Search results for: stress and strain
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4888

Search results for: stress and strain

1858 The Rupture Potential of Nerve Tissue Constrained Intracranial Saccular Aneurysm

Authors: M. Alam, P. Seshaiyer

Abstract:

The rupture predictability of intracranial aneurysm is one of the most important parameters for physicians in surgical treatment. As most of the intracranial aneurysms are asymptomatic, still the rupture potential of both symptomatic and asymptomatic lesions is relatively unknown. Moreover, an intracranial aneurysm constrained by a nerve tissue might be a common scenario for a physician to deal with during the treatment process. Here, we perform a computational modeling of nerve tissue constrained intracranial saccular aneurysm to show a protective role of constrained tissue on the aneurysm. A comparative parametric study of the model also performs taking long constraint, medium constraint, short constraint, point contact, narrow neck aneurysm, wide neck aneurysm as parameters for the analysis. Results show that contact constraint aneurysm generates less stress near the fundus compared to no constraint aneurysm, hence works as a protective wall for the aneurysm not to be ruptured.

Keywords: rupture potential, intracranial saccular aneurysm, anisotropic hyper-elastic material, finite element analysis

Procedia PDF Downloads 198
1857 Understanding Mudrocks and Their Shear Strength Deterioration Associated with Inundation

Authors: Haslinda Nahazanan, Afshin Asadi, Zainuddin Md. Yusoff, Nik Nor Syahariati Nik Daud

Abstract:

Mudrocks is considered as a problematic material due to their unexpected behaviour specifically when they are contacting with water or being exposed to the atmosphere. Many instability problems of cutting slopes were found lying on high slaking mudrocks. It has become one of the major concerns to geotechnical engineer as mudrocks cover up to 50% of sedimentary rocks in the geologic records. Mudrocks display properties between soils and rocks which can be very hard to understand. Therefore, this paper aims to review the definition, mineralogy, geo-chemistry, classification and engineering properties of mudrocks. As water has become one of the major factors that will rapidly change the behaviour of mudrocks, a review on the shear strength of mudrocks in Derbyshire has been made using a fully automated hydraulic stress path testing system under three states: dry, short-term inundated and long-term inundated. It can be seen that the strength of mudrocks has deteriorated as it condition changed from dry to short-term inundated and finally to long-term inundated.

Keywords: mudrocks, sedimentary rocks, inundation, shear strength

Procedia PDF Downloads 222
1856 Report of the Sea Cucumber Stichopus hermanni from Umm Al-Maradim and Qaruh Islands in Kuwait

Authors: M. Al-Roumi, A. Al-Yaqout, A. Al-Baz

Abstract:

Recently, sea cucumbers have shown to be significant to global trade and incomes due to their high commercial value for the pharmaceutical and cosmetics industry. This rising demand for sea cucumber products has created increasing harvest stress on the natural populations and led to the depletion of sea cucumbers stocks worldwide and accordingly there is a big concern on the marine environment's health worldwide. Few species have been reported and identified via morophlogical features only. Several sea cucumber species were collected from the North West side reefs at Qaruh Island, and the north side of Umm Al-Maradem Island in Kuwait waters, in the north-western Arabian Gulf, in order to identify the sea cucumber species available in the Kuwaiti waters. The identified species were Holothuria atra, Holothuria arenicola, Holothuria hilla and Holothuria impatiens. Species identification was made using morphological keys and review of their ossicles. This paper reports the species Stichopus hermanni from Kuwait.

Keywords: Stichopus hermanni, Kuwait waters, Arabian Gulf, ossicles

Procedia PDF Downloads 175
1855 Thixomixing as Novel Method for Fabrication Aluminum Composite with Carbon and Alumina Fibers

Authors: Ebrahim Akbarzadeh, Josep A. Picas Barrachina, Maite Baile Puig

Abstract:

This study focuses on a novel method for dispersion and distribution of reinforcement under high intensive shear stress to produce metal composites. The polyacrylonitrile (PAN)-based short carbon fiber (Csf) and Nextel 610 alumina fiber were dispersed under high intensive shearing at mushy zone in semi-solid of A356 by a novel method. The bundles and clusters were embedded by infiltration of slurry into the clusters, thus leading to a uniform microstructure. The fibers were embedded homogenously into the aluminum around 576-580°C with around 46% of solid fraction. Other experiments at 615°C and 568°C which are contained 0% and 90% solid respectively were not successful for dispersion and infiltration of aluminum into bundles of Csf. The alumina fiber has been cracked by high shearing load. The morphologies and crystalline phase were evaluated by SEM and XRD. The adopted thixo-process effectively improved the adherence and distribution of Csf into Al that can be developed to produce various composites by thixomixing.

