Search results for: Dense Networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3227

Search results for: Dense Networks

167 Women’s Experience of Managing Pre-Existing Lymphoedema during Pregnancy and the Early Postnatal Period

Authors: Kim Toyer, Belinda Thompson, Louise Koelmeyer

Abstract:

Lymphoedema is a chronic condition caused by dysfunction of the lymphatic system, which limits the drainage of fluid and tissue waste from the interstitial space of the affected body part. The normal physiological changes in pregnancy cause an increased load on a normal lymphatic system which can result in a transient lymphatic overload (oedema). The interaction between lymphoedema and pregnancy oedema is unclear. Women with pre-existing lymphoedema require accurate information and additional strategies to manage their lymphoedema during pregnancy. Currently, no resources are available to guide women or their healthcare providers with accurate advice and additional management strategies for coping with lymphoedema during pregnancy until they have recovered postnatally. This study explored the experiences of Australian women with pre-existing lymphoedema during recent pregnancy and the early postnatal period to determine how their usual lymphoedema management strategies were adapted and what were their additional or unmet needs. Interactions with their obstetric care providers, the hospital maternity services, and usual lymphoedema therapy services were detailed. Participants were sourced from several Australian lymphoedema community groups, including therapist networks. Opportunistic sampling is appropriate to explore this topic in a small target population as lymphoedema in women of childbearing age is uncommon, with prevalence data unavailable. Inclusion criteria were aged over 18 years, diagnosed with primary or secondary lymphoedema of the arm or leg, pregnant within the preceding ten years (since 2012), and had their pregnancy and postnatal care in Australia. Exclusion criteria were a diagnosis of lipedema and if unable to read or understand a reasonable level of English. A mixed-method qualitative design was used in two phases. This involved an online survey (REDCap platform) of the participants followed by online semi-structured interviews or focus groups to provide the transcript data for inductive thematic analysis to gain an in-depth understanding of issues raised. Women with well-managed pre-existing lymphoedema coped well with the additional oedema load of pregnancy; however, those with limited access to quality conservative care prior to pregnancy were found to be significantly impacted by pregnancy, including many reporting deterioration of their chronic lymphoedema. Misinformation and a lack of support increased fear and apprehension in planning and enjoying their pregnancy experience. Collaboration between maternity and lymphoedema therapy services did not happen despite study participants suggesting it. Helpful resources and unmet needs were identified in the recent Australian context to inform further research and the development of resources to assist women with lymphoedema who are considering or are pregnant and their supporters, including health care providers.

Keywords: lymphoedema, management strategies, pregnancy, qualitative

Procedia PDF Downloads 85
166 Continuous Professional Development of Teachers: Implementation Mechanisms in the Republic of Kazakhstan Based on the Professional Standard 'Teacher'

Authors: Yelena Agranovich, Larissa Ageyeva, Aigul Syzdykbayeva, Violetta Tyan

Abstract:

The modernization of the education system in the Republic of Kazakhstan is aimed at improving the quality of teacher training and enhancing key competencies among teachers. The current professional standard ‘Teacher’ defines the general characteristics of teachers’ activities, key competencies, and criteria according to relevant qualification categories structured on the principle of progression, thereby enabling Continuous Professional Development (CPD). The essence of CPD lies in the constant integration of new knowledge and skills that help teachers adapt to changes in the education system, in technologies, and teaching methods. This developmental process enables teachers to stay updated on recent scientific achievements, innovations, and modern pedagogical practices. Continuous learning helps teachers remain flexible and open to new developments, creating conditions for improving educational quality and fostering students' personal growth. This study aims to address the following objectives: analysis of international CPD practices, identification of conceptual foundations, and investigation of CPD implementation mechanisms in Kazakhstan. The core principles of CPD are identified as longitudinality, systematicity, and fragmentation. CPD implementation is based on various theoretical approaches: axiological, systemic, competency-based, activity-based, and learner-centered. The study analyzes leading models of teacher CPD, with a target sample that includes countries such as Australia, Japan, South Korea, England, Singapore, Sweden, Finland, and Kazakhstan. The research methods include analysis (comparative, historical, content analysis, systematic), case studies of CPD models, and synthesis and systematization of scientific data. As research results, the mechanisms for CPD implementation in Kazakhstan will be identified, along with further perspectives on transforming resources within the teacher professional development system. In comparing CPD models from various countries, it is noted that teacher CPD in the Republic of Kazakhstan: (1) is implemented through educational programs, professional development courses, teacher certification, professional networks, in-school professional development, self-education, and self-assessment; (2) includes the development of pedagogical values and competencies (tolerance, inclusivity, communication, critical thinking, creativity, reflection, etc.); (3) is carried out based on traditional forms (professional development courses, retraining) and informal forms (self-learning, self-development, experience sharing and exchange). Further research will focus on creating a digital ecosystem for teacher CPD, based on an educational platform that facilitates individualized professional development pathways for teachers (competency diagnostics, course selection, and a methodological system of course and post-course support for teachers).

Keywords: continuous professional development, CPD models, professional development, professional upgrading, teacher, teacher training

Procedia PDF Downloads 14
165 Consensual A-Monogamous Relationships: Challenges and Ways of Coping

Authors: Tal Braverman Uriel, Tal Litvak Hirsch

Abstract:

Background and Objectives: Little or only partial emphasis has been placed on exploring the complexity of consensual non-monogamous relationships. The term "polyamory" refers to consensual non-monogamy, and it is defined as having emotional and/or sexual relations simultaneously with two or more people, the consent and knowledge of all the partners concerned. Managing multiple romantic relationships with different people evokes more emotions, leads to more emotional conflicts arising from different interests, and demands practical strategies. An individual's transition from a monogamous lifestyle to a consensual non-monogamous lifestyle yields new challenges, accompanied by stress, uncertainty, and question marks, as do other life-changing events, such as divorce or transition to parenthood. The study examines both the process of transition and adaptation to a consensually non-monogamous relationship, as well as the coping mechanism involved in the daily conduct of this lifestyle. The research focuses on understanding the consequences, challenges, and coping methods from a personal, marital, and familial point of view and focuses on 40 middle-aged individuals (20 men and 20 women ages 40-60). The research sheds light on a way of life that has not been previously studied in Israel and is still considered unacceptable. Theories of crisis (e.g., as Folkman and Lazarus) were applied, and as a result, a deeper understanding of the subject was reached, all while focusing on multiple aspects of dealing with stress. The basic research question examines the consequences of entering a polyamorous life from a personal point of view as an individual, partner, and parent and the ways of coping with these consequences. Method: The research is conducted with a narrative qualitative approach in the interpretive paradigm, including semi-structured in-depth interviews. The method of analysis is thematic. Results: The findings indicate that in most cases, an individual's motivation to open the relationship is mainly a longing for better sexuality and for an added layer of excitement to their lives. Most of the interviewees were assisted by their spouses in the process, as well as by social networks and podcasts on the subject. Some of them therapeutic professionals from the field are helpful. It also clearly emerged that among those who experienced acute emotional crises with the primary partner or painful separations from secondary partners, all believed polyamory to be the adequate way of life for them. Finally, a key resource for managing tension and stress is the ability to share and communicate with the primary partner. Conclusions: The study points to the challenges and benefits of a non-monogamous lifestyle as well as the use of coping mechanisms and resources that are consistent with the existing theory and research in the field in the context of life changes. The study indicates the need to expand the research canvas in the future in the context of parenting and the consequences for children.

Keywords: a-monogamy, consent, family, stress, tension

Procedia PDF Downloads 76
164 Changing the Landscape of Fungal Genomics: New Trends

Authors: Igor V. Grigoriev

Abstract:

Understanding of biological processes encoded in fungi is instrumental in addressing future food, feed, and energy demands of the growing human population. Genomics is a powerful and quickly evolving tool to understand these processes. The Fungal Genomics Program of the US Department of Energy Joint Genome Institute (JGI) partners with researchers around the world to explore fungi in several large scale genomics projects, changing the fungal genomics landscape. The key trends of these changes include: (i) rapidly increasing scale of sequencing and analysis, (ii) developing approaches to go beyond culturable fungi and explore fungal ‘dark matter,’ or unculturables, and (iii) functional genomics and multi-omics data integration. Power of comparative genomics has been recently demonstrated in several JGI projects targeting mycorrhizae, plant pathogens, wood decay fungi, and sugar fermenting yeasts. The largest JGI project ‘1000 Fungal Genomes’ aims at exploring the diversity across the Fungal Tree of Life in order to better understand fungal evolution and to build a catalogue of genes, enzymes, and pathways for biotechnological applications. At this point, at least 65% of over 700 known families have one or more reference genomes sequenced, enabling metagenomics studies of microbial communities and their interactions with plants. For many of the remaining families no representative species are available from culture collections. To sequence genomes of unculturable fungi two approaches have been developed: (a) sequencing DNA from fruiting bodies of ‘macro’ and (b) single cell genomics using fungal spores. The latter has been tested using zoospores from the early diverging fungi and resulted in several near-complete genomes from underexplored branches of the Fungal Tree, including the first genomes of Zoopagomycotina. Genome sequence serves as a reference for transcriptomics studies, the first step towards functional genomics. In the JGI fungal mini-ENCODE project transcriptomes of the model fungus Neurospora crassa grown on a spectrum of carbon sources have been collected to build regulatory gene networks. Epigenomics is another tool to understand gene regulation and recently introduced single molecule sequencing platforms not only provide better genome assemblies but can also detect DNA modifications. For example, 6mC methylome was surveyed across many diverse fungi and the highest among Eukaryota levels of 6mC methylation has been reported. Finally, data production at such scale requires data integration to enable efficient data analysis. Over 700 fungal genomes and other -omes have been integrated in JGI MycoCosm portal and equipped with comparative genomics tools to enable researchers addressing a broad spectrum of biological questions and applications for bioenergy and biotechnology.

