Search results for: subsea
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18

Search results for: subsea

18 Subsea Processing: Deepwater Operation and Production

Authors: Md Imtiaz, Sanchita Dei, Shubham Damke

Abstract:

In recent years, there has been a rapidly accelerating shift from traditional surface processing operations to subsea processing operation. This shift has been driven by a number of factors including the depletion of shallow fields around the world, technological advances in subsea processing equipment, the need for production from marginal fields, and lower initial upfront investment costs compared to traditional production facilities. Moving production facilities to the seafloor offers a number of advantage, including a reduction in field development costs, increased production rates from subsea wells, reduction in the need for chemical injection, minimization of risks to worker ,reduction in spills due to hurricane damage, and increased in oil production by enabling production from marginal fields. Subsea processing consists of a range of technologies for separation, pumping, compression that enables production from offshore well without the need for surface facilities. At present, there are two primary technologies being used for subsea processing: subsea multiphase pumping and subsea separation. Multiphase pumping is the most basic subsea processing technology. Multiphase pumping involves the use of boosting system to transport the multiphase mixture through pipelines to floating production vessels. The separation system is combined with single phase pumps or water would be removed and either pumped to the surface, re-injected, or discharged to the sea. Subsea processing can allow for an entire topside facility to be decommissioned and the processed fluids to be tied back to a new, more distant, host. This type of application reduces costs and increased both overall facility and integrity and recoverable reserve. In future, full subsea processing could be possible, thereby eliminating the need for surface facilities.

Keywords: FPSO, marginal field, Subsea processing, SWAG

Procedia PDF Downloads 378
17 Subsea Control Module (SCM) - A Vital Factor for Well Integrity and Production Performance in Deep Water Oil and Gas Fields

Authors: Okoro Ikechukwu Ralph, Fuat Kara

Abstract:

The discoveries of hydrocarbon reserves has clearly drifted offshore, and in deeper waters - areas where the industry still has limited knowledge; and that were hitherto, regarded as being out of reach. This shift presents significant and increased challenges in technology requirements needed to guarantee safety of personnel, environment and equipment; ensure high reliability of installed equipment; and provide high level of confidence in security of investment and company reputation. Nowhere are these challenges more apparent than on subsea well integrity and production performance. The past two decades has witnessed enormous rise in deep and ultra-deep water offshore field developments for the recovery of hydrocarbons. Subsea installed equipment at the seabed has been the technology of choice for these developments. This paper discusses the role of Subsea Control module (SCM) as a vital factor for deep-water well integrity and production performance. A case study for Deep-water well integrity and production performance is analysed.

Keywords: offshore reliability, production performance, subsea control module, well integrity

Procedia PDF Downloads 475
16 Research on Key Technologies on Initial Installation of Ultra-Deep-Water Dynamic Umbilical

Authors: Weiwei Xie, Yichao Li

Abstract:

The initial installation of the umbilical can affect the subsequent installation process and final installation. Meanwhile, the design of both ends of the ultra-deep water dynamic umbilical (UDWDU), as well as the design of the surface unit and the subsea production system connected by UDWDU,], varies in different oil and gas fields. To optimize the installation process of UDWDU, on the basis of the summary and analysis of the surface-end and the subsea-end design of UDWDU and the mainstream construction resources, the method of initial installation from the surface unit side or the subsea production system side of UDWDU is studied, and each initiation installation method is pointed out if some difficulties that may be encountered.

Keywords: dynamic umbilical, ultra-deep-water, initial installation, installation process

Procedia PDF Downloads 111
15 Optimized Techniques for Reducing the Reactive Power Generation in Offshore Wind Farms in India

Authors: Pardhasaradhi Gudla, Imanual A.

Abstract:

The generated electrical power in offshore needs to be transmitted to grid which is located in onshore by using subsea cables. Long subsea cables produce reactive power, which should be compensated in order to limit transmission losses, to optimize the transmission capacity, and to keep the grid voltage within the safe operational limits. Installation cost of wind farm includes the structure design cost and electrical system cost. India has targeted to achieve 175GW of renewable energy capacity by 2022 including offshore wind power generation. Due to sea depth is more in India, the installation cost will be further high when compared to European countries where offshore wind energy is already generating successfully. So innovations are required to reduce the offshore wind power project cost. This paper presents the optimized techniques to reduce the installation cost of offshore wind firm with respect to electrical transmission systems. This technical paper provides the techniques for increasing the current carrying capacity of subsea cable by decreasing the reactive power generation (capacitance effect) of the subsea cable. There are many methods for reactive power compensation in wind power plants so far in execution. The main reason for the need of reactive power compensation is capacitance effect of subsea cable. So if we diminish the cable capacitance of cable then the requirement of the reactive power compensation will be reduced or optimized by avoiding the intermediate substation at midpoint of the transmission network.