Keywords: aluminum, carbon fiber, alumina fiber, thixomixing, adhesion

Procedia PDF Downloads 539
1854 Current Epizootic Situation of Q Fever in Polish Cattle

Authors: Monika Szymańska-Czerwińska, Agnieszka Jodełko, Krzysztof Niemczuk

Abstract:

Q fever (coxiellosis) is an infectious disease of animals and humans causes by C. burnetii and widely distributed throughout the world. Cattle and small ruminants are commonly known as shedders of C. burnetii. The aims of this study were the evaluation of seroprevalence and shedding of C. burnetii in cattle. Genotypes of the pathogen present in the tested specimens were also identified using MLVA (Multiple Locus Variable-Number Tandem Repeat Analysis) and MST (multispacer sequence typing) methods. Sampling was conducted in different regions of Poland in 2018-2021. In total, 2180 bovine serum samples from 801 cattle herds were tested by ELISA (enzyme-linked immunosorbent assay). 489 specimens from 157 cattle herds such as: individual milk samples (n=407), bulk tank milk (n=58), vaginal swabs (n=20), placenta (n=3) and feces (n=1) were subjected to C. burnetii specific qPCR. The qPCR (IS1111 transposon-like repetitive region) was performed using Adiavet COX RealTime PCR kit. Genotypic characterization of the strains was conducted utilizing MLVA and MST methods. MLVA was performed using 6 variable loci. The overall herd-level seroprevalence of C. burnetii infection was 36.74% (801/2180). Shedders were detected in 29.3% (46/157) cattle herds in all tested regions. ST 61 sequence type was identified in 10 out of 18 genotyped strains. Interestingly one strain represents sequence type which has never been recorded previously. MLVA method identified three previously known genotypes: most common was J but also I and BE were recognized. Moreover, a one genotype has never been described previously. Seroprevalence and shedding of C. burnetii in cattle is common and strains are genetically diverse.

Keywords: Coxiella burnetii, cattle, MST, MLVA, Q fever

Procedia PDF Downloads 72
1853 Reinforced Concrete Slab under Static and Dynamic Loading

Authors: Aaron Aboshio, Jianqiao Ye

Abstract:

In this study, static and dynamic responses of a typical reinforced concrete flat slab, designed to British Standard (BS 8110, 1997) and under self and live loadings for dance halls are reported. Linear perturbation analysis using finite element method was employed for modal, impulse loading and frequency response analyses of the slab under the aforementioned loading condition. Results from the static and dynamic analyses, comprising of the slab fundamental frequencies and mode shapes, dynamic amplification factor, maximum deflection, stress distributions among other valuable outcomes are presented and discussed. These were gauged with the limiting provisions in the design code with a view to optimise the structure and ensure both adequate strength and economical section for large clear span slabs. This is necessary owing to the continued increase in cost of erecting building structures and the squeeze on public finance globally.

Keywords: economical design, finite element method, modal dynamics, reinforced concrete, slab

Procedia PDF Downloads 300
1852 Students' Attitudes Towards Seeking Psychological Help

Authors: Gudelj Petra, Franic Ema, Kolega Maja

Abstract:

Mental health is crucial for personal, social, and socio-economic development, becoming an increasingly relevant topic, especially in the post-global pandemic era. One vulnerable demographic comprises students who, during the pandemic, faced challenges such as adapting to new educational methods, societal or residential changes, heightened stress, responsibilities, and entering the job market. These life challenges proved insurmountable for some individuals during this phase. This research aimed to examine students' attitudes towards individuals seeking psychological help. By gaining a better understanding of young people's perceptions of seeking psychological assistance, a clearer insight into how to make psychological support more accessible and acceptable can be achieved. A questionnaire was completed by 210 students from various disciplines at the University of Zagreb. At the same time, the majority of students express a positive attitude towards seeking psychological help, a very small percentage reported having sought it. One of the most common obstacles to seeking appropriate help was a lack of financial means, with the most significant motivators being the positive experiences of those who sought help and an affordable cost.

Keywords: mental health, students, psychological support, attitudes

Procedia PDF Downloads 54
1851 Nonlinear Analysis with Failure Using the Boundary Element Method

Authors: Ernesto Pineda Leon, Dante Tolentino Lopez, Janis Zapata Lopez

Abstract:

The current paper shows the application of the boundary element method for the analysis of plates under shear stress causing plasticity. In this case, the shear deformation of a plate is considered by means of the Reissner’s theory. The probability of failure of a Reissner’s plate due to a proposed index plastic behavior is calculated taken into account the uncertainty in mechanical and geometrical properties. The problem is developed in two dimensions. The classic plasticity’s theory is applied and a formulation for initial stresses that lead to the boundary integral equations due to plasticity is also used. For the plasticity calculation, the Von Misses criteria is used. To solve the non-linear equations an incremental method is employed. The results show a relatively small failure probability for the ranges of loads between 0.6 and 1.0. However, for values between 1.0 and 2.5, the probability of failure increases significantly. Consequently, for load bigger than 2.5 the plate failure is a safe event. The results are compared to those that were found in the literature and the agreement is good.

Keywords: boundary element method, failure, plasticity, probability

Procedia PDF Downloads 289
1850 Evaluation of Minimization of Moment Ratio Method by Physical Modeling

Authors: Amin Eslami, Jafar Bolouri Bazaz

Abstract:

Under active stress conditions, a rigid cantilever retaining wall tends to rotate about a pivot point located within the embedded depth of the wall. For purely granular and cohesive soils, a methodology was previously reported called minimization of moment ratio to determine the location of the pivot point of rotation. The usage of this new methodology is to estimate the rotational stability safety factor. Moreover, the degree of improvement required in a backfill to get a desired safety factor can be estimated by the concept of the shear strength demand. In this article, the accuracy of this method for another type of cantilever walls called Contiguous Bored Pile (CBP) retaining wall is evaluated by using physical modeling technique. Based on observations, the results of moment ratio minimization method are in good agreement with the results of the carried out physical modeling.

