Search results for: industrial robot
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3731

Search results for: industrial robot

701 Leaching of Metal Cations from Basic Oxygen Furnace (BOF) Steelmaking Slag Immersed in Water

Authors: Umashankar Morya, Somnath Basu

Abstract:

Metalloids like arsenic are often present as contaminants in industrial effluents. Removal of the same is essential before the safe discharge of the wastewater into the environment. Otherwise, these pollutants tend to percolate into aquifers over a period of time and contaminate drinking water sources. Several adsorbents, including metal powders, carbon nanotubes and zeolites, are being used for this purpose, with varying degrees of success. However, most of these solutions are not only costly but also not always readily available. This restricts their use, especially among financially weaker communities. Slag generated globally from primary steelmaking operations exceeds 200 billion kg every year. Some of it is utilized for applications like road construction, filler in reinforced concrete, railway track ballast and recycled into iron ore agglomeration processes. However, these usually involve low-value addition, and a significant amount of the slag still ends up in a landfill. However, there is a strong possibility that the constituents in the steelmaking slag may immobilize metalloid contaminants present in wastewater through a combination of adsorption and precipitation of insoluble product(s). Preliminary experiments have already indicated that exposure to basic oxygen steelmaking slag does reduce pollutant concentration in wastewater. In addition, the slag is relatively inexpensive and available in large quantities and in several countries across the world. Investigations on the mechanism of interactions at the water-solid interfaces have been in progress for some time. However, at the same time, there are concerns about the possibility of leaching of metal ions from the slag particles in concentrations greater than what exists in the water bodies where the “treated” wastewater would eventually be discharged. The effect of such leached ions on the aquatic flora and fauna is yet uncertain. This has prompted the present investigation, which focuses on the leaching of metal ions from steelmaking slag particles in contact with wastewater, and the influence of these ions on the removal of contaminant species. Experiments were carried out to quantify the leaching behavior of different ionic species upon exposure of the slag particles to simulated wastewater, both with and without specific metalloid contaminants.

Keywords: slag, water, metalloid, heavy metal, wastewater

Procedia PDF Downloads 78
700 A Configurational Approach to Understand the Effect of Organizational Structure on Absorptive Capacity: Results from PLS and fsQCA

Authors: Murad Ali, Anderson Konan Seny Kan, Khalid A. Maimani

Abstract:

Based on the theory of organizational design and the theory of knowledge, this study uses complexity theory to explain and better understand the causal impacts of various patterns of organizational structural factors stimulating absorptive capacity (ACAP). Organizational structure can be thought of as heterogeneous configurations where various components are often intertwined. This study argues that impact of the traditional variables which define a firm’s organizational structure (centralization, formalization, complexity and integration) on ACAP is better understood in terms of set-theoretic relations rather than correlations. This study uses a data sample of 347 from a multiple industrial sector in South Korea. The results from PLS-SEM support all the hypothetical relationships among the variables. However, fsQCA results suggest the possible configurations of centralization, formalization, complexity, integration, age, size, industry and revenue factors that contribute to high level of ACAP. The results from fsQCA demonstrate the usefulness of configurational approaches in helping understand equifinality in the field of knowledge management. A recent fsQCA procedure based on a modeling subsample and holdout subsample is use in this study to assess the predictive validity of the model under investigation. The same type predictive analysis is also made through PLS-SEM. These analyses reveal a good relevance of causal solutions leading to high level of ACAP. In overall, the results obtained from combining PLS-SEM and fsQCA are very insightful. In particular, they could help managers to link internal organizational structural with ACAP. In other words, managers may comprehend finely how different components of organizational structure can increase the level of ACAP. The configurational approach may trigger new insights that could help managers prioritize selection criteria and understand the interactions between organizational structure and ACAP. The paper also discusses theoretical and managerial implications arising from these findings.

Keywords: absorptive capacity, organizational structure, PLS-SEM, fsQCA, predictive analysis, modeling subsample, holdout subsample

Procedia PDF Downloads 335
699 Biosurfactants Production by Bacillus Strain from an Environmental Sample in Egypt

Authors: Mervat Kassem, Nourhan Fanaki, F. Dabbous, Hamida Abou-Shleib, Y. R. Abdel-Fattah

Abstract:

With increasing environmental awareness and emphasis on a sustainable society in harmony with the global environment, biosurfactants are gaining prominence and have already taken over for a number of important industrial uses. They are produced by living organisms, for examples Pseudomonas aeruginosa which produces rhamnolipids, Candida (formerly Torulopsis) bombicola, which produces high yields of sophorolipids from vegetable oils and sugars and Bacillus subtilis which produces a lipopeptide called surfactin. The main goal of this work was to optimize biosurfactants production by an environmental Gram positive isolate for large scale production with maximum yield and low cost. After molecular characterization, phylogenetic tree was constructed where it was found to be B. subtilis, which close matches to B. subtilis subsp. subtilis strain CICC 10260. For optimizing its biosurfactants production, sequential statistical design using Plackett-Burman and response surface methodology, was applied where 11 variables were screened. When analyzing the regression coefficients for the 11 variables, pH, glucose, glycerol, yeast extract, ammonium chloride and ammonium nitrate were found to have a positive effect on the biosurfactants production. Ammonium nitrate, pH and glucose were further studied as significant independent variables for Box-Behnken design and their optimal levels were estimated and were found to be 7.328 pH value, 3 g% glucose and 0.21g % ammonium nitrate yielding high biosurfactants concentration that reduced the surface tension of the culture medium from 72 to 18.16 mN/m. Next, kinetics of cell growth and biosurfactants production by the tested B. subtilis isolate, in bioreactor was compared with that of shake flask where the maximum growth and specific growth (µ) in the bioreactor was higher by about 25 and 53%, respectively, than in shake flask experiment, while the biosurfactants production kinetics was almost the same in both shake flask and bioreactor experiments.

Keywords: biosurfactants, B. subtilis, molecular identification, phylogenetic trees, Plackett-Burman design, Box-Behnken design, 16S rRNA

Procedia PDF Downloads 414
698 A Study of the Interactions between the Inter-City Traffic System and the Spatial Structure Evolution in the Yangtze River Delta from Time and Space Dimensions

Authors: Zhang Cong, Cai Runlin, Jia Fengjiao

Abstract:

The evolution of the urban agglomeration spatial structure requires strong support of the inter-city traffic system. And the inter-city traffic system can not only meet the demand of the urban agglomeration transportation but also guide the economic development. To correctly understand the relationship between inter-city traffic planning and urban agglomeration can help the urban agglomeration coordinated developing with the inter-city traffic system. The Yangtze River Delta is one of the most representative urban agglomerations in China with strong economic vitality, high city levels, diversified urban space form, and improved transport infrastructure. With the promotion of industrial division in the Yangtze River Delta and the regional travel facilitation brought by inter-city traffic, the urban agglomeration is characterized by highly increasing of inter-city transportation demand, the urbanization of regional traffic, adjacent regional transportation links breaking administrative boundaries, the networked channels and so on. Therefore, the development of inter-city traffic system presents new trends and challenges. This paper studies the interactions between inter-city traffic system and regional economic growth, regional factor flow, and regional spatial structure evolution in the Yangtze River Delta from two dimensions of time and space. On this basis, the adaptability of inter-city traffic development mode and urban agglomeration space structure is analyzed. First of all, the coordination between urban agglomeration planning and inter-city traffic planning is judged from the planning level. Secondly, the coordination between inter-city traffic elements and industries and population distributions is judged from the perspective of space. Finally, the coordination of the cross-regional planning and construction of inter-city traffic system is judged. The conclusions can provide an empirical reference for intercity traffic planning in Yangtze River Delta region and other urban agglomerations, and it is also of great significance to optimize the allocation of urban agglomerations and the overall operational efficiency.