Keywords: fungal genomics, single cell genomics, DNA methylation, comparative genomics

Procedia PDF Downloads 208
163 Comparison of GIS-Based Soil Erosion Susceptibility Models Using Support Vector Machine, Binary Logistic Regression and Artificial Neural Network in the Southwest Amazon Region

Authors: Elaine Lima Da Fonseca, Eliomar Pereira Da Silva Filho

Abstract:

The modeling of areas susceptible to soil loss by hydro erosive processes consists of a simplified instrument of reality with the purpose of predicting future behaviors from the observation and interaction of a set of geoenvironmental factors. The models of potential areas for soil loss will be obtained through binary logistic regression, artificial neural networks, and support vector machines. The choice of the municipality of Colorado do Oeste in the south of the western Amazon is due to soil degradation due to anthropogenic activities, such as agriculture, road construction, overgrazing, deforestation, and environmental and socioeconomic configurations. Initially, a soil erosion inventory map constructed through various field investigations will be designed, including the use of remotely piloted aircraft, orbital imagery, and the PLANAFLORO/RO database. 100 sampling units with the presence of erosion will be selected based on the assumptions indicated in the literature, and, to complement the dichotomous analysis, 100 units with no erosion will be randomly designated. The next step will be the selection of the predictive parameters that exert, jointly, directly, or indirectly, some influence on the mechanism of occurrence of soil erosion events. The chosen predictors are altitude, declivity, aspect or orientation of the slope, curvature of the slope, composite topographic index, flow power index, lineament density, normalized difference vegetation index, drainage density, lithology, soil type, erosivity, and ground surface temperature. After evaluating the relative contribution of each predictor variable, the erosion susceptibility model will be applied to the municipality of Colorado do Oeste - Rondônia through the SPSS Statistic 26 software. Evaluation of the model will occur through the determination of the values of the R² of Cox & Snell and the R² of Nagelkerke, Hosmer and Lemeshow Test, Log Likelihood Value, and Wald Test, in addition to analysis of the Confounding Matrix, ROC Curve and Accumulated Gain according to the model specification. The validation of the synthesis map resulting from both models of the potential risk of soil erosion will occur by means of Kappa indices, accuracy, and sensitivity, as well as by field verification of the classes of susceptibility to erosion using drone photogrammetry. Thus, it is expected to obtain the mapping of the following classes of susceptibility to erosion very low, low, moderate, very high, and high, which may constitute a screening tool to identify areas where more detailed investigations need to be carried out, applying more efficient social resources.

Keywords: modeling, susceptibility to erosion, artificial intelligence, Amazon

Procedia PDF Downloads 66
162 Existential Affordances and Psychopathology: A Gibsonian Analysis of Dissociative Identity Disorder

Authors: S. Alina Wang

Abstract:

A Gibsonian approach is used to understand the existential dimensions of the human ecological niche. Then, this existential-Gibsonian framework is applied to rethinking Hacking’s historical analysis of multiple personality disorder. This research culminates in a generalized account of psychiatric illness from an enactivist lens. In conclusion, reflections on the implications of this account on approaches to psychiatric treatment are mentioned. J.J. Gibson’s theory of affordances centered on affordances of sensorimotor varieties, which guide basic behaviors relative to organisms’ vital needs and physiological capacities (1979). Later theorists, notably Neisser (1988) and Rietveld (2014), expanded on the theory of affordances to account for uniquely human activities relative to the emotional, intersubjective, cultural, and narrative aspects of the human ecological niche. This research shows that these affordances are structured by what Haugeland (1998) calls existential commitments, which draws on Heidegger’s notion of dasein (1927) and Merleau-Ponty’s account of existential freedom (1945). These commitments organize the existential affordances that fill an individual’s environment and guide their thoughts, emotions, and behaviors. This system of a priori existential commitments and a posteriori affordances is called existential enactivism. For humans, affordances do not only elicit motor responses and appear as objects with instrumental significance. Affordances also, and possibly primarily, determine so-called affective and cognitive activities and structure the wide range of kinds (e.g., instrumental, aesthetic, ethical) of significances of objects found in the world. Then existential enactivism is applied to understanding the psychiatric phenomenon of multiple personality disorder (precursor of the current diagnosis of dissociative identity disorder). A reinterpretation of Hacking’s (1998) insights into the history of this particular disorder and his generalizations on the constructed nature of most psychiatric illness is taken on. Enactivist approaches sensitive to existential phenomenology can provide a deeper understanding of these matters. Conceptualizing psychiatric illness as strictly a disorder in the head (whether parsed as a disorder of brain chemicals or meaning-making capacities encoded in psychological modules) is incomplete. Rather, psychiatric illness must also be understood as a disorder in the world, or in the interconnected networks of existential affordances that regulate one’s emotional, intersubjective, and narrative capacities. All of this suggests that an adequate account of psychiatric illness must involve (1) the affordances that are the sources of existential hindrance, (2) the existential commitments structuring these affordances, and (3) the conditions of these existential commitments. Approaches to treatment of psychiatric illness would be more effective by centering on the interruption of normalized behaviors corresponding to affordances targeted as sources of hindrance, the development of new existential commitments, and the practice of new behaviors that erect affordances relative to these reformed commitments.

Keywords: affordance, enaction, phenomenology, psychiatry, psychopathology

Procedia PDF Downloads 137
161 Verification of Geophysical Investigation during Subsea Tunnelling in Qatar

Authors: Gary Peach, Furqan Hameed

Abstract:

Musaimeer outfall tunnel is one of the longest storm water tunnels in the world, with a total length of 10.15 km. The tunnel will accommodate surface and rain water received from the drainage networks from 270 km of urban areas in southern Doha with a pumping capacity of 19.7m³/sec. The tunnel is excavated by Tunnel Boring Machine (TBM) through Rus Formation, Midra Shales, and Simsima Limestone. Water inflows at high pressure, complex mixed ground, and weaker ground strata prone to karstification with the presence of vertical and lateral fractures connected to the sea bed were also encountered during mining. In addition to pre-tender geotechnical investigations, the Contractor carried out a supplementary offshore geophysical investigation in order to fine-tune the existing results of geophysical and geotechnical investigations. Electric resistivity tomography (ERT) and Seismic Reflection survey was carried out. Offshore geophysical survey was performed, and interpretations of rock mass conditions were made to provide an overall picture of underground conditions along the tunnel alignment. This allowed the critical tunnelling area and cutter head intervention to be planned accordingly. Karstification was monitored with a non-intrusive radar system facility installed on the TBM. The Boring Electric Ahead Monitoring(BEAM) was installed at the cutter head and was able to predict the rock mass up to 3 tunnel diameters ahead of the cutter head. BEAM system was provided with an online system for real time monitoring of rock mass condition and then correlated with the rock mass conditions predicted during the interpretation phase of offshore geophysical surveys. The further correlation was carried by Samples of the rock mass taken from tunnel face inspections and excavated material produced by the TBM. The BEAM data was continuously monitored to check the variations in resistivity and percentage frequency effect (PFE) of the ground. This system provided information about rock mass condition, potential karst risk, and potential of water inflow. BEAM system was found to be more than 50% accurate in picking up the difficult ground conditions and faults as predicted in the geotechnical interpretative report before the start of tunnelling operations. Upon completion of the project, it was concluded that the combined use of different geophysical investigation results can make the execution stage be carried out in a more confident way with the less geotechnical risk involved. The approach used for the prediction of rock mass condition in Geotechnical Interpretative Report (GIR) and Geophysical Reflection and electric resistivity tomography survey (ERT) Geophysical Reflection surveys were concluded to be reliable as the same rock mass conditions were encountered during tunnelling operations.

