS and capillary electrophoresis-mass spectrometry (CE-MS) for non-volatile constituents (extracted by ethanol and water). Results: The best conditions for the callus induction was achieved using MS media supplied with 30 gm sucrose and NAA/BAP (1:0.2 mg/L). Initiation of callus was favoured by incubation in dark for 20 day. The callus produced under these conditions showed yellow colour, which changed to brownish after 30 days. The rate of callus growth was high, expressed in the callus diameter, which reached to 1.15±0.2 cm in 30 days; however, the induction of callus delayed for 15 days. The metabolic profile for both volatile and non-volatile constituents of callus showed more simple background metabolites than the whole plant with two new (unresolved) peaks in the callus’ nonvolatile constituents’ chromatogram. Conclusion: Lantana camara callus production can be itself a source of new secondary metabolites and could be used for biotransformation studies due to its simple metabolic background, which allow easy identification of newly formed metabolites. The callus production gathered the simple metabolic background with the rich cellular secondary metabolite machinery of the plant, which could be elicited to produce valuable medicinally active products.

Keywords: capillary electrophoresis-mass spectrometry, gas chromatography, metabolic profile, plant tissue culture

Procedia PDF Downloads 387
446 Feasibility Study and Experiment of On-Site Nuclear Material Identification in Fukushima Daiichi Fuel Debris by Compact Neutron Source

Authors: Yudhitya Kusumawati, Yuki Mitsuya, Tomooki Shiba, Mitsuru Uesaka

Abstract:

After the Fukushima Daiichi nuclear power reactor incident, there are a lot of unaccountable nuclear fuel debris in the reactor core area, which is subject to safeguard and criticality safety. Before the actual precise analysis is performed, preliminary on-site screening and mapping of nuclear debris activity need to be performed to provide a reliable data on the nuclear debris mass-extraction planning. Through a collaboration project with Japan Atomic Energy Agency, an on-site nuclear debris screening system by using dual energy X-Ray inspection and neutron energy resonance analysis has been established. By using the compact and mobile pulsed neutron source constructed from 3.95 MeV X-Band electron linac, coupled with Tungsten as electron-to-photon converter and Beryllium as a photon-to-neutron converter, short-distance neutron Time of Flight measurement can be performed. Experiment result shows this system can measure neutron energy spectrum up to 100 eV range with only 2.5 meters Time of Flightpath in regards to the X-Band accelerator’s short pulse. With this, on-site neutron Time of Flight measurement can be used to identify the nuclear debris isotope contents through Neutron Resonance Transmission Analysis (NRTA). Some preliminary NRTA experiments have been done with Tungsten sample as dummy nuclear debris material, which isotopes Tungsten-186 has close energy absorption value with Uranium-238 (15 eV). The results obtained shows that this system can detect energy absorption in the resonance neutron area within 1-100 eV. It can also detect multiple elements in a material at once with the experiment using a combined sample of Indium, Tantalum, and silver makes it feasible to identify debris containing mixed material. This compact neutron Time of Flight measurement system is a great complementary for dual energy X-Ray Computed Tomography (CT) method that can identify atomic number quantitatively but with 1-mm spatial resolution and high error bar. The combination of these two measurement methods will able to perform on-site nuclear debris screening at Fukushima Daiichi reactor core area, providing the data for nuclear debris activity mapping.

Keywords: neutron source, neutron resonance, nuclear debris, time of flight

Procedia PDF Downloads 238
445 Crop Productivity, Nutrient Uptake and Apparent Balance for Rice Based Cropping Systems under Improved Crop Varieties and Nutrient Management Practices in Previous Enclaves of Bangladesh

Authors: Md. Samim Hossain Molla, Md. Mazharul Anwar, Md. Akkas Ali, Mian Sayeed Hassan

Abstract:

Being detached about 68 years from the mainland, the previous enclaves’ (Chhitmohal) farmers were engaged only in subsistence farming with low agricultural productivity and restricted access to inputs technology. To increase crop productivity for attaining food security by addressing soil status, the experiments were undertaken in 2017 and 2018 in three previous enclaves of Northern Bangladesh i.e. Dasiarchhara of Kurigram district; Dahalakhagrabari of Panchagarh district and Banskata of Lalmonirhat district under On-Farm Research Division, Bangladesh Agricultural Research Institute, Rangpur. The Mustard (var. BARI Sarisha-14)-Boro rice (var. BRRI dhan58)-T. Aman rice (var. BRRI dhan49) cropping pattern using soil test based (STB) fertilizer with cowdung (T1) or recommended fertilizer dose (T2) were tested against existing cropping pattern Fallow-Boro rice (var. BRRI dhan28)-T. Aman rice (var. Swarna) using farmers’ practices fertilizer dose (T3) in six disperse replications at each location maintaining Randomized Complete Block design. Almost all crops yields were relatively higher in T1 followed by T2. Farmers existing pattern with local varieties and imbalance fertilizer (T3) use may be decreased the crop yield. The rice equivalent yield of T1 was 109, 103 and 95% higher than T3 and the gross margin was 164, 153 and 133% higher in T1 than T3 at Dasiarchhara, Dahalakhagrabari and Banskata, respectively. The Benefit Cost Ratio for T1, T2 and T3 were 1.99, 1.78 and 1.28 in Dasiarchhara; 1.93, 1.81 and 1.27 in Dahalakhagrabari and 1.78, 1.71 and 1.25 in Banskata, respectively. There was a remarkable decrease in mineral N, P and K in the topsoil (0–15 cm) of T3 and T2 treatments at Dasiarchhara and Dahalakhagrabari, and a generally less marked decline under the same treatments at Banskata. The same practices (T1) exhibited the greatest nutrients uptake by the test crops. The apparent balance of N, P and K was negative in most cases, where it was less negative in T1 treatment. However, from the experimentation, it is revealed that balanced fertilization (STB) and inclusion of National Agricultural Research Institutes developed improved crops varieties in cropping pattern may increase the crop productivity, farm efficiency and farmer’s income in a remarkable level.

Keywords: cropping pattern, fertilizer management, nutrient balance, previous enclaves

Procedia PDF Downloads 145
444 2D Titanium, Vanadium Carbide Mxene, and Polyaniline Heterostructures for Electrochemical Energy Storage

Authors: Ayomide A. Sijuade, Nafiza Anjum

Abstract:

The rising demand to meet the need for clean and sustainable energy solutions has led the market to create effective energy storage technologies. In this study, we look at the possibility of using a heterostructure made of polyaniline (PANI), titanium carbide (Ti₃C₂), and vanadium carbide (V₂C) for energy storage devices. V₂C is a two-dimensional transition metal carbide with remarkable mechanical and electrical conductivity. Ti₃C2 has solid thermal conductivity and mechanical strength. PANI, on the other hand, is a conducting polymer with customizable electrical characteristics and environmental stability. Layer-by-layer assembly creates the heterostructure of V₂C, Ti₃C₂, and PANI, allowing for precise film thickness and interface quality control. Structural and morphological characterization is carried out using X-ray diffraction, scanning electron microscopy, and atomic force microscopy. For energy storage applications, the heterostructure’s electrochemical performance is assessed. Electrochemical experiments, such as cyclic voltammetry and galvanostatic charge-discharge tests, examine the heterostructure’s charge storage capacity, cycle stability, and rate performance. Comparing the heterostructure to the individual components reveals better energy storage capabilities. V₂C, Ti₃C₂, and PANI synergize to increase specific capacitance, boost charge storage, and prolong cycling stability. The heterostructure’s unique arrangement of 2D materials and conducting polymers promotes effective ion diffusion and charge transfer processes, improving the effectiveness of energy storage. The heterostructure also exhibits remarkable electrochemical stability, which minimizes capacity loss after repeated cycling. The longevity and long-term dependability of energy storage systems depend on this quality. By examining the potential of V₂C, Ti₃C₂, and PANI heterostructures, the results of this study expand energy storage technology. These materials’ specialized integration and design show potential for use in hybrid energy storage systems, lithium-ion batteries, and supercapacitors. Overall, the development of high-performance energy storage devices utilizing V₂C, Ti₃C₂, and PANI heterostructures is clarified by this research, opening the door to the realization of effective, long-lasting, and eco-friendly energy storage solutions to satisfy the demands of the modern world.

