Search results for: local interconnect network
6803 Climate Variability on Hydro-Energy Potential: An MCDM and Neural Network Approach
Authors: Apu Kumar Saha, Mrinmoy Majumder
Abstract:
The increase in the concentration of Green House gases all over the World has induced global warming phenomena whereby the average temperature of the world has aggravated to impact the pattern of climate in different regions. The frequency of extreme event has increased, early onset of season and change in an average amount of rainfall all are engrossing the conclusion that normal pattern of climate is changing. Sophisticated and complex models are prepared to estimate the future situation of the climate in different zones of the Earth. As hydro-energy is directly related to climatic parameters like rainfall and evaporation such energy resources will have to sustain the onset of the climatic abnormalities. The present investigation has tried to assess the impact of climatic abnormalities upon hydropower potential of different regions of the World. In this regard multi-criteria, decision making, and the neural network is used to predict the impact of the change cognitively by an index. The results from the study show that hydro-energy potential of Asian region is mostly vulnerable with respect to other regions of the world. The model results also encourage further application of the index to analyze the impact of climate change on the potential of hydro-energy.Keywords: hydro-energy potential, neural networks, multi criteria decision analysis, environmental and ecological engineering
Procedia PDF Downloads 5506802 A Comparative Study on ANN, ANFIS and SVM Methods for Computing Resonant Frequency of A-Shaped Compact Microstrip Antennas
Authors: Ahmet Kayabasi, Ali Akdagli
Abstract:
In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results.Keywords: a-shaped compact microstrip antenna, artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM)
Procedia PDF Downloads 4436801 Rescaling Global Health and International Relations: Globalization of Health in a Low Security Environment
Authors: F. Argurio, F. G. Vaccaro
Abstract:
In a global environment defined by ever-increasing health issues, in spite of the progress made by modern medicine, this paper seeks to readdress the question of global health in an international relations perspective. The research hypothesis is: the lower the security environment, the higher the spread of communicable diseases. This question will be channeled by re-scaling the connotation of 'global' and 'international' dimension through the theoretical lens of glocalization, a theory by Bauman that starts its analysis from simple systems to get to the most complex ones. Glocalization theory will be operationalized by analyzing health in an armed-conflict context. In this respect, the independent variable 'low security environment' translates into the cases of Syria and Yemen, which provide a clear example of the all-encompassing nature of conflict on national health and the effects on regional development. In fact, Syria and Yemen have been affected by poliomyelitis and cholera outbreaks respectively. The dependent variable will be constructed on said communicable diseases which belong to the families of sanitation-related and vaccine-preventable diseases. The research will be both qualitative and quantitative, based on primary (interviews) and secondary (WHO and other NGO’s reports) sources. The methodology is based on the assessment of the vaccine coverage and case-analysis in time and space using epidemiological data. Moreover, local health facilities’ functioning and efficiency will be studied. The article posits that the intervention and cooperation of international organizations with the local authorities becomes crucial to provide the local populations with their primary health needs. In Yemen, the majority of fatal cholera cases were in the regions controlled by the Houthi rebels, not officially accredited by the International Community. Similarly, the polio outbreak in Syria primarily affected the areas not controlled by the Syrian Arab Republic forces, recognized as the leading interlocutor by the WHO. The jeopardized possibilities to access these countries have been pivotal to the determining the problem in controlling sanitation-related and vaccine preventable diseases. This represents a potential threat to global health.Keywords: health in conflict-affected areas, cholera, polio, Yemen, Syria, glocalization
Procedia PDF Downloads 1356800 Income Diversification of Small Holder Farmers in Bosso Local Government Area of Niger State, Nigeria
Authors: Oladipo Joseph Ajayi, Yakubu Muhammed, Caleb Galadima
Abstract:
This study was conducted to examine the income diversification of smallholder farmers in Bosso Local Government area of Niger state, Nigeria. The specific objectives were to examine the socio-economic characteristics of the farmers, identify the sources of income among the farmers, determine the pattern of income diversification and evaluate the determinants of income diversification of farmers in the study area. A multi-stage sampling technique was used to select 94 respondents for the study. Primary data were used, and these were collected with aid of a well structured interview schedule. Descriptive statistics, diversity index, and Tobit regression model were employed to analyze the data. The mean age of the farmers was 44 years. The average household size was 8 members per household, and the average farming experience was 12 years. 21.27 percent did not have formal education. It was further found that 69.1 percent of the respondents had an income diversity index of 0.3-0.4. This indicated that their level of income diversification was moderately low. The determinants of income diversification in the study area were education, household size, marital status, and primary income. These variables were positively related to income diversification. The study revealed that diversification into various income sources has helped to increase household income to sustain the family demands even though their level of income diversification was low within the study area.Keywords: diversification, income, households, smallholder farmers
Procedia PDF Downloads 2546799 Development of an Artificial Neural Network to Measure Science Literacy Leveraging Neuroscience
Authors: Amanda Kavner, Richard Lamb
Abstract:
Faster growth in science and technology of other nations may make staying globally competitive more difficult without shifting focus on how science is taught in US classes. An integral part of learning science involves visual and spatial thinking since complex, and real-world phenomena are often expressed in visual, symbolic, and concrete modes. The primary barrier to spatial thinking and visual literacy in Science, Technology, Engineering, and Math (STEM) fields is representational competence, which includes the ability to generate, transform, analyze and explain representations, as opposed to generic spatial ability. Although the relationship is known between the foundational visual literacy and the domain-specific science literacy, science literacy as a function of science learning is still not well understood. Moreover, the need for a more reliable measure is necessary to design resources which enhance the fundamental visuospatial cognitive processes behind scientific literacy. To support the improvement of students’ representational competence, first visualization skills necessary to process these science representations needed to be identified, which necessitates the development of an instrument to quantitatively measure visual literacy. With such a measure, schools, teachers, and curriculum designers can target the individual skills necessary to improve students’ visual literacy, thereby increasing science achievement. This project details the development of an artificial neural network capable of measuring science literacy using functional Near-Infrared Spectroscopy (fNIR) data. This data was previously collected by Project LENS standing for Leveraging Expertise in Neurotechnologies, a Science of Learning Collaborative Network (SL-CN) of scholars of STEM Education from three US universities (NSF award 1540888), utilizing mental rotation tasks, to assess student visual literacy. Hemodynamic response data from fNIRsoft was exported as an Excel file, with 80 of both 2D Wedge and Dash models (dash) and 3D Stick and Ball models (BL). Complexity data were in an Excel workbook separated by the participant (ID), containing information for both types of tasks. After changing strings to numbers for analysis, spreadsheets with measurement data and complexity data were uploaded to RapidMiner’s TurboPrep and merged. Using RapidMiner Studio, a Gradient Boosted Trees artificial neural network (ANN) consisting of 140 trees with a maximum depth of 7 branches was developed, and 99.7% of the ANN predictions are accurate. The ANN determined the biggest predictors to a successful mental rotation are the individual problem number, the response time and fNIR optode #16, located along the right prefrontal cortex important in processing visuospatial working memory and episodic memory retrieval; both vital for science literacy. With an unbiased measurement of science literacy provided by psychophysiological measurements with an ANN for analysis, educators and curriculum designers will be able to create targeted classroom resources to help improve student visuospatial literacy, therefore improving science literacy.Keywords: artificial intelligence, artificial neural network, machine learning, science literacy, neuroscience
Procedia PDF Downloads 1226798 Speckle-Based Phase Contrast Micro-Computed Tomography with Neural Network Reconstruction
Authors: Y. Zheng, M. Busi, A. F. Pedersen, M. A. Beltran, C. Gundlach
Abstract:
X-ray phase contrast imaging has shown to yield a better contrast compared to conventional attenuation X-ray imaging, especially for soft tissues in the medical imaging energy range. This can potentially lead to better diagnosis for patients. However, phase contrast imaging has mainly been performed using highly brilliant Synchrotron radiation, as it requires high coherence X-rays. Many research teams have demonstrated that it is also feasible using a laboratory source, bringing it one step closer to clinical use. Nevertheless, the requirement of fine gratings and high precision stepping motors when using a laboratory source prevents it from being widely used. Recently, a random phase object has been proposed as an analyzer. This method requires a much less robust experimental setup. However, previous studies were done using a particular X-ray source (liquid-metal jet micro-focus source) or high precision motors for stepping. We have been working on a much simpler setup with just small modification of a commercial bench-top micro-CT (computed tomography) scanner, by introducing a piece of sandpaper as the phase analyzer in front of the X-ray source. However, it needs a suitable algorithm for speckle tracking and 3D reconstructions. The precision and sensitivity of speckle tracking algorithm determine the resolution of the system, while the 3D reconstruction algorithm will affect the minimum number of projections required, thus limiting the temporal resolution. As phase contrast imaging methods usually require much longer exposure time than traditional absorption based X-ray imaging technologies, a dynamic phase contrast micro-CT with a high temporal resolution is particularly challenging. Different reconstruction methods, including neural network based techniques, will be evaluated in this project to increase the temporal resolution of the phase contrast micro-CT. A Monte Carlo ray tracing simulation (McXtrace) was used to generate a large dataset to train the neural network, in order to address the issue that neural networks require large amount of training data to get high-quality reconstructions.Keywords: micro-ct, neural networks, reconstruction, speckle-based x-ray phase contrast
Procedia PDF Downloads 2606797 A Retrospective Analysis of the Impact of the Choosing Wisely Canada Campaign on Emergency Department Imaging Utilization for Head Injuries
Authors: Sameer Masood, Lucas Chartier
Abstract:
Head injuries are a commonly encountered presentation in emergency departments (ED) and the Choosing Wisely Canada (CWC) campaign was released in June 2015 in an attempt to decrease imaging utilization for patients with minor head injuries. The impact of the CWC campaign on imaging utilization for head injuries has not been explored in the ED setting. In our study, we describe the characteristics of patients with head injuries presenting to a tertiary care academic ED and the impact of the CWC campaign on CT head utilization. This retrospective cohort study used linked databases from the province of Ontario, Canada to assess emergency department visits with a primary diagnosis of head injury made between June 1, 2014 and Aug 31, 2016 at the University Health Network in Toronto, Canada. We examined the number of visits during the study period, the proportion of patients that had a CT head performed before and after the release of the CWC campaign, as well as mode of arrival, and disposition. There were 4,322 qualifying visits at our site during the study period. The median presenting age was 44.12 years (IQR 27.83,67.45), the median GCS was 15 (IQR 15,15) and the majority of patients presenting had intermediate acuity (CTAS 3). Overall, 43.17% of patients arrived via ambulance, 49.24 % of patients received a CT head and 10.46% of patients were admitted. Compared to patients presenting before the CWC campaign release, there was no significant difference in the rate of CT heads after the CWC (50.41% vs 47.68%, P = 0.07). There were also no significant differences between the two groups in mode of arrival (ambulance vs ambulatory) (42.94% vs 43.48%, P = 0.72) or admission rates (9.85% vs 11.26%, P = 0.15). However, more patients belonged to the high acuity groups (CTAS 1 or 2) in the post CWC campaign release group (12.98% vs 8.11% P <0.001). Visits for head injuries make up a significant proportion of total ED visits and approximately half of these patients receive CT imaging in the ED. The CWC campaign did not seem to impact imaging utilization for head injuries in the 14 months following its launch. Further efforts, including local quality improvement initiatives, are likely needed to increase adherence to its recommendation and reduce imaging utilization for head injuries.Keywords: choosing wisely, emergency department, head injury, quality improvement
