Search results for: computing network control systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22498

Search results for: computing network control systems

19438 Emergence of Information Centric Networking and Web Content Mining: A Future Efficient Internet Architecture

Authors: Sajjad Akbar, Rabia Bashir

Abstract:

With the growth of the number of users, the Internet usage has evolved. Due to its key design principle, there is an incredible expansion in its size. This tremendous growth of the Internet has brought new applications (mobile video and cloud computing) as well as new user’s requirements i.e. content distribution environment, mobility, ubiquity, security and trust etc. The users are more interested in contents rather than their communicating peer nodes. The current Internet architecture is a host-centric networking approach, which is not suitable for the specific type of applications. With the growing use of multiple interactive applications, the host centric approach is considered to be less efficient as it depends on the physical location, for this, Information Centric Networking (ICN) is considered as the potential future Internet architecture. It is an approach that introduces uniquely named data as a core Internet principle. It uses the receiver oriented approach rather than sender oriented. It introduces the naming base information system at the network layer. Although ICN is considered as future Internet architecture but there are lot of criticism on it which mainly concerns that how ICN will manage the most relevant content. For this Web Content Mining(WCM) approaches can help in appropriate data management of ICN. To address this issue, this paper contributes by (i) discussing multiple ICN approaches (ii) analyzing different Web Content Mining approaches (iii) creating a new Internet architecture by merging ICN and WCM to solve the data management issues of ICN. From ICN, Content-Centric Networking (CCN) is selected for the new architecture, whereas, Agent-based approach from Web Content Mining is selected to find most appropriate data.

Keywords: agent based web content mining, content centric networking, information centric networking

Procedia PDF Downloads 475
19437 Modeling of Drug Distribution in the Human Vitreous

Authors: Judith Stein, Elfriede Friedmann

Abstract:

The injection of a drug into the vitreous body for the treatment of retinal diseases like wet aged-related macular degeneration (AMD) is the most common medical intervention worldwide. We develop mathematical models for drug transport in the vitreous body of a human eye to analyse the impact of different rheological models of the vitreous on drug distribution. In addition to the convection diffusion equation characterizing the drug spreading, we use porous media modeling for the healthy vitreous with a dense collagen network and include the steady permeating flow of the aqueous humor described by Darcy's law driven by a pressure drop. Additionally, the vitreous body in a healthy human eye behaves like a viscoelastic gel through the collagen fibers suspended in the network of hyaluronic acid and acts as a drug depot for the treatment of retinal diseases. In a completely liquefied vitreous, we couple the drug diffusion with the classical Navier-Stokes flow equations. We prove the global existence and uniqueness of the weak solution of the developed initial-boundary value problem describing the drug distribution in the healthy vitreous considering the permeating aqueous humor flow in the realistic three-dimensional setting. In particular, for the drug diffusion equation, results from the literature are extended from homogeneous Dirichlet boundary conditions to our mixed boundary conditions that describe the eye with the Galerkin's method using Cauchy-Schwarz inequality and trace theorem. Because there is only a small effective drug concentration range and higher concentrations may be toxic, the ability to model the drug transport could improve the therapy by considering patient individual differences and give a better understanding of the physiological and pathological processes in the vitreous.

Keywords: coupled PDE systems, drug diffusion, mixed boundary conditions, vitreous body

Procedia PDF Downloads 137
19436 Isolation and Characterization of Bacteriophages Against Aeromonas Spp. Mediated Diseases in Indian Aquaculture

Authors: Mrunalini Sonne

Abstract:

Aquaculture uses a variety of broad spectrum antibiotics to manage and prevent a variety of diseases without understanding their mechanisms of action. This has led to water pollution in the modern world. The necessity for alternate control measures against bacterial illnesses in the aquaculture sector is highlighted by issues brought on by antibiotic-resistant bacteria and the dearth of effective control strategies. Bacteriophages (phages) have shown promise as therapeutic agents for the efficient management of bacterial infections in aquaculture. In the current study, a variety of investigations were conducted to determine if utilizing lytic phages to reduce Aeromonas spp. infection in fish aquaculture was appropriate. Motile Aeromonas septicaemia is a fish disease that has caused financial harm to the aquaculture sector. Currently, the production of aquaculture depends significantly on antibiotics, which adds to the worldwide problem of the rise of bacteria that are resistant to medicines and resistance genes. To decrease the usage of antibiotics in aquaculture systems, it is crucial to create efficient antibiotic substitutes. Bacteriophages are capable of acting as a natural antagonist, mostly because of their great specificity, capacity for self-replication, and ability to quickly eradicate dangerous bacteria. There is a need for research that goes beyond just isolating and characterising lytic bacteriophages to examine their morphology, stability, and efficacy in various environmental conditions. Bacteriophage (or phage) therapy is a promising technique to control dangerous microbes in farmed fish. More phage therapy research in aquaculture is required in order to effectively employ phage treatment to lessen infection in fish brought on by Aeromonas.