Keywords: evolution, interaction, inter-city traffic system, spatial structure

Procedia PDF Downloads 314
697 [Keynote Talk]: Knowledge Codification and Innovation Success within Digital Platforms

Authors: Wissal Ben Arfi, Lubica Hikkerova, Jean-Michel Sahut

Abstract:

This study examines interfirm networks in the digital transformation era, and in particular, how tacit knowledge codification affects innovation success within digital platforms. Hence, one of the most important features of digital transformation and innovation process outcomes is the emergence of digital platforms, as an interfirm network, at the heart of open innovation. This research aims to illuminate how digital platforms influence inter-organizational innovation through virtual team interactions and knowledge sharing practices within an interfirm network. Consequently, it contributes to the respective strategic management literature on new product development (NPD), open innovation, industrial management, and its emerging interfirm networks’ management. The empirical findings show, on the one hand, that knowledge conversion may be enhanced, especially by the socialization which seems to be the most important phase as it has played a crucial role to hold the virtual team members together. On the other hand, in the process of socialization, the tacit knowledge codification is crucial because it provides the structure needed for the interfirm network actors to interact and act to reach common goals which favor the emergence of open innovation. Finally, our results offer several conditions necessary, but not always sufficient, for interfirm managers involved in NPD and innovation concerning strategies to increasingly shape interconnected and borderless markets and business collaborations. In the digital transformation era, the need for adaptive and innovative business models as well as new and flexible network forms is becoming more significant than ever. Supported by technological advancements and digital platforms, companies could benefit from increased market opportunities and creating new markets for their innovations through alliances and collaborative strategies, as a mode of reducing or eliminating uncertainty environments or entry barriers. Consequently, an efficient and well-structured interfirm network is essential to create network capabilities, to ensure tacit knowledge sharing, to enhance organizational learning and to foster open innovation success within digital platforms.

Keywords: interfirm networks, digital platform, virtual teams, open innovation, knowledge sharing

Procedia PDF Downloads 135
696 Digital Architectural Practice as a Challenge for Digital Architectural Technology Elements in the Era of Digital Design

Authors: Ling Liyun

Abstract:

In the field of contemporary architecture, complex forms of architectural works continue to emerge in the world, along with some new terminology emerged: digital architecture, parametric design, algorithm generation, building information modeling, CNC construction and so on. Architects gradually mastered the new skills of mathematical logic in the form of exploration, virtual simulation, and the entire design and coordination in the construction process. Digital construction technology has a greater degree in controlling construction, and ensure its accuracy, creating a series of new construction techniques. As a result, the use of digital technology is an improvement and expansion of the practice of digital architecture design revolution. We worked by reading and analyzing information about the digital architecture development process, a large number of cases, as well as architectural design and construction as a whole process. Thus current developments were introduced and discussed in our paper, such as architectural discourse, design theory, digital design models and techniques, material selecting, as well as artificial intelligence space design. Our paper also pays attention to the representative three cases of digital design and construction experiment at great length in detail to expound high-informatization, high-reliability intelligence, and high-technique in constructing a humane space to cope with the rapid development of urbanization. We concluded that the opportunities and challenges of the shift existed in architectural paradigms, such as the cooperation methods, theories, models, technologies and techniques which were currently employed in digital design research and digital praxis. We also find out that the innovative use of space can gradually change the way people learn, talk, and control information. The past two decades, digital technology radically breaks the technology constraints of industrial technical products, digests the publicity on a particular architectural style (era doctrine). People should not adapt to the machine, but in turn, it’s better to make the machine work for users.

Keywords: artificial intelligence, collaboration, digital architecture, digital design theory, material selection, space construction

Procedia PDF Downloads 141
695 Identification of Persistent Trace Organic Pollutants in Various Waste Water Samples Using HPLC

Authors: Almas Hamid, Ghazala Yaqub, Aqsa Riaz

Abstract:

Qualitative validation was performed to detect the presence of persistent organic pollutants (POPs) in various wastewater samples collected from domestic sources (Askari XI housing society, Bedian road Lahore) industrial sources (PET bottles, pharmaceutical, textile) and a municipal drain (Hudiara drain) in Lahore. In addition wastewater analysis of the selected parameter was carried out. pH for wastewater samples from Askari XI, PET bottles, pharmaceutical, textile and Hudiara drain were 6.9, 6.7, 6.27, 7.18 and 7.9 respectively, within the NEQS Pakistan range that is 6-9. TSS for the respective samples was 194, 241, 254, 140 and 251 mg/L, in effluent for pet bottle industry, pharmaceutical and Hudiara drain and exceeded the NEQS Pakistan. Chemical oxygen demand (COD) for the wastewater samples was 896 mg/L, 166 mg/L, 419 mg/L, 812 mg/L and 610 mg/L respectively, all in excess of NEQS (150 mg/L). Similarly the biological oxygen demand (BOD) values (110.8, 170, 423, 355 and 560 mg/L respectively) were also above NEQS limits (80 mg/L). Chloride (Cl-) content, total dissolved solids (TDS) and temperature were found out to be within the prescribed standard limits. The POPs selected for analysis included five pesticides/insecticides (D. D, Karate, Commando, Finis insect killer, Bifenthrin) and three polycyclic aromatic hydrocarbons (PAHs) (naphthalene, anthracene, phenanthrene). Peak values of standards were compared with that of wastewater samples. The results showed the presence of D.D in all wastewater samples, pesticide Karate was identified in Askari XI and textile industry sample. Pesticide Commando, Finis (insect killer) and Bifenthrin were detected in Askari XI and Hudiara drain wastewater samples. In case of PAHs; naphthalene was identified in all the five wastewater samples whereas anthracene and phenanthrene were detected in samples of Askari XI housing society, PET bottles industry, pharmaceutical industry and textile industry but totally absent in Hudiara drain wastewater. Practical recommendations have been put forth to avoid hazardous impacts of incurred samples.

Keywords: HPLC studies, lahore, physicochemical analysis, wastewater

Procedia PDF Downloads 273
694 Desulfurization of Crude Oil Using Bacteria

Authors: Namratha Pai, K. Vasantharaj, K. Haribabu

Abstract:

Our Team is developing an innovative cost effective biological technique to desulfurize crude oil. ’Sulphur’ is found to be present in crude oil samples from .05% - 13.95% and its elimination by industrial methods is expensive currently. Materials required :- Alicyclobacillus acidoterrestrius, potato dextrose agar, oxygen, Pyragallol and inert gas(nitrogen). Method adapted and proposed:- 1) Growth of bacteria studied, energy needs. 2) Compatibility with crude-oil. 3) Reaction rate of bacteria studied and optimized. 4) Reaction development by computer simulation. 5) Simulated work tested by building the reactor. The method being developed requires the use of bacteria Alicyclobacillus acidoterrestrius - an acidothermophilic heterotrophic, soil dwelling aerobic, Sulfur bacteria. The bacteria are fed to crude oil in a unique manner. Its coated onto potato dextrose agar beads, cultured for 24 hours (growth time coincides with time when it begins reacting) and fed into the reactor. The beads are to be replenished with O2 by passing them through a jacket around the reactor which has O2 supply. The O2 can’t be supplied directly as crude oil is inflammable, hence the process. Beads are made to move around based on the concept of fluidized bed reactor. By controlling the velocity of inert gas pumped , the beads are made to settle down when exhausted of O2. It is recycled through the jacket where O2 is re-fed and beads which were inside the ring substitute the exhausted ones. Crude-oil is maintained between 1 atm-270 M Pa pressure and 45°C treated with tartaric acid (Ph reason for bacteria growth) for optimum output. Bacteria being of oxidising type react with Sulphur in crude-oil and liberate out SO4^2- and no gas. SO4^2- is absorbed into H2O. NaOH is fed once reaction is complete and beads separated. Crude-oil is thus separated of SO4^2-, thereby Sulphur, tartaric acid and other acids which are separated out. Bio-corrosion is taken care of by internal wall painting (phenolepoxy paints). Earlier methods used included use of Pseudomonas and Rhodococcus species. They were found to be inefficient, time and energy consuming and reduce the fuel value as they fed on skeleton.