Keywords: offshore wind power, optimized techniques, power system, sub sea cable

Procedia PDF Downloads 155
14 Risk Analysis of Leaks from a Subsea Oil Facility Based on Fuzzy Logic Techniques

Authors: Belén Vinaixa Kinnear, Arturo Hidalgo López, Bernardo Elembo Wilasi, Pablo Fernández Pérez, Cecilia Hernández Fuentealba

Abstract:

The expanded use of risk assessment in legislative and corporate decision-making has increased the role of expert judgement in giving data for security-related decision-making. Expert judgements are required in most steps of risk assessment: danger recognizable proof, hazard estimation, risk evaluation, and examination of choices. This paper presents a fault tree analysis (FTA), which implies a probabilistic failure analysis applied to leakage of oil in a subsea production system. In standard FTA, the failure probabilities of items of a framework are treated as exact values while evaluating the failure probability of the top event. There is continuously insufficiency of data for calculating the failure estimation of components within the drilling industry. Therefore, fuzzy hypothesis can be used as a solution to solve the issue. The aim of this paper is to examine the leaks from the Zafiro West subsea oil facility by using fuzzy fault tree analysis (FFTA). As a result, the research has given theoretical and practical contributions to maritime safety and environmental protection. It has been also an effective strategy used traditionally in identifying hazards in nuclear installations and power industries.

Keywords: expert judgment, probability assessment, fault tree analysis, risk analysis, oil pipelines, subsea production system, drilling, quantitative risk analysis, leakage failure, top event, off-shore industry

Procedia PDF Downloads 156
13 Variable Shunt Reactors for Reactive Power Compensation of HV Subsea Cables

Authors: Saeed A. AlGhamdi, Nabil Habli, Vinoj Somasanran

Abstract:

This paper presents an application of 230 kV Variable Shunt Reactors (VSR) used to compensate reactive power of dual 90 KM subsea cables. VSR integrates an on-load tap changer (OLTC) that adjusts reactive power compensation to maintain acceptable bus voltages under variable load profile and network configuration. An automatic voltage regulator (AVR) or a power management system (PMS) that allows VSR rating to be changed in discrete steps typically controls the OLTC. Typical regulation range start as minimum as 20% up to 100% and are available for systems up to 550kV. The regulation speed is normally in the order of seconds per step and approximately a minute from maximum to minimum rating. VSR can be bus or line connected depending on line/cable length and compensation requirements. The flexible reactive compensation ranges achieved by recent VSR technologies have enabled newer facilities design to deploy line connected VSR through either disconnect switches, which saves space and cost, or through circuit breakers. Lines with VSR are typically energized with lower taps (reduced reactive compensation) to minimize or remove the presence of delayed zero crossing.

Keywords: power management, reactive power, subsea cables, variable shunt reactors

Procedia PDF Downloads 211
12 Prediction for the Pressure Drop of Gas-Liquid Cylindrical Cyclone in Sub-Sea Production System

Authors: Xu Rumin, Chen Jianyi, Yue Ti, Wang Yaan

Abstract:

With the rapid development of subsea oil and gas exploitation, the demand for the related underwater process equipment is increasing fast. In order to reduce the energy consuming, people tend to separate the gas and oil phase directly on the seabed. Accordingly, an advanced separator is needed. In this paper, the pressure drop of a new type of separator named Gas Liquid Cylindrical Cyclone (GLCC) which is used in the subsea system is investigated by both experiments and numerical simulation. In the experiments, the single phase flow and gas-liquid two phase flow in GLCC were tested. For the simulation, the performance of GLCC under both laboratory and industrial conditions was calculated. The Eulerian model was implemented to describe the mixture flow field in the GLCC under experimental conditions and industrial oil-natural gas conditions. Furthermore, a relationship among Euler number (Eu), Reynolds number (Re), and Froude number (Fr) is generated according to similarity analysis and simulation data, which can present the GLCC separation performance of pressure drop. These results can give reference to the design and application of GLCC in deep sea.