Keywords: cantilever retaining wall, physical modeling, minimization of moment ratio method, pivot point

Procedia PDF Downloads 319
1849 Pre-Soaking Application of Salicylic Acid on Four Wheat Cultivars under Saline Concentrations

Authors: Saad M. Howladar, Mike Dennett

Abstract:

The effect of salinity (0-200 mMNaCl) on wheat growth (leaf and tiller numbers, and fresh and dry weights) underseed soaking (6 and 24 hs) insalicylic acid (SA) was investigated. The impact of salinity was less pronounced in salt tolerant cultivars (Sakha 93 and S24) than Paragon and S24. Chlorophyll content was increased as a response to salinity stress. It was raised in 100 mMNaCl more than 200 mMNaCl. The same trend was found in 24 hs soaking, except chlorophyll content in Paragon and S24 under 200 mMNaCl was more than 100 mMNaCl. SA application induced a positive effect on growth parameters in some cultivars, particularly Paragon under saline and non-saline condition. Soaking for 6 hs was more effective than 24 hs soaking, especially in Paragon and Sakha 93. SA supply caused a slight effect on chlorophyll content but this was not significant and there was no significant difference between both soaking hs. The effect of SA on growth parameters and chlorophyll content depends on cultivar genotype and SA concentration.

Keywords: salinity, salicylic acid, growth parameters, chlorophyll content, wheat cultivars

Procedia PDF Downloads 528
1848 Clinical, Demographic and Molecular Characterization of Dengue, Chikungunya and Zika Viruses Causing Hemorrhagic Fever in North India

Authors: Suruchi Shukla, Shantanu Prakash, Amita Jain

Abstract:

Introduction: Arboviral diseases are one of the most common causes of viral hemorrhagic fever (VHF). Of which, Dengue and Chikungunya pose a significant health problem in India. Arbovirus has a tendency to cross the territories and emerge in the new region. Considering the above issues, in the current study active surveillance was conducted among viral hemorrhagic fever (VHF) cases reported from Uttar Pradesh (UP), India. We studied the arboviral etiology of VHF; mainly Dengue, Chikungunya, and ZIKA. Methods: Clinical samples of 465 suspected VHF cases referred to tertiary care referral center of UP, India were enrolled in the study during a period from 15th May 2016 to 9th March 2018. Serum specimens were collected and analyzed for the presence of Dengue, Chikungunya, and ZIKA either by serology and/or by molecular assays. Results: Of all tested, 165 (35.4%) cases were positive for either Dengue or Chikungunya. Dengue (21.2%) was found to be the most prevalent, followed by Chikungunya, (6.6%). None of the cases tested positive for ZIKA virus. Serum samples of 35 (7.5%) cases were positive for both Dengue and Chikungunya. DEN-2 serotype was the most predominant serotype. Phylogenetic and sequence analysis of DEN-2 strains showed 100% clustering with the Cosmopolitan genotype strain. Bleeding from several sites, jaundice, abdominal pain, arthralgia, haemoconcentration, and thrombocytopenia were significantly higher in dengue hemorrhagic cases. However, the rash was significantly more common in Chikungunya patients. Most of the Dengue and Chikungunya positive cases (Age group 6-40 years) were seen in post monsoon season (September to November). Conclusion: Only one-third of total VHF cases are positive for either Dengue/Chikungunya or both. This necessitates the screening of other etiologies capable of causing hemorrhagic manifestations.

Keywords: viral hemorrhagic fever, dengue, chikungunya, zika, India

Procedia PDF Downloads 135
1847 Development of Multifunctional Yarns and Fabrics for Interactive Textiles

Authors: Muhammad Bilal Qadir, Danish Umer, Amir Shahzad

Abstract:

The use of conductive materials in smart and interactive textiles is gaining significant importance for creating value addition, innovation, and functional product development. These products find their potential applications in health monitoring, military, protection, communication, sensing, monitoring, actuation, fashion, and lifestyles. The materials which are most commonly employed in such type of interactive textile include intrinsically conducting polymers, conductive inks, and metallic coating on textile fabrics and inherently conducting metallic fibre yarns. In this study, silver coated polyester filament yarn is explored for the development of multifunctional interactive gloves. The composite yarn was developed by covering the silver coated polyester filament around the polyester spun yarn using hollow spindle technique. The electrical and tensile properties of the yarn were studied. This novel yarn was used to manufacture a smart glove to explore the antibacterial, functional, and interactive properties of the yarn. The change in electrical resistance due to finger movement at different bending positions and antimicrobial properties were studied. This glove was also found useful as an interactive tool to operate the commonly used touch screen devices due to its conductive nature. The yarn can also be used to develop the sensing elements like stretch, strain, and piezoresistive sensors. Such sensor can be effectively used in medical and sports textile for performance monitoring, vital signs monitoring and development of antibacterial textile for healthcare and hygiene.