Keywords: MXenes, energy storage materials, conductive polymers, composites

Procedia PDF Downloads 57
443 Laser-Dicing Modeling: Implementation of a High Accuracy Tool for Laser-Grooving and Cutting Application

Authors: Jeff Moussodji, Dominique Drouin

Abstract:

The highly complex technology requirements of today’s integrated circuits (ICs), lead to the increased use of several materials types such as metal structures, brittle and porous low-k materials which are used in both front end of line (FEOL) and back end of line (BEOL) process for wafer manufacturing. In order to singulate chip from wafer, a critical laser-grooving process, prior to blade dicing, is used to remove these layers of materials out of the dicing street. The combination of laser-grooving and blade dicing allows to reduce the potential risk of induced mechanical defects such micro-cracks, chipping, on the wafer top surface where circuitry is located. It seems, therefore, essential to have a fundamental understanding of the physics involving laser-dicing in order to maximize control of these critical process and reduce their undesirable effects on process efficiency, quality, and reliability. In this paper, the study was based on the convergence of two approaches, numerical and experimental studies which allowed us to investigate the interaction of a nanosecond pulsed laser and BEOL wafer materials. To evaluate this interaction, several laser grooved samples were compared with finite element modeling, in which three different aspects; phase change, thermo-mechanical and optic sensitive parameters were considered. The mathematical model makes it possible to highlight a groove profile (depth, width, etc.) of a single pulse or multi-pulses on BEOL wafer material. Moreover, the heat affected zone, and thermo-mechanical stress can be also predicted as a function of laser operating parameters (power, frequency, spot size, defocus, speed, etc.). After modeling validation and calibration, a satisfying correlation between experiment and modeling, results have been observed in terms of groove depth, width and heat affected zone. The study proposed in this work is a first step toward implementing a quick assessment tool for design and debug of multiple laser grooving conditions with limited experiments on hardware in industrial application. More correlations and validation tests are in progress and will be included in the full paper.

Keywords: laser-dicing, nano-second pulsed laser, wafer multi-stack, multiphysics modeling

Procedia PDF Downloads 209
442 An Experimental Investigation of the Cognitive Noise Influence on the Bistable Visual Perception

Authors: Alexander E. Hramov, Vadim V. Grubov, Alexey A. Koronovskii, Maria K. Kurovskaуa, Anastasija E. Runnova

Abstract:

The perception of visual signals in the brain was among the first issues discussed in terms of multistability which has been introduced to provide mechanisms for information processing in biological neural systems. In this work the influence of the cognitive noise on the visual perception of multistable pictures has been investigated. The study includes an experiment with the bistable Necker cube illusion and the theoretical background explaining the obtained experimental results. In our experiments Necker cubes with different wireframe contrast were demonstrated repeatedly to different people and the probability of the choice of one of the cubes projection was calculated for each picture. The Necker cube was placed at the middle of a computer screen as black lines on a white background. The contrast of the three middle lines centered in the left middle corner was used as one of the control parameter. Between two successive demonstrations of Necker cubes another picture was shown to distract attention and to make a perception of next Necker cube more independent from the previous one. Eleven subjects, male and female, of the ages 20 through 45 were studied. The choice of the Necker cube projection was detected with the Electroencephalograph-recorder Encephalan-EEGR-19/26, Medicom MTD. To treat the experimental results we carried out theoretical consideration using the simplest double-well potential model with the presence of noise that led to the Fokker-Planck equation for the probability density of the stochastic process. At the first time an analytical solution for the probability of the selection of one of the Necker cube projection for different values of wireframe contrast have been obtained. Furthermore, having used the results of the experimental measurements with the help of the method of least squares we have calculated the value of the parameter corresponding to the cognitive noise of the person being studied. The range of cognitive noise parameter values for studied subjects turned to be [0.08; 0.55]. It should be noted, that experimental results have a good reproducibility, the same person being studied repeatedly another day produces very similar data with very close levels of cognitive noise. We found an excellent agreement between analytically deduced probability and the results obtained in the experiment. A good qualitative agreement between theoretical and experimental results indicates that even such a simple model allows simulating brain cognitive dynamics and estimating important cognitive characteristic of the brain, such as brain noise.

Keywords: bistability, brain, noise, perception, stochastic processes

Procedia PDF Downloads 445
441 An Optimal Control Method for Reconstruction of Topography in Dam-Break Flows

Authors: Alia Alghosoun, Nabil El Moçayd, Mohammed Seaid

Abstract:

Modeling dam-break flows over non-flat beds requires an accurate representation of the topography which is the main source of uncertainty in the model. Therefore, developing robust and accurate techniques for reconstructing topography in this class of problems would reduce the uncertainty in the flow system. In many hydraulic applications, experimental techniques have been widely used to measure the bed topography. In practice, experimental work in hydraulics may be very demanding in both time and cost. Meanwhile, computational hydraulics have served as an alternative for laboratory and field experiments. Unlike the forward problem, the inverse problem is used to identify the bed parameters from the given experimental data. In this case, the shallow water equations used for modeling the hydraulics need to be rearranged in a way that the model parameters can be evaluated from measured data. However, this approach is not always possible and it suffers from stability restrictions. In the present work, we propose an adaptive optimal control technique to numerically identify the underlying bed topography from a given set of free-surface observation data. In this approach, a minimization function is defined to iteratively determine the model parameters. The proposed technique can be interpreted as a fractional-stage scheme. In the first stage, the forward problem is solved to determine the measurable parameters from known data. In the second stage, the adaptive control Ensemble Kalman Filter is implemented to combine the optimality of observation data in order to obtain the accurate estimation of the topography. The main features of this method are on one hand, the ability to solve for different complex geometries with no need for any rearrangements in the original model to rewrite it in an explicit form. On the other hand, its achievement of strong stability for simulations of flows in different regimes containing shocks or discontinuities over any geometry. Numerical results are presented for a dam-break flow problem over non-flat bed using different solvers for the shallow water equations. The robustness of the proposed method is investigated using different numbers of loops, sensitivity parameters, initial samples and location of observations. The obtained results demonstrate high reliability and accuracy of the proposed techniques.

Keywords: erodible beds, finite element method, finite volume method, nonlinear elasticity, shallow water equations, stresses in soil

Procedia PDF Downloads 130
440 Synergistic Sorption of Cr(VI) and Cu(II) onto Sweet Potato Vine from Binary Mixtures Cr(VI)-Cu(II)

Authors: Chang Liu, Nuria Fiol, Isabel Villaescusa, Jordi Poch

Abstract:

Over the last decades, biosorption has been an alternative to costly wastewaters treatment for metal removal. Most of the literature on metal biosorption was devoted to studying of single metal ions but nowadays studies on multi-components biosorption are booming. Hexavalent chromium is usually found in mixtures with divalent metal ions in industries wastewaters. However, studies on the simultaneous removal of Cr(VI) and divalent metals are hardly found and the cooperative or competitive mechanism governing each metal ions sorption is still unclear. In this work, simultaneous sorption of Cr(VI) and Cu(II) from their binary mixtures by using sweet potato vine (SPV) was investigated. Sweet potato is one of the four major grain crops in China. Each year about 2000 tons of SPV are generated as by-products. SPV could be a low-cost biosorbent for metal ions due to its rich in cellulose and lignin. In this work, the sorption of Cr(VI) and Cu(II) from their binary mixtures solutions was studied by using SPV sorbent. Equilibrium studies were carried out in binary mixtures in which Cr(VI) and Cu(II) concentration was both varied between 0.1 mM and 0.3 mM, Cr(VI) and Cu(II) single solutions were also prepared as comparison. All the experiments were performed at pH 3±0.05 under 30±2°C for 7 days to make sure sorption achieved equilibrium. Results showed that (i) chromium was partially (10.93%-42.04%) eliminated under studied conditions through reduction and sorption of hexavalent and trivalent forms. The presence of Cu(II) exerts a synergistic effect on the overall sorption process in all the cases of the 0.1-0.3 mM binary mixtures concentration range. (ii) Cr(VI) removal by SPV is favoured by the presence of Cu(II) in solution, because more protons needed for Cr(VI) reduction are available due to Cu(II)-proton competition; however sorption of the formed Cr(III) is unfavoured as a result of the competition between Cr(III) and Cu(II) for protons and sorbent active sites. (iii) Copper was partially (9.26%-13.91%) sorbed onto SPV under studied conditions. The presence of Cr(VI) in binary mixtures also exerts a synergistic effect on the Cu(II) removal in all the cases of the 0.1-0.3 mM binary mixtures concentration range. The results of the present work indicate that sweet potato vine can be successfully employed for the simultaneously removal of Cr(VI) and Cu(II) in binary mixtures, taking advantage of the synergistic effect provoked by one of the metal ion to each other, even though the acquisition of higher removal yields has to be further investigated. Acknowledgements—This work has been financially supported by Ministry of Human Resources and Social Security of PRC (Anhui15), Education Department of Anhui Province (KJ2016A270) and Anhui Normal University (2015rcpy33, 2014bsqdjj53).

Keywords: sweet potato vine, chromium reduction, divalent metal, synergistic sorption

Procedia PDF Downloads 169
439 Response of Planktonic and Aggregated Bacterial Cells to Water Disinfection with Photodynamic Inactivation

Authors: Thayse Marques Passos, Brid Quilty, Mary Pryce

Abstract:

The interest in developing alternative techniques to obtain safe water, free from pathogens and hazardous substances, is growing in recent times. The photodynamic inactivation of microorganisms (PDI) is a promising ecologically-friendly and multi-target approach for water disinfection. It uses visible light as an energy source combined with a photosensitiser (PS) to transfer energy/electrons to a substrate or molecular oxygen generating reactive oxygen species, which cause cidal effects towards cells. PDI has mainly been used in clinical studies and investigations on its application to disinfect water is relatively recent. The majority of studies use planktonic cells. However, in their natural environments, bacteria quite often do not occur as freely suspended cells (planktonic) but in cell aggregates that are either freely floating or attached to surfaces as biofilms. Microbes can form aggregates and biofilms as a strategy to protect them from environmental stress. As aggregates, bacteria have a better metabolic function, they communicate more efficiently, and they are more resistant to biocide compounds than their planktonic forms. Among the bacteria that are able to form aggregates are members of the genus Pseudomonas, they are a very diverse group widely distributed in the environment. Pseudomonas species can form aggregates/biofilms in water and can cause particular problems in water distribution systems. The aim of this study was to evaluate the effectiveness of photodynamic inactivation in killing a range of planktonic cells including Escherichia coli DSM 1103, Staphylococcus aureus DSM 799, Shigella sonnei DSM 5570, Salmonella enterica and Pseudomonas putida DSM 6125, and aggregating cells of Pseudomonas fluorescens DSM 50090, Pseudomonas aeruginosa PAO1. The experiments were performed in glass Petri dishes, containing the bacterial suspension and the photosensitiser, irradiated with a multi-LED (wavelengths 430nm and 660nm) for different time intervals. The responses of the cells were monitored using the pour plate technique and confocal microscopy. The study showed that bacteria belonging to Pseudomonads group tend to be more tolerant to PDI. While E. coli, S. aureus, S. sonnei and S. enterica required a dosage ranging from 39.47 J/cm2 to 59.21 J/cm2 for a 5 log reduction, Pseudomonads needed a dosage ranging from 78.94 to 118.42 J/cm2, a higher dose being required when the cells aggregated.

Keywords: bacterial aggregation, photoinactivation, Pseudomonads, water disinfection

Procedia PDF Downloads 296
438 Genetic Advance versus Environmental Impact toward Sustainable Protein, Wet Gluten and Zeleny Sedimentation in Bread and Durum Wheat

Authors: Gordana Branković, Dejan Dodig, Vesna Pajić, Vesna Kandić, Desimir Knežević, Nenad Đurić

Abstract:

The wheat grain quality properties are influenced by genotype, environmental conditions and genotype × environment interaction (GEI). The increasing request of more nutritious wheat products will direct future breeding programmes. Therefore, the aim of investigation was to determine: i) variability of the protein content (PC), wet gluten content (WG) and Zeleny sedimentation volume (ZS); ii) components of variance, heritability in a broad sense (hb2), and expected genetic advance as percent of mean (GAM) for PC, WG, and ZS; iii) correlations between PC, WG, ZS, and most important agronomic traits; in order to assess expected breeding success versus environmental impact for these quality traits. The plant material consisted of 30 genotypes of bread wheat (Triticum aestivum L. ssp. aestivum) and durum wheat (Triticum durum Desf.). The trials were sown at the three test locations in Serbia: Rimski Šančevi, Zemun Polje and Padinska Skela during 2010-2011 and 2011-2012. The experiments were set as randomized complete block design with four replications. The plot consisted of five rows of 1 m2 (5 × 0.2 m × 1 m). PC, WG and ZS were determined by the use of Near infrared spectrometry (NIRS) with the Infraneo analyser (Chopin Technologies, France). PC, WG and ZS, in bread wheat, were in the range 13.4-16.4%, 22.8-30.3%, and 39.4-67.1 mL, respectively, and in durum wheat, in the range 15.3-18.1%, 28.9-36.3%, 37.4-48.3 mL, respectively. The dominant component of variance for PC, WG, and ZS, in bread wheat, was genotype with the genetic variance/GEI variance (VG/VG × E) relation of 3.2, 2.9 and 1.0, respectively, and in durum wheat was GEI with the VG/VG × E relation of 0.70, 0.69 and 0.49, respectively. hb2 and GAM values for PC, WG and ZS, in bread wheat, were 94.9% and 12.6%, 93.7% and 18.4%, and 86.2% and 28.1%, respectively, and in durum wheat, 80.7% and 7.6%, 79.7% and 10.2%, and 74% and 11.2%, respectively. The most consistent through six environments, statistically significant correlations, for bread wheat, were between PC and spike length (-0.312 to -0.637); PC, WG, ZS and grain number per spike (-0.320 to -0.620; -0.369 to -0.567; -0.301 to -0.378, respectively); PC and grain thickness (0.338 to 0.566), and for durum wheat, were between PC, WG, ZS and yield (-0.290 to -0.690; -0.433 to -0.753; -0.297 to -0.660, respectively); PC and plant height (-0.314 to -0.521); PC, WG and spike length (-0.298 to -0.597; -0.293 to -0.627, respectively); PC, WG and grain thickness (0.260 to 0.575; 0.269 to 0.498, respectively); PC, WG and grain vitreousness (0.278 to 0.665; 0.357 to 0.690, respectively). Breeding success can be anticipated for ZS in bread wheat due to coupled high values for hb2 and GAM, suggesting existence of additive genetic effects, and also for WG in bread wheat, due to very high hb2 and medium high GAM. The small, and medium, negative correlations between PC, WG, ZS, and yield or yield components, indicate difficulties to select simultaneously for high quality and yield, depending on linkage for particular genetic arrangements to be broken by recombination.