Keywords: aquaculture, bacteriophages, fish, freshwater

Procedia PDF Downloads 104
19435 Multi-Modal Feature Fusion Network for Speaker Recognition Task

Authors: Xiang Shijie, Zhou Dong, Tian Dan

Abstract:

Speaker recognition is a crucial task in the field of speech processing, aimed at identifying individuals based on their vocal characteristics. However, existing speaker recognition methods face numerous challenges. Traditional methods primarily rely on audio signals, which often suffer from limitations in noisy environments, variations in speaking style, and insufficient sample sizes. Additionally, relying solely on audio features can sometimes fail to capture the unique identity of the speaker comprehensively, impacting recognition accuracy. To address these issues, we propose a multi-modal network architecture that simultaneously processes both audio and text signals. By gradually integrating audio and text features, we leverage the strengths of both modalities to enhance the robustness and accuracy of speaker recognition. Our experiments demonstrate significant improvements with this multi-modal approach, particularly in complex environments, where recognition performance has been notably enhanced. Our research not only highlights the limitations of current speaker recognition methods but also showcases the effectiveness of multi-modal fusion techniques in overcoming these limitations, providing valuable insights for future research.

Keywords: feature fusion, memory network, multimodal input, speaker recognition

Procedia PDF Downloads 33
19434 Location Choice: The Effects of Network Configuration upon the Distribution of Economic Activities in the Chinese City of Nanning

Authors: Chuan Yang, Jing Bie, Zhong Wang, Panagiotis Psimoulis

Abstract:

Contemporary studies investigating the association between the spatial configuration of the urban network and economic activities at the street level were mostly conducted within space syntax conceptual framework. These findings supported the theory of 'movement economy' and demonstrated the impact of street configuration on the distribution of pedestrian movement and land-use shaping, especially retail activities. However, the effects varied between different urban contexts. In this paper, the relationship between economic activity distribution and the urban configurational characters was examined at the segment level. In the study area, three kinds of neighbourhood types, urban, suburban, and rural neighbourhood, were included. And among all neighbourhoods, three kinds of urban network form, 'tree-like', grid, and organic pattern, were recognised. To investigate the nested effects of urban configuration measured by space syntax approach and urban context, multilevel zero-inflated negative binomial (ZINB) regression models were constructed. Additionally, considering the spatial autocorrelation, spatial lag was also concluded in the model as an independent variable. The random effect ZINB model shows superiority over the ZINB model or multilevel linear (ML) model in the explanation of economic activities pattern shaping over the urban environment. And after adjusting for the neighbourhood type and network form effects, connectivity and syntax centrality significantly affect economic activities clustering. The comparison between accumulative and new established economic activities illustrated the different preferences for economic activity location choice.

Keywords: space syntax, economic activities, multilevel model, Chinese city

Procedia PDF Downloads 124
19433 The Human Resource Management Systems and Practices of Multinational Companies in Their Nigerian Subsidiaries

Authors: Suwaiba Sabiu Bako, Yaw Debrah

Abstract:

In spite of the extensive literature available on the human resource management (HRM) systems and practices of multinational companies (MNCs) from developed countries, there are gaps concerning emerging countries’ multinational companies’ (EMNCs) HRM systems and practices. This study examines the transfer of HRM practices in Nigerian subsidiaries of MNCs from South Africa. It reveals that South MNCs hybridise their recruitment and selection processes and localise their compensation and employee relations. It also proves that performance appraisal, talent management and code of conduct practices are largely transferred to subsidiaries with minimal adaptation.

Keywords: EMNCs, HRM practices, HRM systems, Nigeria, South Africa

Procedia PDF Downloads 113
19432 Assessment of Procurement-Demand of Milk Plant Using Quality Control Tools: A Case Study

Authors: Jagdeep Singh, Prem Singh

Abstract:

Milk is considered as an essential and complete food. The present study was conducted at Milk Plant Mohali especially in reference to the procurement section where the cash inflow was maximum, with the objective to achieve higher productivity and reduce wastage of milk. In milk plant it was observed that during the month of Jan-2014 to March-2014 the average procurement of milk was Rs. 4, 19, 361 liter per month and cost of procurement of milk is Rs 35/- per liter. The total cost of procurement thereby equal to Rs. 1crore 46 lakh per month, but there was mismatch in procurement-production of milk, which leads to an average loss of Rs. 12, 94, 405 per month. To solve the procurement-production problem Quality Control Tools like brainstorming, Flow Chart, Cause effect diagram and Pareto analysis are applied wherever applicable. With the successful implementation of Quality Control tools an average saving of Rs. 4, 59, 445 per month is done.