Keywords: conductive yarn, interactive textiles, piezoresistive sensors, smart gloves

Procedia PDF Downloads 228
1846 Prophylactic Effects of Dairy Kluyveromyces marxianus YAS through Overexpression of BAX, CASP 3, CASP 8 and CASP 9 on Human Colon Cancer Cell Lines

Authors: Amir Saber Gharamaleki, Beitollah Alipour, Zeinab Faghfoori, Ahmad YariKhosroushahi

Abstract:

Colorectal cancer (CRC) is one of the most prevalent cancers and intestinal microbial community plays an important role in colorectal tumorigenesis. Probiotics have recently been assessed as effective anti-proliferative agents and thus this study was performed to examine whether CRC undergo apoptosis by treating with isolated Iranian native dairy yeast, Kluyveromyces marxianus YAS, secretion metabolites. The cytotoxicity assessments on cells (HT-29, Caco-2) were accomplished through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay as well as qualitative DAPI (4',6-diamidino-2-phenylindole staining) and quantitative (flow cytometry assessments) evaluations of apoptosis. To evaluate the main mechanism of apoptosis, Real time PCR method was applied. Kluyveromyces marxianus YAS secretions (IC50) showed significant cytotoxicity against HT-29 and Caco-2 cancer cell lines (66.57 % and 66.34 % apoptosis) similar to 5-Fluorouracil (5-FU) while apoptosis only was developed in 27.57 % of KDR normal cells. The prophylactic effects of Kluyveromyces marxianus (PTCC 5195), as a reference yeast, was not similar to Kluyveromyces marxianus YAS indicating strain dependency of bioactivities on CRC disease prevention. Based on real time PCR results, the main cytotoxicity is related to apoptosis phenomenon and the core related mechanism is depended on the overexpression of BAX, CASP 9, CASP 8 and CASP 3 inducing apoptosis genes. However, several investigations should be conducted to precisely determine the effective compounds to be used as anticancer therapeutics in the future.

Keywords: anticancer, anti-proliferative, apoptosis, cytotoxicity, yeast

Procedia PDF Downloads 323
1845 Mycorrhizal Autochthonous Consortium Induced Defense-Related Mechanisms of Olive Trees against Verticillium dahliae

Authors: Hanane Boutaj, Abdelilah Meddich, Said Wahbi, Zainab El Alaoui-Talibi, Allal Douira, Abdelkarim Filali-Maltouf, Cherkaoui El Modafar

Abstract:

The present work aims to investigate the effect of arbuscular mycorrhizal fungi (AMF) in improving the olive tree resistance to Verticillium wilt caused by Verticillium dahliae. Inoculated plants with a mycorrhizal autochthonous consortium 'Rhizolive consortium' and pure strain 'Glomus irregulare' were infected after three months with V. dahliae. The improving of olive tree resistance was determined through disease severity, incidence, and defoliation. On the other hand, the defense mechanisms of olive plants were evaluated through lignin content, phenylalanine ammonia lyase (PAL) activity, and polyphenol content. The results revealed that both AMF significantly (p < 0.05) reduced disease development and the rate of defoliation in infected olive plants. Moreover, the contents of lignin were boosted after mycorrhizal inoculation in both the roots and the stems of olive plants, which remained significantly (p < 0.001) higher after the 90th days of V. dahliae inoculation. PAL activity was increased after V. dahliae inoculation in the stems of 'Rhizolive consortium' treatment that were 17 times higher than those in the roots of olive plants. The polyphenol content in the stems was about twice higher than those in the roots. The reduction of disease severity was accompanied by increased levels of lignin content, PAL activity, and polyphenol content, particularly in the stems of olive plants, indicating the strengthening of the olive plant immune system against V. dahliae.

Keywords: olive tree, Mycorrhizal autochthonous consortium, Glomus irregulare, Verticillium dahliae, defense mechanisms

Procedia PDF Downloads 103
1844 Comparison of an Upflow Anaerobic Sludge Blanket and an Anaerobic Filter for Treating Wheat Straw Washwater

Authors: Syazwani Idrus, S. Charles J. Banks, Sonia Heaven

Abstract:

The study compared the performance of upflow anaerobic sludge blanket (UASB) reactors and anaerobic filters (AF) for the treatment of wheat straw washwater (WSW) which has a high concentration of Potassium ions. The trial was conducted at mesophilic temperatures (37 °C). The digesters were started up over a 48-day period using a synthetic wastewater feed and reached an organic loading rate (OLR) of 6 g COD L^-1 day^-1 with a specific methane production (SMP) of 0.333 L CH4 g^-1 COD. When the feed was switched to WSW it was not possible to maintain the same loading rate as the SMP in all reactors fell sharply to less than 0.1 L CH4 g^-1 COD, with the AF affected more than the UASB. On reducing the OLR to 3 g COD L^-1 day^-1 the reactors recovered to produce 0.21 L CH4 g^-1 CODadded and gave 82% COD removal. A discrepancy between the COD consumed and the methane produced could be accounted for through increased maintenance energy requirement of the microbial community for osmo-regulation as K+ was found to accumulate in the sludge and in the UASB reached a concentration of 4.5 mg K g^-1 wet weight of granules.