Keywords: bread and durum wheat, genetic advance, protein and wet gluten content, Zeleny sedimentation volume

Procedia PDF Downloads 254
437 Experimental Activity on the Photovoltaic Effect

Authors: Salomão Manuel Francisco, Manuel António Salgueiro Da Silva, Bento Filipe Barreiras Pinto Cavadas, Teresa Monteiro Seixas

Abstract:

In bachelor's degrees in Physics Education framework in Angola, and to a certain extent, within the community of Portuguese language countries (CPLP), teaching methodologies rely heavily on theoretical memorization and mathematical demonstrations. This approach often discourages students, particularly the female population, as the reliance on theoretical mathematical demonstrations generates the perception of Physics as an arduous, challenging discipline. To address this challenge and recognize the value of practical application as an evaluative criterion of material truth, we propose a practical activity in Environmental Physics that will be shared with Angolan higher education teachers, who will receive full scaffolding and support from the authors. These teachers, adopting and developing similar activities in a classroom setting, will contribute to the environmental education framework as well. Additionally, this work aligns with different goals of UNESCO's 2030 agenda, namely, specifically, goals 4, 5, 7, 11, 13, and 17. The experimental activity developed in this work is centered around the demonstration of the photovoltaic effect and its application for renewable energy production. The first objective of the activity is to study the variation of electrical power supplied by a photovoltaic system (PV) to an electrical circuit as the angle of light incidence changes. Students can observe that the power supplied to the circuit is greater when light rays fall perpendicularly on the PV. However, as the angle of incidence increases, resulting in a larger area covered by the light rays, the power supplied to the circuit decreases due to lower irradiance. The second objective is to demonstrate that the power output can be maximized by adjusting the circuit load resistance at each irradiance value. In these two parts of the activity, students can analyze experimental data taking into account the irradiance law and the equivalent circuit description of a PV cell. Through detailed data analysis, students are also expected to assess the effects of temperature on PV efficiency degradation and the efficiency enhancement provided by light concentration mechanisms. As a third objective, students can explore how the color of incident light affects the PV output power, considering the quantum nature of light and its interaction with the PV system.

Keywords: experiments, irradiation law, physic teaching, photovoltaic effect

Procedia PDF Downloads 83
436 Extraction of Scandium (Sc) from an Ore with Functionalized Nanoporous Silicon Adsorbent

Authors: Arezoo Rahmani, Rinez Thapa, Juha-Matti Aalto, Petri Turhanen, Jouko Vepsalainen, Vesa-PekkaLehto, Joakim Riikonen

Abstract:

Production of Scandium (Sc) is a complicated process because Sc is found only in low concentrations in ores and the concentration of Sc is very low compared with other metals. Therefore, utilization of typical extraction processes such as solvent extraction is problematic in scandium extraction. The Adsorption/desorption method can be used, but it is challenging to prepare materials, which have good selectivity, high adsorption capacity, and high stability. Therefore, efficient and environmentally friendly methods for Sc extraction are needed. In this study, the nanoporous composite material was developed for extracting Sc from an Sc ore. The nanoporous composite material offers several advantageous properties such as large surface area, high chemical and mechanical stability, fast diffusion of the metals in the material and possibility to construct a filter out of the material with good flow-through properties. The nanoporous silicon material was produced by first stabilizing the surfaces with a silicon carbide layer and then functionalizing the surface with bisphosphonates that act as metal chelators. The surface area and porosity of the material were characterized by N₂ adsorption and the morphology was studied by scanning electron microscopy (SEM). The bisphosphonate content of the material was studied by thermogravimetric analysis (TGA). The concentration of metal ions in the adsorption/desorption experiments was measured with inductively coupled plasma mass spectrometry (ICP-MS). The maximum capacity of the material was 25 µmol/g Sc at pH=1 and 45 µmol/g Sc at pH=3, obtained from adsorption isotherm. The selectivity of the material towards Sc in artificial solutions containing several metal ions was studied at pH one and pH 3. The result shows good selectivity of the nanoporous composite towards adsorption of Sc. Scandium was less efficiently adsorbed from solution leached from the ore of Sc because of excessive amounts of iron (Fe), aluminum (Al) and titanium (Ti) which disturbed the adsorption process. For example, the concentration of Fe was more than 4500 ppm, while the concentration of Sc was only three ppm, approximately 1500 times lower. Precipitation methods were developed to lower the concentration of the metals other than Sc. Optimal pH for precipitation was found to be pH 4. The concentration of Fe, Al and Ti were decreased by 99, 70, 99.6%, respectively, while the concentration of Sc decreased only 22%. Despite the large reduction in the concentration of other metals, more work is needed to further increase the relative concentration of Sc compared with other metals to efficiently extract it using the developed nanoporous composite material. Nevertheless, the developed material may provide an affordable, efficient and environmentally friendly method to extract Sc on a large scale.

Keywords: adsorption, nanoporous silicon, ore solution, scandium

Procedia PDF Downloads 146
435 The Impact of Science Teachers' Epistemological Beliefs and Metacognition on Their Use of Inquiry Based Teaching Approaches

Authors: Irfan Ahmed Rind

Abstract:

Science education has recently become the top priority of government of Pakistan. Number of schemes has been initiated for the improvement of science teaching and learning at primary and secondary levels of education, most importantly training in-service science teachers on inquiry based teaching and learning to empower students and encourage creativity, critical thinking, and innovation among them. Therefore, this approach has been promoted in the recent continuous professional development trainings for the in-service teachers. However, the follow ups on trained science teachers and educators suggest that these teachers fail to implement the inquiry based teaching and learning in their classes. In addition, these trainings also fail to bring any significant change in students’ science content knowledge and understanding as per the annual national level surveys conducted by government and independent agencies. Research suggests that science has been taught using scientific positivism, which supports objectivity based on experiments and mathematics. In contrary, the inquiry based teaching and learning are based on constructivism, which conflicts with the positivist epistemology of science teachers. It was, therefore, assumed that science teachers struggle to implement the inquiry based teaching approach as it conflicts with their basic epistemological beliefs. With this assumption, this research aimed to (i) understand how science teachers conceptualize the nature of science, and how this influence their understanding of learning, learners, their own roles as teachers and their teaching strategies, (ii) identify the conflict of science teachers’ epistemological beliefs with the inquiry based teaching approach, and (iii) find the ways in which science teachers epistemological beliefs may be developed from positivism to constructivism, so that they may effectively use the inquiry based teaching approach in teaching science. Using qualitative case study approach, thirty six secondary and higher secondary science teachers (21 male and 15 female) were selected. Data was collected using interviewed, participatory observations (sixty lessons were observed), and twenty interviews from students for verifications of teachers’ responses. The findings suggest that most of the science teacher were positivist in defining the nature of science. Most of them limit themselves to one fix answer that is provided in the books and that there is only one 'right' way to teach science. There is no room for students’ or teachers’ own opinion or bias when it comes to scientific concepts. Inquiry based teaching seems 'no right' to them. They find it difficult to allow students to think out of the box. However, some interesting exercises were found to be very effective in bringing the change in teachers’ epistemological beliefs. These will be discussed in detail in the paper. The findings have major implications for the teachers, educators, and policymakers.

Keywords: science teachers, epistemology, metacognition, inquiry based teaching

Procedia PDF Downloads 150
434 Individual Cylinder Ignition Advance Control Algorithms of the Aircraft Piston Engine

Authors: G. Barański, P. Kacejko, M. Wendeker

Abstract:

The impact of the ignition advance control algorithms of the ASz-62IR-16X aircraft piston engine on a combustion process has been presented in this paper. This aircraft engine is a nine-cylinder 1000 hp engine with a special electronic control ignition system. This engine has two spark plugs per cylinder with an ignition advance angle dependent on load and the rotational speed of the crankshaft. Accordingly, in most cases, these angles are not optimal for power generated. The scope of this paper is focused on developing algorithms to control the ignition advance angle in an electronic ignition control system of an engine. For this type of engine, i.e. radial engine, an ignition advance angle should be controlled independently for each cylinder because of the design of such an engine and its crankshaft system. The ignition advance angle is controlled in an open-loop way, which means that the control signal (i.e. ignition advance angle) is determined according to the previously developed maps, i.e. recorded tables of the correlation between the ignition advance angle and engine speed and load. Load can be measured by engine crankshaft speed or intake manifold pressure. Due to a limited memory of a controller, the impact of other independent variables (such as cylinder head temperature or knock) on the ignition advance angle is given as a series of one-dimensional arrays known as corrective characteristics. The value of the ignition advance angle specified combines the value calculated from the primary characteristics and several correction factors calculated from correction characteristics. Individual cylinder control can proceed in line with certain indicators determined from pressure registered in a combustion chamber. Control is assumed to be based on the following indicators: maximum pressure, maximum pressure angle, indicated mean effective pressure. Additionally, a knocking combustion indicator was defined. Individual control can be applied to a single set of spark plugs only, which results from two fundamental ideas behind designing a control system. Independent operation of two ignition control systems – if two control systems operate simultaneously. It is assumed that the entire individual control should be performed for a front spark plug only and a rear spark plug shall be controlled with a fixed (or specific) offset relative to the front one or from a reference map. The developed algorithms will be verified by simulation and engine test sand experiments. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: algorithm, combustion process, radial engine, spark plug