Keywords: alicyclobacillus acidoterrestrius, potato dextrose agar, fluidized bed reactor principle, reaction time for bacteria, compatibility with crude oil

Procedia PDF Downloads 323
693 Murine Pulmonary Responses after Sub-Chronic Exposure to Environmental Ultrafine Particles

Authors: Yara Saleh, Sebastien Antherieu, Romain Dusautoir, Jules Sotty, Laurent Alleman, Ludivine Canivet, Esperanza Perdrix, Pierre Dubot, Anne Platel, Fabrice Nesslany, Guillaume Garcon, Jean-Marc Lo-Guidice

Abstract:

Air pollution is one of the leading causes of premature death worldwide. Among air pollutants, particulate matter (PM) is a major health risk factor, through the induction of cardiopulmonary diseases and lung cancers. They are composed of coarse, fine and ultrafine particles (PM10, PM2.5, and PM0.1 respectively). Ultrafine particles are emerging unregulated pollutants that might have greater toxicity than larger particles, since they are more abundant and consequently have higher surface area per unit of mass. Our project aims to develop a relevant in vivo model of sub-chronic exposure to atmospheric particles in order to elucidate the specific respiratory impact of ultrafine particles compared to fine particulate matter. Quasi-ultrafine (PM0.18) and fine (PM2.5) particles have been collected in the urban industrial zone of Dunkirk in north France during a 7-month campaign, and submitted to physico-chemical characterization. BALB/c mice were then exposed intranasally to 10µg of PM0.18 or PM2.5 3 times a week. After 1 or 3-month exposure, broncho alveolar lavages (BAL) were performed and lung tissues were harvested for histological and transcriptomic analyses. The physico-chemical study of the collected particles shows that there is no major difference in elemental and surface chemical composition between PM0.18 and PM2.5. Furthermore, the results of the cytological analyses carried out show that both types of particulate fractions can be internalized in lung cells. However, the cell count in BAL and preliminary transcriptomic data suggest that PM0.18 could be more reactive and induce a stronger lung inflammation in exposed mice than PM2.5. Complementary studies are in progress to confirm these first data and to identify the metabolic pathways more specifically associated with the toxicity of ultrafine particles.

Keywords: environmental pollution, lung affect, mice, ultrafine particles

Procedia PDF Downloads 246
692 Humins: From Industrial By-Product to High Value Polymers

Authors: Pierluigi Tosi, Ed de Jong, Gerard van Klink, Luc Vincent, Alice Mija

Abstract:

During the last decades renewable and low-cost resources have attracted increasingly interest. Carbohydrates can be derived by lignocellulosic biomasses, which is an attractive option since they represent the most abundant carbon source available in nature. Carbohydrates can be converted in a plethora of industrially relevant compounds, such as 5-hydroxymethylfurfural (HMF) and levulinic acid (LA), within acid catalyzed dehydration of sugars with mineral acids. Unfortunately, these acid catalyzed conversions suffer of the unavoidable formation of highly viscous heterogeneous poly-disperse carbon based materials known as humins. This black colored low value by-product is made by a complex mixture of macromolecules built by covalent random condensations of the several compounds present during the acid catalyzed conversion. Humins molecular structure is still under investigation but seems based on furanic rings network linked by aliphatic chains and decorated by several reactive moieties (ketones, aldehydes, hydroxyls, …). Despite decades of research, currently there is no way to avoid humins formation. The key parameter for enhance the economic viability of carbohydrate conversion processes is, therefore, increasing the economic value of the humins by-product. Herein are presented new humins based polymeric materials that can be prepared starting from the raw by-product by thermal treatment, without any step of purification or pretreatment. Humins foams can be produced with the control of reaction key parameters, obtaining polymeric porous materials with designed porosity, density, thermal and electrical conductivity, chemical and electrical stability, carbon amount and mechanical properties. Physico chemical properties can be enhanced by modifications on the starting raw material or adding different species during the polymerization. A comparisons on the properties of different compositions will be presented, along with tested applications. The authors gratefully acknowledge the European Community for financial support through Marie-Curie H2020-MSCA-ITN-2015 "HUGS" Project.

Keywords: by-product, humins, polymers, valorization

Procedia PDF Downloads 145
691 Defence Industry in the Political Economy of State and Business Relations

Authors: Hatice Idil Gorgen

Abstract:

Turkey has been investing in its national defence industrial base since the 1980s. State’s role in defence industry showed differences in Turkey. Parallel with this, ruling group’s attitude toward companies in defence sector varied. These changes in policies and behaviors of the state have occurred throughout such milestones as political and economic turmoil in domestic and international level. Hence, it is argued that state’s role, relations with private companies in defense sector and its policies towards the defense industry has shown differences due to the international system, political institutions, ideas and political coalitions in Turkey since the 1980s. Therefore, in order to see changes in the role of the state in defence sector, this paper aims to indicate first, history of state’s role in production and defence industry in the post-1980s era. Secondly, to comprehend the changes in the state’s role in defence industry, Stephan Haggard’s sources of policy change will be provided in the theoretical ground. Thirdly, state cooperated, and joint venture defence firms, state’s actions toward them will be observed. The remaining part will explore the underlying reasons for the changes in the role of the state in defence industry, and it implicitly or explicitly impacts on state business relations. Major findings illustrate that targeted idea of self-sufficient or autarky Turkey to attract domestic audience and to raise the prestige through defence system; ruling elites can regard defence industry and involved business groups as a mean for their ends. State dominant value, sensitive perception which has been ever since Ottoman Empire, prioritizes business groups in defence industry compared to others and push the ruling elites to pursue hard power in defence sectors. Through the globally structural transformation in defence industry, integration of Turkey to liberal bloc deepened and widened interdependence among states. Although it is a qualitative study, it involves the numerated data and descriptive statistics. Data will be collected by searching secondary sources from the literature, examining official documents of ministry of defence, and other appropriate ministries.

Keywords: defense industry, state and business relations, public private relations, arm industry

Procedia PDF Downloads 317
690 Human Factors Interventions for Risk and Reliability Management of Defence Systems

Authors: Chitra Rajagopal, Indra Deo Kumar, Ila Chauhan, Ruchi Joshi, Binoy Bhargavan

Abstract:

Reliability and safety are essential for the success of mission-critical and safety-critical defense systems. Humans are part of the entire life cycle of defense systems development and deployment. The majority of industrial accidents or disasters are attributed to human errors. Therefore, considerations of human performance and human reliability are critical in all complex systems, including defense systems. Defense systems are operating from the ground, naval and aerial platforms in diverse conditions impose unique physical and psychological challenges to the human operators. Some of the safety and mission-critical defense systems with human-machine interactions are fighter planes, submarines, warships, combat vehicles, aerial and naval platforms based missiles, etc. Human roles and responsibilities are also going through a transition due to the infusion of artificial intelligence and cyber technologies. Human operators, not accustomed to such challenges, are more likely to commit errors, which may lead to accidents or loss events. In such a scenario, it is imperative to understand the human factors in defense systems for better systems performance, safety, and cost-effectiveness. A case study using Task Analysis (TA) based methodology for assessment and reduction of human errors in the Air and Missile Defense System in the context of emerging technologies were presented. Action-oriented task analysis techniques such as Hierarchical Task Analysis (HTA) and Operator Action Event Tree (OAET) along with Critical Action and Decision Event Tree (CADET) for cognitive task analysis was used. Human factors assessment based on the task analysis helps in realizing safe and reliable defense systems. These techniques helped in the identification of human errors during different phases of Air and Missile Defence operations, leading to meet the requirement of a safe, reliable and cost-effective mission.