Keywords: anaerobic digestion, osmotic stress, chemical oxygen demand, specific methane production

Procedia PDF Downloads 643
1843 In-Vitro Dextran Synthesis and Characterization of an Intracellular Glucosyltransferase from Leuconostoc Mesenteroides AA1

Authors: Afsheen Aman, Shah Ali Ul Qader

Abstract:

Dextransucrase [EC 2.4.1.5] is a glucosyltransferase that catalysis the biosynthesis of a natural biopolymer called dextran. It can catalyze the transfer of D-glucopyranosyl residues from sucrose to the main chain of dextran. This unique biopolymer has multiple applications in several industries and the key utilization of dextran lies on its molecular weight and the type of branching. Extracellular dextransucrase from Leuconostoc mesenteroides is most extensively studied and characterized. Limited data is available regarding cell-bound or intracellular dextransucrase and on the characterization of dextran produced by in-vitro reaction of intracellular dextransucrase. L. mesenteroides AA1 is reported to produce extracellular dextransucrase that catalyzes biosynthesis of a high molecular weight dextran with only α-(1→6) linkage. Current study deals with the characterization of an intracellular dextransucrase and in vitro biosynthesis of low molecular weight dextran from L. mesenteroides AA1. Intracellular dextransucrase was extracted from cytoplasm and purified to homogeneity for characterization. Kinetic constants, molecular weight and N-terminal sequence analysis of intracellular dextransucrase reveal unique variation with previously reported extracellular dextransucrase from the same strain. In vitro synthesized biopolymer was characterized using NMR spectroscopic techniques. Intracellular dextransucrase exhibited Vmax and Km values of 130.8 DSU ml-1 hr-1 and 221.3 mM, respectively. Optimum catalytic activity was detected at 35°C in 0.15 M citrate phosphate buffer (pH-5.5) in 05 minutes. Molecular mass of purified intracellular dextransucrase is approximately 220.0 kDa on SDS-PAGE. N-terminal sequence of the intracellular enzyme is: GLPGYFGVN that showed no homology with previously reported sequence for the extracellular dextransucrase. This intracellular dextransucrase is capable of in vitro synthesis of dextran under specific conditions. This intracellular dextransucrase is capable of in vitro synthesis of dextran under specific conditions and this biopolymer can be hydrolyzed into different molecular weight fractions for various applications.

Keywords: characterization, dextran, dextransucrase, leuconostoc mesenteroides

Procedia PDF Downloads 381
1842 Oblique Radiative Solar Nano-Polymer Gel Coating Heat Transfer and Slip Flow: Manufacturing Simulation

Authors: Anwar Beg, Sireetorn Kuharat, Rashid Mehmood, Rabil Tabassum, Meisam Babaie

Abstract:

Nano-polymeric solar paints and sol-gels have emerged as a major new development in solar cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal efficiency. They also exhibit substantial viscosity variation with temperature which can be exploited in solar collector designs. Modern manufacturing processes for such nano-rheological materials frequently employ stagnation flow dynamics under high temperature which invokes radiative heat transfer. Motivated by elaborating in further detail the nanoscale heat, mass and momentum characteristics of such sol gels, the present article presents a mathematical and computational study of the steady, two-dimensional, non-aligned thermo-fluid boundary layer transport of copper metal-doped water-based nano-polymeric sol gels under radiative heat flux. To simulate real nano-polymer boundary interface dynamics, thermal slip is analysed at the wall. A temperature-dependent viscosity is also considered. The Tiwari-Das nanofluid model is deployed which features a volume fraction for the nanoparticle concentration. This approach also features a Maxwell-Garnet model for the nanofluid thermal conductivity. The conservation equations for mass, normal and tangential momentum and energy (heat) are normalized via appropriate transformations to generate a multi-degree, ordinary differential, non-linear, coupled boundary value problem. Numerical solutions are obtained via the stable, efficient Runge-Kutta-Fehlberg scheme with shooting quadrature in MATLAB symbolic software. Validation of solutions is achieved with a Variational Iterative Method (VIM) utilizing Langrangian multipliers. The impact of key emerging dimensionless parameters i.e. obliqueness parameter, radiation-conduction Rosseland number (Rd), thermal slip parameter (α), viscosity parameter (m), nanoparticles volume fraction (ϕ) on non-dimensional normal and tangential velocity components, temperature, wall shear stress, local heat flux and streamline distributions is visualized graphically. Shear stress and temperature are boosted with increasing radiative effect whereas local heat flux is reduced. Increasing wall thermal slip parameter depletes temperatures. With greater volume fraction of copper nanoparticles temperature and thermal boundary layer thickness is elevated. Streamlines are found to be skewed markedly towards the left with positive obliqueness parameter.