Procedia PDF Downloads 293
433 Knowledge Creation and Diffusion Dynamics under Stable and Turbulent Environment for Organizational Performance Optimization

Authors: Jessica Gu, Yu Chen

Abstract:

Knowledge Management (KM) is undoubtable crucial to organizational value creation, learning, and adaptation. Although the rapidly growing KM domain has been fueled with full-fledged methodologies and technologies, studies on KM evolution that bridge the organizational performance and adaptation to the organizational environment are still rarely attempted. In particular, creation (or generation) and diffusion (or share/exchange) of knowledge are of the organizational primary concerns on the problem-solving perspective, however, the optimized distribution of knowledge creation and diffusion endeavors are still unknown to knowledge workers. This research proposed an agent-based model of knowledge creation and diffusion in an organization, aiming at elucidating how the intertwining knowledge flows at microscopic level lead to optimized organizational performance at macroscopic level through evolution, and exploring what exogenous interventions by the policy maker and endogenous adjustments of the knowledge workers can better cope with different environmental conditions. With the developed model, a series of simulation experiments are conducted. Both long-term steady-state and time-dependent developmental results on organizational performance, network and structure, social interaction and learning among individuals, knowledge audit and stocktaking, and the likelihood of choosing knowledge creation and diffusion by the knowledge workers are obtained. One of the interesting findings reveals a non-monotonic phenomenon on organizational performance under turbulent environment while a monotonic phenomenon on organizational performance under a stable environment. Hence, whether the environmental condition is turbulence or stable, the most suitable exogenous KM policy and endogenous knowledge creation and diffusion choice adjustments can be identified for achieving the optimized organizational performance. Additional influential variables are further discussed and future work directions are finally elaborated. The proposed agent-based model generates evidence on how knowledge worker strategically allocates efforts on knowledge creation and diffusion, how the bottom-up interactions among individuals lead to emerged structure and optimized performance, and how environmental conditions bring in challenges to the organization system. Meanwhile, it serves as a roadmap and offers great macro and long-term insights to policy makers without interrupting the real organizational operation, sacrificing huge overhead cost, or introducing undesired panic to employees.

Keywords: knowledge creation, knowledge diffusion, agent-based modeling, organizational performance, decision making evolution

Procedia PDF Downloads 242
432 CFD Simulation of Spacer Effect on Turbulent Mixing Phenomena in Sub Channels of Boiling Nuclear Assemblies

Authors: Shashi Kant Verma, S. L. Sinha, D. K. Chandraker

Abstract:

Numerical simulations of selected subchannel tracer (Potassium Nitrate) based experiments have been performed to study the capabilities of state-of-the-art of Computational Fluid Dynamics (CFD) codes. The Computational Fluid Dynamics (CFD) methodology can be useful for investigating the spacer effect on turbulent mixing to predict turbulent flow behavior such as Dimensionless mixing scalar distributions, radial velocity and vortices in the nuclear fuel assembly. A Gibson and Launder (GL) Reynolds stress model (RSM) has been selected as the primary turbulence model to be applied for the simulation case as it has been previously found reasonably accurate to predict flows inside rod bundles. As a comparison, the case is also simulated using a standard k-ε turbulence model that is widely used in industry. Despite being an isotropic turbulence model, it has also been used in the modeling of flow in rod bundles and to produce lateral velocities after thorough mixing of coolant fairly. Both these models have been solved numerically to find out fully developed isothermal turbulent flow in a 30º segment of a 54-rod bundle. Numerical simulation has been carried out for the study of natural mixing of a Tracer (Passive scalar) to characterize the growth of turbulent diffusion in an injected sub-channel and, afterwards on, cross-mixing between adjacent sub-channels. The mixing with water has been numerically studied by means of steady state CFD simulations with the commercial code STAR-CCM+. Flow enters into the computational domain through the mass inflow at the three subchannel faces. Turbulence intensity and hydraulic diameter of 1% and 5.9 mm respectively were used for the inlet. A passive scalar (Potassium nitrate) is injected through the mass fraction of 5.536 PPM at subchannel 2 (Upstream of the mixing section). Flow exited the domain through the pressure outlet boundary (0 Pa), and the reference pressure was 1 atm. Simulation results have been extracted at different locations of the mixing zone and downstream zone. The local mass fraction shows uniform mixing. The effect of the applied turbulence model is nearly negligible just before the outlet plane because the distributions look like almost identical and the flow is fully developed. On the other hand, quantitatively the dimensionless mixing scalar distributions change noticeably, which is visible in the different scale of the colour bars.

Keywords: single-phase flow, turbulent mixing, tracer, sub channel analysis

Procedia PDF Downloads 208
431 Scaling out Sustainable Land Use Systems in Colombia: Some Insights and Implications from Two Regional Case Studies

Authors: Martha Lilia Del Rio Duque, Michelle Bonatti, Katharina Loehr, Marcos Lana, Tatiana Rodriguez, Stefan Sieber

Abstract:

Nowadays, most agricultural practices can reduce the ability of ecosystems to provide goods and services. To enhance environmentally friendly food production and to maximize social and economic benefits, sustainable land use systems (SLUS) are one of the most critical strategies increasingly/strongly promoted by donors organizations, international agencies, and policymakers. This process involves the question of how SLUS can be scaled out also large-scale landscapes and not merely isolated experiments. As SLUS are context-specific strategies, diffusion and replication of successful SLUS in Colombia required the identification of main factors that facilitate this scaling out process. We applied a case study approach to investigate the scaling out process of SLUS in cocoa and livestock sector within peacebuilding territories in Colombia, specifically, in Cesar and Caqueta region. These two regions are contrasting, but both have a current trend of increasing land degradation. Presently in Colombia, Caqueta is one of the most deforested departments, and Cesar has some most degraded soils. Following a qualitative research approach, 19 semi-structured interviews and 2 focus groups were conducted with agroforestry experts in both regions to analyze (1) what does it mean a sustainable land use system in Cocoa/Livestock, specifically in Caqueta or Cesar and (2) to identify the key elements at the level of the following dimensions: biophysical, economic and profitability, market, social, policy and institutions that can explain how and why SLUS are replicated and spread among more producers. The Interviews were coded and analyzed using MAXQDA to identify, analyze and report patterns (themes) within data. As the results show, key themes, among which: premium market, solid regional markets and price stability, water availability and management, generational renewal, land use knowledge and diversification, producer organization and certifications are crucial to understand how the SLUS can have an impact across large-scale landscapes and how the scaling out process can be set up best in order to be successful across different contexts. The analysis further reveals which key factors might affect SLUS efficiency.