Keywords: milk, procurement-demand, quality control tools,

Procedia PDF Downloads 532
19431 Optimal Capacitor Placement in Distribution Systems

Authors: Sana Ansari, Sirus Mohammadi

Abstract:

In distribution systems, shunt capacitors are used to reduce power losses, to improve voltage profile, and to increase the maximum flow through cables and transformers. This paper presents a new method to determine the optimal locations and economical sizing of fixed and/or switched shunt capacitors with a view to power losses reduction and voltage stability enhancement. General Algebraic Modeling System (GAMS) has been used to solve the maximization modules using the MINOS optimization software with Linear Programming (LP). The proposed method is tested on 33 node distribution system and the results show that the algorithm suitable for practical implementation on real systems with any size.

Keywords: power losses, voltage stability, radial distribution systems, capacitor

Procedia PDF Downloads 647
19430 Optimization of Feeder Bus Routes at Urban Rail Transit Stations Based on Link Growth Probability

Authors: Yu Song, Yuefei Jin

Abstract:

Urban public transportation can be integrated when there is an efficient connection between urban rail lines, however, there are currently no effective or quick solutions being investigated for this connection. This paper analyzes the space-time distribution and travel demand of passenger connection travel based on taxi track data and data from the road network, excavates potential bus connection stations based on potential connection demand data, and introduces the link growth probability model in the complex network to solve the basic connection bus lines in order to ascertain the direction of the bus lines that are the most connected given the demand characteristics. Then, a tree view exhaustive approach based on constraints is suggested based on graph theory, which can hasten the convergence of findings while doing chain calculations. This study uses WEI QU NAN Station, the Xi'an Metro Line 2 terminal station in Shaanxi Province, as an illustration, to evaluate the model's and the solution method's efficacy. According to the findings, 153 prospective stations have been dug up in total, the feeder bus network for the entire line has been laid out, and the best route adjustment strategy has been found.

Keywords: feeder bus, route optimization, link growth probability, the graph theory

Procedia PDF Downloads 77
19429 Fuzzy Inference System for Risk Assessment Evaluation of Wheat Flour Product Manufacturing Systems

Authors: Yas Barzegaar, Atrin Barzegar

Abstract:

The aim of this research is to develop an intelligent system to analyze the risk level of wheat flour product manufacturing system. The model consists of five Fuzzy Inference Systems in two different layers to analyse the risk of a wheat flour product manufacturing system. The first layer of the model consists of four Fuzzy Inference Systems with three criteria. The output of each one of the Physical, Chemical, Biological and Environmental Failures will be the input of the final manufacturing systems. The proposed model based on Mamdani Fuzzy Inference Systems gives a performance ranking of wheat flour products manufacturing systems. The first step is obtaining data to identify the failure modes from expert’s opinions. The second step is the fuzzification process to convert crisp input to a fuzzy set., then the IF-then fuzzy rule applied through inference engine, and in the final step, the defuzzification process is applied to convert the fuzzy output into real numbers.

Keywords: failure modes, fuzzy rules, fuzzy inference system, risk assessment

Procedia PDF Downloads 102
19428 Enhancement of Capacity in a MC-CDMA based Cognitive Radio Network Using Non-Cooperative Game Model

Authors: Kalyani Kulkarni, Bharat Chaudhari

Abstract:

This paper addresses the issue of resource allocation in the emerging cognitive technology. Focusing the quality of service (QoS) of primary users (PU), a novel method is proposed for the resource allocation of secondary users (SU). In this paper, we propose the unique utility function in the game theoretic model of Cognitive Radio which can be maximized to increase the capacity of the cognitive radio network (CRN) and to minimize the interference scenario. The utility function is formulated to cater the need of PUs by observing Signal to Noise ratio. The existence of Nash equilibrium is for the postulated game is established.

Keywords: cognitive networks, game theory, Nash equilibrium, resource allocation

Procedia PDF Downloads 480
19427 Network Governance and Renewable Energy Transition in Sub-Saharan Africa: Contextual Evidence from Ghana

Authors: Kyere Francis, Sun Dongying, Asante Dennis, Nkrumah Nana Kwame Edmund, Naana Yaa Gyamea Kumah

Abstract:

With a focus on renewable energy to achieve low-carbon transition objectives, there is a greater demand for effective collaborative strategies for planning, strategic decision mechanisms, and long-term policy designs to steer the transitions. Government agencies, NGOs, the private sector, and individual citizens play an important role in sustainable energy production. In Ghana, however, such collaboration is fragile in the fight against climate change. This current study seeks to re-examine the position or potential of network governance in Ghana's renewable energy transition. The study adopted a qualitative approach and employed semi-structured interviews for data gathering. To explore network governance and low carbon transitions in Ghana, we examine key themes such as political environment and impact, actor cooperation and stakeholder interactions, financing and the transition, market design and renewable energy integration, existing regulation and policy gaps for renewable energy transition, clean cooking accessibility, and affordability. The findings reveal the following; Lack of comprehensive consultations with relevant stakeholders leads to lower acceptance of the policy model and sometimes lack of policy awareness. Again, the unavailability and affordability of renewable energy technologies and access to credit facilities is a significant hurdle to long-term renewable transition. Ghana's renewable energy transitions require strong networking and interaction among the public, private, and non-governmental organizations. The study participants believe that the involvement of relevant energy experts and stakeholders devoid of any political biases is instrumental in accelerating renewable energy transitions, as emphasized in the proposed framework. The study recommends that the national renewable energy transition plan be evident to all stakeholders and political administrators. Such policy may encourage renewable energy investment through stable and fixed lending rates by the financial institutions and build a network with international organizations and corporations. These findings could serve as valuable information for the transition-based energy process, primarily aiming to govern sustainability changes through network governance.

Keywords: actors, development, sustainable energy, network governance, renewable energy transition

Procedia PDF Downloads 89
19426 Modeling Driving Distraction Considering Psychological-Physical Constraints

Authors: Yixin Zhu, Lishengsa Yue, Jian Sun, Lanyue Tang

Abstract:

Modeling driving distraction in microscopic traffic simulation is crucial for enhancing simulation accuracy. Current driving distraction models are mainly derived from physical motion constraints under distracted states, in which distraction-related error terms are added to existing microscopic driver models. However, the model accuracy is not very satisfying, due to a lack of modeling the cognitive mechanism underlying the distraction. This study models driving distraction based on the Queueing Network Human Processor model (QN-MHP). This study utilizes the queuing structure of the model to perform task invocation and switching for distracted operation and control of the vehicle under driver distraction. Based on the assumption of the QN-MHP model about the cognitive sub-network, server F is a structural bottleneck. The latter information must wait for the previous information to leave server F before it can be processed in server F. Therefore, the waiting time for task switching needs to be calculated. Since the QN-MHP model has different information processing paths for auditory information and visual information, this study divides driving distraction into two types: auditory distraction and visual distraction. For visual distraction, both the visual distraction task and the driving task need to go through the visual perception sub-network, and the stimuli of the two are asynchronous, which is called stimulus on asynchrony (SOA), so when calculating the waiting time for switching tasks, it is necessary to consider it. In the case of auditory distraction, the auditory distraction task and the driving task do not need to compete for the server resources of the perceptual sub-network, and their stimuli can be synchronized without considering the time difference in receiving the stimuli. According to the Theory of Planned Behavior for drivers (TPB), this study uses risk entropy as the decision criterion for driver task switching. A logistic regression model is used with risk entropy as the independent variable to determine whether the driver performs a distraction task, to explain the relationship between perceived risk and distraction. Furthermore, to model a driver’s perception characteristics, a neurophysiological model of visual distraction tasks is incorporated into the QN-MHP, and executes the classical Intelligent Driver Model. The proposed driving distraction model integrates the psychological cognitive process of a driver with the physical motion characteristics, resulting in both high accuracy and interpretability. This paper uses 773 segments of distracted car-following in Shanghai Naturalistic Driving Study data (SH-NDS) to classify the patterns of distracted behavior on different road facilities and obtains three types of distraction patterns: numbness, delay, and aggressiveness. The model was calibrated and verified by simulation. The results indicate that the model can effectively simulate the distracted car-following behavior of different patterns on various roadway facilities, and its performance is better than the traditional IDM model with distraction-related error terms. The proposed model overcomes the limitations of physical-constraints-based models in replicating dangerous driving behaviors, and internal characteristics of an individual. Moreover, the model is demonstrated to effectively generate more dangerous distracted driving scenarios, which can be used to construct high-value automated driving test scenarios.