Keywords: defence systems, reliability, risk, safety

Procedia PDF Downloads 140
689 Studies on Organic and Inorganic Micro/Nano Particle Reinforced Epoxy Composites

Authors: Daniel Karthik, Vijay Baheti, Jiri Militky, Sundaramurthy Palanisamy

Abstract:

Fibre based nano particles are presently considered as one of the potential filler materials for the improvement of mechanical and physical properties of polymer composites. Due to high matrix-filler interfacial area there will be uniform and homogeneous dispersion of nanoparticles. In micro/nano filler reinforced composites, resin material is usually tailored by organic or inorganic nanoparticles to have improved matrix properties. The objective of this study was to compare the potential of reinforcement of different organic and inorganic micro/nano fillers in epoxy composites. Industrial and agricultural waste of fibres like Agave Americana, cornhusk, jute, basalt, carbon, glass and fly ash was utilized to prepare micro/nano particles. Micro/nano particles were obtained using high energy planetary ball milling process in dry condition. Milling time and ball size were kept constant throughout the ball milling process. Composites were fabricated by hand lay method. Particle loading was kept constant to 3% wt. for all composites. In present study, loading of fillers was selected as 3 wt. % for all composites. Dynamic mechanical properties of the nanocomposite films were performed in three-point bending mode with gauge length and sample width of 50 mm and 10 mm respectively. The samples were subjected to an oscillating frequency of 1 Hz, 5 Hz and 10 Hz and 100 % oscillating amplitude in the temperature ranges of 30°C to 150°C at the heating rate of 3°C/min. Damping was found to be higher with the jute composites. Amongst organic fillers lowest damping factor was observed with Agave Americana particles, this means that Agave americana fibre particles have betters interface adhesion with epoxy resin. Basalt, fly ash and glass particles have almost similar damping factors confirming better interface adhesion with epoxy.

Keywords: ball milling, damping factor, matrix-filler interface, particle reinforcements

Procedia PDF Downloads 267
688 Accessing Properties of Alkali Activated Ground Granulated Blast Furnace Slag Based Self Compacting Geopolymer Concrete Incorporating Nano Silica

Authors: Guneet Saini, Uthej Vattipalli

Abstract:

In a world with increased demand for sustainable construction, waste product of one industry could be a boon to the other in reducing the carbon footprint. Usage of industrial waste such as fly ash and ground granulated blast furnace slag have become the epicenter of curbing the use of cement, one of the major contributors of greenhouse gases. In this paper, empirical studies have been done to develop alkali activated self-compacting geopolymer concrete (GPC) using ground granulated blast furnace slag (GGBS), incorporated with 2% nano-silica by weight, through evaluation of its fresh and hardening properties. Experimental investigation on 6 mix designs of varying molarity of 10M, 12M and 16M of the alkaline solution and a binder content of 450 kg/m³ and 500 kg/m³ has been done and juxtaposed with GPC mix design composed of 16M alkaline solution concentration and 500 kg/m³ binder content without nano-silica. The sodium silicate to sodium hydroxide ratio (SS/SH), alkaline activator liquid to binder ratio (AAL/B) and water to binder ratio (W/B), which significantly affect the performance and mechanical properties of GPC, were fixed at 2.5, 0.45 and 0.4 respectively. To catalyze the early stage geopolymerisation, oven curing is done maintaining the temperature at 60˚C. This paper also elucidates the test results for fresh self-compacting concrete (SCC) done as per EFNARC guidelines. The mechanical properties tests conducted were: compressive strength test after 7 days, 28 days, 56 days and 90 days; flexure test; split tensile strength test after 28 days, 56 days and 90 days; X-ray diffraction test to analyze the mechanical performance and sorptivity test for testing of permeability. The study revealed that the sample of 16M concentration of alkaline solution with 500 Kg/m³ binder content containing 2% nano silica produced the highest compressive, flexural and split tensile strength of 81.33 MPa, 7.875 MPa, and 6.398 MPa respectively, at the end of 90 days.

Keywords: alkaline activator liquid, geopolymer concrete, ground granulated blast furnace slag, nano silica, self compacting

Procedia PDF Downloads 153
687 Climbing up to Safety and Security: The Facilitation of an NGO Awareness Culture

Authors: Mirad Böhm, Diede De Kok

Abstract:

It goes without saying that for many NGOs a high level of safety and security are crucial issues, which often necessitates the support of military personnel to varying degrees. The relationship between military and NGO personnel is usually a difficult one and while there has been progress, clashes naturally still occur owing to different interpretations of mission objectives amongst many other challenges. NGOs tend to view safety and security as necessary steps towards their goal instead of fundamental pillars of their core ‘business’. The military perspective, however, considers them primary objectives; thus, frequently creating a different vision of how joint operations should be conducted. This paper will argue that internalizing safety and security into the NGO organizational culture is compelling in order to ensure a more effective cooperation with military partners and, ultimately, to achieve their goals. This can be accomplished through a change in perception of safety and security concepts as a fixed and major point on the everyday agenda. Nowadays, there are several training programmes on offer addressing such issues but they primarily focus on the individual level. True internalization of these concepts should reach further by encompassing a wide range of NGO activities, beginning with daily proceedings in office facilities far from conflict zones including logistical and administrative tasks such as budgeting, and leading all the way to actual and potentially hazardous missions in the field. In order to effectuate this change, a tool is required to help NGOs realize, firstly, how they perceive and define safety and security, and secondly, how they can adjust this perception to their benefit. The ‘safety culture ladder’ is a concept that suggests what organizations can and should do to advance their safety. While usually applied to private industrial scenarios, this work will present the concept as a useful instrument to visualize and facilitate the internalization process NGOs ought to go through. The ‘ladder’ allows them to become more aware of the level of their safety and security measures, and moreover, cautions them to take these measures proactively rather than reactively. This in turn will contribute to a rapprochement between military and NGO priority setting in regard to what constitutes a safe working environment.

Keywords: NGO-military cooperation, organisational culture, safety and security awareness, safety culture ladder

Procedia PDF Downloads 334
686 Clathrate Hydrate Measurements and Thermodynamic Modelling for Refrigerants with Electrolytes Solution in the Presence of Cyclopentane

Authors: Peterson Thokozani Ngema, Paramespri Naidoo, Amir H. Mohammadi, Deresh Ramjugernath

Abstract:

Phase equilibrium data (dissociation data) for clathrate hydrate (gas hydrate) were undertaken for systems involving fluorinated refrigerants with a single and mixed electrolytes (NaCl, CaCl₂, MgCl₂, and Na₂SO₄) aqueous solution at various salt concentrations in the absence and presence of cyclopentane (CP). The ternary systems for (R410a or R507) with the water system in the presence of CP were performed in the temperature and pressures ranges of (279.8 to 294.4) K and (0.158 to 1.385) MPa, respectively. Measurements for R410a with single electrolyte {NaCl or CaCl₂} solution in the presence of CP were undertaken at salt concentrations of (0.10, 0.15 and 0.20) mass fractions in the temperature and pressure ranges of (278.4 to 293.7) K and (0.214 to1.179) MPa, respectively. The temperature and pressure conditions for R410a with Na₂SO₄ aqueous solution system were investigated at a salt concentration of 0.10 mass fraction in the range of (283.3 to 291.6) K and (0.483 to 1.373) MPa respectively. Measurements for {R410a or R507} with mixed electrolytes {NaCl, CaCl₂, MgCl₂} aqueous solution was undertaken at various salt concentrations of (0.002 to 0.15) mass fractions in the temperature and pressure ranges of (274.5 to 292.9) K and (0.149 to1.119) MPa in the absence and presence of CP, in which there is no published data related to mixed salt and a promoter. The phase equilibrium measurements were performed using a non-visual isochoric equilibrium cell that co-operates the pressure-search technique. This study is focused on obtaining equilibrium data that can be utilized to design and optimize industrial wastewater, desalination process and the development of Hydrate Electrolyte–Cubic Plus Association (HE–CPA) Equation of State. The results show an impressive improvement in the presence of promoter (CP) on hydrate formation because it increases the dissociation temperatures near ambient conditions. The results obtained were modeled using a developed HE–CPA equation of state. The model results strongly agree with the measured hydrate dissociation data.