Procedia PDF Downloads 2276796 Geomorphometric Analysis of the Hydrologic and Topographic Parameters of the Katsina-Ala Drainage Basin, Benue State, Nigeria
Authors: Oyatayo Kehinde Taofik, Ndabula Christopher
Abstract:
Drainage basins are a central theme in the green economy. The rising challenges in flooding, erosion or sediment transport and sedimentation threaten the green economy. This has led to increasing emphasis on quantitative analysis of drainage basin parameters for better understanding, estimation and prediction of fluvial responses and, thus associated hazards or disasters. This can be achieved through direct measurement, characterization, parameterization, or modeling. This study applied the Remote Sensing and Geographic Information System approach of parameterization and characterization of the morphometric variables of Katsina – Ala basin using a 30 m resolution Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM). This was complemented with topographic and hydrological maps of Katsina-Ala on a scale of 1:50,000. Linear, areal and relief parameters were characterized. The result of the study shows that Ala and Udene sub-watersheds are 4th and 5th order basins, respectively. The stream network shows a dendritic pattern, indicating homogeneity in texture and a lack of structural control in the study area. Ala and Udene sub-watersheds have the following values for elongation ratio, circularity ratio, form factor and relief ratio: 0.48 / 0.39 / 0.35/ 9.97 and 0.40 / 0.35 / 0.32 / 6.0. They also have the following values for drainage texture and ruggedness index of 0.86 / 0.011 and 1.57 / 0.016. The study concludes that the two sub-watersheds are elongated, suggesting that they are susceptible to erosion and, thus higher sediment load in the river channels, which will dispose the watersheds to higher flood peaks. The study also concludes that the sub-watersheds have a very coarse texture, with good permeability of subsurface materials and infiltration capacity, which significantly recharge the groundwater. The study recommends that efforts should be put in place by the Local and State Governments to reduce the size of paved surfaces in these sub-watersheds by implementing a robust agroforestry program at the grass root level.Keywords: erosion, flood, mitigation, morphometry, watershed
Procedia PDF Downloads 916795 Luminescence and Local Environment: Identification of Thermal History
Authors: Veronique Jubera, Guillaume Salek, Manuel Gaudon, Alain Garcia, Alain Demourgues
Abstract:
Luminescence of transition metal and rare earth elements cover ultraviolet to far infrared wavelengths. Applications of phosphors are numerous. One can cite lighting, sensing, laser, energy, medical or military applications. But regarding each domain, specific criteria are required and they can be achieved with a strong control of the chemical composition. Emission of doped materials can be tailored with modifications of the local environment of the cations. For instance, the increase of the crystal field effect shifts the divalent manganese radiative transitions from the green to the red color. External factor as heat-treatment can induce changes of the doping element location or modify the unit cell crystalline symmetry. By controlling carefully the synthesis route, it is possible to initiate emission shift and to establish the thermal history of a compound. We propose to demonstrate through the luminescence of divalent manganese and trivalent rare earth doped oxide, that it is possible to follow the thermal history of a material. After optimization of the synthesis route, structural and optical properties are discussed. Finally, thermal calibration graphs are successfully established on these doped compounds. This makes these materials promising probe for thermal sensing.Keywords: emission, thermal sensing, transition metal, rare eath element
Procedia PDF Downloads 3866794 A Holistic Approach of Cross-Cultural Management with Insight from Neuroscience
Authors: Mai Nguyen-Phuong-Mai
Abstract:
This paper incorporates insight from various models, studies and disciplines to construct a framework called the Inverted Pyramid Model. It is argued that such a framework has several advantages: (1) it reduces the shortcomings of the problem-focused approach that dominates the mainstream theories of cross-cultural management. With contributing insight from neuroscience, it suggests that training in business cross-cultural awareness should start with potential synergy emerged from differences instead of the traditional approach that focuses on the liability of foreigners and negative consequences of cultural distance. (2) The framework supports a dynamic and holistic way of analyzing cultural diversity by analyzing four major cultural units (global, national, organizational and group culture). (3) The framework emphasizes the role of individuals –an aspect of culture that is often ignored or regarded as a non-issue in the traditional approach. It is based on the notion that people don’t do business with a country, but work (in)directly with a unique person. And it is at this individual level that culture is made, personally, dynamically, and contextually. Insight from neuroscience provides significant evidence that a person can develop a multicultural mind, confirm and contradict, follow and reshape a culture, even when (s)he was previously an outsider to this culture. With this insight, the paper proposes a revision of the old adage (Think global – Act local) and change it into Think global – Plan local – Act individual.Keywords: static–dynamic paradigm, cultural diversity, multicultural mind, neuroscience
Procedia PDF Downloads 1306793 Causes and Effects of the 2012 Flood Disaster on Affected Communities in Nigeria
Authors: Abdulquadri Ade Bilau, Richard Ajayi Jimoh, Adejoh Amodu Adaji
Abstract:
The increasing exposures to natural hazards have continued to severely impair on the built environment causing huge fatalities, mass damage and destruction of housing and civil infrastructure while leaving psychosocial impacts on affected communities. The 2012 flood disaster in Nigeria which affected over 7 million inhabitants in 30 of the 36 states resulted in 363 recorded fatalities with about 600,000 houses and a number of civil infrastructure damaged or destroyed. In Kogi State, over 500 thousand people were displaced in 9 out of the 21 local government affected while Ibaji and Lokoja local governments were worst hit. This study identifies the causes and 2012 flood disasters and its effect on housing and livelihood. Personal observation and questionnaire survey were instruments used in carrying out the study and data collected were analysed using descriptive statistical tool. Findings show that the 2012 flood disaster was aided by the gap in hydrological data, sudden dam failure, and inadequate drainage capacity to reduce flood risk. The study recommends that communities residing along the river banks in Lokoja and Ibaji LGAs must be adequately educated on their exposure to flood hazard and mitigation and risk reduction measures such as construction of adequate drainage channel are constructed in affected communities.Keywords: flood, hazards, housing, risk reduction, vulnerability
Procedia PDF Downloads 2676792 Sustainable Manufacturing of Solenoid Valve Housing in Fiji: Fused Deposition Modeling (FDM) and Emergy Analysis
Authors: M. Hisham, S. Cabemaiwai, S. Prasad, T. Dauvakatini, R. Ananthanarayanan
Abstract:
A solenoid valve is an important part of many fluid systems. Its purpose is to regulate fluid flow in a machine. Due to the crucial role of the solenoid valve and its design intricacy, it is quite expensive to obtain in Fiji and is not manufactured locally. A concern raised by the local health industry is that the housing of the solenoid valve gets damaged when machines are continuously being used and this part of the valve is very costly to replace due to the lack of availability in Fiji and many other South Pacific region countries. This study explores the agile manufacturing of a solenoid coil housing using the Fused Deposition Modeling (FDM) process. An emergy study was carried out to analyze the feasibility and sustainability of producing the part locally after estimating a Unit Emergy Value (or emergy transformity) of 1.27E+05 sej/j for the electricity in Fiji. The total emergy of the process was calculated to be 3.05E+12 sej, of which a majority was sourced from imported services and materials. Renewable emergy sources contributed to just 16.04% of the total emergy. Therefore, the part is suitable to be manufactured in Fiji with a reasonable quality and a cost of $FJ 2.85. However, the loading on the local environment is found to be significant and therefore, alternative raw materials for the filament like recycled PET should be explored or alternative manufacturing processes may be analyzed before committing to fabricating the part using FDM in its analyzed state.Keywords: emergy analysis, fused deposition modeling, solenoid valve housing, sustainable production
Procedia PDF Downloads 356791 Intrusion Detection in Computer Networks Using a Hybrid Model of Firefly and Differential Evolution Algorithms
Authors: Mohammad Besharatloo
Abstract:
Intrusion detection is an important research topic in network security because of increasing growth in the use of computer network services. Intrusion detection is done with the aim of detecting the unauthorized use or abuse in the networks and systems by the intruders. Therefore, the intrusion detection system is an efficient tool to control the user's access through some predefined regulations. Since, the data used in intrusion detection system has high dimension, a proper representation is required to show the basis structure of this data. Therefore, it is necessary to eliminate the redundant features to create the best representation subset. In the proposed method, a hybrid model of differential evolution and firefly algorithms was employed to choose the best subset of properties. In addition, decision tree and support vector machine (SVM) are adopted to determine the quality of the selected properties. In the first, the sorted population is divided into two sub-populations. These optimization algorithms were implemented on these sub-populations, respectively. Then, these sub-populations are merged to create next repetition population. The performance evaluation of the proposed method is done based on KDD Cup99. The simulation results show that the proposed method has better performance than the other methods in this context.Keywords: intrusion detection system, differential evolution, firefly algorithm, support vector machine, decision tree
Procedia PDF Downloads 946790 Forms of Social Provision for Housing Investments in Local Planning Acts for European Capitals: Comparative Study and Spatial References
Authors: Agata Twardoch
Abstract:
The processes of commodification of real estate and changes in housing markets have led to a situation where the prices of free market housing in European capitals are significantly higher than the purchasing value of average wages. This phenomenon has many negative social and spatial consequences. At the same time, the attractiveness of real estate as an asset makes these processes progress. Out of concern for sustainable social development, city authorities apply solutions to balance the burdensome effects of codification of housing. One of them is a social provision for housing investments. The article presents a comparative study of solutions applied in selected European capitals, on the example of Warsaw, Paris, London, Berlin, Copenhagen, and Vienna. The study was conducted along with works on expert report for the master plan for Warsaw. The forms of commissions applied in Local Planning Acts were compared, with particular reference to spatial solutions. The results of the analysis made it possible to determine common features of the solutions applied and to establish recommendations for further practice. Major findings of the study indicate that requirement of social provision is achievable in spatial planning documents. Study shows that application of social provision in private housing investments is a useful tool in housing policy against commodification.Keywords: affordable housing, housing provision, spatial planning, sustainable social development
Procedia PDF Downloads 1836789 Microplastics in Fish from Grenada, West Indies: Problems and Opportunities
Authors: Michelle E. Taylor, Clare E. Morrall
Abstract:
Microplastics are small particles produced for industrial purposes or formed by breakdown of anthropogenic debris. Caribbean nations import large quantities of plastic products. The Caribbean region is vulnerable to natural disasters and Climate Change is predicted to bring multiple additional challenges to island nations. Microplastics have been found in an array of marine environments and in a diversity of marine species. Occurrence of microplastic in the intestinal tracts of marine fish is a concern to human and ecosystem health as pollutants and pathogens can associate with plastics. Studies have shown that the incidence of microplastics in marine fish varies with species and location. Prevalence of microplastics (≤ 5 mm) in fish species from Grenadian waters (representing pelagic, semi-pelagic and demersal lifestyles) harvested for human consumption have been investigated via gut analysis. Harvested tissue was digested in 10% KOH and particles retained on a 0.177 mm sieve were examined. Microplastics identified have been classified according to type, colour and size. Over 97% of fish examined thus far (n=34) contained microplastics. Current and future work includes examining the invasive Lionfish (Pterois spp.) for microplastics, investigating marine invertebrate species as well as examining environmental sources of microplastics (i.e. rivers, coastal waters and sand). Owing to concerns of pollutant accumulation on microplastics and potential migration into organismal tissues, we plan to analyse fish tissue for mercury and other persistent pollutants. Despite having ~110,000 inhabitants, the island nation of Grenada imported approximately 33 million plastic bottles in 2013, of which it is estimated less than 5% were recycled. Over 30% of the imported bottles were ‘unmanaged’, and as such are potential litter/marine debris. A revised Litter Abatement Act passed into law in Grenada in 2015, but little enforcement of the law is evident to date. A local Non-governmental organization (NGO) ‘The Grenada Green Group’ (G3) is focused on reducing litter in Grenada through lobbying government to implement the revised act and running sessions in schools, community groups and on local media and social media to raise awareness of the problems associated with plastics. A local private company has indicated willingness to support an Anti-Litter Campaign in 2018 and local awareness of the need for a reduction of single use plastic use and litter seems to be high. The Government of Grenada have called for a Sustainable Waste Management Strategy and a ban on both Styrofoam and plastic grocery bags are among recommendations recently submitted. A Styrofoam ban will be in place at the St. George’s University campus from January 1st, 2018 and many local businesses have already voluntarily moved away from Styrofoam. Our findings underscore the importance of continuing investigations into microplastics in marine life; this will contribute to understanding the associated health risks. Furthermore, our findings support action to mitigate the volume of plastics entering the world’s oceans. We hope that Grenada’s future will involve a lot less plastic. This research was supported by the Caribbean Node of the Global Partnership on Marine Litter.Keywords: Caribbean, microplastics, pollution, small island developing nation
Procedia PDF Downloads 2146788 Deep Reinforcement Learning Model Using Parameterised Quantum Circuits
Authors: Lokes Parvatha Kumaran S., Sakthi Jay Mahenthar C., Sathyaprakash P., Jayakumar V., Shobanadevi A.
Abstract:
With the evolution of technology, the need to solve complex computational problems like machine learning and deep learning has shot up. But even the most powerful classical supercomputers find it difficult to execute these tasks. With the recent development of quantum computing, researchers and tech-giants strive for new quantum circuits for machine learning tasks, as present works on Quantum Machine Learning (QML) ensure less memory consumption and reduced model parameters. But it is strenuous to simulate classical deep learning models on existing quantum computing platforms due to the inflexibility of deep quantum circuits. As a consequence, it is essential to design viable quantum algorithms for QML for noisy intermediate-scale quantum (NISQ) devices. The proposed work aims to explore Variational Quantum Circuits (VQC) for Deep Reinforcement Learning by remodeling the experience replay and target network into a representation of VQC. In addition, to reduce the number of model parameters, quantum information encoding schemes are used to achieve better results than the classical neural networks. VQCs are employed to approximate the deep Q-value function for decision-making and policy-selection reinforcement learning with experience replay and the target network.Keywords: quantum computing, quantum machine learning, variational quantum circuit, deep reinforcement learning, quantum information encoding scheme
Procedia PDF Downloads 1366787 Detecting Venomous Files in IDS Using an Approach Based on Data Mining Algorithm
Authors: Sukhleen Kaur
Abstract:
In security groundwork, Intrusion Detection System (IDS) has become an important component. The IDS has received increasing attention in recent years. IDS is one of the effective way to detect different kinds of attacks and malicious codes in a network and help us to secure the network. Data mining techniques can be implemented to IDS, which analyses the large amount of data and gives better results. Data mining can contribute to improving intrusion detection by adding a level of focus to anomaly detection. So far the study has been carried out on finding the attacks but this paper detects the malicious files. Some intruders do not attack directly, but they hide some harmful code inside the files or may corrupt those file and attack the system. These files are detected according to some defined parameters which will form two lists of files as normal files and harmful files. After that data mining will be performed. In this paper a hybrid classifier has been used via Naive Bayes and Ripper classification methods. The results show how the uploaded file in the database will be tested against the parameters and then it is characterised as either normal or harmful file and after that the mining is performed. Moreover, when a user tries to mine on harmful file it will generate an exception that mining cannot be made on corrupted or harmful files.Keywords: data mining, association, classification, clustering, decision tree, intrusion detection system, misuse detection, anomaly detection, naive Bayes, ripper
Procedia PDF Downloads 4156786 Influence of κ-Casein Genotype on Milk Productivity of Latvia Local Dairy Breeds
Authors: S. Petrovska, D. Jonkus, D. Smiltiņa
Abstract:
κ-casein is one of milk proteins which are very important for milk processing. Genotypes of κ-casein affect milk yield, fat, and protein content. The main factors which affect local Latvian dairy breed milk yield and composition are analyzed in research. Data were collected from 88 Latvian brown and 82 Latvian blue cows in 2015. AA genotype was 0.557 in Latvian brown and 0.232 in Latvian blue breed. BB genotype was 0.034 in Latvian brown and 0.207 in Latvian blue breed. Highest milk yield was observed in Latvian brown (5131.2 ± 172.01 kg), significantly high fat content and fat yield also was in Latvian brown (p < 0.05). Significant differences between κ-casein genotypes were not found in Latvian brown, but highest milk yield (5057 ± 130.23 kg), protein content (3.42 ± 0.03%), and protein yield (171.9 ± 4.34 kg) were with AB genotype. Significantly high fat content was observed in Latvian blue breed with BB genotype (4.29 ± 0.17%) compared with AA genotypes (3.42 ± 0.19). Similar tendency was found in protein content – 3.27 ± 0.16% with BB genotype and 2.59 ± 0.16% with AA genotype (p < 0.05). Milk yield increases by increasing parity. We did not obtain major tendency of changes of milk fat and protein content according parity.Keywords: dairy cows, κ-casein, milk productivity, polymorphism
Procedia PDF Downloads 2716785 Building a Dynamic News Category Network for News Sources Recommendations
Authors: Swati Gupta, Shagun Sodhani, Dhaval Patel, Biplab Banerjee
Abstract:
It is generic that news sources publish news in different broad categories. These categories can either be generic such as Business, Sports, etc. or time-specific such as World Cup 2015 and Nepal Earthquake or both. It is up to the news agencies to build the categories. Extracting news categories automatically from numerous online news sources is expected to be helpful in many applications including news source recommendations and time specific news category extraction. To address this issue, existing systems like DMOZ directory and Yahoo directory are mostly considered though they are mostly human annotated and do not consider the time dynamism of categories of news websites. As a remedy, we propose an approach to automatically extract news category URLs from news websites in this paper. News category URL is a link which points to a category in news websites. We use the news category URL as a prior knowledge to develop a news source recommendation system which contains news sources listed in various categories in order of ranking. In addition, we also propose an approach to rank numerous news sources in different categories using various parameters like Traffic Based Website Importance, Social media Analysis and Category Wise Article Freshness. Experimental results on category URLs captured from GDELT project during April 2016 to December 2016 show the adequacy of the proposed method.Keywords: news category, category network, news sources, ranking
Procedia PDF Downloads 3876784 The Causes and Effects of Housing Project Abandonment in Malaysia
Authors: Abdul Aziz Abdullah, Anuar Alias, Khor Hooi Ting, Guan Ngah Mei
Abstract:
One of the major sectors which contribute significant growth to socio-economic development is the construction and development industry. This industry is most badly hurt during the 1997 and 2008 economic crisis thus causing many government and private projects to be deferred and abandoned. The purpose of this study is to examine the causes and effects of housing project abandonment in Malaysia. This objective is achieved through rigorous review of literatures and documents related to housing and abandoned housing project. The finding revealed there are several causes of housing project abandonment. The significant causes are: economic recession, inadequacy of finance, poor marketing and sales strategies, technical problems faced during construction, problems caused by compensations demanded by squatters for resettlement, insolvency of contractor, cost overrun and currency fluctuation amongst others. However the alarming effect of housing project is: house buyers of abandoned project have the monthly payment although the house is delivered to house buy. In other case house buyers have to entangle in many legal action with the financial institution. This finding provides the various ministries in the Government some insights on real causes and effects of abandoned project. Perhaps this finding can enhance the current solution the Ministry of Housing Local Government on addressing the prevailing issue of reviving existing abandoned project in the country.Keywords: abandoned project, abandonment, housing project, ministry of housing and local government, causes and effect
Procedia PDF Downloads 5416783 Non-Targeted Adversarial Object Detection Attack: Fast Gradient Sign Method
Authors: Bandar Alahmadi, Manohar Mareboyana, Lethia Jackson
Abstract:
Today, there are many applications that are using computer vision models, such as face recognition, image classification, and object detection. The accuracy of these models is very important for the performance of these applications. One challenge that facing the computer vision models is the adversarial examples attack. In computer vision, the adversarial example is an image that is intentionally designed to cause the machine learning model to misclassify it. One of very well-known method that is used to attack the Convolution Neural Network (CNN) is Fast Gradient Sign Method (FGSM). The goal of this method is to find the perturbation that can fool the CNN using the gradient of the cost function of CNN. In this paper, we introduce a novel model that can attack Regional-Convolution Neural Network (R-CNN) that use FGSM. We first extract the regions that are detected by R-CNN, and then we resize these regions into the size of regular images. Then, we find the best perturbation of the regions that can fool CNN using FGSM. Next, we add the resulted perturbation to the attacked region to get a new region image that looks similar to the original image to human eyes. Finally, we placed the regions back to the original image and test the R-CNN with the attacked images. Our model could drop the accuracy of the R-CNN when we tested with Pascal VOC 2012 dataset.Keywords: adversarial examples, attack, computer vision, image processing
Procedia PDF Downloads 1946782 Diagnosis, Development, and Adoption of Technology Packages for Innovation in Precision Agriculture in the Wine Sector in Mexico
Authors: Nivon P. Alejandra, Valencia P. L. Rodrigo, Vivanco V. Martin, Morita A. Adelina
Abstract:
Technological innovation is fundamental to reach and maintain the levels of competitiveness of agricultural producers, the detection of actors, their activities, resources and capacities of an innovation system is needed for the development of technological packages that adapt to each type of crops, local circumstances and characteristics of the producer. The growing development of the viticulture and wine sector in Mexico prospects an increase in its national market participation for 2020, this is the reason to consider it a fertile field for the technological packages adoption that promote Precision Agriculture (PA) in a harmonic and sustainable development. A viability inspection of technological packages adoption by viticulture and wine sector is made following the methodology proposed by SAGARPA in 2015 and the World Bank in 2008: the history, actors, strengths and opportunities are analyzed in this particular agroindustrial sector, also its technological innovation system is inspected in order to improve technological capacities and innovation networks taking into account local and regional resources. PA and technological packages adoption can help improving the conditions and quality of the grape for winemaking: increasing the wine's storage potential and its nutraceutical nature. The assertive diagnosis in vineyard opportunity areas will help the management of the crop by applying natural treatments at the right time in the right place.Keywords: technological packages, precision farming, sustainable development, innovation
Procedia PDF Downloads 2016781 A Study of Social Media Users’ Switching Behavior
Authors: Chiao-Chen Chang, Yang-Chieh Chin
Abstract:
Social media has created a change in the way the network community is clustered, especially from the location of the community, from the original virtual space to the intertwined network, and thus the communication between people will change from face to face communication to social media-based communication model. However, social media users who have had a fixed engagement may have an intention to switch to another service provider because of the emergence of new forms of social media. For example, some of Facebook or Twitter users switched to Instagram in 2014 because of social media messages or image overloads, and users may seek simpler and instant social media to become their main social networking tool. This study explores the impact of system features overload, information overload, social monitoring concerns, problematic use and privacy concerns as the antecedents on social media fatigue, dissatisfaction, and alternative attractiveness; further influence social media switching. This study also uses the online questionnaire survey method to recover the sample data, and then confirm the factor analysis, path analysis, model fit analysis and mediating analysis with the structural equation model (SEM). Research findings demonstrated that there were significant effects on multiple paths. Based on the research findings, this study puts forward the implications of theory and practice.Keywords: social media, switching, social media fatigue, alternative attractiveness
Procedia PDF Downloads 1426780 Novel Adaptive Radial Basis Function Neural Networks Based Approach for Short-Term Load Forecasting of Jordanian Power Grid
Authors: Eyad Almaita
Abstract:
In this paper, a novel adaptive Radial Basis Function Neural Networks (RBFNN) algorithm is used to forecast the hour by hour electrical load demand in Jordan. A small and effective RBFNN model is used to forecast the hourly total load demand based on a small number of features. These features are; the load in the previous day, the load in the same day in the previous week, the temperature in the same hour, the hour number, the day number, and the day type. The proposed adaptive RBFNN model can enhance the reliability of the conventional RBFNN after embedding the network in the system. This is achieved by introducing an adaptive algorithm that allows the change of the weights of the RBFNN after the training process is completed, which will eliminates the need to retrain the RBFNN model again. The data used in this paper is real data measured by National Electrical Power co. (Jordan). The data for the period Jan./2012-April/2013 is used train the RBFNN models and the data for the period May/2013- Sep. /2013 is used to validate the models effectiveness.Keywords: load forecasting, adaptive neural network, radial basis function, short-term, electricity consumption
Procedia PDF Downloads 3476779 Physiochemical Parameters Assessment and Evaluation of the Quality of Drinking Water in Some Parts of Lagos State
Authors: G. T. Mudashiru, Mayowa P. Ibitola
Abstract:
Investigation was carried out at Ikorodu North local council development area of Lagos state using physiochemical parameters to study the quality drinking water. It was ascertained that the human functions and activities were dependent on the continuous and availability of good drinking water. Six water samples were collected at six different boreholes from various outlets and homes in Ikorodu North local council development area. Lagos state Nigeria. Analysis was carried out to determine the purity of water for domestic use. Physicochemical properties evaluation was adapted using standard chemical methods. A number of parameters such as PH, turbidity, conductivity, total dissolved solids, color, chloride, sulphate, nitrate, hardness were determined. Heavy metals such as Zn, Mg, Fe, Pb, Hg, and Mn as well as total coliform counts were observed. The resulted values of each parameter were justified with World Health Organization (WHO) and Lagos state water regulatory commission LSWRC standard values for quantitative comparison. The result reveals that all the water had pH value well below the WHO maximum permissible level for potable water. Other physicochemical parameters were within the safe limit of WHO standard showing the portability nature of the water. It can be concluded that though the water is potable, there should be a kind of treatment of the water before consumption to prevent outbreak of diseases.Keywords: drinking water, physiology, boreholes, heavy metals, domestic
Procedia PDF Downloads 2236778 Changing Trends in the Use of Induction Agents for General Anesthesia for Cesarean Section
Authors: Mahmoud Hassanin, Amita Gupta
Abstract:
Background: During current practice, Thiopentone is not cost-effectively added to resources wastage, risk of drug error with antibiotics, short shelf life, infection risk, and risk of delay while preparing during category one cesarean section. There is no significant difference or preference to the other alternative as per current use. Aims and Objectives: Patient safety, Cost-effective use of trust resources, problem awareness, Consider improvising on the current practice. Methods: In conjunction with the local department survey results, many studies support the change. Results: More than 50%(15 from 29) are already using Propofol, more than 75% of the participant are willing to shift to Propofol if it becomes standard, and the cost analysis also revealed that Thiopentone 10 X500=£60 Propofol 10X200= £5.20, Cost of Thiopentone/year =£2190. Approximately GA in a year =35-40 could cost approximately £20 Propofol, given it is a well-established practice. We could save not only money, but it will be environmentally friendly also to avoid adding any carbon footprints. Recommendation: Thiopentone is rarely used as an induction agent for the category one Caesarean section in our obstetric emergency theatres. Most obstetric anesthetists are using Propofol. Keep both Propofol and thiopentone(powder not withdrawn) in the cat one cesarean section emergency drugs tray ready until the department completely changes the practice protocol. A further retrospective study is required to compare the outcomes for these induction agents through the local database.Keywords: thiopentone, propofol, category 1 caesarean, induction agents