Keywords: tunnel boring machine (TBM), subsea, karstification, seismic reflection survey

Procedia PDF Downloads 245
160 Application of 2D Electrical Resistivity Tomographic Imaging Technique to Study Climate Induced Landslide and Slope Stability through the Analysis of Factor of Safety: A Case Study in Ooty Area, Tamil Nadu, India

Authors: S. Maniruzzaman, N. Ramanujam, Qazi Akhter Rasool, Swapan Kumar Biswas, P. Prasad, Chandrakanta Ojha

Abstract:

Landslide is one of the major natural disasters in South Asian countries. Applying 2D Electrical Resistivity Tomographic Imaging estimation of geometry, thickness, and depth of failure zone of the landslide can be made. Landslide is a pertinent problem in Nilgris plateau next to Himalaya. Nilgris range consists of hard Archean metamorphic rocks. Intense weathering prevailed during the Pre-Cambrian time had deformed the rocks up to 45m depth. The landslides are dominant in the southern and eastern part of plateau of is comparatively smaller than the northern drainage basins, as it has low density of drainage; coarse texture permitted the more of infiltration of rainwater, whereas in the northern part of the plateau entombed with high density of drainage pattern and fine texture with less infiltration than run off, and low to the susceptible to landslide. To get comprehensive information about the landslide zone 2D Electrical Resistivity Tomographic imaging study with CRM 500 Resistivity meter are used in Coonoor– Mettupalyam sector of Nilgiris plateau. To calculate Factor of Safety the infinite slope model of Brunsden and Prior is used. Factor of Safety can be expressed (FS) as the ratio of resisting forces to disturbing forces. If FS < 1 disturbing forces are larger than resisting forces and failure may occur. The geotechnical parameters of soil samples are calculated on the basis upon the apparent resistivity values for litho units of measured from 2D ERT image of the landslide zone. Relationship between friction angles for various soil properties is established by simple regression analysis from apparent resistivity data. Increase of water content in slide zone reduces the effectiveness of the shearing resistance and increase the sliding movement. Time-lapse resistivity changes to slope failure is determined through geophysical Factor of Safety which depends on resistivity and site topography. This ERT technique infers soil property at variable depths in wider areas. This approach to retrieve the soil property and overcomes the limit of the point of information provided by rain gauges and porous probes. Monitoring of slope stability without altering soil structure through the ERT technique is non-invasive with low cost. In landslide prone area an automated Electrical Resistivity Tomographic Imaging system should be installed permanently with electrode networks to monitor the hydraulic precursors to monitor landslide movement.

Keywords: 2D ERT, landslide, safety factor, slope stability

Procedia PDF Downloads 318
159 Training During Emergency Response to Build Resiliency in Water, Sanitation, and Hygiene

Authors: Lee Boudreau, Ash Kumar Khaitu, Laura A. S. MacDonald

Abstract:

In April 2015, a magnitude 7.8 earthquake struck Nepal, killing, injuring, and displacing thousands of people. The earthquake also damaged water and sanitation service networks, leading to a high risk of diarrheal disease and the associated negative health impacts. In response to the disaster, the Environment and Public Health Organization (ENPHO), a Kathmandu-based non-governmental organization, worked with the Centre for Affordable Water and Sanitation Technology (CAWST), a Canadian education, training and consulting organization, to develop two training programs to educate volunteers on water, sanitation, and hygiene (WASH) needs. The first training program was intended for acute response, with the second focusing on longer term recovery. A key focus was to equip the volunteers with the knowledge and skills to formulate useful WASH advice in the unanticipated circumstances they would encounter when working in affected areas. Within the first two weeks of the disaster, a two-day acute response training was developed, which focused on enabling volunteers to educate those affected by the disaster about local WASH issues, their link to health, and their increased importance immediately following emergency situations. Between March and October 2015, a total of 19 training events took place, with over 470 volunteers trained. The trained volunteers distributed hygiene kits and liquid chlorine for household water treatment. They also facilitated health messaging and WASH awareness activities in affected communities. A three-day recovery phase training was also developed and has been delivered to volunteers in Nepal since October 2015. This training focused on WASH issues during the recovery and reconstruction phases. The interventions and recommendations in the recovery phase training focus on long-term WASH solutions, and so form a link between emergency relief strategies and long-term development goals. ENPHO has trained 226 volunteers during the recovery phase, with training ongoing as of April 2016. In the aftermath of the earthquake, ENPHO found that its existing pool of volunteers were more than willing to help those in their communities who were more in need. By training these and new volunteers, ENPHO was able to reach many more communities in the immediate aftermath of the disaster; together they reached 11 of the 14 earthquake-affected districts. The collaboration between ENPHO and CAWST in developing the training materials was a highly collaborative and iterative process, which enabled the training materials to be developed within a short response time. By training volunteers on basic WASH topics during both the immediate response and the recovery phase, ENPHO and CAWST have been able to link immediate emergency relief to long-term developmental goals. While the recovery phase training continues in Nepal, CAWST is planning to decontextualize the training used in both phases so that it can be applied to other emergency situations in the future. The training materials will become part of the open content materials available on CAWST’s WASH Resources website.

Keywords: water and sanitation, emergency response, education and training, building resilience

Procedia PDF Downloads 305
158 Geospatial Modeling Framework for Enhancing Urban Roadway Intersection Safety

Authors: Neeti Nayak, Khalid Duri

Abstract:

Despite the many advances made in transportation planning, the number of injuries and fatalities in the United States which involve motorized vehicles near intersections remain largely unchanged year over year. Data from the National Highway Traffic Safety Administration for 2018 indicates accidents involving motorized vehicles at traffic intersections accounted for 8,245 deaths and 914,811 injuries. Furthermore, collisions involving pedal cyclists killed 861 people (38% at intersections) and injured 46,295 (68% at intersections), while accidents involving pedestrians claimed 6,247 lives (25% at intersections) and injured 71,887 (56% at intersections)- the highest tallies registered in nearly 20 years. Some of the causes attributed to the rising number of accidents relate to increasing populations and the associated changes in land and traffic usage patterns, insufficient visibility conditions, and inadequate applications of traffic controls. Intersections that were initially designed with a particular land use pattern in mind may be rendered obsolete by subsequent developments. Many accidents involving pedestrians are accounted for by locations which should have been designed for safe crosswalks. Conventional solutions for evaluating intersection safety often require costly deployment of engineering surveys and analysis, which limit the capacity of resource-constrained administrations to satisfy their community’s needs for safe roadways adequately, effectively relegating mitigation efforts for high-risk areas to post-incident responses. This paper demonstrates how geospatial technology can identify high-risk locations and evaluate the viability of specific intersection management techniques. GIS is used to simulate relevant real-world conditions- the presence of traffic controls, zoning records, locations of interest for human activity, design speed of roadways, topographic details and immovable structures. The proposed methodology provides a low-cost mechanism for empowering urban planners to reduce the risks of accidents using 2-dimensional data representing multi-modal street networks, parcels, crosswalks and demographic information alongside 3-dimensional models of buildings, elevation, slope and aspect surfaces to evaluate visibility and lighting conditions and estimate probabilities for jaywalking and risks posed by blind or uncontrolled intersections. The proposed tools were developed using sample areas of Southern California, but the model will scale to other cities which conform to similar transportation standards given the availability of relevant GIS data.

Keywords: crosswalks, cyclist safety, geotechnology, GIS, intersection safety, pedestrian safety, roadway safety, transportation planning, urban design

Procedia PDF Downloads 109
157 The Effect of Mindfulness-Based Interventions for Individuals with Tourette Syndrome: A Scoping Review

Authors: Ilana Singer, Anastasia Lučić, Julie Leclerc

Abstract:

Introduction: Tics, characterized by repetitive, sudden, non-voluntary motor movements or vocalizations, are prevalent in chronic tic disorder (CT) and Tourette Syndrome (TS). These neurodevelopmental disorders often coexist with various psychiatric conditions, leading to challenges and reduced quality of life. While medication in conjunction with behavioral interventions, such as Habit Reversal Training (HRT), Exposure Response Prevention (ERP), and Comprehensive Behavioral Intervention for Tics (CBIT), has shown efficacy, a significant proportion of patients experience persistent tics. Thus, innovative treatment approaches are necessary to improve therapeutic outcomes, such as mindfulness-based approaches. Nonetheless, the effectiveness of mindfulness-based interventions in the context of CT and TS remains understudied. Objective: The objective of this scoping review is to provide an overview of the current state of research on mindfulness-based interventions for CT and TS, identify knowledge and evidence gaps, discuss the effectiveness of mindfulness-based interventions with other treatment options, and discuss implications for clinical practice and policy development. Method: Using guidelines from Peters (2020) and the PRISMA-ScR, a scoping review was conducted. Multiple electronic databases were searched from inception until June 2023, including MEDLINE, EMBASE, PsychInfo, Global Health, PubMed, Web of Science, and Érudit. Inclusion criteria were applied to select relevant studies, and data extraction was independently performed by two reviewers. Results: Five papers were included in the study. Firstly, we found that mindfulness interventions were found to be effective in reducing anxiety and depression while enhancing overall well-being in individuals with tics. Furthermore, the review highlighted the potential role of mindfulness in enhancing functional connectivity within the Default Mode Network (DMN) as a compensatory function in TS patients. This suggests that mindfulness interventions may complement and support traditional therapeutic approaches, particularly HRT, by positively influencing brain networks associated with tic regulation and control. Conclusion: This scoping review contributes to the understanding of the effectiveness of mindfulness-based interventions in managing CT and TS. By identifying research gaps, this review can guide future investigations and interventions to improve outcomes for individuals with CT or TS. Overall, these findings emphasize the potential benefits of incorporating mindfulness-based interventions as a smaller subset within comprehensive treatment strategies. However, it is essential to acknowledge the limitations of this scoping review, such as the exclusion of a pre-established protocol and the limited number of studies available for inclusion. Further research and clinical exploration are necessary to better understand the specific mechanisms and optimal integration of mindfulness-based interventions with existing behavioral interventions for this population.