Keywords: association, desalination, electrolytes, promoter

Procedia PDF Downloads 250
685 An Enzyme Technology - Metnin™ - Enables the Full Replacement of Fossil-Based Polymers by Lignin in Polymeric Composites

Authors: Joana Antunes, Thomas Levée, Barbara Radovani, Anu Suonpää, Paulina Saloranta, Liji Sobhana, Petri Ihalainen

Abstract:

Lignin is an important component in the exploitation of lignocellulosic biomass. It has been shown that within the next years, the yield of added-value lignin-based chemicals and materials will generate renewable alternatives to oil-based products (e.g. polymeric composites, resins and adhesives) and enhance the economic feasibility of biorefineries. In this paper, a novel technology for lignin valorisation (METNIN™) is presented. METNIN™ is based on the oxidative action of an alkaliphilic enzyme in aqueous alkaline conditions (pH 10-11) at mild temperature (40-50 °C) combined with a cascading membrane operation, yielding a collection of lignin fractions (from oligomeric down to mixture of tri-, di- and monomeric units) with distinct molecular weight distribution, low polydispersity and favourable physicochemical properties. The alkaline process conditions ensure the high processibility of crude lignin in an aqueous environment and the efficiency of the enzyme, yielding better compatibility of lignin towards targeted applications. The application of a selected lignin fraction produced by METNIN™ as a suitable lignopolyol to completely replace a commercial polyol in polyurethane rigid foam formulations is presented as a prototype. Liquid lignopolyols with a high lignin content were prepared by oxypropylation and their full utilization in the polyurethane rigid foam formulation was successfully demonstrated. Moreover, selected technical specifications of different foam demonstrators were determined, including closed cell count, water uptake and compression characteristics. These specifications are within industrial standards for rigid foam applications. The lignin loading in the lignopolyol was a major factor determining the properties of the foam. In addition to polyurethane foam demonstrators, other examples of lignin-based products related to resins and sizing applications will be presented.

Keywords: enzyme, lignin valorisation, polyol, polyurethane foam

Procedia PDF Downloads 156
684 The Dead Alexandrian Historic Vein: The Revitalization of Mahmoudiyah Canal 'The Forgotten Environmental Asset'

Authors: Sara S. Fouad, Omneya Messallam

Abstract:

In 1818, a seventy-five kilometer long canal was dug (called the Mahmoudiyah canal) connecting between Alexandria city in Egypt and the western branch of the Nile. It was a productive resource and vital to its environment, context, transportation, and recreation. It played a significant role in people’s lives and Alexandria city’s shape. The canal, which was the main vein of goods’ transporting from Alexandria’s seaport to the different parts of Egypt, was still in use today as a major source of clear water in the city. But nowadays, Mahmoudiyah canal is converting into ‘dead waterway’. The canal became sources of pollution as a result of solid and industrial waste thus causing many diseases, destroying communities and biodiversity, with urban invasion, the loss of community aesthetic value and healthy environment. Therefore, this paper aims to propose an urban strategy, as a solution to revive the forgotten canal, through recreating a cultural promenade on its shore. The main aim of this research is to formulate decent quality of life, unpolluted space, an area gathering the city space for nature, tourism and investments. As a case study, this paper investigates Mahmoudiyah canal through urban and ecological analyses, aiming to design an urban strategy for reviving it by creating a cultural promenade enriched with public spaces and green areas, which can most probably enhance the quality of life, city re-living and development. Community participation is also considered as vital and intrinsic implementation stage. The empirical research involved using several data assembly methods such as interviews, mental mapping, structural observations and questionnaires. The paper ends with a set of conclusions leading to proposals for the Mahmoudiyah canal revitalization considering the complex challenges and processes of sustainable regeneration focusing on city’s rehabilitation and lost identity.

Keywords: Mahmoudiyah canal, community aesthetic value, city re-living, cultural promenade

Procedia PDF Downloads 134
683 Investigation of Supercapacitor Properties of Nanocomposites Obtained from Acid and Base-functionalized Multi-walled Carbon Nanotube (MWCNT) and Polypyrrole (PPy)

Authors: Feridun Demir, Pelin Okdem

Abstract:

Polymers are versatile materials with many unique properties, such as low density, reasonable strength, flexibility, and easy processability. However, the mechanical properties of these materials are insufficient for many engineering applications. Therefore, there is a continuous search for new polymeric materials with improved properties. Polymeric nanocomposites are an advanced class of composite materials that have attracted great attention in both academic and industrial fields. Since nano-reinforcement materials are very small in size, they provide ultra-large interfacial area per volume between the nano-element and the polymer matrix. This allows the nano-reinforcement composites to exhibit enhanced toughness without compromising hardness or optical clarity. PPy and MWCNT/PPy nanocomposites were synthesized by the chemical oxidative polymerization method and the supercapacitor properties of the obtained nanocomposites were investigated. In addition, pure MWCNT was functionalized with acid (H₂SO₄/H₂O₂) and base (NH₄OH/H₂O₂) solutions at a ratio of 3:1 and a-MWCNT/d-PPy, and b-MWCNT/d-PPy nanocomposites were obtained. The homogeneous distribution of MWCNTs in the polypyrrole matrix and shell-core type morphological structures of the nanocomposites was observed with SEM images. It was observed with SEM, FTIR and XRD analyses that the functional groups formed by the functionalization of MWCNTs caused the MWCNTs to come together and partially agglomerate. It was found that the conductivity of the nanocomposites consisting of MWCNT and d-PPy was higher than that of pure d-PPy. CV, GCD and EIS results show that the use of a-MWCNT and b-MWCNTs in nanocomposites with low particle content positively affects the supercapacitor properties of the materials but negatively at high particle content. It was revealed that the functional MWCNT particles combined in nanocomposites with high particle content cause a decrease in the conductivity and distribution of ions in the electrodes and, thus, a decrease in their energy storage capacity.