Keywords: computational cognitive model, driving distraction, microscopic traffic simulation, psychological-physical constraints

Procedia PDF Downloads 91
19425 A Convergent Interacting Particle Method for Computing Kpp Front Speeds in Random Flows

Authors: Tan Zhang, Zhongjian Wang, Jack Xin, Zhiwen Zhang

Abstract:

We aim to efficiently compute the spreading speeds of reaction-diffusion-advection (RDA) fronts in divergence-free random flows under the Kolmogorov-Petrovsky-Piskunov (KPP) nonlinearity. We study a stochastic interacting particle method (IPM) for the reduced principal eigenvalue (Lyapunov exponent) problem of an associated linear advection-diffusion operator with spatially random coefficients. The Fourier representation of the random advection field and the Feynman-Kac (FK) formula of the principal eigenvalue (Lyapunov exponent) form the foundation of our method implemented as a genetic evolution algorithm. The particles undergo advection-diffusion and mutation/selection through a fitness function originated in the FK semigroup. We analyze the convergence of the algorithm based on operator splitting and present numerical results on representative flows such as 2D cellular flow and 3D Arnold-Beltrami-Childress (ABC) flow under random perturbations. The 2D examples serve as a consistency check with semi-Lagrangian computation. The 3D results demonstrate that IPM, being mesh-free and self-adaptive, is simple to implement and efficient for computing front spreading speeds in the advection-dominated regime for high-dimensional random flows on unbounded domains where no truncation is needed.

Keywords: KPP front speeds, random flows, Feynman-Kac semigroups, interacting particle method, convergence analysis

Procedia PDF Downloads 46
19424 Determining Fire Resistance of Wooden Construction Elements through Experimental Studies and Artificial Neural Network

Authors: Sakir Tasdemir, Mustafa Altin, Gamze Fahriye Pehlivan, Sadiye Didem Boztepe Erkis, Ismail Saritas, Selma Tasdemir

Abstract:

Artificial intelligence applications are commonly used in industry in many fields in parallel with the developments in the computer technology. In this study, a fire room was prepared for the resistance of wooden construction elements and with the mechanism here, the experiments of polished materials were carried out. By utilizing from the experimental data, an artificial neural network (ANN) was modeled in order to evaluate the final cross sections of the wooden samples remaining from the fire. In modelling, experimental data obtained from the fire room were used. In the system developed, the first weight of samples (ws-gr), preliminary cross-section (pcs-mm2), fire time (ft-minute), fire temperature (t-oC) as input parameters and final cross-section (fcs-mm2) as output parameter were taken. When the results obtained from ANN and experimental data are compared after making statistical analyses, the data of two groups are determined to be coherent and seen to have no meaning difference between them. As a result, it is seen that ANN can be safely used in determining cross sections of wooden materials after fire and it prevents many disadvantages.

Keywords: artificial neural network, final cross-section, fire retardant polishes, fire safety, wood resistance.

Procedia PDF Downloads 385
19423 Fast Terminal Sliding Mode Controller For Quadrotor UAV

Authors: Vahid Tabrizi, Reza GHasemi, Ahmadreza Vali

Abstract:

This paper presents robust nonlinear control law for a quadrotor UAV using fast terminal sliding mode control. Fast terminal sliding mode idea is used for introducing a nonlinear sliding variable that guarantees the finite time convergence in sliding phase. Then, in reaching phase for removing chattering and producing smooth control signal, continuous approximation idea is used. Simulation results show that the proposed algorithm is robust against parameter uncertainty and has better performance than conventional sliding mode for controlling a quadrotor UAV.

Keywords: quadrotor UAV, fast terminal sliding mode, second order sliding mode t

Procedia PDF Downloads 547
19422 Anomaly Detection Based on System Log Data

Authors: M. Kamel, A. Hoayek, M. Batton-Hubert

Abstract:

With the increase of network virtualization and the disparity of vendors, the continuous monitoring and detection of anomalies cannot rely on static rules. An advanced analytical methodology is needed to discriminate between ordinary events and unusual anomalies. In this paper, we focus on log data (textual data), which is a crucial source of information for network performance. Then, we introduce an algorithm used as a pipeline to help with the pretreatment of such data, group it into patterns, and dynamically label each pattern as an anomaly or not. Such tools will provide users and experts with continuous real-time logs monitoring capability to detect anomalies and failures in the underlying system that can affect performance. An application of real-world data illustrates the algorithm.

Keywords: logs, anomaly detection, ML, scoring, NLP

Procedia PDF Downloads 94
19421 Modified Model-Based Systems Engineering Driven Approach for Defining Complex Energy Systems

Authors: Akshay S. Dalvi, Hazim El-Mounayri

Abstract:

The internal and the external interactions between the complex structural and behavioral characteristics of the complex energy system result in unpredictable emergent behaviors. These emergent behaviors are not well understood, especially when modeled using the traditional top-down systems engineering approach. The intrinsic nature of current complex energy systems has called for an elegant solution that provides an integrated framework in Model-Based Systems Engineering (MBSE). This paper mainly presents a MBSE driven approach to define and handle the complexity that arises due to emergent behaviors. The approach provides guidelines for developing system architecture that leverages in predicting the complexity index of the system at different levels of abstraction. A framework that integrates indefinite and definite modeling aspects is developed to determine the complexity that arises during the development phase of the system. This framework provides a workflow for modeling complex systems using Systems Modeling Language (SysML) that captures the system’s requirements, behavior, structure, and analytical aspects at both problem definition and solution levels. A system architecture for a district cooling plant is presented, which demonstrates the ability to predict the complexity index. The result suggests that complex energy systems like district cooling plant can be defined in an elegant manner using the unconventional modified MBSE driven approach that helps in estimating development time and cost.