Keywords: agroforestry, cocoa sector, Colombia, livestock sector, sustainable land use system

Procedia PDF Downloads 160
430 Simultaneous Detection of Cd⁺², Fe⁺², Co⁺², and Pb⁺² Heavy Metal Ions by Stripping Voltammetry Using Polyvinyl Chloride Modified Glassy Carbon Electrode

Authors: Sai Snehitha Yadavalli, K. Sruthi, Swati Ghosh Acharyya

Abstract:

Heavy metal ions are toxic to humans and all living species when exposed in large quantities or for long durations. Though Fe acts as a nutrient, when intake is in large quantities, it becomes toxic. These toxic heavy metal ions, when consumed through water, will cause many disorders and are harmful to all flora and fauna through biomagnification. Specifically, humans are prone to innumerable diseases ranging from skin to gastrointestinal, neurological, etc. In higher quantities, they even cause cancer in humans. Detection of these toxic heavy metal ions in water is thus important. Traditionally, the detection of heavy metal ions in water has been done by techniques like Inductively Coupled Plasma Mass Spectroscopy (ICPMS) and Atomic Absorption Spectroscopy (AAS). Though these methods offer accurate quantitative analysis, they require expensive equipment and cannot be used for on-site measurements. Anodic Stripping Voltammetry is a good alternative as the equipment is affordable, and measurements can be made at the river basins or lakes. In the current study, Square Wave Anodic Stripping Voltammetry (SWASV) was used to detect the heavy metal ions in water. Literature reports various electrodes on which deposition of heavy metal ions was carried out like Bismuth, Polymers, etc. The working electrode used in this study is a polyvinyl chloride (PVC) modified glassy carbon electrode (GCE). Ag/AgCl reference electrode and Platinum counter electrode were used. Biologic Potentiostat SP 300 was used for conducting the experiments. Through this work of simultaneous detection, four heavy metal ions were successfully detected at a time. The influence of modifying GCE with PVC was studied in comparison with unmodified GCE. The simultaneous detection of Cd⁺², Fe⁺², Co⁺², Pb⁺² heavy metal ions was done using PVC modified GCE by drop casting 1 wt.% of PVC dissolved in Tetra Hydro Furan (THF) solvent onto GCE. The concentration of all heavy metal ions was 0.2 mg/L, as shown in the figure. The scan rate was 0.1 V/s. Detection parameters like pH, scan rate, temperature, time of deposition, etc., were optimized. It was clearly understood that PVC helped in increasing the sensitivity and selectivity of detection as the current values are higher for PVC-modified GCE compared to unmodified GCE. The peaks were well defined when PVC-modified GCE was used.

Keywords: cadmium, cobalt, electrochemical sensing, glassy carbon electrodes, heavy metal Ions, Iron, lead, polyvinyl chloride, potentiostat, square wave anodic stripping voltammetry

Procedia PDF Downloads 103
429 Utilization Of Medical Plants Tetrastigma glabratum (Blume) Planch from Mount Prau in the Blumah, Central Java

Authors: A. Lianah, B. Peter Sopade, C. Krisantini

Abstract:

Walikadep/Tetrastigma glabratum (Blume) Planch is a traditional herb that has been used by people of Blumah village; it is believed to have a stimulant effect and ailments for many illnesses. Our survey demonstrated that the people of Blumah village has exploited walikadep from Protected Forest of Mount Prau. More than 10% of 448 households at Blumah village have used walikadep as traditional herb or jamu. Part of the walikadep plants used is the liquid extract of the stem. The population of walikadep is getting scarce and it is rarely found now. The objectives of this study are to examine the stimulant effect of walikadep, to measure growth and exploitation rate of walikadep, and to find ways to effectively propagate the plants, as well as identifying the impact on the environment through field experiments and explorative survey. Stimulant effect was tested using open-field and hole-board test. Data were collected through field observation and experiment, and data were analysed using lab test and Anova. Rate of exploitation and plant growth was measured using Regression analysis; comparison of plant growth in-situ and ex-situ used descriptive analysis. The environmental impact was measured by population structure vegetation analysis method by Shannon Weinner. The study revealed that the walikadep exudates did not have a stimulant effect. Exploitation of walikadep and the long time required to reach harvestable size resulted in the scarcity of the plant in the natural habitat. Plant growth was faster in-situ than ex-situ; and fast growth was obtained from middle part cuttings treated with vermicompost. Biodiversity index after exploitation was higher than before exploitation, possibly due to the toxic and allellopathic effect (phenolics) of the plant. Based on these findings, further research is needed to examine the toxic effects of the leave and stem extract of walikadep and their allelopathic effects. We recommend that people of Blumah village to stop using walikadep as the stimulant. The local people, village government in the regional and central levels, and perhutani should do an integrated efforts to conserve walikadep through Pengamanan Terpadu Konservasi Walikadep Lestari (PTKWL) program, so this population of this plant in the natural habitat can be maintained.

Keywords: utilization, medical plants, traditional, Tetastigma glabratum

Procedia PDF Downloads 280
428 Antibacterial and Anti-Biofilm Activity of Vaccinium meridionale S. Pomace Extract Against Staphylococcus aureus, Escherichia coli and Salmonella Enterica

Authors: Carlos Y. Soto, Camila A. Lota, G. Astrid Garzón

Abstract:

Bacterial biofilms cause an ongoing problem for food safety. They are formed when microorganisms aggregate to form a community that attaches to solid surfaces. Biofilms increase the resistance of pathogens to cleaning, disinfection and antibacterial products. This resistance gives rise to problems for human health, industry, and agriculture. At present, plant extracts rich in polyphenolics are being investigated as natural alternatives to degrade bacterial biofilms. The pomace of the tropical Berry Vaccinium meridionale S. contains high amounts of phenolic compounds. Therefore, in the current study, the antimicrobial and antibiofilm effects of extracts from the pomace of Vaccinium meridionale S. were tested on three foodborne pathogens: Enterohaemorrhagic Escherichia coli O157:H7 (ATCC®700728TM), Staphylococcus aureus subsp. aureus (ATCC® 6538TM), and Salmonella enterica serovar Enteritidis (ATCC® 13076TM). Microwave-assisted extraction was used to extract polyphenols with aqueous methanol (80% v/v) at a solid to solvent ratio of 1:10 (w/v) for 20 min. The magnetic stirring was set at 400 rpm, and the microwave power was adjusted to 400 W. The antimicrobial effect of the extract was assessed by determining the half maximal inhibitory concentration (IC50) against the three food poisoning pathogens at concentrations ranging from 50 to 2,850 μg gallic acid equivalents (GAE)/mL of the extract. Biofilm inhibition was assessed using a crystal violet assay applying the same range of concentration. Three replications of the experiments were carried out, and all analyses were run in triplicate. IC50 values were determined using the GraphPad Prism8® program. Significant differences (P<0.05) among means were identified using one-factor analysis of variance (ANOVA) and the post-hoc least significant difference (LSD) test using the Statgraphics plus program, version 2.1.There was significant difference among the mean IC50 values for the tested bacteria. The IC50 for S. aureus was 48 ± 9 μg GAE/mL, followed by 123 ± 49 μg GAE/mL for Salmonella and 376 ± 32 μg GAE/mL for E. coli. The percent inhibition of the extract on biofilm formation was significantly higher for S. aureus (85.8  0.3), followed by E. coli (74.5  1.0) and Salmonella (53.6  9.7). These findings suggest that polyphenolic extracts obtained from the pomace of V. meridionale S. might be used as natural antimicrobial and anti-biofilm natural agents, effective against S. aureus, E. coli and Salmonella enterica.