Keywords: polypyrrole, multi-walled carbon nanotube (MWCNT), conducting polymer, chemical oxidative polymerization, nanocomposite, supercapacitor

Procedia PDF Downloads 29
682 Monitoring Peri-Urban Growth and Land Use Dynamics with GIS and Remote Sensing Techniques: A Case Study of Burdwan City, India

Authors: Mohammad Arif, Soumen Chatterjee, Krishnendu Gupta

Abstract:

The peri-urban interface is an area of transition where the urban and rural areas meet and interact. So the peri-urban areas, which is characterized by strong urban influence, easy access to markets, services and other inputs, are ready supplies of labour but distant from the land paucity and pollution related to urban growth. Hence, the present study is primarily aimed at quantifying the spatio-temporal pattern of land use/land cover change during the last three decades (i.e., 1987 to 2016) in the peri-urban area of Burdwan city. In the recent past, the morphology of the study region has rapid change due to high growth of population and establishment of industries. The change has predominantly taken place along the State and National Highway 2 (NH-2) and around the Burdwan Municipality for meeting both residential and commercial purposes. To ascertain the degree of change in land use and land cover, over the specified time, satellite imageries and topographical sheets are employed. The data is processed through appropriate software packages to arrive at a deduction that most of the land use changes have occurred by obliterating agricultural land & water bodies and substituting them by built area and industrial spaces. Geospatial analysis of study area showed that this area has experienced a steep increase (30%) of built-up areas and excessive decrease (15%) in croplands between 1987 and 2016. Increase in built-up areas is attributed to the increase of out-migration during this period from the core city. This study also examined social, economic and institutional factors that lead to this rapid land use change in peri-urban areas of the Burdwan city by carrying out a field survey of 250 households in peri-urban areas. The research concludes with an urgency for regulating land subdivisions in peri-urban areas to prevent haphazard land use development. It is expected that the findings of the study would go a long way in facilitating better policy making.

Keywords: growth, land use land cover, morphology, peri-urban, policy making

Procedia PDF Downloads 179
681 Nickel Removal from Industrial Wastewater by Eucalyptus Leaves and Poplar Ashes

Authors: Negin Bayat, Nahid HasanZadeh

Abstract:

Effluents of different industries such as metalworking, battery industry, mining, including heavy metal are considered problematic issues for both humans and the environment. These heavy metals include cadmium, copper, zinc, nickel, chromium, cyanide, lead, etc. Different physicochemical and biological methods are used to remove heavy metals, such as sedimentation, coagulation, flotation, chemical precipitation, filtration, membrane processes (reverse osmosis and nanofiltration), ion exchange, biological methods, adsorption with activated carbon, etc. These methods are generally either expensive or ineffective. In recent years, considerable attention has been given to the removal of heavy metal ions from solution by absorption using discarded and low-cost materials. In this study, nickel removal using an adsorption process by eucalyptus powdered leaves and poplar ash was investigated. This is an applied study. The effect of various parameters on metal removal, such as pH, amount of adsorbent, contact time, and stirring speed, was studied using a discontinuous method. This research was conducted in aqueous solutions on the laboratory scale. Then, optimum absorption conditions were obtained. Then, the study was conducted on real wastewater samples. In addition, the nickel concentration in the wastewater before and after the absorption process was measured. In all experiments, the remaining nickel was measured using an atomic absorption spectrometry device at 382 nm wavelength after an appropriate time and filtration. The results showed that increasing both adsorbent and pH parameters increase the metal removal rate. Nickel removal increased at the first 60 minutes. Then, the absorption rate remained constant and reached equilibrium. A desired removal rate with 40 mg in 100 ml adsorbent solution at pH = 9.5 was observed. According to the obtained results, the best absorption rate was observed at 40 mg dose using a combination of eucalyptus leaves and poplar ash in this study, which was equal to 99.76%. Thus, this combined method can be used as an inexpensive and effective absorbent for the removal of nickel from aqueous solutions.

Keywords: absorption, wastewater, nickel, poplar ash, eucalyptus leaf, treatment

Procedia PDF Downloads 25
680 Photocatalytic Degradation of Lead from Aqueous Solution Using TiO2 as Adsorbent

Authors: Navven Desai, Veena Soraganvi

Abstract:

Heavy metals such as lead, cadmium and mercury do not have biological significance hence they are known to be extremely toxic heavy metals. Water contains various heavy metals like Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), Arsenic (As), Lead (Pb), and Zinc (Zn) etc., when it gets polluted with industrial waste water. These heavy metals cause various health effects even at low concentration when consumed by humans. Most of the heavy metals are poisonous to living organisms. Heavy metals are non-degradable and are preserved in the environment through bioaccumulation. Therefore removal of heavy metals from water is necessary. In recent years, a great deal of attentions has been focused on to the application of nanosized metal oxides to treat heavy metals, especially titanium oxides, ferric oxides, manganese oxides, aluminium oxides and magnesium oxides as adsorbent and photocatalyst. TiO2 based photocatalysts have attracted continuously increasing attention because of the excellent properties such as high light -conversion efficiency, chemical stability, nontoxic nature, low cost. The catalyst displays high photocatalytic activity because of its large surface area. In this study, the photocatalytic degradation of Lead (Pb) from aqueous solution was investigated in natural sunlight by using TiO2 as Nanomaterial. This study was performed at laboratory scale. All the experiments were carried out in the batch process. The concentration of lead was constant (25mg/lit) in the experiment and effect of titanium dioxide dose and pH were varied to study the removal efficiency of the lead by adsorption. Further study was performed on the dependence of photocatalytic reaction on the reaction temperature. The aqueous solution was prepared by Lead metal powder. TiO2 photo catalyst nanopowder used was Sisco-74629 grade. The heavy metal is analyzed with VARIAN AA 240 atomic adsorption spectrophotometer. The study shows, with increasing TiO2 dose and pH the lead removal increases. According to study, it can be concluded that the utilization of titanium dioxide accounted for higher efficiency in the removal of lead from aqueous solution.

Keywords: adsorption, heavy metals, nanomaterial, photocatalysis

Procedia PDF Downloads 302
679 Determination of Non-CO2 Greenhouse Gas Emission in Electronics Industry

Authors: Bong Jae Lee, Jeong Il Lee, Hyo Su Kim

Abstract:

Both developed and developing countries have adopted the decision to join the Paris agreement to reduce greenhouse gas (GHG) emissions at the Conference of the Parties (COP) 21 meeting in Paris. As a result, the developed and developing countries have to submit the Intended Nationally Determined Contributions (INDC) by 2020, and each country will be assessed for their performance in reducing GHG. After that, they shall propose a reduction target which is higher than the previous target every five years. Therefore, an accurate method for calculating greenhouse gas emissions is essential to be presented as a rational for implementing GHG reduction measures based on the reduction targets. Non-CO2 GHGs (CF4, NF3, N2O, SF6 and so on) are being widely used in fabrication process of semiconductor manufacturing, and etching/deposition process of display manufacturing process. The Global Warming Potential (GWP) value of Non-CO2 is much higher than CO2, which means it will have greater effect on a global warming than CO2. Therefore, GHG calculation methods of the electronics industry are provided by Intergovernmental Panel on climate change (IPCC) and U.S. Environmental Protection Agency (EPA), and it will be discussed at ISO/TC 146 meeting. As discussed earlier, being precise and accurate in calculating Non-CO2 GHG is becoming more important. Thus this study aims to discuss the implications of the calculating methods through comparing the methods of IPCC and EPA. As a conclusion, after analyzing the methods of IPCC & EPA, the method of EPA is more detailed and it also provides the calculation for N2O. In case of the default emission factor (by IPCC & EPA), IPCC provides more conservative results compared to that of EPA; The factor of IPCC was developed for calculating a national GHG emission, while the factor of EPA was specifically developed for the U.S. which means it must have been developed to address the environmental issue of the US. The semiconductor factory ‘A’ measured F gas according to the EPA Destruction and Removal Efficiency (DRE) protocol and estimated their own DRE, and it was observed that their emission factor shows higher DRE compared to default DRE factor of IPCC and EPA Therefore, each country can improve their GHG emission calculation by developing its own emission factor (if possible) at the time of reporting Nationally Determined Contributions (NDC). Acknowledgements: This work was supported by the Korea Evaluation Institute of Industrial Technology (No. 10053589).