Keywords: dimensionless analysis, gas-liquid cylindrical cyclone, numerical simulation, pressure drop

Procedia PDF Downloads 138
11 Production Increase of C-Central Wells Baher Essalm-Libya

Authors: Emed Krekshi, Walid Ben Husein

Abstract:

The Bahr Essalam gas-condensate field is located off the Libyan coast and is currently being produced by Mellitah Oil and Gas (MOG). Gas and condensate are produced from the Bahr Essalam reservoir through a mixture of platform and subsea wells, with the subsea wells being gathered at the western manifolds and delivered to the Sabratha platform via a 22-inch pipeline. Gas is gathered and dehydrated on the Sabratha platform and then delivered to the Mellitah gas plant via an existing 36-inch gas export pipeline. The condensate separated on the Sabratha platform will be delivered to the Mellitah gas plant via an existing 10-inch export pipeline. The Bahr Essalam Phase II project includes 2 production wells (CC16 & CC17) at C-Central A connected to the Sabratha platform via a new 10.9 km long 10”/14” production pipeline. Production rates from CC16 and CC17 have exceeded the maximum planned rate of 40 MMSCFD per well. A hydrothermal analysis was conducted to review and Verify input data, focusing on the variation of flowing well head as a function of flowrate.as well as Review available input data against the previous design input data to determine the extent of change. The steady-state and transient simulations performed with Olga yielded coherent results and confirmed the possibility of achieving flow rates of up to 60MMSCFD per well without exceeding the design temperatures, pressures, and velocities.

Keywords: Bahr Essalam, Mellitah Oil and Gas, production flow rates, steady and transient

Procedia PDF Downloads 16
10 Seismic Interpretation and Petrophysical Evaluation of SM Field, Libya

Authors: Abdalla Abdelnabi, Yousf Abushalah

Abstract:

The G Formation is a major gas producing reservoir in the SM Field, eastern, Libya. It is called G limestone because it consists of shallow marine limestone. Well data and 3D-Seismic in conjunction with the results of a previous study were used to delineate the hydrocarbon reservoir of Middle Eocene G-Formation of SM Field area. The data include three-dimensional seismic data acquired in 2009. It covers approximately an area of 75 mi² and with more than 9 wells penetrating the reservoir. Seismic data are used to identify any stratigraphic and structural and features such as channels and faults and which may play a significant role in hydrocarbon traps. The well data are used to calculation petrophysical analysis of S field. The average porosity of the Middle Eocene G Formation is very good with porosity reaching 24% especially around well W 6. Average water saturation was calculated for each well from porosity and resistivity logs using Archie’s formula. The average water saturation for the whole well is 25%. Structural mapping of top and bottom of Middle Eocene G formation revealed the highest area in the SM field is at 4800 ft subsea around wells W4, W5, W6, and W7 and the deepest point is at 4950 ft subsea. Correlation between wells using well data and structural maps created from seismic data revealed that net thickness of G Formation range from 0 ft in the north part of the field to 235 ft in southwest and south part of the field. The gas water contact is found at 4860 ft using the resistivity log. The net isopach map using both the trapezoidal and pyramid rules are used to calculate the total bulk volume. The original gas in place and the recoverable gas were calculated volumetrically to be 890 Billion Standard Cubic Feet (BSCF) and 630 (BSCF) respectively.

Keywords: 3D seismic data, well logging, petrel, kingdom suite

Procedia PDF Downloads 122
9 Multibody Constrained Dynamics of Y-Method Installation System for a Large Scale Subsea Equipment

Authors: Naeem Ullah, Menglan Duan, Mac Darlington Uche Onuoha

Abstract:

The lowering of subsea equipment into the deep waters is a challenging job due to the harsh offshore environment. Many researchers have introduced various installation systems to deploy the payload safely into the deep oceans. In general practice, dual floating vessels are not employed owing to the prevalent safety risks and hazards caused by ever-increasing dynamical effects sourced by mutual interaction between the bodies. However, while keeping in the view of the optimal grounds, such as economical one, the Y-method, the two conventional tugboats supporting the equipment by the two independent strands connected to a tri-plate above the equipment, has been employed to study multibody dynamics of the dual barge lifting operations. In this study, the two tugboats and the suspended payload (Y-method) are deployed for the lowering of subsea equipment into the deep waters as a multibody dynamic system. The two-wire ropes are used for the lifting and installation operation by this Y-method installation system. 6-dof (degree of freedom) for each body are considered to establish coupled 18-dof multibody model by embedding technique or velocity transformation technique. The fundamental and prompt advantage of this technique is that the constraint forces can be eliminated directly, and no extra computational effort is required for the elimination of the constraint forces. The inertial frame of reference is taken at the surface of the water as the time-independent frame of reference, and the floating frames of reference are introduced in each body as the time-dependent frames of reference in order to formulate the velocity transformation matrix. The local transformation of the generalized coordinates to the inertial frame of reference is executed by applying the Euler Angle approach. The spherical joints are articulated amongst the multibody as the kinematic joints. The hydrodynamic force, the two-strand forces, the hydrostatic force, and the mooring forces are taken into consideration as the external forces. The radiation force of the hydrodynamic force is obtained by employing the Cummins equation. The wave exciting part of the hydrodynamic force is obtained by using force response amplitude operators (RAOs) that are obtained by the commercial solver ‘OpenFOAM’. The strand force is obtained by considering the wire rope as an elastic spring. The nonlinear hydrostatic force is obtained by the pressure integration technique at each time step of the wave movement. The mooring forces are evaluated by using Faltinsen analytical approach. ‘The Runge Kutta Method’ of Fourth-Order is employed to evaluate the coupled equations of motion obtained for 18-dof multibody model. The results are correlated with the simulated Orcaflex Model. Moreover, the results from Orcaflex Model are compared with the MOSES Model from previous studies. The MBDS of single barge lifting operation from the former studies are compared with the MBDS of the established dual barge lifting operation. The dynamics of the dual barge lifting operation are found larger in magnitude as compared to the single barge lifting operation. It is noticed that the traction at the top connection point of the cable decreases with the increase in the length, and it becomes almost constant after passing through the splash zone.

Keywords: dual barge lifting operation, Y-method, multibody dynamics, shipbuilding, installation of subsea equipment, shipbuilding

Procedia PDF Downloads 171
8 Verification of Geophysical Investigation during Subsea Tunnelling in Qatar

Authors: Gary Peach, Furqan Hameed

Abstract:

Musaimeer outfall tunnel is one of the longest storm water tunnels in the world, with a total length of 10.15 km. The tunnel will accommodate surface and rain water received from the drainage networks from 270 km of urban areas in southern Doha with a pumping capacity of 19.7m³/sec. The tunnel is excavated by Tunnel Boring Machine (TBM) through Rus Formation, Midra Shales, and Simsima Limestone. Water inflows at high pressure, complex mixed ground, and weaker ground strata prone to karstification with the presence of vertical and lateral fractures connected to the sea bed were also encountered during mining. In addition to pre-tender geotechnical investigations, the Contractor carried out a supplementary offshore geophysical investigation in order to fine-tune the existing results of geophysical and geotechnical investigations. Electric resistivity tomography (ERT) and Seismic Reflection survey was carried out. Offshore geophysical survey was performed, and interpretations of rock mass conditions were made to provide an overall picture of underground conditions along the tunnel alignment. This allowed the critical tunnelling area and cutter head intervention to be planned accordingly. Karstification was monitored with a non-intrusive radar system facility installed on the TBM. The Boring Electric Ahead Monitoring(BEAM) was installed at the cutter head and was able to predict the rock mass up to 3 tunnel diameters ahead of the cutter head. BEAM system was provided with an online system for real time monitoring of rock mass condition and then correlated with the rock mass conditions predicted during the interpretation phase of offshore geophysical surveys. The further correlation was carried by Samples of the rock mass taken from tunnel face inspections and excavated material produced by the TBM. The BEAM data was continuously monitored to check the variations in resistivity and percentage frequency effect (PFE) of the ground. This system provided information about rock mass condition, potential karst risk, and potential of water inflow. BEAM system was found to be more than 50% accurate in picking up the difficult ground conditions and faults as predicted in the geotechnical interpretative report before the start of tunnelling operations. Upon completion of the project, it was concluded that the combined use of different geophysical investigation results can make the execution stage be carried out in a more confident way with the less geotechnical risk involved. The approach used for the prediction of rock mass condition in Geotechnical Interpretative Report (GIR) and Geophysical Reflection and electric resistivity tomography survey (ERT) Geophysical Reflection surveys were concluded to be reliable as the same rock mass conditions were encountered during tunnelling operations.