Keywords: non-orthogonal stagnation-point heat transfer, solar nano-polymer coating, MATLAB numerical quadrature, Variational Iterative Method (VIM)

Procedia PDF Downloads 122
1841 Time Varying Crustal Anisotropy at Whakaari/White Island Volcano

Authors: M. Dagim Yoseph, M. K. Savage, A. D. Jolly, C. J. Ebinger

Abstract:

Whakaari/White Island has been the most active New Zealand volcano in the 21st century, producing small phreatic and phreatomagmatic eruptions, which are hard to predict. The most recent eruption occurred in 2019, tragically claiming the lives of 22 individuals and causing numerous injuries. We employed shear-wave splitting analyses to investigate variations in anisotropy between 2018 and 2020, during quiescence, unrest, and the eruption. We examined spatial and temporal variations in 3499 shear-wave splitting and 2656 V_p/V_s ratio measurements. Comparing shear-wave splitting parameters from similar earthquake paths across different times indicates that the observed temporal changes are unlikely to result from variations in earthquake paths through media with spatial variability. Instead, these changes may stem from variations in anisotropy over time, likely caused by changes in crack alignment due to stress or varying fluid content.

Keywords: background seismic waves, fast orientations, seismic anisotropy, V_p/V_s ratio

Procedia PDF Downloads 26
1840 Crustal Deformation Study across the Chite Fault Using GPS Measurements in North East India along the Indo Burmese Arc

Authors: Malsawmtluanga, J. Malsawma, R. P. Tiwari, V. K. Gahalaut

Abstract:

North East India is seismically one of the six most active regions of the world. It is placed in Zone V, the highest zone in the seismic zonation of India. It lies at the junction of Himalayan arc to the north and the Burmese arc to the east. The region has witnessed at least 18 large earthquakes including two great earthquakes Shillong (1987, M=8.7) and the Assam Tibet border (1950, M=8.7).The prominent Chite fault lies at the heart of Aizawl, the capital of Mizoram state and this hilly city is the home to about 2 million people. Geologically the area is a part of the Indo-Burmese Wedge and is prone to natural and man-made disasters. Unplanned constructions and urban dwellings on a rapid scale have lead to numerous unsafe structures adversely affecting the ongoing development and welfare projects of the government and they pose a huge threat for earthquakes. Crustal deformation measurements using campaign mode GPS were undertaken across this fault. Campaign mode GPS data were acquired and were processed with GAMIT-GLOBK software. The study presents the current velocity estimates at all the sites in ITRF 2008 and also in the fixed Indian reference frame. The site motion showed that there appears to be no differential motion anywhere across the fault area, thus confirming presently the fault is neither accumulating strain nor slipping aseismically. From the geological and geomorphological evidence, supported by geodetic measurements, lack of historic earthquakes, the Chite fault favours aseismic behaviour in this part of the Indo Burmese Arc (IBA).

Keywords: Chite fault, crustal deformation, geodesy, GPS, IBA

Procedia PDF Downloads 232
1839 Effect of Different Diesel Fuels on Formation of the Cavitation Phenomena

Authors: Mohammadreza Nezamirad, Sepideh Amirahmadian, Nasim Sabetpour, Azadeh Yazdi, Amirmasoud Hamedi

Abstract:

Cavitation inside the diesel injector nozzle is investigated numerically in this study. Reynolds Stress Navier Stokes set of equations (RANS) are utilized to investigate flow behavior inside the nozzle numerically. Moreover, K-ε turbulent model is found to be a better approach comparing to K-ω turbulent model. Winklhofer rectangular shape nozzle is also simulated in order to verify the current numerical scheme, and with, mass flow rate approach, the current solution is verified. Afterward, a six-hole real-size nozzle was simulated, and it was found that among different fuels used in this study with the same condition, diesel fuel provides the largest length of cavitation. Also, it was found that at the same boundary condition, RME fuel leads to the highest value of discharge coefficient and mass flow rate.

Keywords: cavitation, diesel fuel, CFD, real size nozzle, discharge coefficient

Procedia PDF Downloads 138
1838 Effect of Aerobic Exercise on Estrogen Hormone and Bone Mineral Density in Osteoporotic Women

Authors: Noha Mohamed Abdelhafez Dahy, Azza Abd El-Aziz, Eman Ahmed, Marwa El-Sayed

Abstract:

Osteoporosis is a metabolic bone disease characterized by low bone mass, deterioration of bone tissue, and disruption of bone microarchitecture, which leads to compromised bone strength and an increased risk of fracture, commonly it occurs in women 10-15 years after menopause, the mean age of menopause is 51 years. Menopause is natural physiological changes primary because of decline of ovaries function with age which leads to decrease of estrogen hormone production which is the main hormone for bone continuous remodeling for bone density maintenance. Exercise increase stimulation of bone growth to keep bone mass by the effect of the mechanical stimulation, antigravity loading and stress exerted on musculoskeletal muscles. Purpose: This study aimed to determine the effect of aerobic exercise on estrogen hormone and bone mineral density (BMD) in osteoporotic women and the correlation between the estrogen and BMD.