Keywords: non-CO2 GHG, GHG emission, electronics industry, measuring method

Procedia PDF Downloads 292
678 Metallograpy of Remelted A356 Aluminium following Squeeze Casting

Authors: Azad Hussain, Andrew Cobley

Abstract:

The demand for lightweight parts with high mechanical strength(s) and integrity, in sectors such as the aerospace and automotive is ever increasing, motivated by the need for weight reduction in order to increase fuel efficiency with components usually manufactured using a high grade primary metal or alloy. For components manufactured using the squeeze casting process, this alloy is usually A356 aluminium (Al), it is one of the most versatile Al alloys; and is used extensively in castings for demanding environments. The A356 castings provide good strength to weight ratio making it an attractive option for components where strength has to be maintained, with the added advantage of weight reduction. In addition, the versatility in castabilitiy, weldability and corrosion resistance are other attributes that provide for the A356 cast alloy to be used in a large array of industrial applications. Conversely, it is rare to use remelted Al in these cases, due the nature of the applications of components in demanding environments, were material properties must be defined to meet certain specifications for example a known strength or ductility. However the use of remelted Al, especially primary grade Al such as A356, would offer significant cost and energy savings for manufacturers using primary alloys, provided that remelted aluminium can offer similar benefits in terms of material microstructure and mechanical properties. This study presents the results of the material microstructure and properties of 100% primary A356 Al and 100% remelt Al cast, manufactured via the direct squeeze cast method. The microstructures of the castings made from remelted A356 Al were then compared with the microstructures of primary A356 Al. The outcome of using remelting Al on the microstructure was examined via different analytical techniques, optical microscopy of polished and etched surfaces, and scanning electron microscopy. Microstructural analysis of the 100% remelted Al when compared with primary Al show similar α-Al phase, primary Al dendrites, particles and eutectic constituents. Mechanical testing of cast samples will elucidate further information as to the suitability of utilising 100% remelt for casting.

Keywords: A356, microstructure, remelt, squeeze casting

Procedia PDF Downloads 210
677 Lake Bardawil Water Quality

Authors: Mohamed Elkashouty, Mohamed Elkammar, Mohamed Gomma, Menal Elminiami

Abstract:

Lake Bardawil is considered as one of the major morphological features of northern Sinai. It represents the largest fish production lake for export in Egypt. Nineteen and thirty one samples were collected from lake water during winter and summer (2005). TDS, cations, anions, Cd, Cu, Fe, Mn, Zn, Ni, Co and Pb concentrations were measured within winter and summer seasons. During summer, in the eastern sector of the lake, TDS concentration is decreased due northeastern part (38000 ppm), it is attributed to dilution from seawater through Boughaz II. The TDS concentration increased generally in the central and southern parts of the lake (44000 and 42000 ppm, respectively). It is caused by they are far from dilution from seawater, disconnected water body, shallow depth (mean 2 m), and high evaporation rate. In the western sector, the TDS content ranged from low (38000 ppm) in the northeastern part to high (50000 ppm) in the western part. Generally, the TDS concentration in the western sector is higher than those in the eastern. It is attributed to low volume of water body for the former, high evaporation rate, and therefore increase in TDS content in the lake water.During winter season, in the eastern sector, the wind velocity is high which enhance the water current to inflow into the lake through Boughaz I and II. The resultant water lake is diluted by seawater and rainfall in the winter season. The TDS concentration increased due southern part of the lake (42000 ppm) and declined in the northern part (36000 ppm). The concentration of Co, Ni, Pb, Fe, Cd, Zn, Cu, Mn and Pb within winter and summery seasons, in lake water are low, which considered as background concentrations with respect to seawater. Therefore, there are no industrial, agricultural and sanitary wastewaters dump into the lake. This confirms the statement that has been written at the entrance of Lake Bardawil at El-Telool area "Lake Bardawil, one of the purest lakes in the world". It indicate that the Lake Bardawil is excellent area for fish production for export (current state) and is the second main fish source in Egypt after the Mediterranean Sea after the illness of Lake Manzala.

Keywords: lake Bardawil, water quality, major ions, toxic metals

Procedia PDF Downloads 523
676 Impacts of Transformational Leadership: Petronas Stations in Sabah, Malaysia

Authors: Lizinis Cassendra Frederick Dony, Jirom Jeremy Frederick Dony, Cyril Supain Christopher

Abstract:

The purpose of this paper is to improve the devotion to leadership through HR practices implementation at the PETRONAS stations. This emphasize the importance of personal grooming and Customer Care hospitality training for their front line working individuals and teams’ at PETRONAS stations in Sabah. Based on Thomas Edison, International Leadership Journal, theory, research, education and development practice and application to all organizational phenomena may affect or be affected by leadership. FINDINGS – PETRONAS in short called Petroliam Nasional Berhad is a Malaysian oil and gas company that was founded on August 17, 1974. Wholly owned by the Government of Malaysia, the corporation is vested with the entire oil and gas resources in Malaysia and is entrusted with the responsibility of developing and adding value to these resources. Fortune ranks PETRONAS as the 68th largest company in the world in 2012. It also ranks PETRONAS as the 12th most profitable company in the world and the most profitable in Asia. As of the end of March 2005, the PETRONAS Group comprised 103 wholly owned subsidiaries, 19 partly owned outfits and 57 associated companies. The group is engaged in a wide spectrum of petroleum activities, including upstream exploration and production of oil and gas to downstream oil refining, marketing and distribution of petroleum products, trading, gas processing and liquefaction, gas transmission pipeline network operations, marketing of liquefied natural gas; petrochemical manufacturing and marketing; shipping; automotive engineering and property investment. PETRONAS has growing their marketing channel in a competitive market. They have combined their resources to pursue common goals. PETRONAS provides opportunity to carry out Industrial Training Job Placement to the University students in Malaysia for 6-8 months. The effects of the Industrial Training have exposed them to the real working environment experience acting representing on behalf of General Manager for almost one year. Thus, the management education and reward incentives schemes have aspire the working teams transformed to gain their good leadership. Furthermore, knowledge and experiences are very important in the human capital development transformation. SPSS extends the accurate analysis PETRONAS achievement through 280 questionnaires and 81 questionnaires through excel calculation distributed to interview face to face with the customers, PETRONAS dealers and front desk staffs stations in the 17 stations in Kota Kinabalu, Sabah. Hence, this research study will improve its service quality innovation and business sustainability performance optimization. ORIGINALITY / VALUE – The impact of Transformational Leadership practices have influenced the working team’s behaviour as a Brand Ambassadors of PETRONAS. Finally, the findings correlation indicated that PETRONAS stations needs more HR resources practices to deploy more customer care retention resources in mitigating the business challenges in oil and gas industry. Therefore, as the business established at stiff competition globally (Cooper, 2006; Marques and Simon, 2006), it is crucial for the team management should be capable to minimize noises risk, financial risk and mitigating any other risks as a whole at the optimum level. CONCLUSION- As to conclude this research found that both transformational and transactional contingent reward leadership4 were positively correlated with ratings of platoon potency and ratings of leadership for the platoon leader and sergeant were moderately inter correlated. Due to this identification, we recommended that PETRONAS management should offers quality team management in PETRONAS stations in a broader variety of leadership training specialization in the operation efficiency at the front desk Customer Care hospitality. By having the reliability and validity of job experiences, it leverages diversity teamwork and cross collaboration. Other than leveraging factor, PETRONAS also will strengthen the interpersonal front liners effectiveness and enhance quality of interaction through effective communication. Finally, through numerous CSR correlation studies regression PETRONAS performance on Corporate Social Performance and several control variables.1 CSR model activities can be mis-specified if it is not controllable under R & D which evident in various feedbacks collected from the local communities and younger generation is inclined to higher financial expectation from PETRONAS. But, however, it created a huge impact on the nation building as part of its social adaptability overreaching their business stakeholders’ satisfaction in Sabah.