Keywords: scoping reviews, Tourette Syndrome, tics, mindfulness-based, therapy, intervention

Procedia PDF Downloads 83
156 Microgrid Design Under Optimal Control With Batch Reinforcement Learning

Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion

Abstract:

Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.

Keywords: batch-constrained reinforcement learning, control, design, optimal

Procedia PDF Downloads 123
155 In Search of Innovation: Exploring the Dynamics of Innovation

Authors: Michal Lysek, Mike Danilovic, Jasmine Lihua Liu

Abstract:

HMS Industrial Networks AB has been recognized as one of the most innovative companies in the industrial communication industry worldwide. The creation of their Anybus innovation during the 1990s contributed considerably to the company’s success. From inception, HMS’ employees were innovating for the purpose of creating new business (the creation phase). After the Anybus innovation, they began the process of internationalization (the commercialization phase), which in turn led them to concentrate on cost reduction, product quality, delivery precision, operational efficiency, and increasing growth (the growth phase). As a result of this transformation, performing new radical innovations have become more complicated. The purpose of our research was to explore the dynamics of innovation at HMS from the aspect of key actors, activities, and events, over the three phases, in order to understand what led to the creation of their Anybus innovation, and why it has become increasingly challenging for HMS to create new radical innovations for the future. Our research methodology was based on a longitudinal, retrospective study from the inception of HMS in 1988 to 2014, a single case study inspired by the grounded theory approach. We conducted 47 interviews and collected 1 024 historical documents for our research. Our analysis has revealed that HMS’ success in creating the Anybus, and developing a successful business around the innovation, was based on three main capabilities – cultivating customer relations on different managerial and organizational levels, inspiring business relations, and balancing complementary human assets for the purpose of business creation. The success of HMS has turned the management’s attention away from past activities of key actors, of their behavior, and how they influenced and stimulated the creation of radical innovations. Nowadays, they are rhetorically focusing on creativity and innovation. All the while, their real actions put emphasis on growth, cost reduction, product quality, delivery precision, operational efficiency, and moneymaking. In the process of becoming an international company, HMS gradually refocused. In so doing they became profitable and successful, but they also forgot what made them innovative in the first place. Fortunately, HMS’ management has come to realize that this is the case and they are now in search of recapturing innovation once again. Our analysis indicates that HMS’ management is facing several barriers to innovation related path dependency and other lock-in phenomena. HMS’ management has been captured, trapped in their mindset and actions, by the success of the past. But now their future has to be secured, and they have come to realize that moneymaking is not everything. In recent years, HMS’ management have begun to search for innovation once more, in order to recapture their past capabilities for creating radical innovations. In order to unlock their managerial perceptions of customer needs and their counter-innovation driven activities and events, to utilize the full potential of their employees and capture the innovation opportunity for the future.

Keywords: barriers to innovation, dynamics of innovation, in search of excellence and innovation, radical innovation

Procedia PDF Downloads 379
154 A Top-down vs a Bottom-up Approach on Lower Extremity Motor Recovery and Balance Following Acute Stroke: A Randomized Clinical Trial

Authors: Vijaya Kumar, Vidayasagar Pagilla, Abraham Joshua, Rakshith Kedambadi, Prasanna Mithra

Abstract:

Background: Post stroke rehabilitation are aimed to accelerate for optimal sensorimotor recovery, functional gain and to reduce long-term dependency. Intensive physical therapy interventions can enhance this recovery as experience-dependent neural plastic changes either directly act at cortical neural networks or at distal peripheral level (muscular components). Neuromuscular Electrical Stimulation (NMES), a traditional bottom-up approach, mirror therapy (MT), a relatively new top down approach have found to be an effective adjuvant treatment methods for lower extremity motor and functional recovery in stroke rehabilitation. However there is a scarcity of evidence to compare their therapeutic gain in stroke recovery.Aim: To compare the efficacy of neuromuscular electrical stimulation (NMES) and mirror therapy (MT) in very early phase of post stroke rehabilitation addressed to lower extremity motor recovery and balance. Design: observer blinded Randomized Clinical Trial. Setting: Neurorehabilitation Unit, Department of Physical Therapy, Tertiary Care Hospitals. Subjects: 32 acute stroke subjects with first episode of unilateral stroke with hemiparesis, referred for rehabilitation (onset < 3 weeks), Brunnstorm lower extremity recovery stages ≥3 and MMSE score more than 24 were randomized into two group [Group A-NMES and Group B-MT]. Interventions: Both the groups received eclectic approach to remediate lower extremity recovery which includes treatment components of Roods, Bobath and Motor learning approaches for 30 minutes a day for 6 days. Following which Group A (N=16) received 30 minutes of surface NMES training for six major paretic muscle groups (gluteus maximus and medius,quadriceps, hamstrings, tibialis anterior and gastrocnemius). Group B (N=16) was administered with 30 minutes of mirror therapy sessions to facilitate lower extremity motor recovery. Outcome measures: Lower extremity motor recovery, balance and activities of daily life (ADLs) were measured by Fugyl Meyer Assessment (FMA-LE), Berg Balance Scale (BBS), Barthel Index (BI) before and after intervention. Results: Pre Post analysis of either group across the time revealed statistically significant improvement (p < 0.001) for all the outcome variables for the either group. All parameters of NMES had greater change scores compared to MT group as follows: FMA-LE (25.12±3.01 vs. 23.31±2.38), BBS (35.12±4.61 vs. 34.68±5.42) and BI (40.00±10.32 vs. 37.18±7.73). Between the groups comparison of pre post values showed no significance with FMA-LE (p=0.09), BBS (p=0.80) and BI (p=0.39) respectively. Conclusion: Though either groups had significant improvement (pre to post intervention), none of them were superior to other in lower extremity motor recovery and balance among acute stroke subjects. We conclude that eclectic approach is an effective treatment irrespective of NMES or MT as an adjunct.

Keywords: balance, motor recovery, mirror therapy, neuromuscular electrical stimulation, stroke

Procedia PDF Downloads 281
153 Understanding the Impact of Out-of-Sequence Thrust Dynamics on Earthquake Mitigation: Implications for Hazard Assessment and Disaster Planning

Authors: Rajkumar Ghosh

Abstract:

Earthquakes pose significant risks to human life and infrastructure, highlighting the importance of effective earthquake mitigation strategies. Traditional earthquake modelling and mitigation efforts have largely focused on the primary fault segments and their slip behaviour. However, earthquakes can exhibit complex rupture dynamics, including out-of-sequence thrust (OOST) events, which occur on secondary or subsidiary faults. This abstract examines the impact of OOST dynamics on earthquake mitigation strategies and their implications for hazard assessment and disaster planning. OOST events challenge conventional seismic hazard assessments by introducing additional fault segments and potential rupture scenarios that were previously unrecognized or underestimated. Consequently, these events may increase the overall seismic hazard in affected regions. The study reviews recent case studies and research findings that illustrate the occurrence and characteristics of OOST events. It explores the factors contributing to OOST dynamics, such as stress interactions between fault segments, fault geometry, and mechanical properties of fault materials. Moreover, it investigates the potential triggers and precursory signals associated with OOST events to enhance early warning systems and emergency response preparedness. The abstract also highlights the significance of incorporating OOST dynamics into seismic hazard assessment methodologies. It discusses the challenges associated with accurately modelling OOST events, including the need for improved understanding of fault interactions, stress transfer mechanisms, and rupture propagation patterns. Additionally, the abstract explores the potential for advanced geophysical techniques, such as high-resolution imaging and seismic monitoring networks, to detect and characterize OOST events. Furthermore, the abstract emphasizes the practical implications of OOST dynamics for earthquake mitigation strategies and urban planning. It addresses the need for revising building codes, land-use regulations, and infrastructure designs to account for the increased seismic hazard associated with OOST events. It also underscores the importance of public awareness campaigns to educate communities about the potential risks and safety measures specific to OOST-induced earthquakes. This sheds light on the impact of out-of-sequence thrust dynamics in earthquake mitigation. By recognizing and understanding OOST events, researchers, engineers, and policymakers can improve hazard assessment methodologies, enhance early warning systems, and implement effective mitigation measures. By integrating knowledge of OOST dynamics into urban planning and infrastructure development, societies can strive for greater resilience in the face of earthquakes, ultimately minimizing the potential for loss of life and infrastructure damage.