Keywords: tunnel boring machine (TBM), subsea, karstification, seismic reflection survey

Procedia PDF Downloads 198
7 Offshore Power Transition Project

Authors: Kashmir Johal

Abstract:

Within a wider context of improving whole-life effectiveness of gas and oil fields, we have been researching how to generate power local to the wellhead. (Provision of external power to a subsea wellhead can be prohibitively expensive and results in uneconomic fields. This has been an oil/gas industry challenge for many years.) We have been developing a possible approach to “local” power generation and have been conducting technical, environmental, (and economic) research to develop a viable approach. We sought to create a workable design for a new type of power generation system that makes use of differential pressure that can exist between the sea surface and a gas (or oil reservoir). The challenge has not just been to design a system capable of generating power from potential energy but also to design it in such a way that it anticipates and deals with the wide range of technological, environmental, and chemical constraints faced in such environments. We believe this project shows the enormous opportunity in deriving clean, economic, and zero emissions renewable energy from offshore sources. Since this technology is not currently available, a patent has been filed to protect the advancement of this technology.

Keywords: renewable, energy, power, offshore

Procedia PDF Downloads 43
6 Empirical Green’s Function Technique for Accelerogram Synthesis: The Problem of the Use for Marine Seismic Hazard Assessment

Authors: Artem A. Krylov

Abstract:

Instrumental seismological researches in water areas are complicated and expensive, that leads to the lack of strong motion records in most offshore regions. In the same time the number of offshore industrial infrastructure objects, such as oil rigs, subsea pipelines, is constantly increasing. The empirical Green’s function technique proved to be very effective for accelerograms synthesis under the conditions of poorly described seismic wave propagation medium. But the selection of suitable small earthquake record in offshore regions as an empirical Green’s function is a problem because of short seafloor instrumental seismological investigation results usually with weak micro-earthquakes recordings. An approach based on moving average smoothing in the frequency domain is presented for preliminary processing of weak micro-earthquake records before using it as empirical Green’s function. The method results in significant waveform correction for modeled event. The case study for 2009 L’Aquila earthquake was used to demonstrate the suitability of the method. This work was supported by the Russian Foundation of Basic Research (project № 18-35-00474 mol_a).

Keywords: accelerogram synthesis, empirical Green's function, marine seismology, microearthquakes

Procedia PDF Downloads 295
5 Air-Blast Ultrafast Disconnectors and Solid-State Medium Voltage DC Breaker: A Modified Version to Lower Losses and Higher Speed

Authors: Ali Kadivar, Kaveh Niayesh

Abstract:

MVDC markets for green power generations, Navy, subsea oil and gas electrification, and transportation electrification are extending rapidly. The lack of fast and powerful DC circuit breakers (CB) is the most significant barrier to realizing the medium voltage DC (MVDC) networks. A concept of hybrid circuit breakers (HCBs) benefiting from ultrafast disconnectors (UFD) is proposed. A set of mechanical switches substitute the power electronic commutation switches to reduce the losses during normal operation in HCB. The success of current commutation in such breakers relies on the behaviour of elongated, wall constricted arcs during the opening across the contacts inside the UFD. The arc voltage dependencies on the contact speed of UFDs is discussed through multiphysics simulations contact opening speeds of 10, 20 and 40 m/s. The arc voltage at a given current increases exponentially with the contact opening velocity. An empirical equation for the dynamic arc characteristics is presented for the tested UFD, and the experimentally verfied characteristics for voltage-current are utilized for the current commutation simulation prior to apply on a 14 kV experimental setup. Different failures scenarios due to the current commutation are investigated

Keywords: MVDC breakers, DC circuit breaker, fast operating breaker, ultra-fast elongated arc

Procedia PDF Downloads 49
4 Simulation-Based Control Module for Offshore Single Point Mooring System

Authors: Daehyun Baek, Seungmin Lee, Minju Kim Jangik Park, Hyeong-Soon Moon

Abstract:

SPM (Single Point Mooring) is one of the mooring buoy facilities installed on a coast near oil and gas terminal which is not able to berth FPSO or large oil tankers under the condition of high draft due to geometrical limitation. Loading and unloading of crude oil and gas through a subsea pipeline can be carried out between the mooring buoy, ships and onshore facilities. SPM is an offshore-standalone system which has to withstand the harsh marine environment with harsh conditions such as high wind, current and so on. Therefore, SPM is required to have high stability, reliability and durability. Also, SPM is comprised to be integrated systems which consist of power management, high pressure valve control, sophisticated hardware/software and a long distance communication system. In order to secure required functions of SPM system, a simulation model for the integrated system of SPM using MATLAB Simulink and State flow tool has been developed. The developed model consists of configuration of hydraulic system for opening and closing of PLEM (Pipeline End Manifold) valves and control system logic. To verify functions of the model, an integrated simulation model for overall systems of SPM was also developed by considering handshaking variables between individual systems. In addition to the dynamic model, a self-diagnostic function to determine failure of the system was configured, which enables the SPM system itself to alert users about the failure once a failure signal comes to arise. Controlling and monitoring the SPM system is able to be done by a HMI system which is capable of managing the SPM system remotely, which was carried out by building a communication environment between the SPM system and the HMI system.

Keywords: HMI system, mooring buoy, simulink simulation model, single point mooring, stateflow

Procedia PDF Downloads 392
3 Multiphase Equilibrium Characterization Model For Hydrate-Containing Systems Based On Trust-Region Method Non-Iterative Solving Approach

Authors: Zhuoran Li, Guan Qin

Abstract:

A robust and efficient compositional equilibrium characterization model for hydrate-containing systems is required, especially for time-critical simulations such as subsea pipeline flow assurance analysis, compositional simulation in hydrate reservoirs etc. A multiphase flash calculation framework, which combines Gibbs energy minimization function and cubic plus association (CPA) EoS, is developed to describe the highly non-ideal phase behavior of hydrate-containing systems. A non-iterative eigenvalue problem-solving approach for the trust-region sub-problem is selected to guarantee efficiency. The developed flash model is based on the state-of-the-art objective function proposed by Michelsen to minimize the Gibbs energy of the multiphase system. It is conceivable that a hydrate-containing system always contains polar components (such as water and hydrate inhibitors), introducing hydrogen bonds to influence phase behavior. Thus, the cubic plus associating (CPA) EoS is utilized to compute the thermodynamic parameters. The solid solution theory proposed by van der Waals and Platteeuw is applied to represent hydrate phase parameters. The trust-region method combined with the trust-region sub-problem non-iterative eigenvalue problem-solving approach is utilized to ensure fast convergence. The developed multiphase flash model's accuracy performance is validated by three available models (one published and two commercial models). Hundreds of published hydrate-containing system equilibrium experimental data are collected to act as the standard group for the accuracy test. The accuracy comparing results show that our model has superior performances over two models and comparable calculation accuracy to CSMGem. Efficiency performance test also has been carried out. Because the trust-region method can determine the optimization step's direction and size simultaneously, fast solution progress can be obtained. The comparison results show that less iteration number is needed to optimize the objective function by utilizing trust-region methods than applying line search methods. The non-iterative eigenvalue problem approach also performs faster computation speed than the conventional iterative solving algorithm for the trust-region sub-problem, further improving the calculation efficiency. A new thermodynamic framework of the multiphase flash model for the hydrate-containing system has been constructed in this work. Sensitive analysis and numerical experiments have been carried out to prove the accuracy and efficiency of this model. Furthermore, based on the current thermodynamic model in the oil and gas industry, implementing this model is simple.

Keywords: equation of state, hydrates, multiphase equilibrium, trust-region method

Procedia PDF Downloads 146
2 Construction Port Requirements for Floating Wind Turbines

Authors: Alan Crowle, Philpp Thies

Abstract:

As the floating offshore wind turbine industry continues to develop and grow, the capabilities of established port facilities need to be assessed as to their ability to support the expanding construction and installation requirements. This paper assesses current infrastructure requirements and projected changes to port facilities that may be required to support the floating offshore wind industry. Understanding the infrastructure needs of the floating offshore renewable industry will help to identify the port-related requirements. Floating Offshore Wind Turbines can be installed further out to sea and in deeper waters than traditional fixed offshore wind arrays, meaning that it can take advantage of stronger winds. Separate ports are required for substructure construction, fit-out of the turbines, moorings, subsea cables and maintenance. Large areas are required for the laydown of mooring equipment; inter-array cables, turbine blades and nacelles. The capabilities of established port facilities to support floating wind farms are assessed by evaluation of the size of substructures, the height of wind turbine with regards to the cranes for fitting of blades, distance to offshore site and offshore installation vessel characteristics. The paper will discuss the advantages and disadvantages of using large land-based cranes, inshore floating crane vessels or offshore crane vessels at the fit-out port for the installation of the turbine. Water depths requirements for import of materials and export of the completed structures will be considered. There are additional costs associated with any emerging technology. However part of the popularity of Floating Offshore Wind Turbines stems from the cost savings against permanent structures like fixed wind turbines. Floating Offshore Wind Turbine developers can benefit from lighter, more cost-effective equipment which can be assembled in port and towed to the site rather than relying on large, expensive installation vessels to transport and erect fixed bottom turbines. The ability to assemble Floating Offshore Wind Turbines equipment onshore means minimizing highly weather-dependent operations like offshore heavy lifts and assembly, saving time and costs and reducing safety risks for offshore workers. Maintenance might take place in safer onshore conditions for barges and semi-submersibles. Offshore renewables, such as floating wind, can take advantage of this wealth of experience, while oil and gas operators can deploy this experience at the same time as entering the renewables space The floating offshore wind industry is in the early stages of development and port facilities are required for substructure fabrication, turbine manufacture, turbine construction and maintenance support. The paper discusses the potential floating wind substructures as this provides a snapshot of the requirements at the present time, and potential technological developments required for commercial development. Scaling effects of demonstration-scale projects will be addressed, however, the primary focus will be on commercial-scale (30+ units) device floating wind energy farms.

Keywords: floating wind, port, marine construction, offshore renewables

Procedia PDF Downloads 252
1 Geographic Information System Based Multi-Criteria Subsea Pipeline Route Optimisation

Authors: James Brown, Stella Kortekaas, Ian Finnie, George Zhang, Christine Devine, Neil Healy

Abstract:

The use of GIS as an analysis tool for engineering decision making is now best practice in the offshore industry. GIS enables multidisciplinary data integration, analysis and visualisation which allows the presentation of large and intricate datasets in a simple map-interface accessible to all project stakeholders. Presenting integrated geoscience and geotechnical data in GIS enables decision makers to be well-informed. This paper is a successful case study of how GIS spatial analysis techniques were applied to help select the most favourable pipeline route. Routing a pipeline through any natural environment has numerous obstacles, whether they be topographical, geological, engineering or financial. Where the pipeline is subjected to external hydrostatic water pressure and is carrying pressurised hydrocarbons, the requirement to safely route the pipeline through hazardous terrain becomes absolutely paramount. This study illustrates how the application of modern, GIS-based pipeline routing techniques enabled the identification of a single most-favourable pipeline route crossing of a challenging seabed terrain. Conventional approaches to pipeline route determination focus on manual avoidance of primary constraints whilst endeavouring to minimise route length. Such an approach is qualitative, subjective and is liable to bias towards the discipline and expertise that is involved in the routing process. For very short routes traversing benign seabed topography in shallow water this approach may be sufficient, but for deepwater geohazardous sites, the need for an automated, multi-criteria, and quantitative approach is essential. This study combined multiple routing constraints using modern least-cost-routing algorithms deployed in GIS, hitherto unachievable with conventional approaches. The least-cost-routing procedure begins with the assignment of geocost across the study area. Geocost is defined as a numerical penalty score representing hazard posed by each routing constraint (e.g. slope angle, rugosity, vulnerability to debris flows) to the pipeline. All geocosted routing constraints are combined to generate a composite geocost map that is used to compute the least geocost route between two defined terminals. The analyses were applied to select the most favourable pipeline route for a potential gas development in deep water. The study area is geologically complex with a series of incised, potentially active, canyons carved into a steep escarpment, with evidence of extensive debris flows. A similar debris flow in the future could cause significant damage to a poorly-placed pipeline. Protruding inter-canyon spurs offer lower-gradient options for ascending an escarpment but the vulnerability of periodic failure of these spurs is not well understood. Close collaboration between geoscientists, pipeline engineers, geotechnical engineers and of course the gas export pipeline operator guided the analyses and assignment of geocosts. Shorter route length, less severe slope angles, and geohazard avoidance were the primary drivers in identifying the most favourable route.

Keywords: geocost, geohazard, pipeline route determination, pipeline route optimisation, spatial analysis

Procedia PDF Downloads 364