Keywords: human resources practices implementation (hrpi), source of competitive advantage in people’s development (socaipd), corporate social responsibility (csr), service quality at front desk stations (sqafd), impacts of petronas leadership (iopl)

Procedia PDF Downloads 356
675 Dietary Exposure of Heavy Metals through Cereals Commonly Consumed by Dhaka City Residents

Authors: A. Md. Bayejid Hosen, B. M Zakir Hossain Howlader, C. Yearul Kabir

Abstract:

Contamination of soil and agricultural products by heavy metals resulting from rapid industrial development has caused major concern. Dietary exposure to heavy metals has been associated with toxic and adverse health effects. The main threats to human health from heavy metals are associated with exposure to Pb, Cd and Hg. The aim of this study was to monitor the presence of heavy metals in cereals collected from different wholesale markets of Dhaka City. One hundred and sixty cereal samples were collected and analyzed for determination of heavy metals. Heavy metals were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). A total of six heavy metals– lead, chromium, cadmium, mercury, arsenic and antimony were estimated. The average concentrations of heavy metals in cereals fall within the safe limit established by regulatory organizations except for Pb (152.4 μg/100g) and Hg (15.13 μg/100g) which exceeded the safe limits. BARI gom-26 was the highest source of Pb (304.1 μg/100g) whereas Haski-29 rice variety contained the highest amount of Hg (60.85 μg/100g). Though all the cereal varieties contained approximately same amount of Cr the naizer sail varieties contained huge amount of Cr (171.8 μg/100g). Among all the cereal samples miniket rice varieties contained the least amount of heavy metals. The concentration of Cr (63.24 μg/100g), Cd (5.54 μg/100g) and As (3.26 μg/100g) in all cereals were below the safe limits. The daily intake of heavy metals was determined using the total weight of cereals consumed each day multiplied by the concentrations of heavy metals in cereals. The daily intake was compared with provisional maximum tolerable daily intake set by different regulatory organizations. The daily intake of Cd (23.0 μg), Hg (63.0 μg) and as (13.6 μg) through cereals were below the risk level except for Pb (634.0 μg) and Cr (263.1 μg). As the main meal of average Bangladeshi people is boiled rice served with some sorts of vegetables, our findings indicate that the residents of Dhaka City are at risk from Pb and Cr contamination. Potential health risks from exposure to heavy metals in self-planted cereals need more attention.

Keywords: contamination, dietary exposure, heavy metals, human health, ICP-MS

Procedia PDF Downloads 455
674 Role of Higher Education Commission (HEC) in Strengthening the Academia and Industry Relationships: The Case of Pakistan

Authors: Shah Awan, Fahad Sultan, Shahid Jan Kakakhel

Abstract:

Higher education in the 21st century has been faced with game-changing developments impacting teaching and learning and also strengthening the academia and industry relationship. The academia and industry relationship plays a key role in economic development in developed, developing and emerging economies. The partnership not only explores innovation but also provide a real time experience of the theoretical knowledge. For this purpose, the paper assessing the role of HEC in the Pakistan and discusses the way in academia and industry contribute their role in improving Pakistani economy. Successive studies have reported the importance of innovation and technology , research development initiatives in public sector universities, and the significance of role of higher education commission in strengthening the academia and industrial relationship to improve performance and minimize failure. The paper presents the results of interviews conducted, using semi-structured interviews amongst 26 staff members of two public sector universities, higher education commission and managers from corporate sector.The study shows public sector universities face the several barriers in developing economy like Pakistan, to establish the successful collaboration between universities and industry. Of the participants interviewed, HEC provides an insufficient road map to improve organisational capabilities in facilitating and enhance the performance. The results of this study have demonstrated that HEC has to embrace and internalize support to industry and public sector universities to compete in the era of globalization. Publication of this research paper will help higher education sector to further strengthen research sector through industry and university collaboration. The research findings corroborate the findings of Dooley and Kirk who highlights the features of university-industry collaboration. Enhanced communication has implications for the quality of the product and human resource. Crucial for developing economies, feasible organisational design and framework is essential for the university-industry relationship.

Keywords: higher education commission, role, academia and industry relationship, Pakistan

Procedia PDF Downloads 473
673 Proportional and Integral Controller-Based Direct Current Servo Motor Speed Characterization

Authors: Adel Salem Bahakeem, Ahmad Jamal, Mir Md. Maruf Morshed, Elwaleed Awad Khidir

Abstract:

Direct Current (DC) servo motors, or simply DC motors, play an important role in many industrial applications such as manufacturing of plastics, precise positioning of the equipment, and operating computer-controlled systems where speed of feed control, maintaining the position, and ensuring to have a constantly desired output is very critical. These parameters can be controlled with the help of control systems such as the Proportional Integral Derivative (PID) controller. The aim of the current work is to investigate the effects of Proportional (P) and Integral (I) controllers on the steady state and transient response of the DC motor. The controller gains are varied to observe their effects on the error, damping, and stability of the steady and transient motor response. The current investigation is conducted experimentally on a servo trainer CE 110 using analog PI controller CE 120 and theoretically using Simulink in MATLAB. Both experimental and theoretical work involves varying integral controller gain to obtain the response to a steady-state input, varying, individually, the proportional and integral controller gains to obtain the response to a step input function at a certain frequency, and theoretically obtaining the proportional and integral controller gains for desired values of damping ratio and response frequency. Results reveal that a proportional controller helps reduce the steady-state and transient error between the input signal and output response and makes the system more stable. In addition, it also speeds up the response of the system. On the other hand, the integral controller eliminates the error but tends to make the system unstable with induced oscillations and slow response to eliminate the error. From the current work, it is desired to achieve a stable response of the servo motor in terms of its angular velocity subjected to steady-state and transient input signals by utilizing the strengths of both P and I controllers.

Keywords: DC servo motor, proportional controller, integral controller, controller gain optimization, Simulink

Procedia PDF Downloads 113
672 Investigating the Steam Generation Potential of Lithium Bromide Based CuO Nanofluid under Simulated Solar Flux

Authors: Tamseela Habib, Muhammad Amjad, Muhammad Edokali, Masome Moeni, Olivia Pickup, Ali Hassanpour

Abstract:

Nanofluid-assisted steam generation is rapidly attracting attention amongst the scientific community since it can be applied in a wide range of industrial processes. Because of its high absorption rate of solar energy, nanoparticle-based solar steam generation could be a major contributor to many applications, including water desalination, sterilization and power generation. Lithium bromide-based iron oxide nanofluids have been previously studied in steam generation, which showed promising results. However, the efficiency of the system could be improved if a more heat-conductive nanofluid system could be utilised. In the current paper, we report on an experimental investigation of the photothermal conversion properties of functionalised Copper oxide (CuO) nanoparticles used in Lithium Bromide salt solutions. CuO binary nanofluid was prepared by chemical functionalization with polyethyleneimine (PEI). Long-term stability evaluation of prepared binary nanofluid was done by a high-speed centrifuge analyser which showed a 0.06 Instability index suggesting low agglomeration and sedimentation tendencies. This stability is also supported by the measurements from dynamic light scattering (DLS), transmission electron microscope (TEM), and ultraviolet-visible (UV-Vis) spectrophotometer. The fluid rheology is also characterised, which suggests the system exhibits a Newtonian fluid behavior. The photothermal conversion efficiency of different concentrations of CuO was experimentally investigated under a solar simulator. Experimental results reveal that the binary nanofluid in this study can remarkably increase the solar energy trapping efficiency and evaporation rate as compared to conventional fluids due to localized solar energy harvesting by the surface of the nanofluid. It was found that 0.1wt% CuO NP is the optimum nanofluid concentration for enhanced sensible and latent heat efficiencies.

Keywords: nanofluids, vapor absorption refrigeration system, steam generation, high salinity

Procedia PDF Downloads 89