Keywords: Osteoporosis, Postmenopause, Aerobic exercise, DEXA, Serum Estrogen

Procedia PDF Downloads 71
1837 A Constitutive Model of Ligaments and Tendons Accounting for Fiber-Matrix Interaction

Authors: Ratchada Sopakayang, Gerhard A. Holzapfel

Abstract:

In this study, a new constitutive model is developed to describe the hyperelastic behavior of collagenous tissues with a parallel arrangement of collagen fibers such as ligaments and tendons. The model is formulated using a continuum approach incorporating the structural changes of the main tissue components: collagen fibers, proteoglycan-rich matrix and fiber-matrix interaction. The mechanical contribution of the interaction between the fibers and the matrix is simply expressed by a coupling term. The structural change of the collagen fibers is incorporated in the constitutive model to describe the activation of the fibers under tissue straining. Finally, the constitutive model can easily describe the stress-stretch nonlinearity which occurs when a ligament/tendon is axially stretched. This study shows that the interaction between the fibers and the matrix contributes to the mechanical tissue response. Therefore, the model may lead to a better understanding of the physiological mechanisms of ligaments and tendons under axial loading.

Keywords: constitutive model, fiber-matrix, hyperelasticity, interaction, ligament, tendon

Procedia PDF Downloads 285
1836 Competence-Based Human Resources Selection and Training: Making Decisions

Authors: O. Starineca, I. Voronchuk

Abstract:

Human Resources (HR) selection and training have various implementation possibilities depending on an organization’s abilities and peculiarities. We propose to base HR selection and training decisions about on a competence-based approach. HR selection and training of employees are topical as there is room for improvement in this field; therefore, the aim of the research is to propose rational decision-making approaches for an organization HR selection and training choice. Our proposals are based on the training development and competence-based selection approaches created within previous researches i.e. Analytic-Hierarchy Process (AHP) and Linear Programming. Literature review on non-formal education, competence-based selection, AHP form our theoretical background. Some educational service providers in Latvia offer employees training, e.g. motivation, computer skills, accounting, law, ethics, stress management, etc. that are topical for Public Administration. Competence-based approach is a rational base for rational decision-making in both HR selection and considering HR training.

Keywords: competence-based selection, human resource, training, decision-making

Procedia PDF Downloads 310
1835 Applying Bowen’s Theory to Intern Supervision

Authors: Jeff A. Tysinger, Dawn P. Tysinger

Abstract:

The aim of this paper is to theoretically apply Bowen’s understanding of triangulation and triads to school psychology intern supervision so that it can assist in the conceptualization of the dynamics of intern supervision and provide some key methods to address common issues. The school psychology internship is the capstone experience for the school psychologist in training. It involves three key participants whose relationships will determine the success of the internship.  To understand the potential effect, Bowen’s family systems theory can be applied to the supervision relationship. He describes a way to resolve stress between two people by triangulating or binging in a third person. He applies this to a nuclear family, but school psychology intern supervision requires the marriage of an intern, field supervisor, and university supervisor; thus, setting all up for possible triangulation. The consequences of triangulation can apply to standards and requirements, direct supervision, and intern evaluation. Strategies from family systems theory to decrease the negative impact of supervision triangulation.

Keywords: family systems theory, intern supervision, school psychology training, triangulation

Procedia PDF Downloads 112
1834 Numerical Simulation of Magnetohydrodynamic (MHD) Blood Flow in a Stenosed Artery

Authors: Sreeparna Majee, G. C. Shit

Abstract:

Unsteady blood flow has been numerically investigated through stenosed arteries to achieve an idea about the physiological blood flow pattern in diseased arteries. The blood is treated as Newtonian fluid and the arterial wall is considered to be rigid having deposition of plaque in its lumen. For direct numerical simulation, vorticity-stream function formulation has been adopted to solve the problem using implicit finite difference method by developing well known Peaceman-Rachford Alternating Direction Implicit (ADI) scheme. The effects of magnetic parameter and Reynolds number on velocity and wall shear stress are being studied and presented quantitatively over the entire arterial segment. The streamlines have been plotted to understand the flow pattern in the stenosed artery, which has significant alterations in the downstream of the stenosis in the presence of magnetic field. The results show that there are nominal changes in the flow pattern when magnetic field strength is enhanced upto 8T which can have remarkable usage to MRI machines.

Keywords: magnetohydrodynamics, blood flow, stenosis, energy dissipation

Procedia PDF Downloads 260
1833 Reduction of Dynamic Influences in Composite Rubber-Concrete Block Designed to Walls Construction

Authors: Maciej Major, Izabela Major

Abstract:

The aim of this paper is a numerical analysis of three-layered block design to walls construction subjected to the dynamic load. The block consists of the layers: concrete with rubber pads in shape of crosses, space filled with air and concrete with I-shape rubber pads. The main purpose of rubber inserts embedded during the production process is additional protection against the transversal dynamic load. For the analysis, as rubber, the Zahorski hyperelastic incompressible material model was assumed. A concentrated force as dynamic load applied to the external block surface was investigated. The results for the considered block observed as the stress distribution plot were compared to the results obtained for the solid concrete block. In order to estimate the percentage damping of proposed composite, rubber-concrete block in relation to the solid block the numerical analysis with the use of finite element method based on ADINA software was performed.