Keywords: earthquake mitigation, out-of-sequence thrust, seismic, satellite imagery

Procedia PDF Downloads 88
152 Contextual Toxicity Detection with Data Augmentation

Authors: Julia Ive, Lucia Specia

Abstract:

Understanding and detecting toxicity is an important problem to support safer human interactions online. Our work focuses on the important problem of contextual toxicity detection, where automated classifiers are tasked with determining whether a short textual segment (usually a sentence) is toxic within its conversational context. We use “toxicity” as an umbrella term to denote a number of variants commonly named in the literature, including hate, abuse, offence, among others. Detecting toxicity in context is a non-trivial problem and has been addressed by very few previous studies. These previous studies have analysed the influence of conversational context in human perception of toxicity in controlled experiments and concluded that humans rarely change their judgements in the presence of context. They have also evaluated contextual detection models based on state-of-the-art Deep Learning and Natural Language Processing (NLP) techniques. Counterintuitively, they reached the general conclusion that computational models tend to suffer performance degradation in the presence of context. We challenge these empirical observations by devising better contextual predictive models that also rely on NLP data augmentation techniques to create larger and better data. In our study, we start by further analysing the human perception of toxicity in conversational data (i.e., tweets), in the absence versus presence of context, in this case, previous tweets in the same conversational thread. We observed that the conclusions of previous work on human perception are mainly due to data issues: The contextual data available does not provide sufficient evidence that context is indeed important (even for humans). The data problem is common in current toxicity datasets: cases labelled as toxic are either obviously toxic (i.e., overt toxicity with swear, racist, etc. words), and thus context does is not needed for a decision, or are ambiguous, vague or unclear even in the presence of context; in addition, the data contains labeling inconsistencies. To address this problem, we propose to automatically generate contextual samples where toxicity is not obvious (i.e., covert cases) without context or where different contexts can lead to different toxicity judgements for the same tweet. We generate toxic and non-toxic utterances conditioned on the context or on target tweets using a range of techniques for controlled text generation(e.g., Generative Adversarial Networks and steering techniques). On the contextual detection models, we posit that their poor performance is due to limitations on both of the data they are trained on (same problems stated above) and the architectures they use, which are not able to leverage context in effective ways. To improve on that, we propose text classification architectures that take the hierarchy of conversational utterances into account. In experiments benchmarking ours against previous models on existing and automatically generated data, we show that both data and architectural choices are very important. Our model achieves substantial performance improvements as compared to the baselines that are non-contextual or contextual but agnostic of the conversation structure.

Keywords: contextual toxicity detection, data augmentation, hierarchical text classification models, natural language processing

Procedia PDF Downloads 170
151 Exploring Accessible Filmmaking and Video for Deafblind Audiences through Multisensory Participatory Design

Authors: Aikaterini Tavoulari, Mike Richardson

Abstract:

Objective: This abstract presents a multisensory participatory design project, inspired by a deafblind PhD student's ambition to climb Mount Everest. The project aims to explore accessible routes for filmmaking and video content creation, catering to the needs of individuals with hearing and sight loss. By engaging participants from the Southwest area of England, recruited through multiple networks, the project seeks to gather qualitative data and insights to inform the development of inclusive media practices. Design: It will be a community-based participatory research design. The workshop will feature various stations that stimulate different senses, such as scent, touch, sight, hearing as well as movement. Participants will have the opportunity to engage with these multisensory experiences, providing valuable feedback on their effectiveness and potential for enhancing accessibility in filmmaking and video content. Methods: Brief semi-structured interviews will be conducted to collect qualitative data, allowing participants to share their perspectives, challenges, and suggestions for improvement. The participatory design approach emphasizes the importance of involving the target audience in the creative process. By actively engaging individuals with hearing and sight loss, the project aims to ensure that their needs and preferences are central to the development of accessible filmmaking techniques and video content. This collaborative effort seeks to bridge the gap between content creators and diverse audiences, fostering a more inclusive media landscape. Results: The findings from this study will contribute to the growing body of research on accessible filmmaking and video content creation. Via inductive thematic analysis of the qualitative data collected through interviews and observations, the researchers aim to identify key themes, challenges, and opportunities for creating engaging and inclusive media experiences for deafblind audiences. The insights will inform the development of best practices and guidelines for accessible filmmaking, empowering content creators to produce more inclusive and immersive video content. Conclusion: The abstract targets the hybrid International Conference for Disability and Diversity in Canada (January 2025), as this platform provides an excellent opportunity to share the outcomes of the project with a global audience of researchers, practitioners, and advocates working towards inclusivity and accessibility in various disability domains. By presenting this research at the conference in person, the authors aim to contribute to the ongoing discourse on disability and diversity, highlighting the importance of multisensory experiences and participatory design in creating accessible media content for the deafblind community and the community with sensory impairments more broadly.

Keywords: vision impairment, hearing impairment, deafblindness, accessibility, filmmaking

Procedia PDF Downloads 43
150 Artificial Neural Network Approach for GIS-Based Soil Macro-Nutrients Mapping

Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Siti Khairunniza Bejo

Abstract:

Conventional methods for nutrient soil mapping are based on laboratory tests of samples that are obtained from surveys. The time and cost involved in gathering and analyzing soil samples are the reasons that researchers use Predictive Soil Mapping (PSM). PSM can be defined as the development of a numerical or statistical model of the relationship among environmental variables and soil properties, which is then applied to a geographic database to create a predictive map. Kriging is a group of geostatistical techniques to spatially interpolate point values at an unobserved location from observations of values at nearby locations. The main problem with using kriging as an interpolator is that it is excessively data-dependent and requires a large number of closely spaced data points. Hence, there is a need to minimize the number of data points without sacrificing the accuracy of the results. In this paper, an Artificial Neural Networks (ANN) scheme was used to predict macronutrient values at un-sampled points. ANN has become a popular tool for prediction as it eliminates certain difficulties in soil property prediction, such as non-linear relationships and non-normality. Back-propagation multilayer feed-forward network structures were used to predict nitrogen, phosphorous and potassium values in the soil of the study area. A limited number of samples were used in the training, validation and testing phases of ANN (pattern reconstruction structures) to classify soil properties and the trained network was used for prediction. The soil analysis results of samples collected from the soil survey of block C of Sawah Sempadan, Tanjung Karang rice irrigation project at Selangor of Malaysia were used. Soil maps were produced by the Kriging method using 236 samples (or values) that were a combination of actual values (obtained from real samples) and virtual values (neural network predicted values). For each macronutrient element, three types of maps were generated with 118 actual and 118 virtual values, 59 actual and 177 virtual values, and 30 actual and 206 virtual values, respectively. To evaluate the performance of the proposed method, for each macronutrient element, a base map using 236 actual samples and test maps using 118, 59 and 30 actual samples respectively produced by the Kriging method. A set of parameters was defined to measure the similarity of the maps that were generated with the proposed method, termed the sample reduction method. The results show that the maps that were generated through the sample reduction method were more accurate than the corresponding base maps produced through a smaller number of real samples. For example, nitrogen maps that were produced from 118, 59 and 30 real samples have 78%, 62%, 41% similarity, respectively with the base map (236 samples) and the sample reduction method increased similarity to 87%, 77%, 71%, respectively. Hence, this method can reduce the number of real samples and substitute ANN predictive samples to achieve the specified level of accuracy.

Keywords: artificial neural network, kriging, macro nutrient, pattern recognition, precision farming, soil mapping

Procedia PDF Downloads 70
149 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker

Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.

Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation

Procedia PDF Downloads 23
148 Clinical Staff Perceptions of the Quality of End-of-Life Care in an Acute Private Hospital: A Mixed Methods Design

Authors: Rosemary Saunders, Courtney Glass, Karla Seaman, Karen Gullick, Julie Andrew, Anne Wilkinson, Ashwini Davray

Abstract:

Current literature demonstrates that most Australians receive end-of-life care in a hospital setting, despite most hoping to die within their own home. The necessity for high quality end-of-life care has been emphasised by the Australian Commission on Safety and Quality in Health Care and the National Safety and Quality in Health Services Standards depict the requirement for comprehensive care at the end of life (Action 5.20), reinforcing the obligation for continual organisational assessment to determine if these standards are suitably achieved. Limited research exploring clinical staff perspectives of end-of-life care delivery has been conducted within an Australian private health context. This study aimed to investigate clinical staff member perceptions of end-of-life care delivery at a private hospital in Western Australia. The study comprised of a multi-faceted mixed-methods methodology, part of a larger study. Data was obtained from clinical staff utilising surveys and focus groups. A total of 133 questionnaires were completed by clinical staff, including registered nurses (61.4%), enrolled nurses (22.7%), allied health professionals (9.9%), non-palliative care consultants (3.8%) and junior doctors (2.2%). A total of 14.7% of respondents were palliative care ward staff members. Additionally, seven staff focus groups were conducted with physicians (n=3), nurses (n=26) and allied health professionals including social workers (n=1), dietitians (n=2), physiotherapists (n=5) and speech pathologists (n=3). Key findings from the surveys highlighted that the majority of staff agreed it was part of their role to talk to doctors about the care of patients who they thought may be dying, and recognised the importance of communication, appropriate training and support for clinical staff to provide quality end-of-life care. Thematic analysis of the qualitative data generated three key themes: creating the setting which highlighted the importance of adequate resourcing and conducive physical environments for end-of-life care and to support staff and families; planning and care delivery which emphasised the necessity for collaboration between staff, families and patients to develop care plans and treatment directives; and collaborating in end-of-life care, with effective communication and teamwork leading to achievable care delivery expectations. These findings contribute to health professionals better understanding of end-of-life care provision and the importance of collaborating with patients and families in care delivery. It is crucial that health care providers implement strategies to overcome gaps in care, so quality end-of-life care is provided. Findings from this study have been translated into practice, with the development and implementation of resources, training opportunities, support networks and guidelines for the delivery of quality end-of-life care.