Keywords: antibiofilm, antimicrobial, E. coli, S. aureus, salmonella, IC50, pomace, V. meridionale

Procedia PDF Downloads 63
427 Metabolic Profiling in Breast Cancer Applying Micro-Sampling of Biological Fluids and Analysis by Gas Chromatography – Mass Spectrometry

Authors: Mónica P. Cala, Juan S. Carreño, Roland J.W. Meesters

Abstract:

Recently, collection of biological fluids on special filter papers has become a popular micro-sampling technique. Especially, the dried blood spot (DBS) micro-sampling technique has gained much attention and is momently applied in various life sciences reserach areas. As a result of this popularity, DBS are not only intensively competing with the venous blood sampling method but are at this moment widely applied in numerous bioanalytical assays. In particular, in the screening of inherited metabolic diseases, pharmacokinetic modeling and in therapeutic drug monitoring. Recently, microsampling techniques were also introduced in “omics” areas, whereunder metabolomics. For a metabolic profiling study we applied micro-sampling of biological fluids (blood and plasma) from healthy controls and from women with breast cancer. From blood samples, dried blood and plasma samples were prepared by spotting 8uL sample onto pre-cutted 5-mm paper disks followed by drying of the disks for 100 minutes. Dried disks were then extracted by 100 uL of methanol. From liquid blood and plasma samples 40 uL were deproteinized with methanol followed by centrifugation and collection of supernatants. Supernatants and extracts were evaporated until dryness by nitrogen gas and residues derivated by O-methyxyamine and MSTFA. As internal standard C17:0-methylester in heptane (10 ppm) was used. Deconvolution and alignment of and full scan (m/z 50-500) MS data were done by AMDIS and SpectConnect (http://spectconnect.mit.edu) software, respectively. Statistical Data analysis was done by Principal Component Analysis (PCA) using R software. The results obtained from our preliminary study indicate that the use of dried blood/plasma on paper disks could be a powerful new tool in metabolic profiling. Many of the metabolites observed in plasma (liquid/dried) were also positively identified in whole blood samples (liquid/dried). Whole blood could be a potential substitute matrix for plasma in Metabolomic profiling studies as well also micro-sampling techniques for the collection of samples in clinical studies. It was concluded that the separation of the different sample methodologies (liquid vs. dried) as observed by PCA was due to different sample treatment protocols applied. More experiments need to be done to confirm obtained observations as well also a more rigorous validation .of these micro-sampling techniques is needed. The novelty of our approach can be found in the application of different biological fluid micro-sampling techniques for metabolic profiling.

Keywords: biofluids, breast cancer, metabolic profiling, micro-sampling

Procedia PDF Downloads 411
426 The Various Bodies of a Person and How to Cleanse Them Spiritually

Authors: J. B. Athavale, Sean Clarke

Abstract:

Introduction According to ancient Indian scriptures, a person’s consciousness includes the physical body, the vital energy sheath (Pranshakti), the mental body (which includes one’s feelings and emotions), the intellectual body (which refers to one’s decision-making ability), and the Soul (which is the God Principle that resides in every person). Apart from the physical body, all the other aspects are subtle in nature. In today’s world, much attention is given to one’s physical appearance and intellectual prowess. While there have been improvements in the attention given to mental health, its complete nature is not understood, and in many cultures, mental ill health is considered taboo and looked down upon. Regarding the spiritual well-being of a person, our spiritual research has shown that people’s understanding and efforts are mostly lacking and superficial as they do not conform to Universal Spiritual Principles. Also, true well-being occurs only when all the bodies are healthy. Methodology The spiritual research team at the University has found that the spiritual aspect of a person’s life affects all the physical, psychological, and intellectual bodies of a person resulting in ill health. Cleansing these bodies at a spiritual level is essential to regain well-being. Using Aura and Energy Scanners and advanced sixth sense, we studied what causes spiritual impurity in various bodies and how to cleanse them. We measured the spiritual vibrations of a person and how they get affected due to various daily activities. For example, we studied the difference in a person’s aura before and after applying chemical-based makeup vs. natural makeup. Key Findings From the various spiritual research experiments we conducted, we found that: • All our actions and our thoughts affect our various bodies and have the potential to change the aura for the better or worse. • When there is an increase in negative vibrations around a person, negative energies from the subtle dimension are more likely to affect a person. • As the person’s spiritual level increases, the positivity in their aura also increases, and it is much easier to cleanse the various bodies spiritually. • Spiritual practice is like a general spiritual tonic that increases the positivity in one’s aura. The benefits of this are that it leads to mental stability and intellectual clarity. • Spiritual healing remedies augment any spiritual practice to obtain a faster healing effect. Conclusion Taking care of oneself spiritually has a positive halo effect on all one’s bodies. Spiritual cleansing is required regularly if one wants to attain a state of well-being. Spiritual practice and spiritual healing lead to spiritual growth, stability of mind, and less stress and reactions. Spiritually purer people affect the environment positively, and there is less unrest and more harmony between man and nature.

Keywords: body, spirituality, cleansing, consciousness

Procedia PDF Downloads 79
425 Removal of Chromium by UF5kDa Membrane: Its Characterization, Optimization of Parameters, and Evaluation of Coefficients

Authors: Bharti Verma, Chandrajit Balomajumder

Abstract:

Water pollution is escalated owing to industrialization and random ejection of one or more toxic heavy metal ions from the semiconductor industry, electroplating, metallurgical, mining, chemical manufacturing, tannery industries, etc., In semiconductor industry various kinds of chemicals in wafers preparation are used . Fluoride, toxic solvent, heavy metals, dyes and salts, suspended solids and chelating agents may be found in wastewater effluent of semiconductor manufacturing industry. Also in the chrome plating, in the electroplating industry, the effluent contains heavy amounts of Chromium. Since Cr(VI) is highly toxic, its exposure poses an acute risk of health. Also, its chronic exposure can even lead to mutagenesis and carcinogenesis. On the contrary, Cr (III) which is naturally occurring, is much less toxic than Cr(VI). Discharge limit of hexavalent chromium and trivalent chromium are 0.05 mg/L and 5 mg/L, respectively. There are numerous methods such as adsorption, chemical precipitation, membrane filtration, ion exchange, and electrochemical methods for the heavy metal removal. The present study focuses on the removal of Chromium ions by using flat sheet UF5kDa membrane. The Ultra filtration membrane process is operated above micro filtration membrane process. Thus separation achieved may be influenced due to the effect of Sieving and Donnan effect. Ultrafiltration is a promising method for the rejection of heavy metals like chromium, fluoride, cadmium, nickel, arsenic, etc. from effluent water. Benefits behind ultrafiltration process are that the operation is quite simple, the removal efficiency is high as compared to some other methods of removal and it is reliable. Polyamide membranes have been selected for the present study on rejection of Cr(VI) from feed solution. The objective of the current work is to examine the rejection of Cr(VI) from aqueous feed solutions by flat sheet UF5kDa membranes with different parameters such as pressure, feed concentration and pH of the feed. The experiments revealed that with increasing pressure, the removal efficiency of Cr(VI) is increased. Also, the effect of pH of feed solution, the initial dosage of chromium in the feed solution has been studied. The membrane has been characterized by FTIR, SEM and AFM before and after the run. The mass transfer coefficients have been estimated. Membrane transport parameters have been calculated and have been found to be in a good correlation with the applied model.

Keywords: heavy metal removal, membrane process, waste water treatment, ultrafiltration

Procedia PDF Downloads 140
424 Investigation of the Effects of Aerobic Exercise Programs on Hematological Parameters of Sedentary People

Authors: Sanjeev Kumar, Swati Choudhary

Abstract:

Background: A variety of studies warn that sedentary lifestyles can contribute to many preventable causes of death. This study was taken to determine the effects of two types of aerobic training programs on erythrocytes, leukocytes, hemoglobin concentration (Hb), platelets and hematocrit of sedentary people (N=60) with age group 20 to 30 years. Methods: All the subjects were randomly divided into three groups i.e. two experiments groups (aerobic dance & cardio fitness) and control group. Each group having 10 male and 10 females. Experimental groups undergone 60 minutes of training 5 times a week for 12 weeks whereas the control group did not participate in any training program except their daily routine. The aerobic dance group was chosen to perform exercise like step –touch, side-to-side, V-step and hand and body movements, etc. The cardio fitness group was chosen to perform exercises with modern fitness equipment like treadmill, elliptical trainer, stationary bike and rowing machine. Rating of perceived exertion (RPE) scale developed by Gunner Borg was used to monitor the intensity of the workout. Aerobic programs were encompassed of low-impact (0- 4 week & perceived exertion from 6 to 12), moderate-impact (4-8 week and perceived exertion from 12 to 16) and high-impact (8- 12 week & perceived exertion from 16 to 20). Results: To test the effectiveness of training programs paired t-test was used and significant difference (p<0.05) was observed in erythrocytes, hemoglobin concentration, platelets, hematocrit but no significant effects of training was found in leukocytes (p>0.05). Paired t-test also showed that no effect of time was seen in the control group in all the cases (p>0.05). Further analysis of covariance was used to know which program was more effective and it was seen that F value was found significant in the case of erythrocytes, hemoglobin concentration, platelets, and hematocrit as their associated p-value (p<0.05) is lesser than 0.05. As F value was found significant for hematological parameters, fishers least significant difference test was used and results of post hoc mean comparison indicated that experimental groups (aerobic dance group and cardio fitness group) had significant difference with control group in erythrocytes, hemoglobin concentration, platelets and hematocrit and insignificant difference was found between aerobic dance group & cardio fitness group in all the cases. Thus, it may be concluded that in general, both the aerobic training programs had adequate effects on all the hematological parameters except leukocytes.