Keywords: district cooling plant, energy systems, framework, MBSE

Procedia PDF Downloads 130
19420 A Robust PID Load Frequency Controller of Interconnected Power System Using SDO Software

Authors: Pasala Gopi, P. Linga Reddy

Abstract:

The response of the load frequency control problem in an multi-area interconnected electrical power system is much more complex with increasing size, changing structure and increasing load. This paper deals with Load Frequency Control of three area interconnected Power system incorporating Reheat, Non-reheat and Reheat turbines in all areas respectively. The response of the load frequency control problem in an multi-area interconnected power system is improved by designing PID controller using different tuning techniques and proved that the PID controller which was designed by Simulink Design Optimization (SDO) Software gives the superior performance than other controllers for step perturbations. Finally the robustness of controller was checked against system parameter variations

Keywords: load frequency control, pid controller tuning, step load perturbations, inter connected power system

Procedia PDF Downloads 644
19419 Detection of Resistive Faults in Medium Voltage Overhead Feeders

Authors: Mubarak Suliman, Mohamed Hassan

Abstract:

Detection of downed conductors occurring with high fault resistance (reaching kilo-ohms) has always been a challenge, especially in countries like Saudi Arabia, on which earth resistivity is very high in general (reaching more than 1000 Ω-meter). The new approaches for the detection of resistive and high impedance faults are based on the analysis of the fault current waveform. These methods are still under research and development, and they are currently lacking security and dependability. The other approach is communication-based solutions which depends on voltage measurement at the end of overhead line branches and communicate the measured signals to substation feeder relay or a central control center. However, such a detection method is costly and depends on the availability of communication medium and infrastructure. The main objective of this research is to utilize the available standard protection schemes to increase the probability of detection of downed conductors occurring with a low magnitude of fault currents and at the same time avoiding unwanted tripping in healthy conditions and feeders. By specifying the operating region of the faulty feeder, use of tripping curve for discrimination between faulty and healthy feeders, and with proper selection of core balance current transformer (CBCT) and voltage transformers with fewer measurement errors, it is possible to set the pick-up of sensitive earth fault current to minimum values of few amps (i.e., Pick-up Settings = 3 A or 4 A, …) for the detection of earth faults with fault resistance more than (1 - 2 kΩ) for 13.8kV overhead network and more than (3-4) kΩ fault resistance in 33kV overhead network. By implementation of the outcomes of this study, the probability of detection of downed conductors is increased by the utilization of existing schemes (i.e., Directional Sensitive Earth Fault Protection).

Keywords: sensitive earth fault, zero sequence current, grounded system, resistive fault detection, healthy feeder

Procedia PDF Downloads 115
19418 A Global Business Network Built on Hive: Two Use Cases: Buying and Selling of Products and Services and Carrying Out of Social Impact Projects

Authors: Gheyzer Villegas, Edgardo Cedeño, Veruska Mata, Edmundo Chauran

Abstract:

One of the most significant changes that occurred in global commerce was the emergence of cryptocurrencies and blockchain technology. There is still much debate about the adoption of the economic model based on crypto assets, and myriad international projects and initiatives are being carried out to try and explore the potential that this new field offers. The Hive blockchain is a prime example of this, featuring two use cases: of how trade based on its native currencies can give successful results in the exchange of goods and services and in the financing of social impact projects. Its decentralized management model and visionary administration of its development fund have become a key part of its success.

Keywords: Hive, business, network, blockchain

Procedia PDF Downloads 68
19417 Impact of Preksha Meditation on Academic Anxiety of Female Teenagers

Authors: Neelam Vats, Madhvi Pathak Pillai, Rajender Lal, Indu Dabas

Abstract:

The pressure of scoring higher marks to be able to get admission in a higher ranked institution has become a social stigma for school students. It leads to various social and academic pressures on them, causing psychological anxiety. This undue stress on students sometimes may even steer to aggressive behavior or suicidal tendencies. Human mind is always surrounded by the some desires, emotions and passions, which usually disturbs our mental peace. In such a scenario, we look for a solution that helps in removing all the obstacles of mind and make us mentally peaceful and strong enough to be able to deal with all kind of pressure. Preksha meditation is one such technique which aims at bringing the positive changes for overall transformation of personality. Hence, the present study was undertaken to assess the impact of Preksha Meditation on the academic anxiety on female teenagers. The study was conducted on 120 high school students from the capital city of India. All students were in the age group of 13-15 years. They also belonged to similar social as well as economic status. The sample was equally divided into two groups i.e. experimental group (N = 60) and control group (N = 60). Subjects of the experimental group were given the intervention of Preksha Meditation practice by the trained instructor for one hour per day, six days a week, for three months for the first experimental stage and another three months for the second experimental stage. The subjects of the control group were not assigned any specific type of activity rather they continued doing their normal official activities as usual. The Academic Anxiety Scale was used to collect data during multi-level stages i.e. pre-experimental stage, post-experimental stage phase-I, and post-experimental stage phase-II. The data were statistically analyzed by computing the two-tailed-‘t’ test for inter group comparison and Sandler’s ‘A’ test with alpha = or p < 0.05 for intra-group comparisons. The study concluded that the practice for longer duration of Preksha Meditation practice brings about very significant and beneficial changes in the pattern of academic anxiety.

Keywords: academic anxiety, academic pressure, Preksha, meditation

Procedia PDF Downloads 131
19416 RNA-Seq Analysis of Coronaviridae Family and SARS-Cov-2 Prediction Using Proposed ANN

Authors: Busra Mutlu Ipek, Merve Mutlu, Ahmet Mutlu

Abstract:

Novel coronavirus COVID-19, which has recently influenced the world, poses a great threat to humanity. In order to overcome this challenging situation, scientists are working on developing effective vaccine against coronavirus. Many experts and researchers have also produced articles and done studies on this highly important subject. In this direction, this special topic was chosen for article to make a contribution to this area. The purpose of this article is to perform RNA sequence analysis of selected virus forms in the Coronaviridae family and predict/classify SARS-CoV-2 (COVID-19) from other selected complete genomes in coronaviridae family using proposed Artificial Neural Network(ANN) algorithm.

Keywords: Coronaviridae family, COVID-19, RNA sequencing, ANN, neural network

Procedia PDF Downloads 144
19415 Application of Deep Neural Networks to Assess Corporate Credit Rating

Authors: Parisa Golbayani, Dan Wang, Ionut¸ Florescu

Abstract:

In this work we implement machine learning techniques to financial statement reports in order to asses company’s credit rating. Specifically, the work analyzes the performance of four neural network architectures (MLP, CNN, CNN2D, LSTM) in predicting corporate credit rating as issued by Standard and Poor’s. The paper focuses on companies from the energy, financial, and healthcare sectors in the US. The goal of this analysis is to improve application of machine learning algorithms to credit assessment. To accomplish this, the study investigates three questions. First, we investigate if the algorithms perform better when using a selected subset of important features or whether better performance is obtained by allowing the algorithms to select features themselves. Second, we address the temporal aspect inherent in financial data and study whether it is important for the results obtained by a machine learning algorithm. Third, we aim to answer if one of the four particular neural network architectures considered consistently outperforms the others, and if so under which conditions. This work frames the problem as several case studies to answer these questions and analyze the results using ANOVA and multiple comparison testing procedures.

Keywords: convolutional neural network, long short term memory, multilayer perceptron, credit rating

Procedia PDF Downloads 235
19414 Multi Tier Data Collection and Estimation, Utilizing Queue Model in Wireless Sensor Networks

Authors: Amirhossein Mohajerzadeh, Abolghasem Mohajerzadeh

Abstract:

In this paper, target parameter is estimated with desirable precision in hierarchical wireless sensor networks (WSN) while the proposed algorithm also tries to prolong network lifetime as much as possible, using efficient data collecting algorithm. Target parameter distribution function is considered unknown. Sensor nodes sense the environment and send the data to the base station called fusion center (FC) using hierarchical data collecting algorithm. FC builds underlying phenomena based on collected data. Considering the aggregation level, x, the goal is providing the essential infrastructure to find the best value for aggregation level in order to prolong network lifetime as much as possible, while desirable accuracy is guaranteed (required sample size is fully depended on desirable precision). First, the sample size calculation algorithm is discussed, second, the average queue length based on M/M[x]/1/K queue model is determined and it is used for energy consumption calculation. Nodes can decrease transmission cost by aggregating incoming data. Furthermore, the performance of the new algorithm is evaluated in terms of lifetime and estimation accuracy.