Keywords: clinical staff, end-of-life care, mixed-methods, private hospital.

Procedia PDF Downloads 152
147 Artificial Neural Network and Satellite Derived Chlorophyll Indices for Estimation of Wheat Chlorophyll Content under Rainfed Condition

Authors: Muhammad Naveed Tahir, Wang Yingkuan, Huang Wenjiang, Raheel Osman

Abstract:

Numerous models used in prediction and decision-making process but most of them are linear in natural environment, and linear models reach their limitations with non-linearity in data. Therefore accurate estimation is difficult. Artificial Neural Networks (ANN) found extensive acceptance to address the modeling of the complex real world for the non-linear environment. ANN’s have more general and flexible functional forms than traditional statistical methods can effectively deal with. The link between information technology and agriculture will become more firm in the near future. Monitoring crop biophysical properties non-destructively can provide a rapid and accurate understanding of its response to various environmental influences. Crop chlorophyll content is an important indicator of crop health and therefore the estimation of crop yield. In recent years, remote sensing has been accepted as a robust tool for site-specific management by detecting crop parameters at both local and large scales. The present research combined the ANN model with satellite-derived chlorophyll indices from LANDSAT 8 imagery for predicting real-time wheat chlorophyll estimation. The cloud-free scenes of LANDSAT 8 were acquired (Feb-March 2016-17) at the same time when ground-truthing campaign was performed for chlorophyll estimation by using SPAD-502. Different vegetation indices were derived from LANDSAT 8 imagery using ERADAS Imagine (v.2014) software for chlorophyll determination. The vegetation indices were including Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Chlorophyll Absorbed Ratio Index (CARI), Modified Chlorophyll Absorbed Ratio Index (MCARI) and Transformed Chlorophyll Absorbed Ratio index (TCARI). For ANN modeling, MATLAB and SPSS (ANN) tools were used. Multilayer Perceptron (MLP) in MATLAB provided very satisfactory results. For training purpose of MLP 61.7% of the data, for validation purpose 28.3% of data and rest 10% of data were used to evaluate and validate the ANN model results. For error evaluation, sum of squares error and relative error were used. ANN model summery showed that sum of squares error of 10.786, the average overall relative error was .099. The MCARI and NDVI were revealed to be more sensitive indices for assessing wheat chlorophyll content with the highest coefficient of determination R²=0.93 and 0.90 respectively. The results suggested that use of high spatial resolution satellite imagery for the retrieval of crop chlorophyll content by using ANN model provides accurate, reliable assessment of crop health status at a larger scale which can help in managing crop nutrition requirement in real time.

Keywords: ANN, chlorophyll content, chlorophyll indices, satellite images, wheat

Procedia PDF Downloads 146
146 Change of Education Business in the Age of 5G

Authors: Heikki Ruohomaa, Vesa Salminen

Abstract:

Regions are facing huge competition to attract companies, businesses, inhabitants, students, etc. This way to improve living and business environment, which is rapidly changing due to digitalization. On the other hand, from the industry's point of view, the availability of a skilled labor force and an innovative environment are crucial factors. In this context, qualified staff has been seen to utilize the opportunities of digitalization and respond to the needs of future skills. World Manufacturing Forum has stated in the year 2019- report that in next five years, 40% of workers have to change their core competencies. Through digital transformation, new technologies like cloud, mobile, big data, 5G- infrastructure, platform- technology, data- analysis, and social networks with increasing intelligence and automation, enterprises can capitalize on new opportunities and optimize existing operations to achieve significant business improvement. Digitalization will be an important part of the everyday life of citizens and present in the working day of the average citizen and employee in the future. For that reason, the education system and education programs on all levels of education from diaper age to doctorate have been directed to fulfill this ecosystem strategy. Goal: The Fourth Industrial Revolution will bring unprecedented change to societies, education organizations and business environments. This article aims to identify how education, education content, the way education has proceeded, and overall whole the education business is changing. Most important is how we should respond to this inevitable co- evolution. Methodology: The study aims to verify how the learning process is boosted by new digital content, new learning software and tools, and customer-oriented learning environments. The change of education programs and individual education modules can be supported by applied research projects. You can use them in making proof- of- the concept of new technology, new ways to teach and train, and through the experiences gathered change education content, way to educate and finally education business as a whole. Major findings: Applied research projects can prove the concept- phases on real environment field labs to test technology opportunities and new tools for training purposes. Customer-oriented applied research projects are also excellent for students to make assignments and use new knowledge and content and teachers to test new tools and create new ways to educate. New content and problem-based learning are used in future education modules. This article introduces some case study experiences on customer-oriented digital transformation projects and how gathered knowledge on new digital content and a new way to educate has influenced education. The case study is related to experiences of research projects, customer-oriented field labs/learning environments and education programs of Häme University of Applied Sciences.

Keywords: education process, digitalization content, digital tools for education, learning environments, transdisciplinary co-operation

Procedia PDF Downloads 176
145 Evaluation of the Performance Measures of Two-Lane Roundabout and Turbo Roundabout with Varying Truck Percentages

Authors: Evangelos Kaisar, Anika Tabassum, Taraneh Ardalan, Majed Al-Ghandour

Abstract:

The economy of any country is dependent on its ability to accommodate the movement and delivery of goods. The demand for goods movement and services increases truck traffic on highways and inside the cities. The livability of most cities is directly affected by the congestion and environmental impacts of trucks, which are the backbone of the urban freight system. Better operation of heavy vehicles on highways and arterials could lead to the network’s efficiency and reliability. In many cases, roundabouts can respond better than at-level intersections to enable traffic operations with increased safety for both cars and heavy vehicles. Recently emerged, the concept of turbo-roundabout is a viable alternative to the two-lane roundabout aiming to improve traffic efficiency. The primary objective of this study is to evaluate the operation and performance level of an at-grade intersection, a conventional two-lane roundabout, and a basic turbo roundabout for freight movements. To analyze and evaluate the performances of the signalized intersections and the roundabouts, micro simulation models were developed PTV VISSIM. The networks chosen for this analysis in this study are to experiment and evaluate changes in the performance of the movement of vehicles with different geometric and flow scenarios. There are several scenarios that were examined when attempting to assess the impacts of various geometric designs on vehicle movements. The overall traffic efficiency depends on the geometric layout of the intersections, which consists of traffic congestion rate, hourly volume, frequency of heavy vehicles, type of road, and the ratio of major-street versus side-street traffic. The traffic performance was determined by evaluating the delay time, number of stops, and queue length of each intersection for varying truck percentages. The results indicate that turbo-roundabouts can replace signalized intersections and two-lane roundabouts only when the traffic demand is low, even with high truck volume. More specifically, it is clear that two-lane roundabouts are seen to have shorter queue lengths compared to signalized intersections and turbo-roundabouts. For instance, considering the scenario where the volume is highest, and the truck movement and left turn movement are maximum, the signalized intersection has 3 times, and the turbo-roundabout has 5 times longer queue length than a two-lane roundabout in major roads. Similarly, on minor roads, signalized intersections and turbo-roundabouts have 11 times longer queue lengths than two-lane roundabouts for the same scenario. As explained from all the developed scenarios, while the traffic demand lowers, the queue lengths of turbo-roundabouts shorten. This proves that turbo roundabouts perform well for low and medium traffic demand. The results indicate that turbo-roundabouts can replace signalized intersections and two-lane roundabouts only when the traffic demand is low, even with high truck volume. Finally, this study provides recommendations on the conditions under which different intersections perform better than each other.