Procedia PDF Downloads 1436777 Collective Intelligence-Based Early Warning Management for Agriculture
Authors: Jarbas Lopes Cardoso Jr., Frederic Andres, Alexandre Guitton, Asanee Kawtrakul, Silvio E. Barbin
Abstract:
The important objective of the CyberBrain Mass Agriculture Alarm Acquisition and Analysis (CBMa4) project is to minimize the impacts of diseases and disasters on rice cultivation. For example, early detection of insects will reduce the volume of insecticides that is applied to the rice fields through the use of CBMa4 platform. In order to reach this goal, two major factors need to be considered: (1) the social network of smart farmers; and (2) the warning data alarm acquisition and analysis component. This paper outlines the process for collecting the warning and improving the decision-making result to the warning. It involves two sub-processes: the warning collection and the understanding enrichment. Human sensors combine basic suitable data processing techniques in order to extract warning related semantic according to collective intelligence. We identify each warning by a semantic content called 'warncons' with multimedia metaphors and metadata related to these metaphors. It is important to describe the metric to measuring the relation among warncons. With this knowledge, a collective intelligence-based decision-making approach determines the action(s) to be launched regarding one or a set of warncons.Keywords: agricultural engineering, warning systems, social network services, context awareness
Procedia PDF Downloads 3846776 Economic Efficiency and Profitability of Cowpea Production in Billiri Local Government Area of Gombe State, Nigeria
Authors: Salihu Umaru Biye, Ali Disa, Y. Adamu, Muhammad Elhafiz Ahmad
Abstract:
This study evaluated the economic efficiency and profitability of cowpea production in Billiri Local Government Area of Gombe State, Nigeria. The objectives were to describe the socioeconomic characteristics of cowpea farmers, analyze the costs and returns of production, determine technical and allocative efficiencies, and identify constraints to cowpea farming. Using multistage, purposive, and simple random sampling techniques, we selected 200 cowpea farmers. Data were collected through structured questionnaires and analyzed using descriptive and inferential statistics. Results indicated that 76% of farmers were under 45 years old, with a mean age of 36.3 years. The majority (74%) were male, 73% married, and had an average family size of 8. About 46% were full-time farmers, 95.5% were literate, with an average farming experience of 15.45 years and an average farm size of 3.08 hectares. Cowpea production proved profitable with a gross margin of ₦326,740.25 per hectare, a gross income of ₦525,020.00 per hectare, and total variable costs of ₦198,279.75 per hectare, resulting in an operating ratio of 0.61. The return on investment was 2.21, with a mean technical efficiency of 0.75 and a mean economic efficiency of 0.71. The findings suggest that cowpea production is profitable, yielding ₦2.21 for every ₦1.00 invested. Enhancing farming practices could further improve efficiency and profitability.Keywords: economic efficiency, profitability, cowpea production, technical efficiency, allocative efficiency, Gombe State
Procedia PDF Downloads 36775 Variable vs. Fixed Window Width Code Correlation Reference Waveform Receivers for Multipath Mitigation in Global Navigation Satellite Systems with Binary Offset Carrier and Multiplexed Binary Offset Carrier Signals
Authors: Fahad Alhussein, Huaping Liu
Abstract:
This paper compares the multipath mitigation performance of code correlation reference waveform receivers with variable and fixed window width, for binary offset carrier and multiplexed binary offset carrier signals typically used in global navigation satellite systems. In the variable window width method, such width is iteratively reduced until the distortion on the discriminator with multipath is eliminated. This distortion is measured as the Euclidean distance between the actual discriminator (obtained with the incoming signal), and the local discriminator (generated with a local copy of the signal). The variable window width have shown better performance compared to the fixed window width. In particular, the former yields zero error for all delays for the BOC and MBOC signals considered, while the latter gives rather large nonzero errors for small delays in all cases. Due to its computational simplicity, the variable window width method is perfectly suitable for implementation in low-cost receivers.Keywords: correlation reference waveform receivers, binary offset carrier, multiplexed binary offset carrier, global navigation satellite systems
Procedia PDF Downloads 1336774 Roasting Degree of Cocoa Beans by Artificial Neural Network (ANN) Based Electronic Nose System and Gas Chromatography (GC)
Authors: Juzhong Tan, William Kerr
Abstract:
Roasting is one critical procedure in chocolate processing, where special favors are developed, moisture content is decreased, and better processing properties are developed. Therefore, determination of roasting degree of cocoa bean is important for chocolate manufacturers to ensure the quality of chocolate products, and it also decides the commercial value of cocoa beans collected from cocoa farmers. The roasting degree of cocoa beans currently relies on human specialists, who sometimes are biased, and chemical analysis, which take long time and are inaccessible to many manufacturers and farmers. In this study, a self-made electronic nose system consists of gas sensors (TGS 800 and 2000 series) was used to detecting the gas generated by cocoa beans with a different roasting degree (0min, 20min, 30min, and 40min) and the signals collected by gas sensors were used to train a three-layers ANN. Chemical analysis of the graded beans was operated by traditional GC-MS system and the contents of volatile chemical compounds were used to train another ANN as a reference to electronic nosed signals trained ANN. Both trained ANN were used to predict cocoa beans with a different roasting degree for validation. The best accuracy of grading achieved by electronic nose signals trained ANN (using signals from TGS 813 826 820 880 830 2620 2602 2610) turned out to be 96.7%, however, the GC trained ANN got the accuracy of 83.8%.Keywords: artificial neutron network, cocoa bean, electronic nose, roasting
Procedia PDF Downloads 235