Keywords: aggregation, estimation, queuing, wireless sensor network

Procedia PDF Downloads 186
19413 Technical Assessment of Utilizing Electrical Variable Transmission Systems in Hybrid Electric Vehicles

Authors: Majid Vafaeipour, Mohamed El Baghdadi, Florian Verbelen, Peter Sergeant, Joeri Van Mierlo, Kurt Stockman, Omar Hegazy

Abstract:

The Electrical Variable Transmission (EVT), an electromechanical device, can be considered as an alternative solution to the conventional transmission system utilized in Hybrid Electric Vehicles (HEVs). This study present comparisons in terms of fuel consumption, power split, and state of charge (SoC) of an HEV containing an EVT to a conventional parallel topology and a series topology. To this end, corresponding simulations of these topologies are all performed in presence of control strategies enabling battery charge-sustaining and efficient power split. The power flow through the components of the vehicle are attained, and fuel consumption results of the considered cases are compared. The investigation of the results indicates utilizing EVT can provide significant added values in HEV configurations. The outcome of the current research paves its path for implementation of design optimization approaches on such systems in further research directions.

Keywords: Electrical Variable Transmission (EVT), Hybrid Electric Vehicle (HEV), parallel, series, modeling

Procedia PDF Downloads 238
19412 Thermodynamic Study of Homo-Pairs in Molten Cd-Me, (Me=Ga,in) Binary Systems

Authors: Yisau Adelaja Odusote, Olakanmi Felix Akinto

Abstract:

The associative tendency between like atoms in molten Cd-Ga and Cd-In alloy systems has been studied by using the Quasi-Chemical Approximation Model (QCAM). The concentration dependence of the microscopic functions (the concentration-concentration fluctuations in the long-wavelength limits, Scc(0), the chemical short-range order (CSRO) parameter α1 as well as the chemical diffusion) and the mixing properties as the free energy of mixing, GM, enthalpy of mixing and entropy of mixing of the two molten alloys have been determined. Thermodynamic properties of both systems deviate positively from Raoult's law, while the systems are characterized by positive interaction energy. The role of atomic size ratio on the alloying properties was discussed.

Keywords: homo-pairs, interchange energy, enthalpy, entropy, Cd-Ga, Cd-In

Procedia PDF Downloads 437
19411 An Application of Graph Theory to The Electrical Circuit Using Matrix Method

Authors: Samai'la Abdullahi

Abstract:

A graph is a pair of two set and so that a graph is a pictorial representation of a system using two basic element nodes and edges. A node is represented by a circle (either hallo shade) and edge is represented by a line segment connecting two nodes together. In this paper, we present a circuit network in the concept of graph theory application and also circuit models of graph are represented in logical connection method were we formulate matrix method of adjacency and incidence of matrix and application of truth table.

Keywords: euler circuit and path, graph representation of circuit networks, representation of graph models, representation of circuit network using logical truth table

Procedia PDF Downloads 561
19410 Breast Cancer Survivability Prediction via Classifier Ensemble

Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia

Abstract:

This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.

Keywords: classifier ensemble, breast cancer survivability, data mining, SEER

Procedia PDF Downloads 328
19409 An Advanced Automated Brain Tumor Diagnostics Approach

Authors: Berkan Ural, Arif Eser, Sinan Apaydin

Abstract:

Medical image processing is generally become a challenging task nowadays. Indeed, processing of brain MRI images is one of the difficult parts of this area. This study proposes a hybrid well-defined approach which is consisted from tumor detection, extraction and analyzing steps. This approach is mainly consisted from a computer aided diagnostics system for identifying and detecting the tumor formation in any region of the brain and this system is commonly used for early prediction of brain tumor using advanced image processing and probabilistic neural network methods, respectively. For this approach, generally, some advanced noise removal functions, image processing methods such as automatic segmentation and morphological operations are used to detect the brain tumor boundaries and to obtain the important feature parameters of the tumor region. All stages of the approach are done specifically with using MATLAB software. Generally, for this approach, firstly tumor is successfully detected and the tumor area is contoured with a specific colored circle by the computer aided diagnostics program. Then, the tumor is segmented and some morphological processes are achieved to increase the visibility of the tumor area. Moreover, while this process continues, the tumor area and important shape based features are also calculated. Finally, with using the probabilistic neural network method and with using some advanced classification steps, tumor area and the type of the tumor are clearly obtained. Also, the future aim of this study is to detect the severity of lesions through classes of brain tumor which is achieved through advanced multi classification and neural network stages and creating a user friendly environment using GUI in MATLAB. In the experimental part of the study, generally, 100 images are used to train the diagnostics system and 100 out of sample images are also used to test and to check the whole results. The preliminary results demonstrate the high classification accuracy for the neural network structure. Finally, according to the results, this situation also motivates us to extend this framework to detect and localize the tumors in the other organs.

Keywords: image processing algorithms, magnetic resonance imaging, neural network, pattern recognition

Procedia PDF Downloads 418