Keywords: At-grade intersection, simulation, turbo-roundabout, two-lane roundabout

Procedia PDF Downloads 150
144 The Lived Experiences and Coping Strategies of Women with Attention Deficit and Hyperactivity Disorder (ADHD)

Authors: Oli Sophie Meredith, Jacquelyn Osborne, Sarah Verdon, Jane Frawley

Abstract:

PROJECT OVERVIEW AND BACKGROUND: Over one million Australians are affected by ADHD at an economic and social cost of over $20 billion per annum. Despite health outcomes being significantly worse compared with men, women have historically been overlooked in ADHD diagnosis and treatment. While research suggests physical activity and other non-prescription options can help with ADHD symptoms, the frontline response to ADHD remains expensive stimulant medications that can have adverse side effects. By interviewing women with ADHD, this research will examine women’s self-directed approaches to managing symptoms, including alternatives to prescription medications. It will investigate barriers and affordances to potentially helpful approaches and identify any concerning strategies pursued in lieu of diagnosis. SIGNIFICANCE AND INNOVATION: Despite the economic and societal impact of ADHD on women, research investigating how women manage their symptoms is scant. This project is significant because although women’s ADHD symptoms are markedly different to those of men, mainstream treatment has been based on the experiences of men. Further, it is thought that in developing nuanced coping strategies, women may have masked their symptoms. Thus, this project will highlight strategies which women deem effective in ‘thriving’ rather than just ‘hiding’. By investigating the health service use, self-care and physical activity of women with ADHD, this research aligns with a priority research areas as identified by the November 2023 senate ADHD inquiry report. APPROACH AND METHODS: Semi-structured interviews will be conducted with up to 20 women with ADHD. Interviews will be conducted in person and online to capture experience across rural and metropolitan Australia. Participants will be recruited in partnership with the peak representative body, ADHD Australia. The research will use an intersectional framework, and data will be analysed thematically. This project is led by an interdisciplinary and cross-institutional team of women with ADHD. Reflexive interviewing skills will be employed to help interviewees feel more comfortable disclosing their experiences, especially where they share common ground ENGAGEMENT, IMPACT AND BENEFIT: This research will benefit women with ADHD by increasing knowledge of strategies and alternative treatments to prescription medications, reducing the social and economic burden of ADHD on Australia and on individuals. It will also benefit women by identifying risks involved with some self-directed approaches in lieu of medical advice. The project has an accessible impact plan to directly benefit end-users, which includes the development of a podcast and a PDF resource translating findings. The resources will reach a wide audience through ADHD Australia’s extensive national networks. We will collaborate with Charles Sturt’s Accessibility and Inclusion Division of Safety, Security and Well-being to create a targeted resource for students with ADHD.

Keywords: ADHD, women's health, self-directed strategies, health service use, physical activity, public health

Procedia PDF Downloads 72
143 [Keynote Talk]: New Generations and Employment: An Exploratory Study about Tensions between the Psycho-Social Characteristics of the Generation Z and Expectations and Actions of Organizational Structures Related with Employment (CABA, 2016)

Authors: Esteban Maioli

Abstract:

Generational studies have an important research tradition in social and human sciences. On the one hand, the speed of social change in the context of globalization imposes the need to research the transformations are identified both the subjectivity of the agents involved and its inclusion in the institutional matrix, specifically employment. Generation Z, (generally considered as the population group whose birth occurs after 1995) have unique psycho-social characteristics. Gen Z is characterized by a different set of values, beliefs, attitudes and ambitions that impact in their concrete action in organizational structures. On the other hand, managers often have to deal with generational differences in the workplace. Organizations have members who belong to different generations; they had never before faced the challenge of having such a diverse group of members. The members of each historical generation are characterized by a different set of values, beliefs, attitudes and ambitions that are manifest in their concrete action in organizational structures. Gen Z it’s the only one who can fully be considered "global," while its members were born in the consolidated context of globalization. Some salient features of the Generation Z can be summarized as follows. They’re the first fully born into a digital world. Social networks and technology are integrated into their lives. They are concerned about the challenges of the modern world (poverty, inequality, climate change, among others). They are self-expressive, more liberal and open to change. They often bore easily, with short attention spans. They do not like routine tasks. They want to achieve a good life-work balance, and they are interested in a flexible work environment, as opposed to traditional work schedule. They are critical thinkers, who come with innovative and creative ideas to help. Research design considered methodological triangulation. Data was collected with two techniques: a self-administered survey with multiple choice questions and attitudinal scales applied over a non-probabilistic sample by reasoned decision. According to the multi-method strategy, also it was conducted in-depth interviews. Organizations constantly face new challenges. One of the biggest ones is to learn to manage a multi-generational scope of work. While Gen Z has not yet been fully incorporated (expected to do so in five years or so), many organizations have already begun to implement a series of changes in its recruitment and development. The main obstacle to retaining young talent is the gap between the expectations of iGen applicants and what companies offer. Members of the iGen expect not only a good salary and job stability but also a clear career plan. Generation Z needs to have immediate feedback on their tasks. However, many organizations have yet to improve both motivation and monitoring practices. It is essential for companies to take a review of organizational practices anchored in the culture of the organization.

Keywords: employment, expectations, generation Z, organizational culture, organizations, psycho-social characteristics

Procedia PDF Downloads 201
142 Bioinformatic Prediction of Hub Genes by Analysis of Signaling Pathways, Transcriptional Regulatory Networks and DNA Methylation Pattern in Colon Cancer

Authors: Ankan Roy, Niharika, Samir Kumar Patra

Abstract:

Anomalous nexus of complex topological assemblies and spatiotemporal epigenetic choreography at chromosomal territory may forms the most sophisticated regulatory layer of gene expression in cancer. Colon cancer is one of the leading malignant neoplasms of the lower gastrointestinal tract worldwide. There is still a paucity of information about the complex molecular mechanisms of colonic cancerogenesis. Bioinformatics prediction and analysis helps to identify essential genes and significant pathways for monitoring and conquering this deadly disease. The present study investigates and explores potential hub genes as biomarkers and effective therapeutic targets for colon cancer treatment. Colon cancer patient sample containing gene expression profile datasets, such as GSE44076, GSE20916, and GSE37364 were downloaded from Gene Expression Omnibus (GEO) database and thoroughly screened using the GEO2R tool and Funrich software to find out common 2 differentially expressed genes (DEGs). Other approaches, including Gene Ontology (GO) and KEGG pathway analysis, Protein-Protein Interaction (PPI) network construction and hub gene investigation, Overall Survival (OS) analysis, gene correlation analysis, methylation pattern analysis, and hub gene-Transcription factors regulatory network construction, were performed and validated using various bioinformatics tool. Initially, we identified 166 DEGs, including 68 up-regulated and 98 down-regulated genes. Up-regulated genes are mainly associated with the Cytokine-cytokine receptor interaction, IL17 signaling pathway, ECM-receptor interaction, Focal adhesion and PI3K-Akt pathway. Downregulated genes are enriched in metabolic pathways, retinol metabolism, Steroid hormone biosynthesis, and bile secretion. From the protein-protein interaction network, thirty hub genes with high connectivity are selected using the MCODE and cytoHubba plugin. Survival analysis, expression validation, correlation analysis, and methylation pattern analysis were further verified using TCGA data. Finally, we predicted COL1A1, COL1A2, COL4A1, SPP1, SPARC, and THBS2 as potential master regulators in colonic cancerogenesis. Moreover, our experimental data highlights that disruption of lipid raft and RAS/MAPK signaling cascade affects this gene hub at mRNA level. We identified COL1A1, COL1A2, COL4A1, SPP1, SPARC, and THBS2 as determinant hub genes in colon cancer progression. They can be considered as biomarkers for diagnosis and promising therapeutic targets in colon cancer treatment. Additionally, our experimental data advertise that signaling pathway act as connecting link between membrane hub and gene hub.

Keywords: hub genes, colon cancer, DNA methylation, epigenetic engineering, bioinformatic predictions

Procedia PDF Downloads 128
141 An in silico Approach for Exploring the Intercellular Communication in Cancer Cells

Authors: M. Cardenas-Garcia, P. P. Gonzalez-Perez

Abstract:

Intercellular communication is a necessary condition for cellular functions and it allows a group of cells to survive as a population. Throughout this interaction, the cells work in a coordinated and collaborative way which facilitates their survival. In the case of cancerous cells, these take advantage of intercellular communication to preserve their malignancy, since through these physical unions they can send signs of malignancy. The Wnt/β-catenin signaling pathway plays an important role in the formation of intercellular communications, being also involved in a large number of cellular processes such as proliferation, differentiation, adhesion, cell survival, and cell death. The modeling and simulation of cellular signaling systems have found valuable support in a wide range of modeling approaches, which cover a wide spectrum ranging from mathematical models; e.g., ordinary differential equations, statistical methods, and numerical methods– to computational models; e.g., process algebra for modeling behavior and variation in molecular systems. Based on these models, different simulation tools have been developed from mathematical ones to computational ones. Regarding cellular and molecular processes in cancer, its study has also found a valuable support in different simulation tools that, covering a spectrum as mentioned above, have allowed the in silico experimentation of this phenomenon at the cellular and molecular level. In this work, we simulate and explore the complex interaction patterns of intercellular communication in cancer cells using the Cellulat bioinformatics tool, a computational simulation tool developed by us and motivated by two key elements: 1) a biochemically inspired model of self-organizing coordination in tuple spaces, and 2) the Gillespie’s algorithm, a stochastic simulation algorithm typically used to mimic systems of chemical/biochemical reactions in an efficient and accurate way. The main idea behind the Cellulat simulation tool is to provide an in silico experimentation environment that complements and guides in vitro experimentation in intra and intercellular signaling networks. Unlike most of the cell signaling simulation tools, such as E-Cell, BetaWB and Cell Illustrator which provides abstractions to model only intracellular behavior, Cellulat is appropriate for modeling both intracellular signaling and intercellular communication, providing the abstractions required to model –and as a result, simulate– the interaction mechanisms that involve two or more cells, that is essential in the scenario discussed in this work. During the development of this work we made evident the application of our computational simulation tool (Cellulat) for the modeling and simulation of intercellular communication between normal and cancerous cells, and in this way, propose key molecules that may prevent the arrival of malignant signals to the cells that surround the tumor cells. In this manner, we could identify the significant role that has the Wnt/β-catenin signaling pathway in cellular communication, and therefore, in the dissemination of cancer cells. We verified, using in silico experiments, how the inhibition of this signaling pathway prevents that the cells that surround a cancerous cell are transformed.