Keywords: aerobic dance, cardio fitness, hematological variables, rating perceived exertion scale

Procedia PDF Downloads 272
423 Meat Qualities and Death on Arrival (DOA) of Broiler Chickens Transported in a Brazilian Tropical Conditions

Authors: Arlan S. Freitas, Leila M. Carvalho, Adriana L. Soares, Arnoud Neto, Marta S. Madruga, Elza I. Ida, Massami Shimokomaki

Abstract:

The objective of this work was to evaluate the influence of microclimatic profile of broiler transport trucks under commercial conditions over the breast meat quality and DOA (Death On Arrival) in a tropical Brazilian regions as the North East where routinely the season is divided into dry and wet seasons. The temperature remains fairly constant and obviously the relative humidity changes accordingly. Three loads of 4,100 forty seven days old broiler were monitored from farm to slaughterhouse in a distance of 4.3 km, morning period of October 2015 rainy days. The profile of the environmental variables inside the container truck throughout the journey was obtained by the installation of thermo anemometers in 6 different locations by monitoring the heat index (HI), air velocity (AV), temperature (T), and relative humidity (RH). Meat qualities were evaluated by determining the occurrence of PSE (pale, soft, exudative) meat and DFD (dark, firm dry) meat. The percentage of birds DOA per loaded truck was determined by counting the dead broiler during the hanging step at the slaughtering plant. The analysis of variance was performed using statistical software (Statistica 8 for windows, Statsoft 2007, Tulsa, OK, USA). The Tukey significance test (P<0.05) was applied to compare means from microenvironmental data, PSE, DFD and DOA. Fillet samples were collected at 24h post mortem for pH e color (L*, a* e b*) determination through the CIELAB system. Results showed the occurrence of 2.98% of PSE and 0.66% de DFD and only 0.016% of DOA and overall the most uncomfortable container location was at the truck frontal inferior presenting 6.25% of PSE. DFD of 2.0% were obtained from birds located at central and inferior rear locations. These values were unexpected in comparison to other results obtained in our laboratories in previous experiments carried out within the country south state. The results reported herein were lower in every aspect. Reasonable explanation would be the shorter distance, wet conditions throughout around 15-20 min journeys and lower T and RH values as observed in samples taken from the rear location as higher DFD values were obtained. These facts mean the animals were not under heat stressful condition but in fact under cold stress conditions as the result of DFD suggested in association to the lower number of DOA.

Keywords: cold stress, DFD, microclimatic profile, PSE

Procedia PDF Downloads 235
422 Understanding the Accumulation of Microplastics in Riverbeds and Soils

Authors: Gopala Krishna Darbha

Abstract:

Microplastics (MPs) are secondary fragments of large-sized plastic debris released into the environment and fall in the size range of less than 5 mm. Though reports indicate the abundance of MPs in both riverine and soil environments, their fate is still not completely understood due to the complexity of natural conditions. Mineral particles are ubiquitous in the rivers and may play a vital role in accumulating MPs to the riverbed, thus affecting the benthic life and posing a threat to the river's health. Apart, the chemistry (pH, ionic strength, humics) at the interface can be very prominent. The MPs can also act as potential vectors to transport other contaminants in the environment causing secondary water pollution. The present study focuses on understanding the interaction of MPs with weathering sequence of minerals (feldspar, kaolinite and gibbsite) under batch mode under relevant environmental and natural conditions. Simultaneously, we performed stability studies and transport (column) experiments to understand the mobility of MPs under varying soil solutions (SS) chemistry and the influence of contaminants (CuO nanoparticles). Results showed that the charge and morphology of the gibbsite played an significant role in sorption of NPs (108.1 mg/g) compared to feldspar (7.7 mg/g) and kaolinite (11.9 mg/g). The Fourier transform infrared spectroscopy data supports the complexation of NPs with gibbsite particles via hydrogen bonding. In case of feldspar and kaolinite, a weak interaction with NPs was observed which can be due to electrostatic repulsions and low surface area to volume ration of the mineral particles. The study highlights the enhanced mobility in presence of feldspar and kaolinite while gibbsite rich zones can cause entrapment of NPs accumulating in the riverbeds. In the case of soils, in the absence of MPs, a very high aggregation of CuO NPs observed in SS extracted from black, lateritic, and red soils, which can be correlated with ionic strength (IS) and type of ionic species. The sedimentation rate (Ksed(1/h)) for CuO NPs was >0.5 h−1 in the case of these SS. Interestingly, the stability and sedimentation behavior of CuO NPs varied significantly in the presence of MPs. The Ksed for CuO NPs decreased to half and found <0.25 h−1 in the presence of MPs in all SS. C/C0 values in breakthrough curves increased drastically (black < alluvial < laterite < red) in the presence of MPs. Results suggest that the release of MPs in the terrestrial ecosystem is a potential threat leading to increased mobility of metal nanoparticles in the environment.

Keywords: microplastics, minerals, sorption, soils

Procedia PDF Downloads 90
421 Simulation of the Visco-Elasto-Plastic Deformation Behaviour of Short Glass Fibre Reinforced Polyphthalamides

Authors: V. Keim, J. Spachtholz, J. Hammer

Abstract:

The importance of fibre reinforced plastics continually increases due to the excellent mechanical properties, low material and manufacturing costs combined with significant weight reduction. Today, components are usually designed and calculated numerically by using finite element methods (FEM) to avoid expensive laboratory tests. These programs are based on material models including material specific deformation characteristics. In this research project, material models for short glass fibre reinforced plastics are presented to simulate the visco-elasto-plastic deformation behaviour. Prior to modelling specimens of the material EMS Grivory HTV-5H1, consisting of a Polyphthalamide matrix reinforced by 50wt.-% of short glass fibres, are characterized experimentally in terms of the highly time dependent deformation behaviour of the matrix material. To minimize the experimental effort, the cyclic deformation behaviour under tensile and compressive loading (R = −1) is characterized by isothermal complex low cycle fatigue (CLCF) tests. Combining cycles under two strain amplitudes and strain rates within three orders of magnitude and relaxation intervals into one experiment the visco-elastic deformation is characterized. To identify visco-plastic deformation monotonous tensile tests either displacement controlled or strain controlled (CERT) are compared. All relevant modelling parameters for this complex superposition of simultaneously varying mechanical loadings are quantified by these experiments. Subsequently, two different material models are compared with respect to their accuracy describing the visco-elasto-plastic deformation behaviour. First, based on Chaboche an extended 12 parameter model (EVP-KV2) is used to model cyclic visco-elasto-plasticity at two time scales. The parameters of the model including a total separation of elastic and plastic deformation are obtained by computational optimization using an evolutionary algorithm based on a fitness function called genetic algorithm. Second, the 12 parameter visco-elasto-plastic material model by Launay is used. In detail, the model contains a different type of a flow function based on the definition of the visco-plastic deformation as a part of the overall deformation. The accuracy of the models is verified by corresponding experimental LCF testing.

Keywords: complex low cycle fatigue, material modelling, short glass fibre reinforced polyphthalamides, visco-elasto-plastic deformation

Procedia PDF Downloads 215