Keywords: dynamics, composite, rubber, Zahorski

Procedia PDF Downloads 228
1832 A Comparative CFD Study on the Hemodynamics of Flow through an Idealized Symmetric and Asymmetric Stenosed Arteries

Authors: B. Prashantha, S. Anish

Abstract:

The aim of the present study is to computationally evaluate the hemodynamic factors which affect the formation of atherosclerosis and plaque rupture in the human artery. An increase of atherosclerosis disease in the artery causes geometry changes, which results in hemodynamic changes such as flow separation, reattachment, and adhesion of new cells (chemotactic) in the artery. Hence, geometry plays an important role in the determining the nature of hemodynamic patterns. Influence of stenosis in the non-bifurcating artery, under pulsatile flow condition, has been studied on an idealized geometry. Analysis of flow through symmetric and asymmetric stenosis in the artery revealed the significance of oscillating shear index (OSI), flow separation, low WSS zones and secondary flow patterns on plaque formation. The observed characteristic of flow in the post-stenotic region highlight the importance of plaque eccentricity on the formation of secondary stenosis on the arterial wall.

Keywords: atherosclerotic plaque, oscillatory shear index, stenosis nature, wall shear stress

Procedia PDF Downloads 337
1831 Reliability Analysis of Steel Columns under Buckling Load in Second-Order Theory

Authors: Hamed Abshari, M. Reza Emami Azadi, Madjid Sadegh Azar

Abstract:

For studying the overall instability of members of steel structures, there are several methods in which overall buckling and geometrical imperfection effects are considered in analysis. In first section, these methods are compared and ability of software to apply these methods is studied. Buckling loads determined from theoretical methods and software is compared for 2D one bay, one and two stories steel frames. To consider actual condition, buckling loads of three steel frames that have various dimensions are calculated and compared. Also, uncertainties that exist in loading and modeling of structures such as geometrical imperfection, yield stress, and modulus of elasticity in buckling load of 2D framed steel structures have been studied. By performing these uncertainties to each reliability analysis procedures (first-order, second-order, and simulation methods of reliability), one index of reliability from each procedure is determined. These values are studied and compared.

Keywords: buckling, second-order theory, reliability index, steel columns

Procedia PDF Downloads 477
1830 Effect of Built in Polarization on Thermal Properties of InGaN/GaN Heterostructures

Authors: Bijay Kumar Sahoo

Abstract:

An important feature of InₓGa₁-ₓN/GaN heterostructures is strong built-in polarization (BIP) electric field at the hetero-interface due to spontaneous (sp) and piezoelectric (pz) polarizations. The intensity of this electric field reaches several MV/cm. This field has profound impact on optical, electrical and thermal properties. In this work, the effect of BIP field on thermal conductivity of InₓGa₁-ₓN/GaN heterostructure has been investigated theoretically. The interaction between the elastic strain and built in electric field induces additional electric polarization. This additional polarization contributes to the elastic constant of InₓGa₁-ₓN alloy. This in turn modifies material parameters of InₓGa₁-ₓN. The BIP mechanism enhances elastic constant, phonon velocity and Debye temperature and their bowing constants in InₓGa₁-ₓN alloy. These enhanced thermal parameters increase phonon mean free path which boost thermal conduction process. The thermal conductivity (k) of InxGa1-xN alloy has been estimated for x=0, 0.1, 0.3 and 0.9. Computation finds that irrespective of In content, the room temperature k of InₓGa₁-ₓN/GaN heterostructure is enhanced by BIP mechanism. Our analysis shows that at a certain temperature both k with and without BIP show crossover. Below this temperature k with BIP field is lower than k without BIP; however, above this temperature k with BIP field is significantly contributed by BIP mechanism leading to k with BIP field become higher than k without BIP field. The crossover temperature is primary pyroelectric transition temperature. The pyroelectric transition temperature of InₓGa₁-ₓN alloy has been predicted for different x. This signature of pyroelectric nature suggests that thermal conductivity can reveal pyroelectricity in InₓGa₁-ₓN alloy. The composition dependent room temperature k for x=0.1 and 0.3 are in line with prior experimental studies. The result can be used to minimize the self-heating effect in InₓGa₁-ₓN/GaN heterostructures.

Keywords: built-in polarization, phonon relaxation time, thermal properties of InₓGa₁-ₓN /GaN heterostructure, self-heating

Procedia PDF Downloads 389
1829 A Focus Group Study of Student's Attitude towards University Teachers and Semester System

Authors: Sehrish Khan

Abstract:

The present study investigated the attitude of university students towards semester system and teachers with a specific objective of finding problems faced by students in semester system. 10 focus group discussions were conducted among students in five Universities of Hazara Division of KPK regarding their knowledge and attitudes about semester system and problems they faced due to this system and teacher’s attitude. The key findings were the problems like favoritism, gender biased ness, racial biased ness, biased ness in marking, relative marking, harassment, using students for personal tasks and authoritarian attitude from teachers’ side and the heavy tasks in less time which are causing stress among students. It was recommended that proper training and monitoring system should be maintained for evaluation of teachers to minimize the corruption in this sacred profession and maximize the optimal functioning. The information gathered in this research can be used to develop training modules for University teachers.

Keywords: university teachers, favoritism, biasedness, harassment

Procedia PDF Downloads 348