Keywords: cancer cells, in silico approach, intercellular communication, key molecules, modeling and simulation

Procedia PDF Downloads 249
140 Classification of ECG Signal Based on Mixture of Linear and Non-Linear Features

Authors: Mohammad Karimi Moridani, Mohammad Abdi Zadeh, Zahra Shahiazar Mazraeh

Abstract:

In recent years, the use of intelligent systems in biomedical engineering has increased dramatically, especially in the diagnosis of various diseases. Also, due to the relatively simple recording of the electrocardiogram signal (ECG), this signal is a good tool to show the function of the heart and diseases associated with it. The aim of this paper is to design an intelligent system for automatically detecting a normal electrocardiogram signal from abnormal one. Using this diagnostic system, it is possible to identify a person's heart condition in a very short time and with high accuracy. The data used in this article are from the Physionet database, available in 2016 for use by researchers to provide the best method for detecting normal signals from abnormalities. Data is of both genders and the data recording time varies between several seconds to several minutes. All data is also labeled normal or abnormal. Due to the low positional accuracy and ECG signal time limit and the similarity of the signal in some diseases with the normal signal, the heart rate variability (HRV) signal was used. Measuring and analyzing the heart rate variability with time to evaluate the activity of the heart and differentiating different types of heart failure from one another is of interest to the experts. In the preprocessing stage, after noise cancelation by the adaptive Kalman filter and extracting the R wave by the Pan and Tampkinz algorithm, R-R intervals were extracted and the HRV signal was generated. In the process of processing this paper, a new idea was presented that, in addition to using the statistical characteristics of the signal to create a return map and extraction of nonlinear characteristics of the HRV signal due to the nonlinear nature of the signal. Finally, the artificial neural networks widely used in the field of ECG signal processing as well as distinctive features were used to classify the normal signals from abnormal ones. To evaluate the efficiency of proposed classifiers in this paper, the area under curve ROC was used. The results of the simulation in the MATLAB environment showed that the AUC of the MLP and SVM neural network was 0.893 and 0.947, respectively. As well as, the results of the proposed algorithm in this paper indicated that the more use of nonlinear characteristics in normal signal classification of the patient showed better performance. Today, research is aimed at quantitatively analyzing the linear and non-linear or descriptive and random nature of the heart rate variability signal, because it has been shown that the amount of these properties can be used to indicate the health status of the individual's heart. The study of nonlinear behavior and dynamics of the heart's neural control system in the short and long-term provides new information on how the cardiovascular system functions, and has led to the development of research in this field. Given that the ECG signal contains important information and is one of the common tools used by physicians to diagnose heart disease, but due to the limited accuracy of time and the fact that some information about this signal is hidden from the viewpoint of physicians, the design of the intelligent system proposed in this paper can help physicians with greater speed and accuracy in the diagnosis of normal and patient individuals and can be used as a complementary system in the treatment centers.

Keywords: neart rate variability, signal processing, linear and non-linear features, classification methods, ROC Curve

Procedia PDF Downloads 262
139 Planning for Location and Distribution of Regional Facilities Using Central Place Theory and Location-Allocation Model

Authors: Danjuma Bawa

Abstract:

This paper aimed at exploring the capabilities of Location-Allocation model in complementing the strides of the existing physical planning models in the location and distribution of facilities for regional consumption. The paper was designed to provide a blueprint to the Nigerian government and other donor agencies especially the Fertilizer Distribution Initiative (FDI) by the federal government for the revitalization of the terrorism ravaged regions. Theoretical underpinnings of central place theory related to spatial distribution, interrelationships, and threshold prerequisites were reviewed. The study showcased how Location-Allocation Model (L-AM) alongside Central Place Theory (CPT) was applied in Geographic Information System (GIS) environment to; map and analyze the spatial distribution of settlements; exploit their physical and economic interrelationships, and to explore their hierarchical and opportunistic influences. The study was purely spatial qualitative research which largely used secondary data such as; spatial location and distribution of settlements, population figures of settlements, network of roads linking them and other landform features. These were sourced from government ministries and open source consortium. GIS was used as a tool for processing and analyzing such spatial features within the dictum of CPT and L-AM to produce a comprehensive spatial digital plan for equitable and judicious location and distribution of fertilizer deports in the study area in an optimal way. Population threshold was used as yardstick for selecting suitable settlements that could stand as service centers to other hinterlands; this was accomplished using the query syntax in ArcMapTM. ArcGISTM’ network analyst was used in conducting location-allocation analysis for apportioning of groups of settlements around such service centers within a given threshold distance. Most of the techniques and models ever used by utility planners have been centered on straight distance to settlements using Euclidean distances. Such models neglect impedance cutoffs and the routing capabilities of networks. CPT and L-AM take into consideration both the influential characteristics of settlements and their routing connectivity. The study was undertaken in two terrorism ravaged Local Government Areas of Adamawa state. Four (4) existing depots in the study area were identified. 20 more depots in 20 villages were proposed using suitability analysis. Out of the 300 settlements mapped in the study area about 280 of such settlements where optimally grouped and allocated to the selected service centers respectfully within 2km impedance cutoff. This study complements the giant strides by the federal government of Nigeria by providing a blueprint for ensuring proper distribution of these public goods in the spirit of bringing succor to these terrorism ravaged populace. This will ardently at the same time help in boosting agricultural activities thereby lowering food shortage and raising per capita income as espoused by the government.

Keywords: central place theory, GIS, location-allocation, network analysis, urban and regional planning, welfare economics

Procedia PDF Downloads 147
138 Conservation Detection Dogs to Protect Europe's Native Biodiversity from Invasive Species

Authors: Helga Heylen

Abstract:

With dogs saving wildlife in New Zealand since 1890 and governments in Africa, Australia and Canada trusting them to give the best results, Conservation Dogs Ireland want to introduce more detection dogs to protect Europe's native wildlife. Conservation detection dogs are fast, portable and endlessly trainable. They are a cost-effective, highly sensitive and non-invasive way to detect protected and invasive species and wildlife disease. Conservation dogs find targets up to 40 times faster than any other method. They give results instantly, with near-perfect accuracy. They can search for multiple targets simultaneously, with no reduction in efficacy The European Red List indicates the decline in biodiversity has been most rapid in the past 50 years, and the risk of extinction never higher. Just two examples of major threats dogs are trained to tackle are: (I)Japanese Knotweed (Fallopia Japonica), not only a serious threat to ecosystems, crops, structures like bridges and roads - it can wipe out the entire value of a house. The property industry and homeowners are only just waking up to the full extent of the nightmare. When those working in construction on the roads move topsoil with a trace of Japanese Knotweed, it suffices to start a new colony. Japanese Knotweed grows up to 7cm a day. It can stay dormant and resprout after 20 years. In the UK, the cost of removing Japanese Knotweed from the London Olympic site in 2012 was around £70m (€83m). UK banks already no longer lend on a house that has Japanese Knotweed on-site. Legally, landowners are now obliged to excavate Japanese Knotweed and have it removed to a landfill. More and more, we see Japanese Knotweed grow where a new house has been constructed, and topsoil has been brought in. Conservation dogs are trained to detect small fragments of any part of the plant on sites and in topsoil. (II)Zebra mussels (Dreissena Polymorpha) are a threat to many waterways in the world. They colonize rivers, canals, docks, lakes, reservoirs, water pipes and cooling systems. They live up to 3 years and will release up to one million eggs each year. Zebra mussels attach to surfaces like rocks, anchors, boat hulls, intake pipes and boat engines. They cause changes in nutrient cycles, reduction of plankton and increased plant growth around lake edges, leading to the decline of Europe's native mussel and fish populations. There is no solution, only costly measures to keep it at bay. With many interconnected networks of waterways, they have spread uncontrollably. Conservation detection dogs detect the Zebra mussel from its early larvae stage, which is still invisible to the human eye. Detection dogs are more thorough and cost-effective than any other conservation method, and will greatly complement and speed up the work of biologists, surveyors, developers, ecologists and researchers.

Keywords: native biodiversity, conservation detection dogs, invasive species, Japanese Knotweed, zebra mussel

Procedia PDF Downloads 196